• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if defined(V8_TARGET_ARCH_X64)
31 
32 #include "x64/lithium-codegen-x64.h"
33 #include "code-stubs.h"
34 #include "stub-cache.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 
40 // When invoking builtins, we need to record the safepoint in the middle of
41 // the invoke instruction sequence generated by the macro assembler.
42 class SafepointGenerator : public CallWrapper {
43  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,int deoptimization_index)44   SafepointGenerator(LCodeGen* codegen,
45                      LPointerMap* pointers,
46                      int deoptimization_index)
47       : codegen_(codegen),
48         pointers_(pointers),
49         deoptimization_index_(deoptimization_index) { }
~SafepointGenerator()50   virtual ~SafepointGenerator() { }
51 
BeforeCall(int call_size)52   virtual void BeforeCall(int call_size) {
53     ASSERT(call_size >= 0);
54     // Ensure that we have enough space after the previous safepoint position
55     // for the jump generated there.
56     int call_end = codegen_->masm()->pc_offset() + call_size;
57     int prev_jump_end = codegen_->LastSafepointEnd() + kMinSafepointSize;
58     if (call_end < prev_jump_end) {
59       int padding_size = prev_jump_end - call_end;
60       STATIC_ASSERT(kMinSafepointSize <= 9);  // One multibyte nop is enough.
61       codegen_->masm()->nop(padding_size);
62     }
63   }
64 
AfterCall()65   virtual void AfterCall() {
66     codegen_->RecordSafepoint(pointers_, deoptimization_index_);
67   }
68 
69  private:
70   static const int kMinSafepointSize =
71       MacroAssembler::kShortCallInstructionLength;
72   LCodeGen* codegen_;
73   LPointerMap* pointers_;
74   int deoptimization_index_;
75 };
76 
77 
78 #define __ masm()->
79 
GenerateCode()80 bool LCodeGen::GenerateCode() {
81   HPhase phase("Code generation", chunk());
82   ASSERT(is_unused());
83   status_ = GENERATING;
84   return GeneratePrologue() &&
85       GenerateBody() &&
86       GenerateDeferredCode() &&
87       GenerateJumpTable() &&
88       GenerateSafepointTable();
89 }
90 
91 
FinishCode(Handle<Code> code)92 void LCodeGen::FinishCode(Handle<Code> code) {
93   ASSERT(is_done());
94   code->set_stack_slots(StackSlotCount());
95   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
96   PopulateDeoptimizationData(code);
97   Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
98 }
99 
100 
Abort(const char * format,...)101 void LCodeGen::Abort(const char* format, ...) {
102   if (FLAG_trace_bailout) {
103     SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString());
104     PrintF("Aborting LCodeGen in @\"%s\": ", *name);
105     va_list arguments;
106     va_start(arguments, format);
107     OS::VPrint(format, arguments);
108     va_end(arguments);
109     PrintF("\n");
110   }
111   status_ = ABORTED;
112 }
113 
114 
Comment(const char * format,...)115 void LCodeGen::Comment(const char* format, ...) {
116   if (!FLAG_code_comments) return;
117   char buffer[4 * KB];
118   StringBuilder builder(buffer, ARRAY_SIZE(buffer));
119   va_list arguments;
120   va_start(arguments, format);
121   builder.AddFormattedList(format, arguments);
122   va_end(arguments);
123 
124   // Copy the string before recording it in the assembler to avoid
125   // issues when the stack allocated buffer goes out of scope.
126   int length = builder.position();
127   Vector<char> copy = Vector<char>::New(length + 1);
128   memcpy(copy.start(), builder.Finalize(), copy.length());
129   masm()->RecordComment(copy.start());
130 }
131 
132 
GeneratePrologue()133 bool LCodeGen::GeneratePrologue() {
134   ASSERT(is_generating());
135 
136 #ifdef DEBUG
137   if (strlen(FLAG_stop_at) > 0 &&
138       info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
139     __ int3();
140   }
141 #endif
142 
143   __ push(rbp);  // Caller's frame pointer.
144   __ movq(rbp, rsp);
145   __ push(rsi);  // Callee's context.
146   __ push(rdi);  // Callee's JS function.
147 
148   // Reserve space for the stack slots needed by the code.
149   int slots = StackSlotCount();
150   if (slots > 0) {
151     if (FLAG_debug_code) {
152       __ Set(rax, slots);
153       __ movq(kScratchRegister, kSlotsZapValue, RelocInfo::NONE);
154       Label loop;
155       __ bind(&loop);
156       __ push(kScratchRegister);
157       __ decl(rax);
158       __ j(not_zero, &loop);
159     } else {
160       __ subq(rsp, Immediate(slots * kPointerSize));
161 #ifdef _MSC_VER
162       // On windows, you may not access the stack more than one page below
163       // the most recently mapped page. To make the allocated area randomly
164       // accessible, we write to each page in turn (the value is irrelevant).
165       const int kPageSize = 4 * KB;
166       for (int offset = slots * kPointerSize - kPageSize;
167            offset > 0;
168            offset -= kPageSize) {
169         __ movq(Operand(rsp, offset), rax);
170       }
171 #endif
172     }
173   }
174 
175   // Possibly allocate a local context.
176   int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
177   if (heap_slots > 0) {
178     Comment(";;; Allocate local context");
179     // Argument to NewContext is the function, which is still in rdi.
180     __ push(rdi);
181     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
182       FastNewContextStub stub(heap_slots);
183       __ CallStub(&stub);
184     } else {
185       __ CallRuntime(Runtime::kNewContext, 1);
186     }
187     RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
188     // Context is returned in both rax and rsi.  It replaces the context
189     // passed to us.  It's saved in the stack and kept live in rsi.
190     __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
191 
192     // Copy any necessary parameters into the context.
193     int num_parameters = scope()->num_parameters();
194     for (int i = 0; i < num_parameters; i++) {
195       Slot* slot = scope()->parameter(i)->AsSlot();
196       if (slot != NULL && slot->type() == Slot::CONTEXT) {
197         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
198             (num_parameters - 1 - i) * kPointerSize;
199         // Load parameter from stack.
200         __ movq(rax, Operand(rbp, parameter_offset));
201         // Store it in the context.
202         int context_offset = Context::SlotOffset(slot->index());
203         __ movq(Operand(rsi, context_offset), rax);
204         // Update the write barrier. This clobbers all involved
205         // registers, so we have use a third register to avoid
206         // clobbering rsi.
207         __ movq(rcx, rsi);
208         __ RecordWrite(rcx, context_offset, rax, rbx);
209       }
210     }
211     Comment(";;; End allocate local context");
212   }
213 
214   // Trace the call.
215   if (FLAG_trace) {
216     __ CallRuntime(Runtime::kTraceEnter, 0);
217   }
218   return !is_aborted();
219 }
220 
221 
GenerateBody()222 bool LCodeGen::GenerateBody() {
223   ASSERT(is_generating());
224   bool emit_instructions = true;
225   for (current_instruction_ = 0;
226        !is_aborted() && current_instruction_ < instructions_->length();
227        current_instruction_++) {
228     LInstruction* instr = instructions_->at(current_instruction_);
229     if (instr->IsLabel()) {
230       LLabel* label = LLabel::cast(instr);
231       emit_instructions = !label->HasReplacement();
232     }
233 
234     if (emit_instructions) {
235       Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
236       instr->CompileToNative(this);
237     }
238   }
239   return !is_aborted();
240 }
241 
242 
GetNextInstruction()243 LInstruction* LCodeGen::GetNextInstruction() {
244   if (current_instruction_ < instructions_->length() - 1) {
245     return instructions_->at(current_instruction_ + 1);
246   } else {
247     return NULL;
248   }
249 }
250 
251 
GenerateJumpTable()252 bool LCodeGen::GenerateJumpTable() {
253   for (int i = 0; i < jump_table_.length(); i++) {
254     __ bind(&jump_table_[i].label);
255     __ Jump(jump_table_[i].address, RelocInfo::RUNTIME_ENTRY);
256   }
257   return !is_aborted();
258 }
259 
260 
GenerateDeferredCode()261 bool LCodeGen::GenerateDeferredCode() {
262   ASSERT(is_generating());
263   for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
264     LDeferredCode* code = deferred_[i];
265     __ bind(code->entry());
266     code->Generate();
267     __ jmp(code->exit());
268   }
269 
270   // Deferred code is the last part of the instruction sequence. Mark
271   // the generated code as done unless we bailed out.
272   if (!is_aborted()) status_ = DONE;
273   return !is_aborted();
274 }
275 
276 
GenerateSafepointTable()277 bool LCodeGen::GenerateSafepointTable() {
278   ASSERT(is_done());
279   // Ensure that there is space at the end of the code to write a number
280   // of jump instructions, as well as to afford writing a call near the end
281   // of the code.
282   // The jumps are used when there isn't room in the code stream to write
283   // a long call instruction. Instead it writes a shorter call to a
284   // jump instruction in the same code object.
285   // The calls are used when lazy deoptimizing a function and calls to a
286   // deoptimization function.
287   int short_deopts = safepoints_.CountShortDeoptimizationIntervals(
288       static_cast<unsigned>(MacroAssembler::kJumpInstructionLength));
289   int byte_count = (short_deopts) * MacroAssembler::kJumpInstructionLength;
290   while (byte_count-- > 0) {
291     __ int3();
292   }
293   safepoints_.Emit(masm(), StackSlotCount());
294   return !is_aborted();
295 }
296 
297 
ToRegister(int index) const298 Register LCodeGen::ToRegister(int index) const {
299   return Register::FromAllocationIndex(index);
300 }
301 
302 
ToDoubleRegister(int index) const303 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
304   return XMMRegister::FromAllocationIndex(index);
305 }
306 
307 
ToRegister(LOperand * op) const308 Register LCodeGen::ToRegister(LOperand* op) const {
309   ASSERT(op->IsRegister());
310   return ToRegister(op->index());
311 }
312 
313 
ToDoubleRegister(LOperand * op) const314 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
315   ASSERT(op->IsDoubleRegister());
316   return ToDoubleRegister(op->index());
317 }
318 
319 
IsInteger32Constant(LConstantOperand * op) const320 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
321   return op->IsConstantOperand() &&
322       chunk_->LookupLiteralRepresentation(op).IsInteger32();
323 }
324 
325 
IsTaggedConstant(LConstantOperand * op) const326 bool LCodeGen::IsTaggedConstant(LConstantOperand* op) const {
327   return op->IsConstantOperand() &&
328       chunk_->LookupLiteralRepresentation(op).IsTagged();
329 }
330 
331 
ToInteger32(LConstantOperand * op) const332 int LCodeGen::ToInteger32(LConstantOperand* op) const {
333   Handle<Object> value = chunk_->LookupLiteral(op);
334   ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
335   ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
336       value->Number());
337   return static_cast<int32_t>(value->Number());
338 }
339 
340 
ToHandle(LConstantOperand * op) const341 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
342   Handle<Object> literal = chunk_->LookupLiteral(op);
343   ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
344   return literal;
345 }
346 
347 
ToOperand(LOperand * op) const348 Operand LCodeGen::ToOperand(LOperand* op) const {
349   // Does not handle registers. In X64 assembler, plain registers are not
350   // representable as an Operand.
351   ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
352   int index = op->index();
353   if (index >= 0) {
354     // Local or spill slot. Skip the frame pointer, function, and
355     // context in the fixed part of the frame.
356     return Operand(rbp, -(index + 3) * kPointerSize);
357   } else {
358     // Incoming parameter. Skip the return address.
359     return Operand(rbp, -(index - 1) * kPointerSize);
360   }
361 }
362 
363 
WriteTranslation(LEnvironment * environment,Translation * translation)364 void LCodeGen::WriteTranslation(LEnvironment* environment,
365                                 Translation* translation) {
366   if (environment == NULL) return;
367 
368   // The translation includes one command per value in the environment.
369   int translation_size = environment->values()->length();
370   // The output frame height does not include the parameters.
371   int height = translation_size - environment->parameter_count();
372 
373   WriteTranslation(environment->outer(), translation);
374   int closure_id = DefineDeoptimizationLiteral(environment->closure());
375   translation->BeginFrame(environment->ast_id(), closure_id, height);
376   for (int i = 0; i < translation_size; ++i) {
377     LOperand* value = environment->values()->at(i);
378     // spilled_registers_ and spilled_double_registers_ are either
379     // both NULL or both set.
380     if (environment->spilled_registers() != NULL && value != NULL) {
381       if (value->IsRegister() &&
382           environment->spilled_registers()[value->index()] != NULL) {
383         translation->MarkDuplicate();
384         AddToTranslation(translation,
385                          environment->spilled_registers()[value->index()],
386                          environment->HasTaggedValueAt(i));
387       } else if (
388           value->IsDoubleRegister() &&
389           environment->spilled_double_registers()[value->index()] != NULL) {
390         translation->MarkDuplicate();
391         AddToTranslation(
392             translation,
393             environment->spilled_double_registers()[value->index()],
394             false);
395       }
396     }
397 
398     AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
399   }
400 }
401 
402 
AddToTranslation(Translation * translation,LOperand * op,bool is_tagged)403 void LCodeGen::AddToTranslation(Translation* translation,
404                                 LOperand* op,
405                                 bool is_tagged) {
406   if (op == NULL) {
407     // TODO(twuerthinger): Introduce marker operands to indicate that this value
408     // is not present and must be reconstructed from the deoptimizer. Currently
409     // this is only used for the arguments object.
410     translation->StoreArgumentsObject();
411   } else if (op->IsStackSlot()) {
412     if (is_tagged) {
413       translation->StoreStackSlot(op->index());
414     } else {
415       translation->StoreInt32StackSlot(op->index());
416     }
417   } else if (op->IsDoubleStackSlot()) {
418     translation->StoreDoubleStackSlot(op->index());
419   } else if (op->IsArgument()) {
420     ASSERT(is_tagged);
421     int src_index = StackSlotCount() + op->index();
422     translation->StoreStackSlot(src_index);
423   } else if (op->IsRegister()) {
424     Register reg = ToRegister(op);
425     if (is_tagged) {
426       translation->StoreRegister(reg);
427     } else {
428       translation->StoreInt32Register(reg);
429     }
430   } else if (op->IsDoubleRegister()) {
431     XMMRegister reg = ToDoubleRegister(op);
432     translation->StoreDoubleRegister(reg);
433   } else if (op->IsConstantOperand()) {
434     Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
435     int src_index = DefineDeoptimizationLiteral(literal);
436     translation->StoreLiteral(src_index);
437   } else {
438     UNREACHABLE();
439   }
440 }
441 
442 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode,int argc)443 void LCodeGen::CallCodeGeneric(Handle<Code> code,
444                                RelocInfo::Mode mode,
445                                LInstruction* instr,
446                                SafepointMode safepoint_mode,
447                                int argc) {
448   ASSERT(instr != NULL);
449   LPointerMap* pointers = instr->pointer_map();
450   RecordPosition(pointers->position());
451   __ call(code, mode);
452   RegisterLazyDeoptimization(instr, safepoint_mode, argc);
453 
454   // Signal that we don't inline smi code before these stubs in the
455   // optimizing code generator.
456   if (code->kind() == Code::TYPE_RECORDING_BINARY_OP_IC ||
457       code->kind() == Code::COMPARE_IC) {
458     __ nop();
459   }
460 }
461 
462 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)463 void LCodeGen::CallCode(Handle<Code> code,
464                         RelocInfo::Mode mode,
465                         LInstruction* instr) {
466   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
467 }
468 
469 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr)470 void LCodeGen::CallRuntime(const Runtime::Function* function,
471                            int num_arguments,
472                            LInstruction* instr) {
473   ASSERT(instr != NULL);
474   ASSERT(instr->HasPointerMap());
475   LPointerMap* pointers = instr->pointer_map();
476   RecordPosition(pointers->position());
477 
478   __ CallRuntime(function, num_arguments);
479   RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT, 0);
480 }
481 
482 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr)483 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
484                                        int argc,
485                                        LInstruction* instr) {
486   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
487   __ CallRuntimeSaveDoubles(id);
488   RecordSafepointWithRegisters(
489       instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex);
490 }
491 
492 
RegisterLazyDeoptimization(LInstruction * instr,SafepointMode safepoint_mode,int argc)493 void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr,
494                                           SafepointMode safepoint_mode,
495                                           int argc) {
496   // Create the environment to bailout to. If the call has side effects
497   // execution has to continue after the call otherwise execution can continue
498   // from a previous bailout point repeating the call.
499   LEnvironment* deoptimization_environment;
500   if (instr->HasDeoptimizationEnvironment()) {
501     deoptimization_environment = instr->deoptimization_environment();
502   } else {
503     deoptimization_environment = instr->environment();
504   }
505 
506   RegisterEnvironmentForDeoptimization(deoptimization_environment);
507   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
508     ASSERT(argc == 0);
509     RecordSafepoint(instr->pointer_map(),
510                     deoptimization_environment->deoptimization_index());
511   } else {
512     ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
513     RecordSafepointWithRegisters(
514         instr->pointer_map(),
515         argc,
516         deoptimization_environment->deoptimization_index());
517   }
518 }
519 
520 
RegisterEnvironmentForDeoptimization(LEnvironment * environment)521 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
522   if (!environment->HasBeenRegistered()) {
523     // Physical stack frame layout:
524     // -x ............. -4  0 ..................................... y
525     // [incoming arguments] [spill slots] [pushed outgoing arguments]
526 
527     // Layout of the environment:
528     // 0 ..................................................... size-1
529     // [parameters] [locals] [expression stack including arguments]
530 
531     // Layout of the translation:
532     // 0 ........................................................ size - 1 + 4
533     // [expression stack including arguments] [locals] [4 words] [parameters]
534     // |>------------  translation_size ------------<|
535 
536     int frame_count = 0;
537     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
538       ++frame_count;
539     }
540     Translation translation(&translations_, frame_count);
541     WriteTranslation(environment, &translation);
542     int deoptimization_index = deoptimizations_.length();
543     environment->Register(deoptimization_index, translation.index());
544     deoptimizations_.Add(environment);
545   }
546 }
547 
548 
DeoptimizeIf(Condition cc,LEnvironment * environment)549 void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
550   RegisterEnvironmentForDeoptimization(environment);
551   ASSERT(environment->HasBeenRegistered());
552   int id = environment->deoptimization_index();
553   Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
554   ASSERT(entry != NULL);
555   if (entry == NULL) {
556     Abort("bailout was not prepared");
557     return;
558   }
559 
560   if (cc == no_condition) {
561     __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
562   } else {
563     // We often have several deopts to the same entry, reuse the last
564     // jump entry if this is the case.
565     if (jump_table_.is_empty() ||
566         jump_table_.last().address != entry) {
567       jump_table_.Add(JumpTableEntry(entry));
568     }
569     __ j(cc, &jump_table_.last().label);
570   }
571 }
572 
573 
PopulateDeoptimizationData(Handle<Code> code)574 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
575   int length = deoptimizations_.length();
576   if (length == 0) return;
577   ASSERT(FLAG_deopt);
578   Handle<DeoptimizationInputData> data =
579       factory()->NewDeoptimizationInputData(length, TENURED);
580 
581   Handle<ByteArray> translations = translations_.CreateByteArray();
582   data->SetTranslationByteArray(*translations);
583   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
584 
585   Handle<FixedArray> literals =
586       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
587   for (int i = 0; i < deoptimization_literals_.length(); i++) {
588     literals->set(i, *deoptimization_literals_[i]);
589   }
590   data->SetLiteralArray(*literals);
591 
592   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
593   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
594 
595   // Populate the deoptimization entries.
596   for (int i = 0; i < length; i++) {
597     LEnvironment* env = deoptimizations_[i];
598     data->SetAstId(i, Smi::FromInt(env->ast_id()));
599     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
600     data->SetArgumentsStackHeight(i,
601                                   Smi::FromInt(env->arguments_stack_height()));
602   }
603   code->set_deoptimization_data(*data);
604 }
605 
606 
DefineDeoptimizationLiteral(Handle<Object> literal)607 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
608   int result = deoptimization_literals_.length();
609   for (int i = 0; i < deoptimization_literals_.length(); ++i) {
610     if (deoptimization_literals_[i].is_identical_to(literal)) return i;
611   }
612   deoptimization_literals_.Add(literal);
613   return result;
614 }
615 
616 
PopulateDeoptimizationLiteralsWithInlinedFunctions()617 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
618   ASSERT(deoptimization_literals_.length() == 0);
619 
620   const ZoneList<Handle<JSFunction> >* inlined_closures =
621       chunk()->inlined_closures();
622 
623   for (int i = 0, length = inlined_closures->length();
624        i < length;
625        i++) {
626     DefineDeoptimizationLiteral(inlined_closures->at(i));
627   }
628 
629   inlined_function_count_ = deoptimization_literals_.length();
630 }
631 
632 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,int deoptimization_index)633 void LCodeGen::RecordSafepoint(
634     LPointerMap* pointers,
635     Safepoint::Kind kind,
636     int arguments,
637     int deoptimization_index) {
638   ASSERT(kind == expected_safepoint_kind_);
639 
640   const ZoneList<LOperand*>* operands = pointers->operands();
641 
642   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
643       kind, arguments, deoptimization_index);
644   for (int i = 0; i < operands->length(); i++) {
645     LOperand* pointer = operands->at(i);
646     if (pointer->IsStackSlot()) {
647       safepoint.DefinePointerSlot(pointer->index());
648     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
649       safepoint.DefinePointerRegister(ToRegister(pointer));
650     }
651   }
652   if (kind & Safepoint::kWithRegisters) {
653     // Register rsi always contains a pointer to the context.
654     safepoint.DefinePointerRegister(rsi);
655   }
656 }
657 
658 
RecordSafepoint(LPointerMap * pointers,int deoptimization_index)659 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
660                                int deoptimization_index) {
661   RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
662 }
663 
664 
RecordSafepoint(int deoptimization_index)665 void LCodeGen::RecordSafepoint(int deoptimization_index) {
666   LPointerMap empty_pointers(RelocInfo::kNoPosition);
667   RecordSafepoint(&empty_pointers, deoptimization_index);
668 }
669 
670 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,int deoptimization_index)671 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
672                                             int arguments,
673                                             int deoptimization_index) {
674   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
675       deoptimization_index);
676 }
677 
678 
RecordPosition(int position)679 void LCodeGen::RecordPosition(int position) {
680   if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return;
681   masm()->positions_recorder()->RecordPosition(position);
682 }
683 
684 
DoLabel(LLabel * label)685 void LCodeGen::DoLabel(LLabel* label) {
686   if (label->is_loop_header()) {
687     Comment(";;; B%d - LOOP entry", label->block_id());
688   } else {
689     Comment(";;; B%d", label->block_id());
690   }
691   __ bind(label->label());
692   current_block_ = label->block_id();
693   LCodeGen::DoGap(label);
694 }
695 
696 
DoParallelMove(LParallelMove * move)697 void LCodeGen::DoParallelMove(LParallelMove* move) {
698   resolver_.Resolve(move);
699 }
700 
701 
DoGap(LGap * gap)702 void LCodeGen::DoGap(LGap* gap) {
703   for (int i = LGap::FIRST_INNER_POSITION;
704        i <= LGap::LAST_INNER_POSITION;
705        i++) {
706     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
707     LParallelMove* move = gap->GetParallelMove(inner_pos);
708     if (move != NULL) DoParallelMove(move);
709   }
710 
711   LInstruction* next = GetNextInstruction();
712   if (next != NULL && next->IsLazyBailout()) {
713     int pc = masm()->pc_offset();
714     safepoints_.SetPcAfterGap(pc);
715   }
716 }
717 
718 
DoParameter(LParameter * instr)719 void LCodeGen::DoParameter(LParameter* instr) {
720   // Nothing to do.
721 }
722 
723 
DoCallStub(LCallStub * instr)724 void LCodeGen::DoCallStub(LCallStub* instr) {
725   ASSERT(ToRegister(instr->result()).is(rax));
726   switch (instr->hydrogen()->major_key()) {
727     case CodeStub::RegExpConstructResult: {
728       RegExpConstructResultStub stub;
729       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
730       break;
731     }
732     case CodeStub::RegExpExec: {
733       RegExpExecStub stub;
734       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
735       break;
736     }
737     case CodeStub::SubString: {
738       SubStringStub stub;
739       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
740       break;
741     }
742     case CodeStub::NumberToString: {
743       NumberToStringStub stub;
744       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
745       break;
746     }
747     case CodeStub::StringAdd: {
748       StringAddStub stub(NO_STRING_ADD_FLAGS);
749       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
750       break;
751     }
752     case CodeStub::StringCompare: {
753       StringCompareStub stub;
754       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
755       break;
756     }
757     case CodeStub::TranscendentalCache: {
758       TranscendentalCacheStub stub(instr->transcendental_type(),
759                                    TranscendentalCacheStub::TAGGED);
760       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
761       break;
762     }
763     default:
764       UNREACHABLE();
765   }
766 }
767 
768 
DoUnknownOSRValue(LUnknownOSRValue * instr)769 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
770   // Nothing to do.
771 }
772 
773 
DoModI(LModI * instr)774 void LCodeGen::DoModI(LModI* instr) {
775   if (instr->hydrogen()->HasPowerOf2Divisor()) {
776     Register dividend = ToRegister(instr->InputAt(0));
777 
778     int32_t divisor =
779         HConstant::cast(instr->hydrogen()->right())->Integer32Value();
780 
781     if (divisor < 0) divisor = -divisor;
782 
783     NearLabel positive_dividend, done;
784     __ testl(dividend, dividend);
785     __ j(not_sign, &positive_dividend);
786     __ negl(dividend);
787     __ andl(dividend, Immediate(divisor - 1));
788     __ negl(dividend);
789     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
790       __ j(not_zero, &done);
791       DeoptimizeIf(no_condition, instr->environment());
792     } else {
793       __ jmp(&done);
794     }
795     __ bind(&positive_dividend);
796     __ andl(dividend, Immediate(divisor - 1));
797     __ bind(&done);
798   } else {
799     LOperand* right = instr->InputAt(1);
800     Register right_reg = ToRegister(right);
801 
802     ASSERT(ToRegister(instr->result()).is(rdx));
803     ASSERT(ToRegister(instr->InputAt(0)).is(rax));
804     ASSERT(!right_reg.is(rax));
805     ASSERT(!right_reg.is(rdx));
806 
807     // Check for x % 0.
808     if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
809       __ testl(right_reg, right_reg);
810       DeoptimizeIf(zero, instr->environment());
811     }
812 
813     // Sign extend eax to edx.
814     // (We are using only the low 32 bits of the values.)
815     __ cdq();
816 
817     // Check for (0 % -x) that will produce negative zero.
818     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
819       NearLabel positive_left;
820       NearLabel done;
821       __ testl(rax, rax);
822       __ j(not_sign, &positive_left);
823       __ idivl(right_reg);
824 
825       // Test the remainder for 0, because then the result would be -0.
826       __ testl(rdx, rdx);
827       __ j(not_zero, &done);
828 
829       DeoptimizeIf(no_condition, instr->environment());
830       __ bind(&positive_left);
831       __ idivl(right_reg);
832       __ bind(&done);
833     } else {
834       __ idivl(right_reg);
835     }
836   }
837 }
838 
839 
DoDivI(LDivI * instr)840 void LCodeGen::DoDivI(LDivI* instr) {
841   LOperand* right = instr->InputAt(1);
842   ASSERT(ToRegister(instr->result()).is(rax));
843   ASSERT(ToRegister(instr->InputAt(0)).is(rax));
844   ASSERT(!ToRegister(instr->InputAt(1)).is(rax));
845   ASSERT(!ToRegister(instr->InputAt(1)).is(rdx));
846 
847   Register left_reg = rax;
848 
849   // Check for x / 0.
850   Register right_reg = ToRegister(right);
851   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
852     __ testl(right_reg, right_reg);
853     DeoptimizeIf(zero, instr->environment());
854   }
855 
856   // Check for (0 / -x) that will produce negative zero.
857   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
858     NearLabel left_not_zero;
859     __ testl(left_reg, left_reg);
860     __ j(not_zero, &left_not_zero);
861     __ testl(right_reg, right_reg);
862     DeoptimizeIf(sign, instr->environment());
863     __ bind(&left_not_zero);
864   }
865 
866   // Check for (-kMinInt / -1).
867   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
868     NearLabel left_not_min_int;
869     __ cmpl(left_reg, Immediate(kMinInt));
870     __ j(not_zero, &left_not_min_int);
871     __ cmpl(right_reg, Immediate(-1));
872     DeoptimizeIf(zero, instr->environment());
873     __ bind(&left_not_min_int);
874   }
875 
876   // Sign extend to rdx.
877   __ cdq();
878   __ idivl(right_reg);
879 
880   // Deoptimize if remainder is not 0.
881   __ testl(rdx, rdx);
882   DeoptimizeIf(not_zero, instr->environment());
883 }
884 
885 
DoMulI(LMulI * instr)886 void LCodeGen::DoMulI(LMulI* instr) {
887   Register left = ToRegister(instr->InputAt(0));
888   LOperand* right = instr->InputAt(1);
889 
890   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
891     __ movl(kScratchRegister, left);
892   }
893 
894   bool can_overflow =
895       instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
896   if (right->IsConstantOperand()) {
897     int right_value = ToInteger32(LConstantOperand::cast(right));
898     if (right_value == -1) {
899       __ negl(left);
900     } else if (right_value == 0) {
901       __ xorl(left, left);
902     } else if (right_value == 2) {
903       __ addl(left, left);
904     } else if (!can_overflow) {
905       // If the multiplication is known to not overflow, we
906       // can use operations that don't set the overflow flag
907       // correctly.
908       switch (right_value) {
909         case 1:
910           // Do nothing.
911           break;
912         case 3:
913           __ leal(left, Operand(left, left, times_2, 0));
914           break;
915         case 4:
916           __ shll(left, Immediate(2));
917           break;
918         case 5:
919           __ leal(left, Operand(left, left, times_4, 0));
920           break;
921         case 8:
922           __ shll(left, Immediate(3));
923           break;
924         case 9:
925           __ leal(left, Operand(left, left, times_8, 0));
926           break;
927         case 16:
928           __ shll(left, Immediate(4));
929           break;
930         default:
931           __ imull(left, left, Immediate(right_value));
932           break;
933       }
934     } else {
935       __ imull(left, left, Immediate(right_value));
936     }
937   } else if (right->IsStackSlot()) {
938     __ imull(left, ToOperand(right));
939   } else {
940     __ imull(left, ToRegister(right));
941   }
942 
943   if (can_overflow) {
944     DeoptimizeIf(overflow, instr->environment());
945   }
946 
947   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
948     // Bail out if the result is supposed to be negative zero.
949     NearLabel done;
950     __ testl(left, left);
951     __ j(not_zero, &done);
952     if (right->IsConstantOperand()) {
953       if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
954         DeoptimizeIf(no_condition, instr->environment());
955       }
956     } else if (right->IsStackSlot()) {
957       __ or_(kScratchRegister, ToOperand(right));
958       DeoptimizeIf(sign, instr->environment());
959     } else {
960       // Test the non-zero operand for negative sign.
961       __ or_(kScratchRegister, ToRegister(right));
962       DeoptimizeIf(sign, instr->environment());
963     }
964     __ bind(&done);
965   }
966 }
967 
968 
DoBitI(LBitI * instr)969 void LCodeGen::DoBitI(LBitI* instr) {
970   LOperand* left = instr->InputAt(0);
971   LOperand* right = instr->InputAt(1);
972   ASSERT(left->Equals(instr->result()));
973   ASSERT(left->IsRegister());
974 
975   if (right->IsConstantOperand()) {
976     int right_operand = ToInteger32(LConstantOperand::cast(right));
977     switch (instr->op()) {
978       case Token::BIT_AND:
979         __ andl(ToRegister(left), Immediate(right_operand));
980         break;
981       case Token::BIT_OR:
982         __ orl(ToRegister(left), Immediate(right_operand));
983         break;
984       case Token::BIT_XOR:
985         __ xorl(ToRegister(left), Immediate(right_operand));
986         break;
987       default:
988         UNREACHABLE();
989         break;
990     }
991   } else if (right->IsStackSlot()) {
992     switch (instr->op()) {
993       case Token::BIT_AND:
994         __ andl(ToRegister(left), ToOperand(right));
995         break;
996       case Token::BIT_OR:
997         __ orl(ToRegister(left), ToOperand(right));
998         break;
999       case Token::BIT_XOR:
1000         __ xorl(ToRegister(left), ToOperand(right));
1001         break;
1002       default:
1003         UNREACHABLE();
1004         break;
1005     }
1006   } else {
1007     ASSERT(right->IsRegister());
1008     switch (instr->op()) {
1009       case Token::BIT_AND:
1010         __ andl(ToRegister(left), ToRegister(right));
1011         break;
1012       case Token::BIT_OR:
1013         __ orl(ToRegister(left), ToRegister(right));
1014         break;
1015       case Token::BIT_XOR:
1016         __ xorl(ToRegister(left), ToRegister(right));
1017         break;
1018       default:
1019         UNREACHABLE();
1020         break;
1021     }
1022   }
1023 }
1024 
1025 
DoShiftI(LShiftI * instr)1026 void LCodeGen::DoShiftI(LShiftI* instr) {
1027   LOperand* left = instr->InputAt(0);
1028   LOperand* right = instr->InputAt(1);
1029   ASSERT(left->Equals(instr->result()));
1030   ASSERT(left->IsRegister());
1031   if (right->IsRegister()) {
1032     ASSERT(ToRegister(right).is(rcx));
1033 
1034     switch (instr->op()) {
1035       case Token::SAR:
1036         __ sarl_cl(ToRegister(left));
1037         break;
1038       case Token::SHR:
1039         __ shrl_cl(ToRegister(left));
1040         if (instr->can_deopt()) {
1041           __ testl(ToRegister(left), ToRegister(left));
1042           DeoptimizeIf(negative, instr->environment());
1043         }
1044         break;
1045       case Token::SHL:
1046         __ shll_cl(ToRegister(left));
1047         break;
1048       default:
1049         UNREACHABLE();
1050         break;
1051     }
1052   } else {
1053     int value = ToInteger32(LConstantOperand::cast(right));
1054     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1055     switch (instr->op()) {
1056       case Token::SAR:
1057         if (shift_count != 0) {
1058           __ sarl(ToRegister(left), Immediate(shift_count));
1059         }
1060         break;
1061       case Token::SHR:
1062         if (shift_count == 0 && instr->can_deopt()) {
1063           __ testl(ToRegister(left), ToRegister(left));
1064           DeoptimizeIf(negative, instr->environment());
1065         } else {
1066           __ shrl(ToRegister(left), Immediate(shift_count));
1067         }
1068         break;
1069       case Token::SHL:
1070         if (shift_count != 0) {
1071           __ shll(ToRegister(left), Immediate(shift_count));
1072         }
1073         break;
1074       default:
1075         UNREACHABLE();
1076         break;
1077     }
1078   }
1079 }
1080 
1081 
DoSubI(LSubI * instr)1082 void LCodeGen::DoSubI(LSubI* instr) {
1083   LOperand* left = instr->InputAt(0);
1084   LOperand* right = instr->InputAt(1);
1085   ASSERT(left->Equals(instr->result()));
1086 
1087   if (right->IsConstantOperand()) {
1088     __ subl(ToRegister(left),
1089             Immediate(ToInteger32(LConstantOperand::cast(right))));
1090   } else if (right->IsRegister()) {
1091     __ subl(ToRegister(left), ToRegister(right));
1092   } else {
1093     __ subl(ToRegister(left), ToOperand(right));
1094   }
1095 
1096   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1097     DeoptimizeIf(overflow, instr->environment());
1098   }
1099 }
1100 
1101 
DoConstantI(LConstantI * instr)1102 void LCodeGen::DoConstantI(LConstantI* instr) {
1103   ASSERT(instr->result()->IsRegister());
1104   __ Set(ToRegister(instr->result()), instr->value());
1105 }
1106 
1107 
DoConstantD(LConstantD * instr)1108 void LCodeGen::DoConstantD(LConstantD* instr) {
1109   ASSERT(instr->result()->IsDoubleRegister());
1110   XMMRegister res = ToDoubleRegister(instr->result());
1111   double v = instr->value();
1112   uint64_t int_val = BitCast<uint64_t, double>(v);
1113   // Use xor to produce +0.0 in a fast and compact way, but avoid to
1114   // do so if the constant is -0.0.
1115   if (int_val == 0) {
1116     __ xorpd(res, res);
1117   } else {
1118     Register tmp = ToRegister(instr->TempAt(0));
1119     __ Set(tmp, int_val);
1120     __ movq(res, tmp);
1121   }
1122 }
1123 
1124 
DoConstantT(LConstantT * instr)1125 void LCodeGen::DoConstantT(LConstantT* instr) {
1126   ASSERT(instr->result()->IsRegister());
1127   __ Move(ToRegister(instr->result()), instr->value());
1128 }
1129 
1130 
DoJSArrayLength(LJSArrayLength * instr)1131 void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1132   Register result = ToRegister(instr->result());
1133   Register array = ToRegister(instr->InputAt(0));
1134   __ movq(result, FieldOperand(array, JSArray::kLengthOffset));
1135 }
1136 
1137 
DoFixedArrayLength(LFixedArrayLength * instr)1138 void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
1139   Register result = ToRegister(instr->result());
1140   Register array = ToRegister(instr->InputAt(0));
1141   __ movq(result, FieldOperand(array, FixedArray::kLengthOffset));
1142 }
1143 
1144 
DoExternalArrayLength(LExternalArrayLength * instr)1145 void LCodeGen::DoExternalArrayLength(LExternalArrayLength* instr) {
1146   Register result = ToRegister(instr->result());
1147   Register array = ToRegister(instr->InputAt(0));
1148   __ movl(result, FieldOperand(array, ExternalPixelArray::kLengthOffset));
1149 }
1150 
1151 
DoValueOf(LValueOf * instr)1152 void LCodeGen::DoValueOf(LValueOf* instr) {
1153   Register input = ToRegister(instr->InputAt(0));
1154   Register result = ToRegister(instr->result());
1155   ASSERT(input.is(result));
1156   NearLabel done;
1157   // If the object is a smi return the object.
1158   __ JumpIfSmi(input, &done);
1159 
1160   // If the object is not a value type, return the object.
1161   __ CmpObjectType(input, JS_VALUE_TYPE, kScratchRegister);
1162   __ j(not_equal, &done);
1163   __ movq(result, FieldOperand(input, JSValue::kValueOffset));
1164 
1165   __ bind(&done);
1166 }
1167 
1168 
DoBitNotI(LBitNotI * instr)1169 void LCodeGen::DoBitNotI(LBitNotI* instr) {
1170   LOperand* input = instr->InputAt(0);
1171   ASSERT(input->Equals(instr->result()));
1172   __ not_(ToRegister(input));
1173 }
1174 
1175 
DoThrow(LThrow * instr)1176 void LCodeGen::DoThrow(LThrow* instr) {
1177   __ push(ToRegister(instr->InputAt(0)));
1178   CallRuntime(Runtime::kThrow, 1, instr);
1179 
1180   if (FLAG_debug_code) {
1181     Comment("Unreachable code.");
1182     __ int3();
1183   }
1184 }
1185 
1186 
DoAddI(LAddI * instr)1187 void LCodeGen::DoAddI(LAddI* instr) {
1188   LOperand* left = instr->InputAt(0);
1189   LOperand* right = instr->InputAt(1);
1190   ASSERT(left->Equals(instr->result()));
1191 
1192   if (right->IsConstantOperand()) {
1193     __ addl(ToRegister(left),
1194             Immediate(ToInteger32(LConstantOperand::cast(right))));
1195   } else if (right->IsRegister()) {
1196     __ addl(ToRegister(left), ToRegister(right));
1197   } else {
1198     __ addl(ToRegister(left), ToOperand(right));
1199   }
1200 
1201   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1202     DeoptimizeIf(overflow, instr->environment());
1203   }
1204 }
1205 
1206 
DoArithmeticD(LArithmeticD * instr)1207 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1208   XMMRegister left = ToDoubleRegister(instr->InputAt(0));
1209   XMMRegister right = ToDoubleRegister(instr->InputAt(1));
1210   XMMRegister result = ToDoubleRegister(instr->result());
1211   // All operations except MOD are computed in-place.
1212   ASSERT(instr->op() == Token::MOD || left.is(result));
1213   switch (instr->op()) {
1214     case Token::ADD:
1215       __ addsd(left, right);
1216       break;
1217     case Token::SUB:
1218        __ subsd(left, right);
1219        break;
1220     case Token::MUL:
1221       __ mulsd(left, right);
1222       break;
1223     case Token::DIV:
1224       __ divsd(left, right);
1225       break;
1226     case Token::MOD:
1227       __ PrepareCallCFunction(2);
1228       __ movsd(xmm0, left);
1229       ASSERT(right.is(xmm1));
1230       __ CallCFunction(
1231           ExternalReference::double_fp_operation(Token::MOD, isolate()), 2);
1232       __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
1233       __ movsd(result, xmm0);
1234       break;
1235     default:
1236       UNREACHABLE();
1237       break;
1238   }
1239 }
1240 
1241 
DoArithmeticT(LArithmeticT * instr)1242 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1243   ASSERT(ToRegister(instr->InputAt(0)).is(rdx));
1244   ASSERT(ToRegister(instr->InputAt(1)).is(rax));
1245   ASSERT(ToRegister(instr->result()).is(rax));
1246 
1247   TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE);
1248   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1249   __ nop();  // Signals no inlined code.
1250 }
1251 
1252 
GetNextEmittedBlock(int block)1253 int LCodeGen::GetNextEmittedBlock(int block) {
1254   for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1255     LLabel* label = chunk_->GetLabel(i);
1256     if (!label->HasReplacement()) return i;
1257   }
1258   return -1;
1259 }
1260 
1261 
EmitBranch(int left_block,int right_block,Condition cc)1262 void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
1263   int next_block = GetNextEmittedBlock(current_block_);
1264   right_block = chunk_->LookupDestination(right_block);
1265   left_block = chunk_->LookupDestination(left_block);
1266 
1267   if (right_block == left_block) {
1268     EmitGoto(left_block);
1269   } else if (left_block == next_block) {
1270     __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1271   } else if (right_block == next_block) {
1272     __ j(cc, chunk_->GetAssemblyLabel(left_block));
1273   } else {
1274     __ j(cc, chunk_->GetAssemblyLabel(left_block));
1275     if (cc != always) {
1276       __ jmp(chunk_->GetAssemblyLabel(right_block));
1277     }
1278   }
1279 }
1280 
1281 
DoBranch(LBranch * instr)1282 void LCodeGen::DoBranch(LBranch* instr) {
1283   int true_block = chunk_->LookupDestination(instr->true_block_id());
1284   int false_block = chunk_->LookupDestination(instr->false_block_id());
1285 
1286   Representation r = instr->hydrogen()->representation();
1287   if (r.IsInteger32()) {
1288     Register reg = ToRegister(instr->InputAt(0));
1289     __ testl(reg, reg);
1290     EmitBranch(true_block, false_block, not_zero);
1291   } else if (r.IsDouble()) {
1292     XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
1293     __ xorpd(xmm0, xmm0);
1294     __ ucomisd(reg, xmm0);
1295     EmitBranch(true_block, false_block, not_equal);
1296   } else {
1297     ASSERT(r.IsTagged());
1298     Register reg = ToRegister(instr->InputAt(0));
1299     HType type = instr->hydrogen()->type();
1300     if (type.IsBoolean()) {
1301       __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1302       EmitBranch(true_block, false_block, equal);
1303     } else if (type.IsSmi()) {
1304       __ SmiCompare(reg, Smi::FromInt(0));
1305       EmitBranch(true_block, false_block, not_equal);
1306     } else {
1307       Label* true_label = chunk_->GetAssemblyLabel(true_block);
1308       Label* false_label = chunk_->GetAssemblyLabel(false_block);
1309 
1310       __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1311       __ j(equal, false_label);
1312       __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1313       __ j(equal, true_label);
1314       __ CompareRoot(reg, Heap::kFalseValueRootIndex);
1315       __ j(equal, false_label);
1316       __ Cmp(reg, Smi::FromInt(0));
1317       __ j(equal, false_label);
1318       __ JumpIfSmi(reg, true_label);
1319 
1320       // Test for double values. Plus/minus zero and NaN are false.
1321       NearLabel call_stub;
1322       __ CompareRoot(FieldOperand(reg, HeapObject::kMapOffset),
1323                      Heap::kHeapNumberMapRootIndex);
1324       __ j(not_equal, &call_stub);
1325 
1326       // HeapNumber => false iff +0, -0, or NaN. These three cases set the
1327       // zero flag when compared to zero using ucomisd.
1328       __ xorpd(xmm0, xmm0);
1329       __ ucomisd(xmm0, FieldOperand(reg, HeapNumber::kValueOffset));
1330       __ j(zero, false_label);
1331       __ jmp(true_label);
1332 
1333       // The conversion stub doesn't cause garbage collections so it's
1334       // safe to not record a safepoint after the call.
1335       __ bind(&call_stub);
1336       ToBooleanStub stub;
1337       __ Pushad();
1338       __ push(reg);
1339       __ CallStub(&stub);
1340       __ testq(rax, rax);
1341       __ Popad();
1342       EmitBranch(true_block, false_block, not_zero);
1343     }
1344   }
1345 }
1346 
1347 
EmitGoto(int block,LDeferredCode * deferred_stack_check)1348 void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) {
1349   block = chunk_->LookupDestination(block);
1350   int next_block = GetNextEmittedBlock(current_block_);
1351   if (block != next_block) {
1352     // Perform stack overflow check if this goto needs it before jumping.
1353     if (deferred_stack_check != NULL) {
1354       __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
1355       __ j(above_equal, chunk_->GetAssemblyLabel(block));
1356       __ jmp(deferred_stack_check->entry());
1357       deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block));
1358     } else {
1359       __ jmp(chunk_->GetAssemblyLabel(block));
1360     }
1361   }
1362 }
1363 
1364 
DoDeferredStackCheck(LGoto * instr)1365 void LCodeGen::DoDeferredStackCheck(LGoto* instr) {
1366   PushSafepointRegistersScope scope(this);
1367   CallRuntimeFromDeferred(Runtime::kStackGuard, 0, instr);
1368 }
1369 
1370 
DoGoto(LGoto * instr)1371 void LCodeGen::DoGoto(LGoto* instr) {
1372   class DeferredStackCheck: public LDeferredCode {
1373    public:
1374     DeferredStackCheck(LCodeGen* codegen, LGoto* instr)
1375         : LDeferredCode(codegen), instr_(instr) { }
1376     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
1377    private:
1378     LGoto* instr_;
1379   };
1380 
1381   DeferredStackCheck* deferred = NULL;
1382   if (instr->include_stack_check()) {
1383     deferred = new DeferredStackCheck(this, instr);
1384   }
1385   EmitGoto(instr->block_id(), deferred);
1386 }
1387 
1388 
TokenToCondition(Token::Value op,bool is_unsigned)1389 inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1390   Condition cond = no_condition;
1391   switch (op) {
1392     case Token::EQ:
1393     case Token::EQ_STRICT:
1394       cond = equal;
1395       break;
1396     case Token::LT:
1397       cond = is_unsigned ? below : less;
1398       break;
1399     case Token::GT:
1400       cond = is_unsigned ? above : greater;
1401       break;
1402     case Token::LTE:
1403       cond = is_unsigned ? below_equal : less_equal;
1404       break;
1405     case Token::GTE:
1406       cond = is_unsigned ? above_equal : greater_equal;
1407       break;
1408     case Token::IN:
1409     case Token::INSTANCEOF:
1410     default:
1411       UNREACHABLE();
1412   }
1413   return cond;
1414 }
1415 
1416 
EmitCmpI(LOperand * left,LOperand * right)1417 void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
1418   if (right->IsConstantOperand()) {
1419     int32_t value = ToInteger32(LConstantOperand::cast(right));
1420     if (left->IsRegister()) {
1421       __ cmpl(ToRegister(left), Immediate(value));
1422     } else {
1423       __ cmpl(ToOperand(left), Immediate(value));
1424     }
1425   } else if (right->IsRegister()) {
1426     __ cmpl(ToRegister(left), ToRegister(right));
1427   } else {
1428     __ cmpl(ToRegister(left), ToOperand(right));
1429   }
1430 }
1431 
1432 
DoCmpID(LCmpID * instr)1433 void LCodeGen::DoCmpID(LCmpID* instr) {
1434   LOperand* left = instr->InputAt(0);
1435   LOperand* right = instr->InputAt(1);
1436   LOperand* result = instr->result();
1437 
1438   NearLabel unordered;
1439   if (instr->is_double()) {
1440     // Don't base result on EFLAGS when a NaN is involved. Instead
1441     // jump to the unordered case, which produces a false value.
1442     __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
1443     __ j(parity_even, &unordered);
1444   } else {
1445     EmitCmpI(left, right);
1446   }
1447 
1448   NearLabel done;
1449   Condition cc = TokenToCondition(instr->op(), instr->is_double());
1450   __ LoadRoot(ToRegister(result), Heap::kTrueValueRootIndex);
1451   __ j(cc, &done);
1452 
1453   __ bind(&unordered);
1454   __ LoadRoot(ToRegister(result), Heap::kFalseValueRootIndex);
1455   __ bind(&done);
1456 }
1457 
1458 
DoCmpIDAndBranch(LCmpIDAndBranch * instr)1459 void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1460   LOperand* left = instr->InputAt(0);
1461   LOperand* right = instr->InputAt(1);
1462   int false_block = chunk_->LookupDestination(instr->false_block_id());
1463   int true_block = chunk_->LookupDestination(instr->true_block_id());
1464 
1465   if (instr->is_double()) {
1466     // Don't base result on EFLAGS when a NaN is involved. Instead
1467     // jump to the false block.
1468     __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
1469     __ j(parity_even, chunk_->GetAssemblyLabel(false_block));
1470   } else {
1471     EmitCmpI(left, right);
1472   }
1473 
1474   Condition cc = TokenToCondition(instr->op(), instr->is_double());
1475   EmitBranch(true_block, false_block, cc);
1476 }
1477 
1478 
DoCmpJSObjectEq(LCmpJSObjectEq * instr)1479 void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
1480   Register left = ToRegister(instr->InputAt(0));
1481   Register right = ToRegister(instr->InputAt(1));
1482   Register result = ToRegister(instr->result());
1483 
1484   NearLabel different, done;
1485   __ cmpq(left, right);
1486   __ j(not_equal, &different);
1487   __ LoadRoot(result, Heap::kTrueValueRootIndex);
1488   __ jmp(&done);
1489   __ bind(&different);
1490   __ LoadRoot(result, Heap::kFalseValueRootIndex);
1491   __ bind(&done);
1492 }
1493 
1494 
DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch * instr)1495 void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
1496   Register left = ToRegister(instr->InputAt(0));
1497   Register right = ToRegister(instr->InputAt(1));
1498   int false_block = chunk_->LookupDestination(instr->false_block_id());
1499   int true_block = chunk_->LookupDestination(instr->true_block_id());
1500 
1501   __ cmpq(left, right);
1502   EmitBranch(true_block, false_block, equal);
1503 }
1504 
1505 
DoIsNull(LIsNull * instr)1506 void LCodeGen::DoIsNull(LIsNull* instr) {
1507   Register reg = ToRegister(instr->InputAt(0));
1508   Register result = ToRegister(instr->result());
1509 
1510   // If the expression is known to be a smi, then it's
1511   // definitely not null. Materialize false.
1512   // Consider adding other type and representation tests too.
1513   if (instr->hydrogen()->value()->type().IsSmi()) {
1514     __ LoadRoot(result, Heap::kFalseValueRootIndex);
1515     return;
1516   }
1517 
1518   __ CompareRoot(reg, Heap::kNullValueRootIndex);
1519   if (instr->is_strict()) {
1520     ASSERT(Heap::kTrueValueRootIndex >= 0);
1521     __ movl(result, Immediate(Heap::kTrueValueRootIndex));
1522     NearLabel load;
1523     __ j(equal, &load);
1524     __ Set(result, Heap::kFalseValueRootIndex);
1525     __ bind(&load);
1526     __ LoadRootIndexed(result, result, 0);
1527   } else {
1528     NearLabel true_value, false_value, done;
1529     __ j(equal, &true_value);
1530     __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1531     __ j(equal, &true_value);
1532     __ JumpIfSmi(reg, &false_value);
1533     // Check for undetectable objects by looking in the bit field in
1534     // the map. The object has already been smi checked.
1535     Register scratch = result;
1536     __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
1537     __ testb(FieldOperand(scratch, Map::kBitFieldOffset),
1538              Immediate(1 << Map::kIsUndetectable));
1539     __ j(not_zero, &true_value);
1540     __ bind(&false_value);
1541     __ LoadRoot(result, Heap::kFalseValueRootIndex);
1542     __ jmp(&done);
1543     __ bind(&true_value);
1544     __ LoadRoot(result, Heap::kTrueValueRootIndex);
1545     __ bind(&done);
1546   }
1547 }
1548 
1549 
DoIsNullAndBranch(LIsNullAndBranch * instr)1550 void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
1551   Register reg = ToRegister(instr->InputAt(0));
1552 
1553   int false_block = chunk_->LookupDestination(instr->false_block_id());
1554 
1555   if (instr->hydrogen()->representation().IsSpecialization() ||
1556       instr->hydrogen()->type().IsSmi()) {
1557     // If the expression is known to untagged or smi, then it's definitely
1558     // not null, and it can't be a an undetectable object.
1559     // Jump directly to the false block.
1560     EmitGoto(false_block);
1561     return;
1562   }
1563 
1564   int true_block = chunk_->LookupDestination(instr->true_block_id());
1565 
1566   __ CompareRoot(reg, Heap::kNullValueRootIndex);
1567   if (instr->is_strict()) {
1568     EmitBranch(true_block, false_block, equal);
1569   } else {
1570     Label* true_label = chunk_->GetAssemblyLabel(true_block);
1571     Label* false_label = chunk_->GetAssemblyLabel(false_block);
1572     __ j(equal, true_label);
1573     __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1574     __ j(equal, true_label);
1575     __ JumpIfSmi(reg, false_label);
1576     // Check for undetectable objects by looking in the bit field in
1577     // the map. The object has already been smi checked.
1578     Register scratch = ToRegister(instr->TempAt(0));
1579     __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
1580     __ testb(FieldOperand(scratch, Map::kBitFieldOffset),
1581              Immediate(1 << Map::kIsUndetectable));
1582     EmitBranch(true_block, false_block, not_zero);
1583   }
1584 }
1585 
1586 
EmitIsObject(Register input,Label * is_not_object,Label * is_object)1587 Condition LCodeGen::EmitIsObject(Register input,
1588                                  Label* is_not_object,
1589                                  Label* is_object) {
1590   ASSERT(!input.is(kScratchRegister));
1591 
1592   __ JumpIfSmi(input, is_not_object);
1593 
1594   __ CompareRoot(input, Heap::kNullValueRootIndex);
1595   __ j(equal, is_object);
1596 
1597   __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
1598   // Undetectable objects behave like undefined.
1599   __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
1600            Immediate(1 << Map::kIsUndetectable));
1601   __ j(not_zero, is_not_object);
1602 
1603   __ movzxbl(kScratchRegister,
1604              FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
1605   __ cmpb(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
1606   __ j(below, is_not_object);
1607   __ cmpb(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
1608   return below_equal;
1609 }
1610 
1611 
DoIsObject(LIsObject * instr)1612 void LCodeGen::DoIsObject(LIsObject* instr) {
1613   Register reg = ToRegister(instr->InputAt(0));
1614   Register result = ToRegister(instr->result());
1615   Label is_false, is_true, done;
1616 
1617   Condition true_cond = EmitIsObject(reg, &is_false, &is_true);
1618   __ j(true_cond, &is_true);
1619 
1620   __ bind(&is_false);
1621   __ LoadRoot(result, Heap::kFalseValueRootIndex);
1622   __ jmp(&done);
1623 
1624   __ bind(&is_true);
1625   __ LoadRoot(result, Heap::kTrueValueRootIndex);
1626 
1627   __ bind(&done);
1628 }
1629 
1630 
DoIsObjectAndBranch(LIsObjectAndBranch * instr)1631 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1632   Register reg = ToRegister(instr->InputAt(0));
1633 
1634   int true_block = chunk_->LookupDestination(instr->true_block_id());
1635   int false_block = chunk_->LookupDestination(instr->false_block_id());
1636   Label* true_label = chunk_->GetAssemblyLabel(true_block);
1637   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1638 
1639   Condition true_cond = EmitIsObject(reg, false_label, true_label);
1640 
1641   EmitBranch(true_block, false_block, true_cond);
1642 }
1643 
1644 
DoIsSmi(LIsSmi * instr)1645 void LCodeGen::DoIsSmi(LIsSmi* instr) {
1646   LOperand* input_operand = instr->InputAt(0);
1647   Register result = ToRegister(instr->result());
1648   if (input_operand->IsRegister()) {
1649     Register input = ToRegister(input_operand);
1650     __ CheckSmiToIndicator(result, input);
1651   } else {
1652     Operand input = ToOperand(instr->InputAt(0));
1653     __ CheckSmiToIndicator(result, input);
1654   }
1655   // result is zero if input is a smi, and one otherwise.
1656   ASSERT(Heap::kFalseValueRootIndex == Heap::kTrueValueRootIndex + 1);
1657   __ LoadRootIndexed(result, result, Heap::kTrueValueRootIndex);
1658 }
1659 
1660 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)1661 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1662   int true_block = chunk_->LookupDestination(instr->true_block_id());
1663   int false_block = chunk_->LookupDestination(instr->false_block_id());
1664 
1665   Condition is_smi;
1666   if (instr->InputAt(0)->IsRegister()) {
1667     Register input = ToRegister(instr->InputAt(0));
1668     is_smi = masm()->CheckSmi(input);
1669   } else {
1670     Operand input = ToOperand(instr->InputAt(0));
1671     is_smi = masm()->CheckSmi(input);
1672   }
1673   EmitBranch(true_block, false_block, is_smi);
1674 }
1675 
1676 
TestType(HHasInstanceType * instr)1677 static InstanceType TestType(HHasInstanceType* instr) {
1678   InstanceType from = instr->from();
1679   InstanceType to = instr->to();
1680   if (from == FIRST_TYPE) return to;
1681   ASSERT(from == to || to == LAST_TYPE);
1682   return from;
1683 }
1684 
1685 
BranchCondition(HHasInstanceType * instr)1686 static Condition BranchCondition(HHasInstanceType* instr) {
1687   InstanceType from = instr->from();
1688   InstanceType to = instr->to();
1689   if (from == to) return equal;
1690   if (to == LAST_TYPE) return above_equal;
1691   if (from == FIRST_TYPE) return below_equal;
1692   UNREACHABLE();
1693   return equal;
1694 }
1695 
1696 
DoHasInstanceType(LHasInstanceType * instr)1697 void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
1698   Register input = ToRegister(instr->InputAt(0));
1699   Register result = ToRegister(instr->result());
1700 
1701   ASSERT(instr->hydrogen()->value()->representation().IsTagged());
1702   __ testl(input, Immediate(kSmiTagMask));
1703   NearLabel done, is_false;
1704   __ j(zero, &is_false);
1705   __ CmpObjectType(input, TestType(instr->hydrogen()), result);
1706   __ j(NegateCondition(BranchCondition(instr->hydrogen())), &is_false);
1707   __ LoadRoot(result, Heap::kTrueValueRootIndex);
1708   __ jmp(&done);
1709   __ bind(&is_false);
1710   __ LoadRoot(result, Heap::kFalseValueRootIndex);
1711   __ bind(&done);
1712 }
1713 
1714 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)1715 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
1716   Register input = ToRegister(instr->InputAt(0));
1717 
1718   int true_block = chunk_->LookupDestination(instr->true_block_id());
1719   int false_block = chunk_->LookupDestination(instr->false_block_id());
1720 
1721   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1722 
1723   __ JumpIfSmi(input, false_label);
1724 
1725   __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
1726   EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
1727 }
1728 
1729 
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)1730 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
1731   Register input = ToRegister(instr->InputAt(0));
1732   Register result = ToRegister(instr->result());
1733 
1734   if (FLAG_debug_code) {
1735     __ AbortIfNotString(input);
1736   }
1737 
1738   __ movl(result, FieldOperand(input, String::kHashFieldOffset));
1739   ASSERT(String::kHashShift >= kSmiTagSize);
1740   __ IndexFromHash(result, result);
1741 }
1742 
1743 
DoHasCachedArrayIndex(LHasCachedArrayIndex * instr)1744 void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) {
1745   Register input = ToRegister(instr->InputAt(0));
1746   Register result = ToRegister(instr->result());
1747 
1748   ASSERT(instr->hydrogen()->value()->representation().IsTagged());
1749   __ LoadRoot(result, Heap::kTrueValueRootIndex);
1750   __ testl(FieldOperand(input, String::kHashFieldOffset),
1751            Immediate(String::kContainsCachedArrayIndexMask));
1752   NearLabel done;
1753   __ j(zero, &done);
1754   __ LoadRoot(result, Heap::kFalseValueRootIndex);
1755   __ bind(&done);
1756 }
1757 
1758 
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)1759 void LCodeGen::DoHasCachedArrayIndexAndBranch(
1760     LHasCachedArrayIndexAndBranch* instr) {
1761   Register input = ToRegister(instr->InputAt(0));
1762 
1763   int true_block = chunk_->LookupDestination(instr->true_block_id());
1764   int false_block = chunk_->LookupDestination(instr->false_block_id());
1765 
1766   __ testl(FieldOperand(input, String::kHashFieldOffset),
1767            Immediate(String::kContainsCachedArrayIndexMask));
1768   EmitBranch(true_block, false_block, equal);
1769 }
1770 
1771 
1772 // Branches to a label or falls through with the answer in the z flag.
1773 // Trashes the temp register and possibly input (if it and temp are aliased).
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp)1774 void LCodeGen::EmitClassOfTest(Label* is_true,
1775                                Label* is_false,
1776                                Handle<String> class_name,
1777                                Register input,
1778                                Register temp) {
1779   __ JumpIfSmi(input, is_false);
1780   __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, temp);
1781   __ j(below, is_false);
1782 
1783   // Map is now in temp.
1784   // Functions have class 'Function'.
1785   __ CmpInstanceType(temp, JS_FUNCTION_TYPE);
1786   if (class_name->IsEqualTo(CStrVector("Function"))) {
1787     __ j(equal, is_true);
1788   } else {
1789     __ j(equal, is_false);
1790   }
1791 
1792   // Check if the constructor in the map is a function.
1793   __ movq(temp, FieldOperand(temp, Map::kConstructorOffset));
1794 
1795   // As long as JS_FUNCTION_TYPE is the last instance type and it is
1796   // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
1797   // LAST_JS_OBJECT_TYPE.
1798   ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
1799   ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
1800 
1801   // Objects with a non-function constructor have class 'Object'.
1802   __ CmpObjectType(temp, JS_FUNCTION_TYPE, kScratchRegister);
1803   if (class_name->IsEqualTo(CStrVector("Object"))) {
1804     __ j(not_equal, is_true);
1805   } else {
1806     __ j(not_equal, is_false);
1807   }
1808 
1809   // temp now contains the constructor function. Grab the
1810   // instance class name from there.
1811   __ movq(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
1812   __ movq(temp, FieldOperand(temp,
1813                              SharedFunctionInfo::kInstanceClassNameOffset));
1814   // The class name we are testing against is a symbol because it's a literal.
1815   // The name in the constructor is a symbol because of the way the context is
1816   // booted.  This routine isn't expected to work for random API-created
1817   // classes and it doesn't have to because you can't access it with natives
1818   // syntax.  Since both sides are symbols it is sufficient to use an identity
1819   // comparison.
1820   ASSERT(class_name->IsSymbol());
1821   __ Cmp(temp, class_name);
1822   // End with the answer in the z flag.
1823 }
1824 
1825 
DoClassOfTest(LClassOfTest * instr)1826 void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
1827   Register input = ToRegister(instr->InputAt(0));
1828   Register result = ToRegister(instr->result());
1829   ASSERT(input.is(result));
1830   Register temp = ToRegister(instr->TempAt(0));
1831   Handle<String> class_name = instr->hydrogen()->class_name();
1832   NearLabel done;
1833   Label is_true, is_false;
1834 
1835   EmitClassOfTest(&is_true, &is_false, class_name, input, temp);
1836 
1837   __ j(not_equal, &is_false);
1838 
1839   __ bind(&is_true);
1840   __ LoadRoot(result, Heap::kTrueValueRootIndex);
1841   __ jmp(&done);
1842 
1843   __ bind(&is_false);
1844   __ LoadRoot(result, Heap::kFalseValueRootIndex);
1845   __ bind(&done);
1846 }
1847 
1848 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)1849 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
1850   Register input = ToRegister(instr->InputAt(0));
1851   Register temp = ToRegister(instr->TempAt(0));
1852   Handle<String> class_name = instr->hydrogen()->class_name();
1853 
1854   int true_block = chunk_->LookupDestination(instr->true_block_id());
1855   int false_block = chunk_->LookupDestination(instr->false_block_id());
1856 
1857   Label* true_label = chunk_->GetAssemblyLabel(true_block);
1858   Label* false_label = chunk_->GetAssemblyLabel(false_block);
1859 
1860   EmitClassOfTest(true_label, false_label, class_name, input, temp);
1861 
1862   EmitBranch(true_block, false_block, equal);
1863 }
1864 
1865 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)1866 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
1867   Register reg = ToRegister(instr->InputAt(0));
1868   int true_block = instr->true_block_id();
1869   int false_block = instr->false_block_id();
1870 
1871   __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
1872   EmitBranch(true_block, false_block, equal);
1873 }
1874 
1875 
DoInstanceOf(LInstanceOf * instr)1876 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
1877   InstanceofStub stub(InstanceofStub::kNoFlags);
1878   __ push(ToRegister(instr->InputAt(0)));
1879   __ push(ToRegister(instr->InputAt(1)));
1880   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1881   NearLabel true_value, done;
1882   __ testq(rax, rax);
1883   __ j(zero, &true_value);
1884   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1885   __ jmp(&done);
1886   __ bind(&true_value);
1887   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
1888   __ bind(&done);
1889 }
1890 
1891 
DoInstanceOfAndBranch(LInstanceOfAndBranch * instr)1892 void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) {
1893   int true_block = chunk_->LookupDestination(instr->true_block_id());
1894   int false_block = chunk_->LookupDestination(instr->false_block_id());
1895 
1896   InstanceofStub stub(InstanceofStub::kNoFlags);
1897   __ push(ToRegister(instr->InputAt(0)));
1898   __ push(ToRegister(instr->InputAt(1)));
1899   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1900   __ testq(rax, rax);
1901   EmitBranch(true_block, false_block, zero);
1902 }
1903 
1904 
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)1905 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
1906   class DeferredInstanceOfKnownGlobal: public LDeferredCode {
1907    public:
1908     DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
1909                                   LInstanceOfKnownGlobal* instr)
1910         : LDeferredCode(codegen), instr_(instr) { }
1911     virtual void Generate() {
1912       codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
1913     }
1914 
1915     Label* map_check() { return &map_check_; }
1916 
1917    private:
1918     LInstanceOfKnownGlobal* instr_;
1919     Label map_check_;
1920   };
1921 
1922 
1923   DeferredInstanceOfKnownGlobal* deferred;
1924   deferred = new DeferredInstanceOfKnownGlobal(this, instr);
1925 
1926   Label done, false_result;
1927   Register object = ToRegister(instr->InputAt(0));
1928 
1929   // A Smi is not an instance of anything.
1930   __ JumpIfSmi(object, &false_result);
1931 
1932   // This is the inlined call site instanceof cache. The two occurences of the
1933   // hole value will be patched to the last map/result pair generated by the
1934   // instanceof stub.
1935   NearLabel cache_miss;
1936   // Use a temp register to avoid memory operands with variable lengths.
1937   Register map = ToRegister(instr->TempAt(0));
1938   __ movq(map, FieldOperand(object, HeapObject::kMapOffset));
1939   __ bind(deferred->map_check());  // Label for calculating code patching.
1940   __ movq(kScratchRegister, factory()->the_hole_value(),
1941           RelocInfo::EMBEDDED_OBJECT);
1942   __ cmpq(map, kScratchRegister);  // Patched to cached map.
1943   __ j(not_equal, &cache_miss);
1944   // Patched to load either true or false.
1945   __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
1946 #ifdef DEBUG
1947   // Check that the code size between patch label and patch sites is invariant.
1948   Label end_of_patched_code;
1949   __ bind(&end_of_patched_code);
1950   ASSERT(true);
1951 #endif
1952   __ jmp(&done);
1953 
1954   // The inlined call site cache did not match. Check for null and string
1955   // before calling the deferred code.
1956   __ bind(&cache_miss);  // Null is not an instance of anything.
1957   __ CompareRoot(object, Heap::kNullValueRootIndex);
1958   __ j(equal, &false_result);
1959 
1960   // String values are not instances of anything.
1961   __ JumpIfNotString(object, kScratchRegister, deferred->entry());
1962 
1963   __ bind(&false_result);
1964   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1965 
1966   __ bind(deferred->exit());
1967   __ bind(&done);
1968 }
1969 
1970 
DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr,Label * map_check)1971 void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
1972                                                 Label* map_check) {
1973   {
1974     PushSafepointRegistersScope scope(this);
1975     InstanceofStub::Flags flags = static_cast<InstanceofStub::Flags>(
1976         InstanceofStub::kNoFlags | InstanceofStub::kCallSiteInlineCheck);
1977     InstanceofStub stub(flags);
1978 
1979     __ push(ToRegister(instr->InputAt(0)));
1980     __ Push(instr->function());
1981 
1982     Register temp = ToRegister(instr->TempAt(0));
1983     static const int kAdditionalDelta = 10;
1984     int delta =
1985         masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
1986     ASSERT(delta >= 0);
1987     __ push_imm32(delta);
1988 
1989     // We are pushing three values on the stack but recording a
1990     // safepoint with two arguments because stub is going to
1991     // remove the third argument from the stack before jumping
1992     // to instanceof builtin on the slow path.
1993     CallCodeGeneric(stub.GetCode(),
1994                     RelocInfo::CODE_TARGET,
1995                     instr,
1996                     RECORD_SAFEPOINT_WITH_REGISTERS,
1997                     2);
1998     ASSERT(delta == masm_->SizeOfCodeGeneratedSince(map_check));
1999     // Move result to a register that survives the end of the
2000     // PushSafepointRegisterScope.
2001     __ movq(kScratchRegister, rax);
2002   }
2003   __ testq(kScratchRegister, kScratchRegister);
2004   Label load_false;
2005   Label done;
2006   __ j(not_zero, &load_false);
2007   __ LoadRoot(rax, Heap::kTrueValueRootIndex);
2008   __ jmp(&done);
2009   __ bind(&load_false);
2010   __ LoadRoot(rax, Heap::kFalseValueRootIndex);
2011   __ bind(&done);
2012 }
2013 
2014 
DoCmpT(LCmpT * instr)2015 void LCodeGen::DoCmpT(LCmpT* instr) {
2016   Token::Value op = instr->op();
2017 
2018   Handle<Code> ic = CompareIC::GetUninitialized(op);
2019   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2020 
2021   Condition condition = TokenToCondition(op, false);
2022   if (op == Token::GT || op == Token::LTE) {
2023     condition = ReverseCondition(condition);
2024   }
2025   NearLabel true_value, done;
2026   __ testq(rax, rax);
2027   __ j(condition, &true_value);
2028   __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2029   __ jmp(&done);
2030   __ bind(&true_value);
2031   __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2032   __ bind(&done);
2033 }
2034 
2035 
DoCmpTAndBranch(LCmpTAndBranch * instr)2036 void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) {
2037   Token::Value op = instr->op();
2038   int true_block = chunk_->LookupDestination(instr->true_block_id());
2039   int false_block = chunk_->LookupDestination(instr->false_block_id());
2040 
2041   Handle<Code> ic = CompareIC::GetUninitialized(op);
2042   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2043 
2044   // The compare stub expects compare condition and the input operands
2045   // reversed for GT and LTE.
2046   Condition condition = TokenToCondition(op, false);
2047   if (op == Token::GT || op == Token::LTE) {
2048     condition = ReverseCondition(condition);
2049   }
2050   __ testq(rax, rax);
2051   EmitBranch(true_block, false_block, condition);
2052 }
2053 
2054 
DoReturn(LReturn * instr)2055 void LCodeGen::DoReturn(LReturn* instr) {
2056   if (FLAG_trace) {
2057     // Preserve the return value on the stack and rely on the runtime
2058     // call to return the value in the same register.
2059     __ push(rax);
2060     __ CallRuntime(Runtime::kTraceExit, 1);
2061   }
2062   __ movq(rsp, rbp);
2063   __ pop(rbp);
2064   __ Ret((ParameterCount() + 1) * kPointerSize, rcx);
2065 }
2066 
2067 
DoLoadGlobalCell(LLoadGlobalCell * instr)2068 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2069   Register result = ToRegister(instr->result());
2070   if (result.is(rax)) {
2071     __ load_rax(instr->hydrogen()->cell().location(),
2072                 RelocInfo::GLOBAL_PROPERTY_CELL);
2073   } else {
2074     __ movq(result, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL);
2075     __ movq(result, Operand(result, 0));
2076   }
2077   if (instr->hydrogen()->check_hole_value()) {
2078     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2079     DeoptimizeIf(equal, instr->environment());
2080   }
2081 }
2082 
2083 
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2084 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2085   ASSERT(ToRegister(instr->global_object()).is(rax));
2086   ASSERT(ToRegister(instr->result()).is(rax));
2087 
2088   __ Move(rcx, instr->name());
2089   RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET :
2090                                                RelocInfo::CODE_TARGET_CONTEXT;
2091   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2092   CallCode(ic, mode, instr);
2093 }
2094 
2095 
DoStoreGlobalCell(LStoreGlobalCell * instr)2096 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2097   Register value = ToRegister(instr->InputAt(0));
2098   Register temp = ToRegister(instr->TempAt(0));
2099   ASSERT(!value.is(temp));
2100   bool check_hole = instr->hydrogen()->check_hole_value();
2101   if (!check_hole && value.is(rax)) {
2102     __ store_rax(instr->hydrogen()->cell().location(),
2103                  RelocInfo::GLOBAL_PROPERTY_CELL);
2104     return;
2105   }
2106   // If the cell we are storing to contains the hole it could have
2107   // been deleted from the property dictionary. In that case, we need
2108   // to update the property details in the property dictionary to mark
2109   // it as no longer deleted. We deoptimize in that case.
2110   __ movq(temp, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL);
2111   if (check_hole) {
2112     __ CompareRoot(Operand(temp, 0), Heap::kTheHoleValueRootIndex);
2113     DeoptimizeIf(equal, instr->environment());
2114   }
2115   __ movq(Operand(temp, 0), value);
2116 }
2117 
2118 
DoStoreGlobalGeneric(LStoreGlobalGeneric * instr)2119 void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2120   ASSERT(ToRegister(instr->global_object()).is(rdx));
2121   ASSERT(ToRegister(instr->value()).is(rax));
2122 
2123   __ Move(rcx, instr->name());
2124   Handle<Code> ic = instr->strict_mode()
2125       ? isolate()->builtins()->StoreIC_Initialize_Strict()
2126       : isolate()->builtins()->StoreIC_Initialize();
2127   CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2128 }
2129 
2130 
DoLoadContextSlot(LLoadContextSlot * instr)2131 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2132   Register context = ToRegister(instr->context());
2133   Register result = ToRegister(instr->result());
2134   __ movq(result, ContextOperand(context, instr->slot_index()));
2135 }
2136 
2137 
DoStoreContextSlot(LStoreContextSlot * instr)2138 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2139   Register context = ToRegister(instr->context());
2140   Register value = ToRegister(instr->value());
2141   __ movq(ContextOperand(context, instr->slot_index()), value);
2142   if (instr->needs_write_barrier()) {
2143     int offset = Context::SlotOffset(instr->slot_index());
2144     Register scratch = ToRegister(instr->TempAt(0));
2145     __ RecordWrite(context, offset, value, scratch);
2146   }
2147 }
2148 
2149 
DoLoadNamedField(LLoadNamedField * instr)2150 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2151   Register object = ToRegister(instr->InputAt(0));
2152   Register result = ToRegister(instr->result());
2153   if (instr->hydrogen()->is_in_object()) {
2154     __ movq(result, FieldOperand(object, instr->hydrogen()->offset()));
2155   } else {
2156     __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
2157     __ movq(result, FieldOperand(result, instr->hydrogen()->offset()));
2158   }
2159 }
2160 
2161 
EmitLoadField(Register result,Register object,Handle<Map> type,Handle<String> name)2162 void LCodeGen::EmitLoadField(Register result,
2163                              Register object,
2164                              Handle<Map> type,
2165                              Handle<String> name) {
2166   LookupResult lookup;
2167   type->LookupInDescriptors(NULL, *name, &lookup);
2168   ASSERT(lookup.IsProperty() && lookup.type() == FIELD);
2169   int index = lookup.GetLocalFieldIndexFromMap(*type);
2170   int offset = index * kPointerSize;
2171   if (index < 0) {
2172     // Negative property indices are in-object properties, indexed
2173     // from the end of the fixed part of the object.
2174     __ movq(result, FieldOperand(object, offset + type->instance_size()));
2175   } else {
2176     // Non-negative property indices are in the properties array.
2177     __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
2178     __ movq(result, FieldOperand(result, offset + FixedArray::kHeaderSize));
2179   }
2180 }
2181 
2182 
DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic * instr)2183 void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2184   Register object = ToRegister(instr->object());
2185   Register result = ToRegister(instr->result());
2186 
2187   int map_count = instr->hydrogen()->types()->length();
2188   Handle<String> name = instr->hydrogen()->name();
2189 
2190   if (map_count == 0) {
2191     ASSERT(instr->hydrogen()->need_generic());
2192     __ Move(rcx, instr->hydrogen()->name());
2193     Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2194     CallCode(ic, RelocInfo::CODE_TARGET, instr);
2195   } else {
2196     NearLabel done;
2197     for (int i = 0; i < map_count - 1; ++i) {
2198       Handle<Map> map = instr->hydrogen()->types()->at(i);
2199       NearLabel next;
2200       __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2201       __ j(not_equal, &next);
2202       EmitLoadField(result, object, map, name);
2203       __ jmp(&done);
2204       __ bind(&next);
2205     }
2206     Handle<Map> map = instr->hydrogen()->types()->last();
2207     __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2208     if (instr->hydrogen()->need_generic()) {
2209       NearLabel generic;
2210       __ j(not_equal, &generic);
2211       EmitLoadField(result, object, map, name);
2212       __ jmp(&done);
2213       __ bind(&generic);
2214       __ Move(rcx, instr->hydrogen()->name());
2215       Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2216       CallCode(ic, RelocInfo::CODE_TARGET, instr);
2217     } else {
2218       DeoptimizeIf(not_equal, instr->environment());
2219       EmitLoadField(result, object, map, name);
2220     }
2221     __ bind(&done);
2222   }
2223 }
2224 
2225 
DoLoadNamedGeneric(LLoadNamedGeneric * instr)2226 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2227   ASSERT(ToRegister(instr->object()).is(rax));
2228   ASSERT(ToRegister(instr->result()).is(rax));
2229 
2230   __ Move(rcx, instr->name());
2231   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2232   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2233 }
2234 
2235 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2236 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2237   Register function = ToRegister(instr->function());
2238   Register result = ToRegister(instr->result());
2239 
2240   // Check that the function really is a function.
2241   __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
2242   DeoptimizeIf(not_equal, instr->environment());
2243 
2244   // Check whether the function has an instance prototype.
2245   NearLabel non_instance;
2246   __ testb(FieldOperand(result, Map::kBitFieldOffset),
2247            Immediate(1 << Map::kHasNonInstancePrototype));
2248   __ j(not_zero, &non_instance);
2249 
2250   // Get the prototype or initial map from the function.
2251   __ movq(result,
2252          FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2253 
2254   // Check that the function has a prototype or an initial map.
2255   __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2256   DeoptimizeIf(equal, instr->environment());
2257 
2258   // If the function does not have an initial map, we're done.
2259   NearLabel done;
2260   __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2261   __ j(not_equal, &done);
2262 
2263   // Get the prototype from the initial map.
2264   __ movq(result, FieldOperand(result, Map::kPrototypeOffset));
2265   __ jmp(&done);
2266 
2267   // Non-instance prototype: Fetch prototype from constructor field
2268   // in the function's map.
2269   __ bind(&non_instance);
2270   __ movq(result, FieldOperand(result, Map::kConstructorOffset));
2271 
2272   // All done.
2273   __ bind(&done);
2274 }
2275 
2276 
DoLoadElements(LLoadElements * instr)2277 void LCodeGen::DoLoadElements(LLoadElements* instr) {
2278   Register result = ToRegister(instr->result());
2279   Register input = ToRegister(instr->InputAt(0));
2280   __ movq(result, FieldOperand(input, JSObject::kElementsOffset));
2281   if (FLAG_debug_code) {
2282     NearLabel done;
2283     __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
2284                    Heap::kFixedArrayMapRootIndex);
2285     __ j(equal, &done);
2286     __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
2287                    Heap::kFixedCOWArrayMapRootIndex);
2288     __ j(equal, &done);
2289     Register temp((result.is(rax)) ? rbx : rax);
2290     __ push(temp);
2291     __ movq(temp, FieldOperand(result, HeapObject::kMapOffset));
2292     __ movzxbq(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
2293     __ subq(temp, Immediate(FIRST_EXTERNAL_ARRAY_TYPE));
2294     __ cmpq(temp, Immediate(kExternalArrayTypeCount));
2295     __ pop(temp);
2296     __ Check(below, "Check for fast elements failed.");
2297     __ bind(&done);
2298   }
2299 }
2300 
2301 
DoLoadExternalArrayPointer(LLoadExternalArrayPointer * instr)2302 void LCodeGen::DoLoadExternalArrayPointer(
2303     LLoadExternalArrayPointer* instr) {
2304   Register result = ToRegister(instr->result());
2305   Register input = ToRegister(instr->InputAt(0));
2306   __ movq(result, FieldOperand(input,
2307                                ExternalPixelArray::kExternalPointerOffset));
2308 }
2309 
2310 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2311 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2312   Register arguments = ToRegister(instr->arguments());
2313   Register length = ToRegister(instr->length());
2314   Register result = ToRegister(instr->result());
2315 
2316   if (instr->index()->IsRegister()) {
2317     __ subl(length, ToRegister(instr->index()));
2318   } else {
2319     __ subl(length, ToOperand(instr->index()));
2320   }
2321   DeoptimizeIf(below_equal, instr->environment());
2322 
2323   // There are two words between the frame pointer and the last argument.
2324   // Subtracting from length accounts for one of them add one more.
2325   __ movq(result, Operand(arguments, length, times_pointer_size, kPointerSize));
2326 }
2327 
2328 
DoLoadKeyedFastElement(LLoadKeyedFastElement * instr)2329 void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2330   Register elements = ToRegister(instr->elements());
2331   Register key = ToRegister(instr->key());
2332   Register result = ToRegister(instr->result());
2333   ASSERT(result.is(elements));
2334 
2335   // Load the result.
2336   __ movq(result, FieldOperand(elements,
2337                                key,
2338                                times_pointer_size,
2339                                FixedArray::kHeaderSize));
2340 
2341   // Check for the hole value.
2342   __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2343   DeoptimizeIf(equal, instr->environment());
2344 }
2345 
2346 
DoLoadKeyedSpecializedArrayElement(LLoadKeyedSpecializedArrayElement * instr)2347 void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2348     LLoadKeyedSpecializedArrayElement* instr) {
2349   Register external_pointer = ToRegister(instr->external_pointer());
2350   Register key = ToRegister(instr->key());
2351   ExternalArrayType array_type = instr->array_type();
2352   if (array_type == kExternalFloatArray) {
2353     XMMRegister result(ToDoubleRegister(instr->result()));
2354     __ movss(result, Operand(external_pointer, key, times_4, 0));
2355     __ cvtss2sd(result, result);
2356   } else {
2357     Register result(ToRegister(instr->result()));
2358     switch (array_type) {
2359       case kExternalByteArray:
2360         __ movsxbq(result, Operand(external_pointer, key, times_1, 0));
2361         break;
2362       case kExternalUnsignedByteArray:
2363       case kExternalPixelArray:
2364         __ movzxbq(result, Operand(external_pointer, key, times_1, 0));
2365         break;
2366       case kExternalShortArray:
2367         __ movsxwq(result, Operand(external_pointer, key, times_2, 0));
2368         break;
2369       case kExternalUnsignedShortArray:
2370         __ movzxwq(result, Operand(external_pointer, key, times_2, 0));
2371         break;
2372       case kExternalIntArray:
2373         __ movsxlq(result, Operand(external_pointer, key, times_4, 0));
2374         break;
2375       case kExternalUnsignedIntArray:
2376         __ movl(result, Operand(external_pointer, key, times_4, 0));
2377         __ testl(result, result);
2378         // TODO(danno): we could be more clever here, perhaps having a special
2379         // version of the stub that detects if the overflow case actually
2380         // happens, and generate code that returns a double rather than int.
2381         DeoptimizeIf(negative, instr->environment());
2382         break;
2383       case kExternalFloatArray:
2384         UNREACHABLE();
2385         break;
2386     }
2387   }
2388 }
2389 
2390 
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)2391 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2392   ASSERT(ToRegister(instr->object()).is(rdx));
2393   ASSERT(ToRegister(instr->key()).is(rax));
2394 
2395   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2396   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2397 }
2398 
2399 
DoArgumentsElements(LArgumentsElements * instr)2400 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2401   Register result = ToRegister(instr->result());
2402 
2403   // Check for arguments adapter frame.
2404   NearLabel done, adapted;
2405   __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2406   __ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
2407          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2408   __ j(equal, &adapted);
2409 
2410   // No arguments adaptor frame.
2411   __ movq(result, rbp);
2412   __ jmp(&done);
2413 
2414   // Arguments adaptor frame present.
2415   __ bind(&adapted);
2416   __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2417 
2418   // Result is the frame pointer for the frame if not adapted and for the real
2419   // frame below the adaptor frame if adapted.
2420   __ bind(&done);
2421 }
2422 
2423 
DoArgumentsLength(LArgumentsLength * instr)2424 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2425   Register result = ToRegister(instr->result());
2426 
2427   NearLabel done;
2428 
2429   // If no arguments adaptor frame the number of arguments is fixed.
2430   if (instr->InputAt(0)->IsRegister()) {
2431     __ cmpq(rbp, ToRegister(instr->InputAt(0)));
2432   } else {
2433     __ cmpq(rbp, ToOperand(instr->InputAt(0)));
2434   }
2435   __ movl(result, Immediate(scope()->num_parameters()));
2436   __ j(equal, &done);
2437 
2438   // Arguments adaptor frame present. Get argument length from there.
2439   __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2440   __ SmiToInteger32(result,
2441                     Operand(result,
2442                             ArgumentsAdaptorFrameConstants::kLengthOffset));
2443 
2444   // Argument length is in result register.
2445   __ bind(&done);
2446 }
2447 
2448 
DoApplyArguments(LApplyArguments * instr)2449 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2450   Register receiver = ToRegister(instr->receiver());
2451   Register function = ToRegister(instr->function());
2452   Register length = ToRegister(instr->length());
2453   Register elements = ToRegister(instr->elements());
2454   ASSERT(receiver.is(rax));  // Used for parameter count.
2455   ASSERT(function.is(rdi));  // Required by InvokeFunction.
2456   ASSERT(ToRegister(instr->result()).is(rax));
2457 
2458   // If the receiver is null or undefined, we have to pass the global object
2459   // as a receiver.
2460   NearLabel global_object, receiver_ok;
2461   __ CompareRoot(receiver, Heap::kNullValueRootIndex);
2462   __ j(equal, &global_object);
2463   __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
2464   __ j(equal, &global_object);
2465 
2466   // The receiver should be a JS object.
2467   Condition is_smi = __ CheckSmi(receiver);
2468   DeoptimizeIf(is_smi, instr->environment());
2469   __ CmpObjectType(receiver, FIRST_JS_OBJECT_TYPE, kScratchRegister);
2470   DeoptimizeIf(below, instr->environment());
2471   __ jmp(&receiver_ok);
2472 
2473   __ bind(&global_object);
2474   // TODO(kmillikin): We have a hydrogen value for the global object.  See
2475   // if it's better to use it than to explicitly fetch it from the context
2476   // here.
2477   __ movq(receiver, Operand(rbp, StandardFrameConstants::kContextOffset));
2478   __ movq(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX));
2479   __ bind(&receiver_ok);
2480 
2481   // Copy the arguments to this function possibly from the
2482   // adaptor frame below it.
2483   const uint32_t kArgumentsLimit = 1 * KB;
2484   __ cmpq(length, Immediate(kArgumentsLimit));
2485   DeoptimizeIf(above, instr->environment());
2486 
2487   __ push(receiver);
2488   __ movq(receiver, length);
2489 
2490   // Loop through the arguments pushing them onto the execution
2491   // stack.
2492   NearLabel invoke, loop;
2493   // length is a small non-negative integer, due to the test above.
2494   __ testl(length, length);
2495   __ j(zero, &invoke);
2496   __ bind(&loop);
2497   __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
2498   __ decl(length);
2499   __ j(not_zero, &loop);
2500 
2501   // Invoke the function.
2502   __ bind(&invoke);
2503   ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2504   LPointerMap* pointers = instr->pointer_map();
2505   LEnvironment* env = instr->deoptimization_environment();
2506   RecordPosition(pointers->position());
2507   RegisterEnvironmentForDeoptimization(env);
2508   SafepointGenerator safepoint_generator(this,
2509                                          pointers,
2510                                          env->deoptimization_index());
2511   v8::internal::ParameterCount actual(rax);
2512   __ InvokeFunction(function, actual, CALL_FUNCTION, &safepoint_generator);
2513 }
2514 
2515 
DoPushArgument(LPushArgument * instr)2516 void LCodeGen::DoPushArgument(LPushArgument* instr) {
2517   LOperand* argument = instr->InputAt(0);
2518   if (argument->IsConstantOperand()) {
2519     EmitPushConstantOperand(argument);
2520   } else if (argument->IsRegister()) {
2521     __ push(ToRegister(argument));
2522   } else {
2523     ASSERT(!argument->IsDoubleRegister());
2524     __ push(ToOperand(argument));
2525   }
2526 }
2527 
2528 
DoContext(LContext * instr)2529 void LCodeGen::DoContext(LContext* instr) {
2530   Register result = ToRegister(instr->result());
2531   __ movq(result, Operand(rbp, StandardFrameConstants::kContextOffset));
2532 }
2533 
2534 
DoOuterContext(LOuterContext * instr)2535 void LCodeGen::DoOuterContext(LOuterContext* instr) {
2536   Register context = ToRegister(instr->context());
2537   Register result = ToRegister(instr->result());
2538   __ movq(result,
2539           Operand(context, Context::SlotOffset(Context::CLOSURE_INDEX)));
2540   __ movq(result, FieldOperand(result, JSFunction::kContextOffset));
2541 }
2542 
2543 
DoGlobalObject(LGlobalObject * instr)2544 void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2545   Register result = ToRegister(instr->result());
2546   __ movq(result, GlobalObjectOperand());
2547 }
2548 
2549 
DoGlobalReceiver(LGlobalReceiver * instr)2550 void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2551   Register global = ToRegister(instr->global());
2552   Register result = ToRegister(instr->result());
2553   __ movq(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
2554 }
2555 
2556 
CallKnownFunction(Handle<JSFunction> function,int arity,LInstruction * instr)2557 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2558                                  int arity,
2559                                  LInstruction* instr) {
2560   // Change context if needed.
2561   bool change_context =
2562       (info()->closure()->context() != function->context()) ||
2563       scope()->contains_with() ||
2564       (scope()->num_heap_slots() > 0);
2565   if (change_context) {
2566     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
2567   }
2568 
2569   // Set rax to arguments count if adaption is not needed. Assumes that rax
2570   // is available to write to at this point.
2571   if (!function->NeedsArgumentsAdaption()) {
2572     __ Set(rax, arity);
2573   }
2574 
2575   LPointerMap* pointers = instr->pointer_map();
2576   RecordPosition(pointers->position());
2577 
2578   // Invoke function.
2579   if (*function == *info()->closure()) {
2580     __ CallSelf();
2581   } else {
2582     __ call(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2583   }
2584 
2585   // Setup deoptimization.
2586   RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT, 0);
2587 
2588   // Restore context.
2589   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2590 }
2591 
2592 
DoCallConstantFunction(LCallConstantFunction * instr)2593 void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2594   ASSERT(ToRegister(instr->result()).is(rax));
2595   __ Move(rdi, instr->function());
2596   CallKnownFunction(instr->function(), instr->arity(), instr);
2597 }
2598 
2599 
DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation * instr)2600 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
2601   Register input_reg = ToRegister(instr->InputAt(0));
2602   __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
2603                  Heap::kHeapNumberMapRootIndex);
2604   DeoptimizeIf(not_equal, instr->environment());
2605 
2606   Label done;
2607   Register tmp = input_reg.is(rax) ? rcx : rax;
2608   Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
2609 
2610   // Preserve the value of all registers.
2611   PushSafepointRegistersScope scope(this);
2612 
2613   Label negative;
2614   __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
2615   // Check the sign of the argument. If the argument is positive, just
2616   // return it. We do not need to patch the stack since |input| and
2617   // |result| are the same register and |input| will be restored
2618   // unchanged by popping safepoint registers.
2619   __ testl(tmp, Immediate(HeapNumber::kSignMask));
2620   __ j(not_zero, &negative);
2621   __ jmp(&done);
2622 
2623   __ bind(&negative);
2624 
2625   Label allocated, slow;
2626   __ AllocateHeapNumber(tmp, tmp2, &slow);
2627   __ jmp(&allocated);
2628 
2629   // Slow case: Call the runtime system to do the number allocation.
2630   __ bind(&slow);
2631 
2632   CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
2633   // Set the pointer to the new heap number in tmp.
2634   if (!tmp.is(rax)) {
2635     __ movq(tmp, rax);
2636   }
2637 
2638   // Restore input_reg after call to runtime.
2639   __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
2640 
2641   __ bind(&allocated);
2642   __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
2643   __ shl(tmp2, Immediate(1));
2644   __ shr(tmp2, Immediate(1));
2645   __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
2646   __ StoreToSafepointRegisterSlot(input_reg, tmp);
2647 
2648   __ bind(&done);
2649 }
2650 
2651 
EmitIntegerMathAbs(LUnaryMathOperation * instr)2652 void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
2653   Register input_reg = ToRegister(instr->InputAt(0));
2654   __ testl(input_reg, input_reg);
2655   Label is_positive;
2656   __ j(not_sign, &is_positive);
2657   __ negl(input_reg);  // Sets flags.
2658   DeoptimizeIf(negative, instr->environment());
2659   __ bind(&is_positive);
2660 }
2661 
2662 
DoMathAbs(LUnaryMathOperation * instr)2663 void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
2664   // Class for deferred case.
2665   class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
2666    public:
2667     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
2668                                     LUnaryMathOperation* instr)
2669         : LDeferredCode(codegen), instr_(instr) { }
2670     virtual void Generate() {
2671       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
2672     }
2673    private:
2674     LUnaryMathOperation* instr_;
2675   };
2676 
2677   ASSERT(instr->InputAt(0)->Equals(instr->result()));
2678   Representation r = instr->hydrogen()->value()->representation();
2679 
2680   if (r.IsDouble()) {
2681     XMMRegister scratch = xmm0;
2682     XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2683     __ xorpd(scratch, scratch);
2684     __ subsd(scratch, input_reg);
2685     __ andpd(input_reg, scratch);
2686   } else if (r.IsInteger32()) {
2687     EmitIntegerMathAbs(instr);
2688   } else {  // Tagged case.
2689     DeferredMathAbsTaggedHeapNumber* deferred =
2690         new DeferredMathAbsTaggedHeapNumber(this, instr);
2691     Register input_reg = ToRegister(instr->InputAt(0));
2692     // Smi check.
2693     __ JumpIfNotSmi(input_reg, deferred->entry());
2694     __ SmiToInteger32(input_reg, input_reg);
2695     EmitIntegerMathAbs(instr);
2696     __ Integer32ToSmi(input_reg, input_reg);
2697     __ bind(deferred->exit());
2698   }
2699 }
2700 
2701 
DoMathFloor(LUnaryMathOperation * instr)2702 void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
2703   XMMRegister xmm_scratch = xmm0;
2704   Register output_reg = ToRegister(instr->result());
2705   XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2706   __ xorpd(xmm_scratch, xmm_scratch);  // Zero the register.
2707   __ ucomisd(input_reg, xmm_scratch);
2708 
2709   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2710     DeoptimizeIf(below_equal, instr->environment());
2711   } else {
2712     DeoptimizeIf(below, instr->environment());
2713   }
2714 
2715   // Use truncating instruction (OK because input is positive).
2716   __ cvttsd2si(output_reg, input_reg);
2717 
2718   // Overflow is signalled with minint.
2719   __ cmpl(output_reg, Immediate(0x80000000));
2720   DeoptimizeIf(equal, instr->environment());
2721 }
2722 
2723 
DoMathRound(LUnaryMathOperation * instr)2724 void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
2725   const XMMRegister xmm_scratch = xmm0;
2726   Register output_reg = ToRegister(instr->result());
2727   XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2728 
2729   // xmm_scratch = 0.5
2730   __ movq(kScratchRegister, V8_INT64_C(0x3FE0000000000000), RelocInfo::NONE);
2731   __ movq(xmm_scratch, kScratchRegister);
2732 
2733   // input = input + 0.5
2734   __ addsd(input_reg, xmm_scratch);
2735 
2736   // We need to return -0 for the input range [-0.5, 0[, otherwise
2737   // compute Math.floor(value + 0.5).
2738   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2739     __ ucomisd(input_reg, xmm_scratch);
2740     DeoptimizeIf(below_equal, instr->environment());
2741   } else {
2742     // If we don't need to bailout on -0, we check only bailout
2743     // on negative inputs.
2744     __ xorpd(xmm_scratch, xmm_scratch);  // Zero the register.
2745     __ ucomisd(input_reg, xmm_scratch);
2746     DeoptimizeIf(below, instr->environment());
2747   }
2748 
2749   // Compute Math.floor(value + 0.5).
2750   // Use truncating instruction (OK because input is positive).
2751   __ cvttsd2si(output_reg, input_reg);
2752 
2753   // Overflow is signalled with minint.
2754   __ cmpl(output_reg, Immediate(0x80000000));
2755   DeoptimizeIf(equal, instr->environment());
2756 }
2757 
2758 
DoMathSqrt(LUnaryMathOperation * instr)2759 void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
2760   XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2761   ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2762   __ sqrtsd(input_reg, input_reg);
2763 }
2764 
2765 
DoMathPowHalf(LUnaryMathOperation * instr)2766 void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
2767   XMMRegister xmm_scratch = xmm0;
2768   XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2769   ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2770   __ xorpd(xmm_scratch, xmm_scratch);
2771   __ addsd(input_reg, xmm_scratch);  // Convert -0 to +0.
2772   __ sqrtsd(input_reg, input_reg);
2773 }
2774 
2775 
DoPower(LPower * instr)2776 void LCodeGen::DoPower(LPower* instr) {
2777   LOperand* left = instr->InputAt(0);
2778   XMMRegister left_reg = ToDoubleRegister(left);
2779   ASSERT(!left_reg.is(xmm1));
2780   LOperand* right = instr->InputAt(1);
2781   XMMRegister result_reg = ToDoubleRegister(instr->result());
2782   Representation exponent_type = instr->hydrogen()->right()->representation();
2783   if (exponent_type.IsDouble()) {
2784     __ PrepareCallCFunction(2);
2785     // Move arguments to correct registers
2786     __ movsd(xmm0, left_reg);
2787     ASSERT(ToDoubleRegister(right).is(xmm1));
2788     __ CallCFunction(
2789         ExternalReference::power_double_double_function(isolate()), 2);
2790   } else if (exponent_type.IsInteger32()) {
2791     __ PrepareCallCFunction(2);
2792     // Move arguments to correct registers: xmm0 and edi (not rdi).
2793     // On Windows, the registers are xmm0 and edx.
2794     __ movsd(xmm0, left_reg);
2795 #ifdef _WIN64
2796     ASSERT(ToRegister(right).is(rdx));
2797 #else
2798     ASSERT(ToRegister(right).is(rdi));
2799 #endif
2800     __ CallCFunction(
2801         ExternalReference::power_double_int_function(isolate()), 2);
2802   } else {
2803     ASSERT(exponent_type.IsTagged());
2804     Register right_reg = ToRegister(right);
2805 
2806     Label non_smi, call;
2807     __ JumpIfNotSmi(right_reg, &non_smi);
2808     __ SmiToInteger32(right_reg, right_reg);
2809     __ cvtlsi2sd(xmm1, right_reg);
2810     __ jmp(&call);
2811 
2812     __ bind(&non_smi);
2813     __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , kScratchRegister);
2814     DeoptimizeIf(not_equal, instr->environment());
2815     __ movsd(xmm1, FieldOperand(right_reg, HeapNumber::kValueOffset));
2816 
2817     __ bind(&call);
2818     __ PrepareCallCFunction(2);
2819     // Move arguments to correct registers xmm0 and xmm1.
2820     __ movsd(xmm0, left_reg);
2821     // Right argument is already in xmm1.
2822     __ CallCFunction(
2823         ExternalReference::power_double_double_function(isolate()), 2);
2824   }
2825   // Return value is in xmm0.
2826   __ movsd(result_reg, xmm0);
2827   // Restore context register.
2828   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2829 }
2830 
2831 
DoMathLog(LUnaryMathOperation * instr)2832 void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
2833   ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2834   TranscendentalCacheStub stub(TranscendentalCache::LOG,
2835                                TranscendentalCacheStub::UNTAGGED);
2836   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2837 }
2838 
2839 
DoMathCos(LUnaryMathOperation * instr)2840 void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
2841   ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2842   TranscendentalCacheStub stub(TranscendentalCache::COS,
2843                                TranscendentalCacheStub::UNTAGGED);
2844   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2845 }
2846 
2847 
DoMathSin(LUnaryMathOperation * instr)2848 void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
2849   ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2850   TranscendentalCacheStub stub(TranscendentalCache::SIN,
2851                                TranscendentalCacheStub::UNTAGGED);
2852   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2853 }
2854 
2855 
DoUnaryMathOperation(LUnaryMathOperation * instr)2856 void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
2857   switch (instr->op()) {
2858     case kMathAbs:
2859       DoMathAbs(instr);
2860       break;
2861     case kMathFloor:
2862       DoMathFloor(instr);
2863       break;
2864     case kMathRound:
2865       DoMathRound(instr);
2866       break;
2867     case kMathSqrt:
2868       DoMathSqrt(instr);
2869       break;
2870     case kMathPowHalf:
2871       DoMathPowHalf(instr);
2872       break;
2873     case kMathCos:
2874       DoMathCos(instr);
2875       break;
2876     case kMathSin:
2877       DoMathSin(instr);
2878       break;
2879     case kMathLog:
2880       DoMathLog(instr);
2881       break;
2882 
2883     default:
2884       UNREACHABLE();
2885   }
2886 }
2887 
2888 
DoCallKeyed(LCallKeyed * instr)2889 void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
2890   ASSERT(ToRegister(instr->key()).is(rcx));
2891   ASSERT(ToRegister(instr->result()).is(rax));
2892 
2893   int arity = instr->arity();
2894   Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(
2895     arity, NOT_IN_LOOP);
2896   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2897   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2898 }
2899 
2900 
DoCallNamed(LCallNamed * instr)2901 void LCodeGen::DoCallNamed(LCallNamed* instr) {
2902   ASSERT(ToRegister(instr->result()).is(rax));
2903 
2904   int arity = instr->arity();
2905   Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(
2906       arity, NOT_IN_LOOP);
2907   __ Move(rcx, instr->name());
2908   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2909   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2910 }
2911 
2912 
DoCallFunction(LCallFunction * instr)2913 void LCodeGen::DoCallFunction(LCallFunction* instr) {
2914   ASSERT(ToRegister(instr->result()).is(rax));
2915 
2916   int arity = instr->arity();
2917   CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
2918   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2919   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2920   __ Drop(1);
2921 }
2922 
2923 
DoCallGlobal(LCallGlobal * instr)2924 void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
2925   ASSERT(ToRegister(instr->result()).is(rax));
2926   int arity = instr->arity();
2927   Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(
2928       arity, NOT_IN_LOOP);
2929   __ Move(rcx, instr->name());
2930   CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2931   __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2932 }
2933 
2934 
DoCallKnownGlobal(LCallKnownGlobal * instr)2935 void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
2936   ASSERT(ToRegister(instr->result()).is(rax));
2937   __ Move(rdi, instr->target());
2938   CallKnownFunction(instr->target(), instr->arity(), instr);
2939 }
2940 
2941 
DoCallNew(LCallNew * instr)2942 void LCodeGen::DoCallNew(LCallNew* instr) {
2943   ASSERT(ToRegister(instr->InputAt(0)).is(rdi));
2944   ASSERT(ToRegister(instr->result()).is(rax));
2945 
2946   Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
2947   __ Set(rax, instr->arity());
2948   CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
2949 }
2950 
2951 
DoCallRuntime(LCallRuntime * instr)2952 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2953   CallRuntime(instr->function(), instr->arity(), instr);
2954 }
2955 
2956 
DoStoreNamedField(LStoreNamedField * instr)2957 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
2958   Register object = ToRegister(instr->object());
2959   Register value = ToRegister(instr->value());
2960   int offset = instr->offset();
2961 
2962   if (!instr->transition().is_null()) {
2963     __ Move(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
2964   }
2965 
2966   // Do the store.
2967   if (instr->is_in_object()) {
2968     __ movq(FieldOperand(object, offset), value);
2969     if (instr->needs_write_barrier()) {
2970       Register temp = ToRegister(instr->TempAt(0));
2971       // Update the write barrier for the object for in-object properties.
2972       __ RecordWrite(object, offset, value, temp);
2973     }
2974   } else {
2975     Register temp = ToRegister(instr->TempAt(0));
2976     __ movq(temp, FieldOperand(object, JSObject::kPropertiesOffset));
2977     __ movq(FieldOperand(temp, offset), value);
2978     if (instr->needs_write_barrier()) {
2979       // Update the write barrier for the properties array.
2980       // object is used as a scratch register.
2981       __ RecordWrite(temp, offset, value, object);
2982     }
2983   }
2984 }
2985 
2986 
DoStoreNamedGeneric(LStoreNamedGeneric * instr)2987 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
2988   ASSERT(ToRegister(instr->object()).is(rdx));
2989   ASSERT(ToRegister(instr->value()).is(rax));
2990 
2991   __ Move(rcx, instr->hydrogen()->name());
2992   Handle<Code> ic = instr->strict_mode()
2993       ? isolate()->builtins()->StoreIC_Initialize_Strict()
2994       : isolate()->builtins()->StoreIC_Initialize();
2995   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2996 }
2997 
2998 
DoStoreKeyedSpecializedArrayElement(LStoreKeyedSpecializedArrayElement * instr)2999 void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3000     LStoreKeyedSpecializedArrayElement* instr) {
3001   Register external_pointer = ToRegister(instr->external_pointer());
3002   Register key = ToRegister(instr->key());
3003   ExternalArrayType array_type = instr->array_type();
3004   if (array_type == kExternalFloatArray) {
3005     XMMRegister value(ToDoubleRegister(instr->value()));
3006     __ cvtsd2ss(value, value);
3007     __ movss(Operand(external_pointer, key, times_4, 0), value);
3008   } else {
3009     Register value(ToRegister(instr->value()));
3010     switch (array_type) {
3011       case kExternalPixelArray:
3012         {  // Clamp the value to [0..255].
3013           NearLabel done;
3014           __ testl(value, Immediate(0xFFFFFF00));
3015           __ j(zero, &done);
3016           __ setcc(negative, value);  // 1 if negative, 0 if positive.
3017           __ decb(value);  // 0 if negative, 255 if positive.
3018           __ bind(&done);
3019           __ movb(Operand(external_pointer, key, times_1, 0), value);
3020         }
3021         break;
3022       case kExternalByteArray:
3023       case kExternalUnsignedByteArray:
3024         __ movb(Operand(external_pointer, key, times_1, 0), value);
3025         break;
3026       case kExternalShortArray:
3027       case kExternalUnsignedShortArray:
3028         __ movw(Operand(external_pointer, key, times_2, 0), value);
3029         break;
3030       case kExternalIntArray:
3031       case kExternalUnsignedIntArray:
3032         __ movl(Operand(external_pointer, key, times_4, 0), value);
3033         break;
3034       case kExternalFloatArray:
3035         UNREACHABLE();
3036         break;
3037     }
3038   }
3039 }
3040 
3041 
DoBoundsCheck(LBoundsCheck * instr)3042 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3043   if (instr->length()->IsRegister()) {
3044     __ cmpq(ToRegister(instr->index()), ToRegister(instr->length()));
3045   } else {
3046     __ cmpq(ToRegister(instr->index()), ToOperand(instr->length()));
3047   }
3048   DeoptimizeIf(above_equal, instr->environment());
3049 }
3050 
3051 
DoStoreKeyedFastElement(LStoreKeyedFastElement * instr)3052 void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3053   Register value = ToRegister(instr->value());
3054   Register elements = ToRegister(instr->object());
3055   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3056 
3057   // Do the store.
3058   if (instr->key()->IsConstantOperand()) {
3059     ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3060     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3061     int offset =
3062         ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3063     __ movq(FieldOperand(elements, offset), value);
3064   } else {
3065     __ movq(FieldOperand(elements,
3066                          key,
3067                          times_pointer_size,
3068                          FixedArray::kHeaderSize),
3069             value);
3070   }
3071 
3072   if (instr->hydrogen()->NeedsWriteBarrier()) {
3073     // Compute address of modified element and store it into key register.
3074     __ lea(key, FieldOperand(elements,
3075                              key,
3076                              times_pointer_size,
3077                              FixedArray::kHeaderSize));
3078     __ RecordWrite(elements, key, value);
3079   }
3080 }
3081 
3082 
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)3083 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3084   ASSERT(ToRegister(instr->object()).is(rdx));
3085   ASSERT(ToRegister(instr->key()).is(rcx));
3086   ASSERT(ToRegister(instr->value()).is(rax));
3087 
3088   Handle<Code> ic = instr->strict_mode()
3089       ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3090       : isolate()->builtins()->KeyedStoreIC_Initialize();
3091   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3092 }
3093 
3094 
DoStringCharCodeAt(LStringCharCodeAt * instr)3095 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3096   class DeferredStringCharCodeAt: public LDeferredCode {
3097    public:
3098     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3099         : LDeferredCode(codegen), instr_(instr) { }
3100     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3101    private:
3102     LStringCharCodeAt* instr_;
3103   };
3104 
3105   Register string = ToRegister(instr->string());
3106   Register index = no_reg;
3107   int const_index = -1;
3108   if (instr->index()->IsConstantOperand()) {
3109     const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3110     STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
3111     if (!Smi::IsValid(const_index)) {
3112       // Guaranteed to be out of bounds because of the assert above.
3113       // So the bounds check that must dominate this instruction must
3114       // have deoptimized already.
3115       if (FLAG_debug_code) {
3116         __ Abort("StringCharCodeAt: out of bounds index.");
3117       }
3118       // No code needs to be generated.
3119       return;
3120     }
3121   } else {
3122     index = ToRegister(instr->index());
3123   }
3124   Register result = ToRegister(instr->result());
3125 
3126   DeferredStringCharCodeAt* deferred =
3127       new DeferredStringCharCodeAt(this, instr);
3128 
3129   NearLabel flat_string, ascii_string, done;
3130 
3131   // Fetch the instance type of the receiver into result register.
3132   __ movq(result, FieldOperand(string, HeapObject::kMapOffset));
3133   __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset));
3134 
3135   // We need special handling for non-sequential strings.
3136   STATIC_ASSERT(kSeqStringTag == 0);
3137   __ testb(result, Immediate(kStringRepresentationMask));
3138   __ j(zero, &flat_string);
3139 
3140   // Handle cons strings and go to deferred code for the rest.
3141   __ testb(result, Immediate(kIsConsStringMask));
3142   __ j(zero, deferred->entry());
3143 
3144   // ConsString.
3145   // Check whether the right hand side is the empty string (i.e. if
3146   // this is really a flat string in a cons string). If that is not
3147   // the case we would rather go to the runtime system now to flatten
3148   // the string.
3149   __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset),
3150                  Heap::kEmptyStringRootIndex);
3151   __ j(not_equal, deferred->entry());
3152   // Get the first of the two strings and load its instance type.
3153   __ movq(string, FieldOperand(string, ConsString::kFirstOffset));
3154   __ movq(result, FieldOperand(string, HeapObject::kMapOffset));
3155   __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset));
3156   // If the first cons component is also non-flat, then go to runtime.
3157   STATIC_ASSERT(kSeqStringTag == 0);
3158   __ testb(result, Immediate(kStringRepresentationMask));
3159   __ j(not_zero, deferred->entry());
3160 
3161   // Check for ASCII or two-byte string.
3162   __ bind(&flat_string);
3163   STATIC_ASSERT(kAsciiStringTag != 0);
3164   __ testb(result, Immediate(kStringEncodingMask));
3165   __ j(not_zero, &ascii_string);
3166 
3167   // Two-byte string.
3168   // Load the two-byte character code into the result register.
3169   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
3170   if (instr->index()->IsConstantOperand()) {
3171     __ movzxwl(result,
3172                FieldOperand(string,
3173                             SeqTwoByteString::kHeaderSize +
3174                             (kUC16Size * const_index)));
3175   } else {
3176     __ movzxwl(result, FieldOperand(string,
3177                                     index,
3178                                     times_2,
3179                                     SeqTwoByteString::kHeaderSize));
3180   }
3181   __ jmp(&done);
3182 
3183   // ASCII string.
3184   // Load the byte into the result register.
3185   __ bind(&ascii_string);
3186   if (instr->index()->IsConstantOperand()) {
3187     __ movzxbl(result, FieldOperand(string,
3188                                     SeqAsciiString::kHeaderSize + const_index));
3189   } else {
3190     __ movzxbl(result, FieldOperand(string,
3191                                     index,
3192                                     times_1,
3193                                     SeqAsciiString::kHeaderSize));
3194   }
3195   __ bind(&done);
3196   __ bind(deferred->exit());
3197 }
3198 
3199 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)3200 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3201   Register string = ToRegister(instr->string());
3202   Register result = ToRegister(instr->result());
3203 
3204   // TODO(3095996): Get rid of this. For now, we need to make the
3205   // result register contain a valid pointer because it is already
3206   // contained in the register pointer map.
3207   __ Set(result, 0);
3208 
3209   PushSafepointRegistersScope scope(this);
3210   __ push(string);
3211   // Push the index as a smi. This is safe because of the checks in
3212   // DoStringCharCodeAt above.
3213   STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
3214   if (instr->index()->IsConstantOperand()) {
3215     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3216     __ Push(Smi::FromInt(const_index));
3217   } else {
3218     Register index = ToRegister(instr->index());
3219     __ Integer32ToSmi(index, index);
3220     __ push(index);
3221   }
3222   CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
3223   if (FLAG_debug_code) {
3224     __ AbortIfNotSmi(rax);
3225   }
3226   __ SmiToInteger32(rax, rax);
3227   __ StoreToSafepointRegisterSlot(result, rax);
3228 }
3229 
3230 
DoStringCharFromCode(LStringCharFromCode * instr)3231 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3232   class DeferredStringCharFromCode: public LDeferredCode {
3233    public:
3234     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3235         : LDeferredCode(codegen), instr_(instr) { }
3236     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3237    private:
3238     LStringCharFromCode* instr_;
3239   };
3240 
3241   DeferredStringCharFromCode* deferred =
3242       new DeferredStringCharFromCode(this, instr);
3243 
3244   ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3245   Register char_code = ToRegister(instr->char_code());
3246   Register result = ToRegister(instr->result());
3247   ASSERT(!char_code.is(result));
3248 
3249   __ cmpl(char_code, Immediate(String::kMaxAsciiCharCode));
3250   __ j(above, deferred->entry());
3251   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
3252   __ movq(result, FieldOperand(result,
3253                                char_code, times_pointer_size,
3254                                FixedArray::kHeaderSize));
3255   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
3256   __ j(equal, deferred->entry());
3257   __ bind(deferred->exit());
3258 }
3259 
3260 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)3261 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3262   Register char_code = ToRegister(instr->char_code());
3263   Register result = ToRegister(instr->result());
3264 
3265   // TODO(3095996): Get rid of this. For now, we need to make the
3266   // result register contain a valid pointer because it is already
3267   // contained in the register pointer map.
3268   __ Set(result, 0);
3269 
3270   PushSafepointRegistersScope scope(this);
3271   __ Integer32ToSmi(char_code, char_code);
3272   __ push(char_code);
3273   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
3274   __ StoreToSafepointRegisterSlot(result, rax);
3275 }
3276 
3277 
DoStringLength(LStringLength * instr)3278 void LCodeGen::DoStringLength(LStringLength* instr) {
3279   Register string = ToRegister(instr->string());
3280   Register result = ToRegister(instr->result());
3281   __ movq(result, FieldOperand(string, String::kLengthOffset));
3282 }
3283 
3284 
DoInteger32ToDouble(LInteger32ToDouble * instr)3285 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3286   LOperand* input = instr->InputAt(0);
3287   ASSERT(input->IsRegister() || input->IsStackSlot());
3288   LOperand* output = instr->result();
3289   ASSERT(output->IsDoubleRegister());
3290   if (input->IsRegister()) {
3291     __ cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
3292   } else {
3293     __ cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
3294   }
3295 }
3296 
3297 
DoNumberTagI(LNumberTagI * instr)3298 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3299   LOperand* input = instr->InputAt(0);
3300   ASSERT(input->IsRegister() && input->Equals(instr->result()));
3301   Register reg = ToRegister(input);
3302 
3303   __ Integer32ToSmi(reg, reg);
3304 }
3305 
3306 
DoNumberTagD(LNumberTagD * instr)3307 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3308   class DeferredNumberTagD: public LDeferredCode {
3309    public:
3310     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3311         : LDeferredCode(codegen), instr_(instr) { }
3312     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3313    private:
3314     LNumberTagD* instr_;
3315   };
3316 
3317   XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3318   Register reg = ToRegister(instr->result());
3319   Register tmp = ToRegister(instr->TempAt(0));
3320 
3321   DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3322   if (FLAG_inline_new) {
3323     __ AllocateHeapNumber(reg, tmp, deferred->entry());
3324   } else {
3325     __ jmp(deferred->entry());
3326   }
3327   __ bind(deferred->exit());
3328   __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
3329 }
3330 
3331 
DoDeferredNumberTagD(LNumberTagD * instr)3332 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
3333   // TODO(3095996): Get rid of this. For now, we need to make the
3334   // result register contain a valid pointer because it is already
3335   // contained in the register pointer map.
3336   Register reg = ToRegister(instr->result());
3337   __ Move(reg, Smi::FromInt(0));
3338 
3339   {
3340     PushSafepointRegistersScope scope(this);
3341     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3342     // Ensure that value in rax survives popping registers.
3343     __ movq(kScratchRegister, rax);
3344   }
3345   __ movq(reg, kScratchRegister);
3346 }
3347 
3348 
DoSmiTag(LSmiTag * instr)3349 void LCodeGen::DoSmiTag(LSmiTag* instr) {
3350   ASSERT(instr->InputAt(0)->Equals(instr->result()));
3351   Register input = ToRegister(instr->InputAt(0));
3352   ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
3353   __ Integer32ToSmi(input, input);
3354 }
3355 
3356 
DoSmiUntag(LSmiUntag * instr)3357 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
3358   ASSERT(instr->InputAt(0)->Equals(instr->result()));
3359   Register input = ToRegister(instr->InputAt(0));
3360   if (instr->needs_check()) {
3361     Condition is_smi = __ CheckSmi(input);
3362     DeoptimizeIf(NegateCondition(is_smi), instr->environment());
3363   }
3364   __ SmiToInteger32(input, input);
3365 }
3366 
3367 
EmitNumberUntagD(Register input_reg,XMMRegister result_reg,bool deoptimize_on_undefined,LEnvironment * env)3368 void LCodeGen::EmitNumberUntagD(Register input_reg,
3369                                 XMMRegister result_reg,
3370                                 bool deoptimize_on_undefined,
3371                                 LEnvironment* env) {
3372   NearLabel load_smi, done;
3373 
3374   // Smi check.
3375   __ JumpIfSmi(input_reg, &load_smi);
3376 
3377   // Heap number map check.
3378   __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3379                  Heap::kHeapNumberMapRootIndex);
3380   if (deoptimize_on_undefined) {
3381     DeoptimizeIf(not_equal, env);
3382   } else {
3383     NearLabel heap_number;
3384     __ j(equal, &heap_number);
3385     __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
3386     DeoptimizeIf(not_equal, env);
3387 
3388     // Convert undefined to NaN. Compute NaN as 0/0.
3389     __ xorpd(result_reg, result_reg);
3390     __ divsd(result_reg, result_reg);
3391     __ jmp(&done);
3392 
3393     __ bind(&heap_number);
3394   }
3395   // Heap number to XMM conversion.
3396   __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
3397   __ jmp(&done);
3398 
3399   // Smi to XMM conversion
3400   __ bind(&load_smi);
3401   __ SmiToInteger32(kScratchRegister, input_reg);
3402   __ cvtlsi2sd(result_reg, kScratchRegister);
3403   __ bind(&done);
3404 }
3405 
3406 
3407 class DeferredTaggedToI: public LDeferredCode {
3408  public:
DeferredTaggedToI(LCodeGen * codegen,LTaggedToI * instr)3409   DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
3410       : LDeferredCode(codegen), instr_(instr) { }
Generate()3411   virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
3412  private:
3413   LTaggedToI* instr_;
3414 };
3415 
3416 
DoDeferredTaggedToI(LTaggedToI * instr)3417 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
3418   NearLabel done, heap_number;
3419   Register input_reg = ToRegister(instr->InputAt(0));
3420 
3421   // Heap number map check.
3422   __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3423                  Heap::kHeapNumberMapRootIndex);
3424 
3425   if (instr->truncating()) {
3426     __ j(equal, &heap_number);
3427     // Check for undefined. Undefined is converted to zero for truncating
3428     // conversions.
3429     __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
3430     DeoptimizeIf(not_equal, instr->environment());
3431     __ Set(input_reg, 0);
3432     __ jmp(&done);
3433 
3434     __ bind(&heap_number);
3435 
3436     __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3437     __ cvttsd2siq(input_reg, xmm0);
3438     __ Set(kScratchRegister, V8_UINT64_C(0x8000000000000000));
3439     __ cmpq(input_reg, kScratchRegister);
3440     DeoptimizeIf(equal, instr->environment());
3441   } else {
3442     // Deoptimize if we don't have a heap number.
3443     DeoptimizeIf(not_equal, instr->environment());
3444 
3445     XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
3446     __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3447     __ cvttsd2si(input_reg, xmm0);
3448     __ cvtlsi2sd(xmm_temp, input_reg);
3449     __ ucomisd(xmm0, xmm_temp);
3450     DeoptimizeIf(not_equal, instr->environment());
3451     DeoptimizeIf(parity_even, instr->environment());  // NaN.
3452     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3453       __ testl(input_reg, input_reg);
3454       __ j(not_zero, &done);
3455       __ movmskpd(input_reg, xmm0);
3456       __ andl(input_reg, Immediate(1));
3457       DeoptimizeIf(not_zero, instr->environment());
3458     }
3459   }
3460   __ bind(&done);
3461 }
3462 
3463 
DoTaggedToI(LTaggedToI * instr)3464 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
3465   LOperand* input = instr->InputAt(0);
3466   ASSERT(input->IsRegister());
3467   ASSERT(input->Equals(instr->result()));
3468 
3469   Register input_reg = ToRegister(input);
3470   DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
3471   __ JumpIfNotSmi(input_reg, deferred->entry());
3472   __ SmiToInteger32(input_reg, input_reg);
3473   __ bind(deferred->exit());
3474 }
3475 
3476 
DoNumberUntagD(LNumberUntagD * instr)3477 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
3478   LOperand* input = instr->InputAt(0);
3479   ASSERT(input->IsRegister());
3480   LOperand* result = instr->result();
3481   ASSERT(result->IsDoubleRegister());
3482 
3483   Register input_reg = ToRegister(input);
3484   XMMRegister result_reg = ToDoubleRegister(result);
3485 
3486   EmitNumberUntagD(input_reg, result_reg,
3487                    instr->hydrogen()->deoptimize_on_undefined(),
3488                    instr->environment());
3489 }
3490 
3491 
DoDoubleToI(LDoubleToI * instr)3492 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
3493   LOperand* input = instr->InputAt(0);
3494   ASSERT(input->IsDoubleRegister());
3495   LOperand* result = instr->result();
3496   ASSERT(result->IsRegister());
3497 
3498   XMMRegister input_reg = ToDoubleRegister(input);
3499   Register result_reg = ToRegister(result);
3500 
3501   if (instr->truncating()) {
3502     // Performs a truncating conversion of a floating point number as used by
3503     // the JS bitwise operations.
3504     __ cvttsd2siq(result_reg, input_reg);
3505     __ movq(kScratchRegister, V8_INT64_C(0x8000000000000000), RelocInfo::NONE);
3506     __ cmpq(result_reg, kScratchRegister);
3507       DeoptimizeIf(equal, instr->environment());
3508   } else {
3509     __ cvttsd2si(result_reg, input_reg);
3510     __ cvtlsi2sd(xmm0, result_reg);
3511     __ ucomisd(xmm0, input_reg);
3512     DeoptimizeIf(not_equal, instr->environment());
3513     DeoptimizeIf(parity_even, instr->environment());  // NaN.
3514     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3515       NearLabel done;
3516       // The integer converted back is equal to the original. We
3517       // only have to test if we got -0 as an input.
3518       __ testl(result_reg, result_reg);
3519       __ j(not_zero, &done);
3520       __ movmskpd(result_reg, input_reg);
3521       // Bit 0 contains the sign of the double in input_reg.
3522       // If input was positive, we are ok and return 0, otherwise
3523       // deoptimize.
3524       __ andl(result_reg, Immediate(1));
3525       DeoptimizeIf(not_zero, instr->environment());
3526       __ bind(&done);
3527     }
3528   }
3529 }
3530 
3531 
DoCheckSmi(LCheckSmi * instr)3532 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
3533   LOperand* input = instr->InputAt(0);
3534   Condition cc = masm()->CheckSmi(ToRegister(input));
3535   DeoptimizeIf(NegateCondition(cc), instr->environment());
3536 }
3537 
3538 
DoCheckNonSmi(LCheckNonSmi * instr)3539 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
3540   LOperand* input = instr->InputAt(0);
3541   Condition cc = masm()->CheckSmi(ToRegister(input));
3542   DeoptimizeIf(cc, instr->environment());
3543 }
3544 
3545 
DoCheckInstanceType(LCheckInstanceType * instr)3546 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
3547   Register input = ToRegister(instr->InputAt(0));
3548   InstanceType first = instr->hydrogen()->first();
3549   InstanceType last = instr->hydrogen()->last();
3550 
3551   __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
3552 
3553   // If there is only one type in the interval check for equality.
3554   if (first == last) {
3555     __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3556             Immediate(static_cast<int8_t>(first)));
3557     DeoptimizeIf(not_equal, instr->environment());
3558   } else if (first == FIRST_STRING_TYPE && last == LAST_STRING_TYPE) {
3559     // String has a dedicated bit in instance type.
3560     __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3561              Immediate(kIsNotStringMask));
3562     DeoptimizeIf(not_zero, instr->environment());
3563   } else {
3564     __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3565             Immediate(static_cast<int8_t>(first)));
3566     DeoptimizeIf(below, instr->environment());
3567     // Omit check for the last type.
3568     if (last != LAST_TYPE) {
3569       __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3570               Immediate(static_cast<int8_t>(last)));
3571       DeoptimizeIf(above, instr->environment());
3572     }
3573   }
3574 }
3575 
3576 
DoCheckFunction(LCheckFunction * instr)3577 void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
3578   ASSERT(instr->InputAt(0)->IsRegister());
3579   Register reg = ToRegister(instr->InputAt(0));
3580   __ Cmp(reg, instr->hydrogen()->target());
3581   DeoptimizeIf(not_equal, instr->environment());
3582 }
3583 
3584 
DoCheckMap(LCheckMap * instr)3585 void LCodeGen::DoCheckMap(LCheckMap* instr) {
3586   LOperand* input = instr->InputAt(0);
3587   ASSERT(input->IsRegister());
3588   Register reg = ToRegister(input);
3589   __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3590          instr->hydrogen()->map());
3591   DeoptimizeIf(not_equal, instr->environment());
3592 }
3593 
3594 
LoadHeapObject(Register result,Handle<HeapObject> object)3595 void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) {
3596   if (heap()->InNewSpace(*object)) {
3597     Handle<JSGlobalPropertyCell> cell =
3598         factory()->NewJSGlobalPropertyCell(object);
3599     __ movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
3600     __ movq(result, Operand(result, 0));
3601   } else {
3602     __ Move(result, object);
3603   }
3604 }
3605 
3606 
DoCheckPrototypeMaps(LCheckPrototypeMaps * instr)3607 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
3608   Register reg = ToRegister(instr->TempAt(0));
3609 
3610   Handle<JSObject> holder = instr->holder();
3611   Handle<JSObject> current_prototype = instr->prototype();
3612 
3613   // Load prototype object.
3614   LoadHeapObject(reg, current_prototype);
3615 
3616   // Check prototype maps up to the holder.
3617   while (!current_prototype.is_identical_to(holder)) {
3618     __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3619            Handle<Map>(current_prototype->map()));
3620     DeoptimizeIf(not_equal, instr->environment());
3621     current_prototype =
3622         Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
3623     // Load next prototype object.
3624     LoadHeapObject(reg, current_prototype);
3625   }
3626 
3627   // Check the holder map.
3628   __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3629          Handle<Map>(current_prototype->map()));
3630   DeoptimizeIf(not_equal, instr->environment());
3631 }
3632 
3633 
DoArrayLiteral(LArrayLiteral * instr)3634 void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
3635   // Setup the parameters to the stub/runtime call.
3636   __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3637   __ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
3638   __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3639   __ Push(instr->hydrogen()->constant_elements());
3640 
3641   // Pick the right runtime function or stub to call.
3642   int length = instr->hydrogen()->length();
3643   if (instr->hydrogen()->IsCopyOnWrite()) {
3644     ASSERT(instr->hydrogen()->depth() == 1);
3645     FastCloneShallowArrayStub::Mode mode =
3646         FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
3647     FastCloneShallowArrayStub stub(mode, length);
3648     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3649   } else if (instr->hydrogen()->depth() > 1) {
3650     CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
3651   } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
3652     CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
3653   } else {
3654     FastCloneShallowArrayStub::Mode mode =
3655         FastCloneShallowArrayStub::CLONE_ELEMENTS;
3656     FastCloneShallowArrayStub stub(mode, length);
3657     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3658   }
3659 }
3660 
3661 
DoObjectLiteral(LObjectLiteral * instr)3662 void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
3663   // Setup the parameters to the stub/runtime call.
3664   __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3665   __ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
3666   __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3667   __ Push(instr->hydrogen()->constant_properties());
3668   __ Push(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0));
3669 
3670   // Pick the right runtime function to call.
3671   if (instr->hydrogen()->depth() > 1) {
3672     CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
3673   } else {
3674     CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
3675   }
3676 }
3677 
3678 
DoToFastProperties(LToFastProperties * instr)3679 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
3680   ASSERT(ToRegister(instr->InputAt(0)).is(rax));
3681   __ push(rax);
3682   CallRuntime(Runtime::kToFastProperties, 1, instr);
3683 }
3684 
3685 
DoRegExpLiteral(LRegExpLiteral * instr)3686 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
3687   NearLabel materialized;
3688   // Registers will be used as follows:
3689   // rdi = JS function.
3690   // rcx = literals array.
3691   // rbx = regexp literal.
3692   // rax = regexp literal clone.
3693   __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3694   __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
3695   int literal_offset = FixedArray::kHeaderSize +
3696       instr->hydrogen()->literal_index() * kPointerSize;
3697   __ movq(rbx, FieldOperand(rcx, literal_offset));
3698   __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
3699   __ j(not_equal, &materialized);
3700 
3701   // Create regexp literal using runtime function
3702   // Result will be in rax.
3703   __ push(rcx);
3704   __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3705   __ Push(instr->hydrogen()->pattern());
3706   __ Push(instr->hydrogen()->flags());
3707   CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
3708   __ movq(rbx, rax);
3709 
3710   __ bind(&materialized);
3711   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
3712   Label allocated, runtime_allocate;
3713   __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
3714   __ jmp(&allocated);
3715 
3716   __ bind(&runtime_allocate);
3717   __ push(rbx);
3718   __ Push(Smi::FromInt(size));
3719   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
3720   __ pop(rbx);
3721 
3722   __ bind(&allocated);
3723   // Copy the content into the newly allocated memory.
3724   // (Unroll copy loop once for better throughput).
3725   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
3726     __ movq(rdx, FieldOperand(rbx, i));
3727     __ movq(rcx, FieldOperand(rbx, i + kPointerSize));
3728     __ movq(FieldOperand(rax, i), rdx);
3729     __ movq(FieldOperand(rax, i + kPointerSize), rcx);
3730   }
3731   if ((size % (2 * kPointerSize)) != 0) {
3732     __ movq(rdx, FieldOperand(rbx, size - kPointerSize));
3733     __ movq(FieldOperand(rax, size - kPointerSize), rdx);
3734   }
3735 }
3736 
3737 
DoFunctionLiteral(LFunctionLiteral * instr)3738 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
3739   // Use the fast case closure allocation code that allocates in new
3740   // space for nested functions that don't need literals cloning.
3741   Handle<SharedFunctionInfo> shared_info = instr->shared_info();
3742   bool pretenure = instr->hydrogen()->pretenure();
3743   if (!pretenure && shared_info->num_literals() == 0) {
3744     FastNewClosureStub stub(
3745         shared_info->strict_mode() ? kStrictMode : kNonStrictMode);
3746     __ Push(shared_info);
3747     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3748   } else {
3749     __ push(rsi);
3750     __ Push(shared_info);
3751     __ PushRoot(pretenure ?
3752                 Heap::kTrueValueRootIndex :
3753                 Heap::kFalseValueRootIndex);
3754     CallRuntime(Runtime::kNewClosure, 3, instr);
3755   }
3756 }
3757 
3758 
DoTypeof(LTypeof * instr)3759 void LCodeGen::DoTypeof(LTypeof* instr) {
3760   LOperand* input = instr->InputAt(0);
3761   if (input->IsConstantOperand()) {
3762     __ Push(ToHandle(LConstantOperand::cast(input)));
3763   } else if (input->IsRegister()) {
3764     __ push(ToRegister(input));
3765   } else {
3766     ASSERT(input->IsStackSlot());
3767     __ push(ToOperand(input));
3768   }
3769   CallRuntime(Runtime::kTypeof, 1, instr);
3770 }
3771 
3772 
DoTypeofIs(LTypeofIs * instr)3773 void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
3774   Register input = ToRegister(instr->InputAt(0));
3775   Register result = ToRegister(instr->result());
3776   Label true_label;
3777   Label false_label;
3778   NearLabel done;
3779 
3780   Condition final_branch_condition = EmitTypeofIs(&true_label,
3781                                                   &false_label,
3782                                                   input,
3783                                                   instr->type_literal());
3784   __ j(final_branch_condition, &true_label);
3785   __ bind(&false_label);
3786   __ LoadRoot(result, Heap::kFalseValueRootIndex);
3787   __ jmp(&done);
3788 
3789   __ bind(&true_label);
3790   __ LoadRoot(result, Heap::kTrueValueRootIndex);
3791 
3792   __ bind(&done);
3793 }
3794 
3795 
EmitPushConstantOperand(LOperand * operand)3796 void LCodeGen::EmitPushConstantOperand(LOperand* operand) {
3797   ASSERT(operand->IsConstantOperand());
3798   LConstantOperand* const_op = LConstantOperand::cast(operand);
3799   Handle<Object> literal = chunk_->LookupLiteral(const_op);
3800   Representation r = chunk_->LookupLiteralRepresentation(const_op);
3801   if (r.IsInteger32()) {
3802     ASSERT(literal->IsNumber());
3803     __ push(Immediate(static_cast<int32_t>(literal->Number())));
3804   } else if (r.IsDouble()) {
3805     Abort("unsupported double immediate");
3806   } else {
3807     ASSERT(r.IsTagged());
3808     __ Push(literal);
3809   }
3810 }
3811 
3812 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)3813 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
3814   Register input = ToRegister(instr->InputAt(0));
3815   int true_block = chunk_->LookupDestination(instr->true_block_id());
3816   int false_block = chunk_->LookupDestination(instr->false_block_id());
3817   Label* true_label = chunk_->GetAssemblyLabel(true_block);
3818   Label* false_label = chunk_->GetAssemblyLabel(false_block);
3819 
3820   Condition final_branch_condition = EmitTypeofIs(true_label,
3821                                                   false_label,
3822                                                   input,
3823                                                   instr->type_literal());
3824 
3825   EmitBranch(true_block, false_block, final_branch_condition);
3826 }
3827 
3828 
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name)3829 Condition LCodeGen::EmitTypeofIs(Label* true_label,
3830                                  Label* false_label,
3831                                  Register input,
3832                                  Handle<String> type_name) {
3833   Condition final_branch_condition = no_condition;
3834   if (type_name->Equals(heap()->number_symbol())) {
3835     __ JumpIfSmi(input, true_label);
3836     __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
3837                    Heap::kHeapNumberMapRootIndex);
3838 
3839     final_branch_condition = equal;
3840 
3841   } else if (type_name->Equals(heap()->string_symbol())) {
3842     __ JumpIfSmi(input, false_label);
3843     __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
3844     __ j(above_equal, false_label);
3845     __ testb(FieldOperand(input, Map::kBitFieldOffset),
3846              Immediate(1 << Map::kIsUndetectable));
3847     final_branch_condition = zero;
3848 
3849   } else if (type_name->Equals(heap()->boolean_symbol())) {
3850     __ CompareRoot(input, Heap::kTrueValueRootIndex);
3851     __ j(equal, true_label);
3852     __ CompareRoot(input, Heap::kFalseValueRootIndex);
3853     final_branch_condition = equal;
3854 
3855   } else if (type_name->Equals(heap()->undefined_symbol())) {
3856     __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
3857     __ j(equal, true_label);
3858     __ JumpIfSmi(input, false_label);
3859     // Check for undetectable objects => true.
3860     __ movq(input, FieldOperand(input, HeapObject::kMapOffset));
3861     __ testb(FieldOperand(input, Map::kBitFieldOffset),
3862              Immediate(1 << Map::kIsUndetectable));
3863     final_branch_condition = not_zero;
3864 
3865   } else if (type_name->Equals(heap()->function_symbol())) {
3866     __ JumpIfSmi(input, false_label);
3867     __ CmpObjectType(input, FIRST_FUNCTION_CLASS_TYPE, input);
3868     final_branch_condition = above_equal;
3869 
3870   } else if (type_name->Equals(heap()->object_symbol())) {
3871     __ JumpIfSmi(input, false_label);
3872     __ CompareRoot(input, Heap::kNullValueRootIndex);
3873     __ j(equal, true_label);
3874     __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, input);
3875     __ j(below, false_label);
3876     __ CmpInstanceType(input, FIRST_FUNCTION_CLASS_TYPE);
3877     __ j(above_equal, false_label);
3878     // Check for undetectable objects => false.
3879     __ testb(FieldOperand(input, Map::kBitFieldOffset),
3880              Immediate(1 << Map::kIsUndetectable));
3881     final_branch_condition = zero;
3882 
3883   } else {
3884     final_branch_condition = never;
3885     __ jmp(false_label);
3886   }
3887 
3888   return final_branch_condition;
3889 }
3890 
3891 
DoIsConstructCall(LIsConstructCall * instr)3892 void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) {
3893   Register result = ToRegister(instr->result());
3894   NearLabel true_label;
3895   NearLabel false_label;
3896   NearLabel done;
3897 
3898   EmitIsConstructCall(result);
3899   __ j(equal, &true_label);
3900 
3901   __ LoadRoot(result, Heap::kFalseValueRootIndex);
3902   __ jmp(&done);
3903 
3904   __ bind(&true_label);
3905   __ LoadRoot(result, Heap::kTrueValueRootIndex);
3906 
3907 
3908   __ bind(&done);
3909 }
3910 
3911 
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)3912 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
3913   Register temp = ToRegister(instr->TempAt(0));
3914   int true_block = chunk_->LookupDestination(instr->true_block_id());
3915   int false_block = chunk_->LookupDestination(instr->false_block_id());
3916 
3917   EmitIsConstructCall(temp);
3918   EmitBranch(true_block, false_block, equal);
3919 }
3920 
3921 
EmitIsConstructCall(Register temp)3922 void LCodeGen::EmitIsConstructCall(Register temp) {
3923   // Get the frame pointer for the calling frame.
3924   __ movq(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3925 
3926   // Skip the arguments adaptor frame if it exists.
3927   NearLabel check_frame_marker;
3928   __ Cmp(Operand(temp, StandardFrameConstants::kContextOffset),
3929          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3930   __ j(not_equal, &check_frame_marker);
3931   __ movq(temp, Operand(rax, StandardFrameConstants::kCallerFPOffset));
3932 
3933   // Check the marker in the calling frame.
3934   __ bind(&check_frame_marker);
3935   __ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
3936          Smi::FromInt(StackFrame::CONSTRUCT));
3937 }
3938 
3939 
DoLazyBailout(LLazyBailout * instr)3940 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
3941   // No code for lazy bailout instruction. Used to capture environment after a
3942   // call for populating the safepoint data with deoptimization data.
3943 }
3944 
3945 
DoDeoptimize(LDeoptimize * instr)3946 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
3947   DeoptimizeIf(no_condition, instr->environment());
3948 }
3949 
3950 
DoDeleteProperty(LDeleteProperty * instr)3951 void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
3952   LOperand* obj = instr->object();
3953   LOperand* key = instr->key();
3954   // Push object.
3955   if (obj->IsRegister()) {
3956     __ push(ToRegister(obj));
3957   } else {
3958     __ push(ToOperand(obj));
3959   }
3960   // Push key.
3961   if (key->IsConstantOperand()) {
3962     EmitPushConstantOperand(key);
3963   } else if (key->IsRegister()) {
3964     __ push(ToRegister(key));
3965   } else {
3966     __ push(ToOperand(key));
3967   }
3968   ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
3969   LPointerMap* pointers = instr->pointer_map();
3970   LEnvironment* env = instr->deoptimization_environment();
3971   RecordPosition(pointers->position());
3972   RegisterEnvironmentForDeoptimization(env);
3973   // Create safepoint generator that will also ensure enough space in the
3974   // reloc info for patching in deoptimization (since this is invoking a
3975   // builtin)
3976   SafepointGenerator safepoint_generator(this,
3977                                          pointers,
3978                                          env->deoptimization_index());
3979   __ Push(Smi::FromInt(strict_mode_flag()));
3980   __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, &safepoint_generator);
3981 }
3982 
3983 
DoStackCheck(LStackCheck * instr)3984 void LCodeGen::DoStackCheck(LStackCheck* instr) {
3985   // Perform stack overflow check.
3986   NearLabel done;
3987   __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
3988   __ j(above_equal, &done);
3989 
3990   StackCheckStub stub;
3991   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3992   __ bind(&done);
3993 }
3994 
3995 
DoOsrEntry(LOsrEntry * instr)3996 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
3997   // This is a pseudo-instruction that ensures that the environment here is
3998   // properly registered for deoptimization and records the assembler's PC
3999   // offset.
4000   LEnvironment* environment = instr->environment();
4001   environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
4002                                    instr->SpilledDoubleRegisterArray());
4003 
4004   // If the environment were already registered, we would have no way of
4005   // backpatching it with the spill slot operands.
4006   ASSERT(!environment->HasBeenRegistered());
4007   RegisterEnvironmentForDeoptimization(environment);
4008   ASSERT(osr_pc_offset_ == -1);
4009   osr_pc_offset_ = masm()->pc_offset();
4010 }
4011 
4012 #undef __
4013 
4014 } }  // namespace v8::internal
4015 
4016 #endif  // V8_TARGET_ARCH_X64
4017