1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #if defined(V8_TARGET_ARCH_X64)
31
32 #include "x64/lithium-codegen-x64.h"
33 #include "code-stubs.h"
34 #include "stub-cache.h"
35
36 namespace v8 {
37 namespace internal {
38
39
40 // When invoking builtins, we need to record the safepoint in the middle of
41 // the invoke instruction sequence generated by the macro assembler.
42 class SafepointGenerator : public CallWrapper {
43 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,int deoptimization_index)44 SafepointGenerator(LCodeGen* codegen,
45 LPointerMap* pointers,
46 int deoptimization_index)
47 : codegen_(codegen),
48 pointers_(pointers),
49 deoptimization_index_(deoptimization_index) { }
~SafepointGenerator()50 virtual ~SafepointGenerator() { }
51
BeforeCall(int call_size)52 virtual void BeforeCall(int call_size) {
53 ASSERT(call_size >= 0);
54 // Ensure that we have enough space after the previous safepoint position
55 // for the jump generated there.
56 int call_end = codegen_->masm()->pc_offset() + call_size;
57 int prev_jump_end = codegen_->LastSafepointEnd() + kMinSafepointSize;
58 if (call_end < prev_jump_end) {
59 int padding_size = prev_jump_end - call_end;
60 STATIC_ASSERT(kMinSafepointSize <= 9); // One multibyte nop is enough.
61 codegen_->masm()->nop(padding_size);
62 }
63 }
64
AfterCall()65 virtual void AfterCall() {
66 codegen_->RecordSafepoint(pointers_, deoptimization_index_);
67 }
68
69 private:
70 static const int kMinSafepointSize =
71 MacroAssembler::kShortCallInstructionLength;
72 LCodeGen* codegen_;
73 LPointerMap* pointers_;
74 int deoptimization_index_;
75 };
76
77
78 #define __ masm()->
79
GenerateCode()80 bool LCodeGen::GenerateCode() {
81 HPhase phase("Code generation", chunk());
82 ASSERT(is_unused());
83 status_ = GENERATING;
84 return GeneratePrologue() &&
85 GenerateBody() &&
86 GenerateDeferredCode() &&
87 GenerateJumpTable() &&
88 GenerateSafepointTable();
89 }
90
91
FinishCode(Handle<Code> code)92 void LCodeGen::FinishCode(Handle<Code> code) {
93 ASSERT(is_done());
94 code->set_stack_slots(StackSlotCount());
95 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
96 PopulateDeoptimizationData(code);
97 Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
98 }
99
100
Abort(const char * format,...)101 void LCodeGen::Abort(const char* format, ...) {
102 if (FLAG_trace_bailout) {
103 SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString());
104 PrintF("Aborting LCodeGen in @\"%s\": ", *name);
105 va_list arguments;
106 va_start(arguments, format);
107 OS::VPrint(format, arguments);
108 va_end(arguments);
109 PrintF("\n");
110 }
111 status_ = ABORTED;
112 }
113
114
Comment(const char * format,...)115 void LCodeGen::Comment(const char* format, ...) {
116 if (!FLAG_code_comments) return;
117 char buffer[4 * KB];
118 StringBuilder builder(buffer, ARRAY_SIZE(buffer));
119 va_list arguments;
120 va_start(arguments, format);
121 builder.AddFormattedList(format, arguments);
122 va_end(arguments);
123
124 // Copy the string before recording it in the assembler to avoid
125 // issues when the stack allocated buffer goes out of scope.
126 int length = builder.position();
127 Vector<char> copy = Vector<char>::New(length + 1);
128 memcpy(copy.start(), builder.Finalize(), copy.length());
129 masm()->RecordComment(copy.start());
130 }
131
132
GeneratePrologue()133 bool LCodeGen::GeneratePrologue() {
134 ASSERT(is_generating());
135
136 #ifdef DEBUG
137 if (strlen(FLAG_stop_at) > 0 &&
138 info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
139 __ int3();
140 }
141 #endif
142
143 __ push(rbp); // Caller's frame pointer.
144 __ movq(rbp, rsp);
145 __ push(rsi); // Callee's context.
146 __ push(rdi); // Callee's JS function.
147
148 // Reserve space for the stack slots needed by the code.
149 int slots = StackSlotCount();
150 if (slots > 0) {
151 if (FLAG_debug_code) {
152 __ Set(rax, slots);
153 __ movq(kScratchRegister, kSlotsZapValue, RelocInfo::NONE);
154 Label loop;
155 __ bind(&loop);
156 __ push(kScratchRegister);
157 __ decl(rax);
158 __ j(not_zero, &loop);
159 } else {
160 __ subq(rsp, Immediate(slots * kPointerSize));
161 #ifdef _MSC_VER
162 // On windows, you may not access the stack more than one page below
163 // the most recently mapped page. To make the allocated area randomly
164 // accessible, we write to each page in turn (the value is irrelevant).
165 const int kPageSize = 4 * KB;
166 for (int offset = slots * kPointerSize - kPageSize;
167 offset > 0;
168 offset -= kPageSize) {
169 __ movq(Operand(rsp, offset), rax);
170 }
171 #endif
172 }
173 }
174
175 // Possibly allocate a local context.
176 int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
177 if (heap_slots > 0) {
178 Comment(";;; Allocate local context");
179 // Argument to NewContext is the function, which is still in rdi.
180 __ push(rdi);
181 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
182 FastNewContextStub stub(heap_slots);
183 __ CallStub(&stub);
184 } else {
185 __ CallRuntime(Runtime::kNewContext, 1);
186 }
187 RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
188 // Context is returned in both rax and rsi. It replaces the context
189 // passed to us. It's saved in the stack and kept live in rsi.
190 __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
191
192 // Copy any necessary parameters into the context.
193 int num_parameters = scope()->num_parameters();
194 for (int i = 0; i < num_parameters; i++) {
195 Slot* slot = scope()->parameter(i)->AsSlot();
196 if (slot != NULL && slot->type() == Slot::CONTEXT) {
197 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
198 (num_parameters - 1 - i) * kPointerSize;
199 // Load parameter from stack.
200 __ movq(rax, Operand(rbp, parameter_offset));
201 // Store it in the context.
202 int context_offset = Context::SlotOffset(slot->index());
203 __ movq(Operand(rsi, context_offset), rax);
204 // Update the write barrier. This clobbers all involved
205 // registers, so we have use a third register to avoid
206 // clobbering rsi.
207 __ movq(rcx, rsi);
208 __ RecordWrite(rcx, context_offset, rax, rbx);
209 }
210 }
211 Comment(";;; End allocate local context");
212 }
213
214 // Trace the call.
215 if (FLAG_trace) {
216 __ CallRuntime(Runtime::kTraceEnter, 0);
217 }
218 return !is_aborted();
219 }
220
221
GenerateBody()222 bool LCodeGen::GenerateBody() {
223 ASSERT(is_generating());
224 bool emit_instructions = true;
225 for (current_instruction_ = 0;
226 !is_aborted() && current_instruction_ < instructions_->length();
227 current_instruction_++) {
228 LInstruction* instr = instructions_->at(current_instruction_);
229 if (instr->IsLabel()) {
230 LLabel* label = LLabel::cast(instr);
231 emit_instructions = !label->HasReplacement();
232 }
233
234 if (emit_instructions) {
235 Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
236 instr->CompileToNative(this);
237 }
238 }
239 return !is_aborted();
240 }
241
242
GetNextInstruction()243 LInstruction* LCodeGen::GetNextInstruction() {
244 if (current_instruction_ < instructions_->length() - 1) {
245 return instructions_->at(current_instruction_ + 1);
246 } else {
247 return NULL;
248 }
249 }
250
251
GenerateJumpTable()252 bool LCodeGen::GenerateJumpTable() {
253 for (int i = 0; i < jump_table_.length(); i++) {
254 __ bind(&jump_table_[i].label);
255 __ Jump(jump_table_[i].address, RelocInfo::RUNTIME_ENTRY);
256 }
257 return !is_aborted();
258 }
259
260
GenerateDeferredCode()261 bool LCodeGen::GenerateDeferredCode() {
262 ASSERT(is_generating());
263 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
264 LDeferredCode* code = deferred_[i];
265 __ bind(code->entry());
266 code->Generate();
267 __ jmp(code->exit());
268 }
269
270 // Deferred code is the last part of the instruction sequence. Mark
271 // the generated code as done unless we bailed out.
272 if (!is_aborted()) status_ = DONE;
273 return !is_aborted();
274 }
275
276
GenerateSafepointTable()277 bool LCodeGen::GenerateSafepointTable() {
278 ASSERT(is_done());
279 // Ensure that there is space at the end of the code to write a number
280 // of jump instructions, as well as to afford writing a call near the end
281 // of the code.
282 // The jumps are used when there isn't room in the code stream to write
283 // a long call instruction. Instead it writes a shorter call to a
284 // jump instruction in the same code object.
285 // The calls are used when lazy deoptimizing a function and calls to a
286 // deoptimization function.
287 int short_deopts = safepoints_.CountShortDeoptimizationIntervals(
288 static_cast<unsigned>(MacroAssembler::kJumpInstructionLength));
289 int byte_count = (short_deopts) * MacroAssembler::kJumpInstructionLength;
290 while (byte_count-- > 0) {
291 __ int3();
292 }
293 safepoints_.Emit(masm(), StackSlotCount());
294 return !is_aborted();
295 }
296
297
ToRegister(int index) const298 Register LCodeGen::ToRegister(int index) const {
299 return Register::FromAllocationIndex(index);
300 }
301
302
ToDoubleRegister(int index) const303 XMMRegister LCodeGen::ToDoubleRegister(int index) const {
304 return XMMRegister::FromAllocationIndex(index);
305 }
306
307
ToRegister(LOperand * op) const308 Register LCodeGen::ToRegister(LOperand* op) const {
309 ASSERT(op->IsRegister());
310 return ToRegister(op->index());
311 }
312
313
ToDoubleRegister(LOperand * op) const314 XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
315 ASSERT(op->IsDoubleRegister());
316 return ToDoubleRegister(op->index());
317 }
318
319
IsInteger32Constant(LConstantOperand * op) const320 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
321 return op->IsConstantOperand() &&
322 chunk_->LookupLiteralRepresentation(op).IsInteger32();
323 }
324
325
IsTaggedConstant(LConstantOperand * op) const326 bool LCodeGen::IsTaggedConstant(LConstantOperand* op) const {
327 return op->IsConstantOperand() &&
328 chunk_->LookupLiteralRepresentation(op).IsTagged();
329 }
330
331
ToInteger32(LConstantOperand * op) const332 int LCodeGen::ToInteger32(LConstantOperand* op) const {
333 Handle<Object> value = chunk_->LookupLiteral(op);
334 ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
335 ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
336 value->Number());
337 return static_cast<int32_t>(value->Number());
338 }
339
340
ToHandle(LConstantOperand * op) const341 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
342 Handle<Object> literal = chunk_->LookupLiteral(op);
343 ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
344 return literal;
345 }
346
347
ToOperand(LOperand * op) const348 Operand LCodeGen::ToOperand(LOperand* op) const {
349 // Does not handle registers. In X64 assembler, plain registers are not
350 // representable as an Operand.
351 ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
352 int index = op->index();
353 if (index >= 0) {
354 // Local or spill slot. Skip the frame pointer, function, and
355 // context in the fixed part of the frame.
356 return Operand(rbp, -(index + 3) * kPointerSize);
357 } else {
358 // Incoming parameter. Skip the return address.
359 return Operand(rbp, -(index - 1) * kPointerSize);
360 }
361 }
362
363
WriteTranslation(LEnvironment * environment,Translation * translation)364 void LCodeGen::WriteTranslation(LEnvironment* environment,
365 Translation* translation) {
366 if (environment == NULL) return;
367
368 // The translation includes one command per value in the environment.
369 int translation_size = environment->values()->length();
370 // The output frame height does not include the parameters.
371 int height = translation_size - environment->parameter_count();
372
373 WriteTranslation(environment->outer(), translation);
374 int closure_id = DefineDeoptimizationLiteral(environment->closure());
375 translation->BeginFrame(environment->ast_id(), closure_id, height);
376 for (int i = 0; i < translation_size; ++i) {
377 LOperand* value = environment->values()->at(i);
378 // spilled_registers_ and spilled_double_registers_ are either
379 // both NULL or both set.
380 if (environment->spilled_registers() != NULL && value != NULL) {
381 if (value->IsRegister() &&
382 environment->spilled_registers()[value->index()] != NULL) {
383 translation->MarkDuplicate();
384 AddToTranslation(translation,
385 environment->spilled_registers()[value->index()],
386 environment->HasTaggedValueAt(i));
387 } else if (
388 value->IsDoubleRegister() &&
389 environment->spilled_double_registers()[value->index()] != NULL) {
390 translation->MarkDuplicate();
391 AddToTranslation(
392 translation,
393 environment->spilled_double_registers()[value->index()],
394 false);
395 }
396 }
397
398 AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
399 }
400 }
401
402
AddToTranslation(Translation * translation,LOperand * op,bool is_tagged)403 void LCodeGen::AddToTranslation(Translation* translation,
404 LOperand* op,
405 bool is_tagged) {
406 if (op == NULL) {
407 // TODO(twuerthinger): Introduce marker operands to indicate that this value
408 // is not present and must be reconstructed from the deoptimizer. Currently
409 // this is only used for the arguments object.
410 translation->StoreArgumentsObject();
411 } else if (op->IsStackSlot()) {
412 if (is_tagged) {
413 translation->StoreStackSlot(op->index());
414 } else {
415 translation->StoreInt32StackSlot(op->index());
416 }
417 } else if (op->IsDoubleStackSlot()) {
418 translation->StoreDoubleStackSlot(op->index());
419 } else if (op->IsArgument()) {
420 ASSERT(is_tagged);
421 int src_index = StackSlotCount() + op->index();
422 translation->StoreStackSlot(src_index);
423 } else if (op->IsRegister()) {
424 Register reg = ToRegister(op);
425 if (is_tagged) {
426 translation->StoreRegister(reg);
427 } else {
428 translation->StoreInt32Register(reg);
429 }
430 } else if (op->IsDoubleRegister()) {
431 XMMRegister reg = ToDoubleRegister(op);
432 translation->StoreDoubleRegister(reg);
433 } else if (op->IsConstantOperand()) {
434 Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
435 int src_index = DefineDeoptimizationLiteral(literal);
436 translation->StoreLiteral(src_index);
437 } else {
438 UNREACHABLE();
439 }
440 }
441
442
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode,int argc)443 void LCodeGen::CallCodeGeneric(Handle<Code> code,
444 RelocInfo::Mode mode,
445 LInstruction* instr,
446 SafepointMode safepoint_mode,
447 int argc) {
448 ASSERT(instr != NULL);
449 LPointerMap* pointers = instr->pointer_map();
450 RecordPosition(pointers->position());
451 __ call(code, mode);
452 RegisterLazyDeoptimization(instr, safepoint_mode, argc);
453
454 // Signal that we don't inline smi code before these stubs in the
455 // optimizing code generator.
456 if (code->kind() == Code::TYPE_RECORDING_BINARY_OP_IC ||
457 code->kind() == Code::COMPARE_IC) {
458 __ nop();
459 }
460 }
461
462
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)463 void LCodeGen::CallCode(Handle<Code> code,
464 RelocInfo::Mode mode,
465 LInstruction* instr) {
466 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
467 }
468
469
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr)470 void LCodeGen::CallRuntime(const Runtime::Function* function,
471 int num_arguments,
472 LInstruction* instr) {
473 ASSERT(instr != NULL);
474 ASSERT(instr->HasPointerMap());
475 LPointerMap* pointers = instr->pointer_map();
476 RecordPosition(pointers->position());
477
478 __ CallRuntime(function, num_arguments);
479 RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT, 0);
480 }
481
482
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr)483 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
484 int argc,
485 LInstruction* instr) {
486 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
487 __ CallRuntimeSaveDoubles(id);
488 RecordSafepointWithRegisters(
489 instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex);
490 }
491
492
RegisterLazyDeoptimization(LInstruction * instr,SafepointMode safepoint_mode,int argc)493 void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr,
494 SafepointMode safepoint_mode,
495 int argc) {
496 // Create the environment to bailout to. If the call has side effects
497 // execution has to continue after the call otherwise execution can continue
498 // from a previous bailout point repeating the call.
499 LEnvironment* deoptimization_environment;
500 if (instr->HasDeoptimizationEnvironment()) {
501 deoptimization_environment = instr->deoptimization_environment();
502 } else {
503 deoptimization_environment = instr->environment();
504 }
505
506 RegisterEnvironmentForDeoptimization(deoptimization_environment);
507 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
508 ASSERT(argc == 0);
509 RecordSafepoint(instr->pointer_map(),
510 deoptimization_environment->deoptimization_index());
511 } else {
512 ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
513 RecordSafepointWithRegisters(
514 instr->pointer_map(),
515 argc,
516 deoptimization_environment->deoptimization_index());
517 }
518 }
519
520
RegisterEnvironmentForDeoptimization(LEnvironment * environment)521 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
522 if (!environment->HasBeenRegistered()) {
523 // Physical stack frame layout:
524 // -x ............. -4 0 ..................................... y
525 // [incoming arguments] [spill slots] [pushed outgoing arguments]
526
527 // Layout of the environment:
528 // 0 ..................................................... size-1
529 // [parameters] [locals] [expression stack including arguments]
530
531 // Layout of the translation:
532 // 0 ........................................................ size - 1 + 4
533 // [expression stack including arguments] [locals] [4 words] [parameters]
534 // |>------------ translation_size ------------<|
535
536 int frame_count = 0;
537 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
538 ++frame_count;
539 }
540 Translation translation(&translations_, frame_count);
541 WriteTranslation(environment, &translation);
542 int deoptimization_index = deoptimizations_.length();
543 environment->Register(deoptimization_index, translation.index());
544 deoptimizations_.Add(environment);
545 }
546 }
547
548
DeoptimizeIf(Condition cc,LEnvironment * environment)549 void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
550 RegisterEnvironmentForDeoptimization(environment);
551 ASSERT(environment->HasBeenRegistered());
552 int id = environment->deoptimization_index();
553 Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
554 ASSERT(entry != NULL);
555 if (entry == NULL) {
556 Abort("bailout was not prepared");
557 return;
558 }
559
560 if (cc == no_condition) {
561 __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
562 } else {
563 // We often have several deopts to the same entry, reuse the last
564 // jump entry if this is the case.
565 if (jump_table_.is_empty() ||
566 jump_table_.last().address != entry) {
567 jump_table_.Add(JumpTableEntry(entry));
568 }
569 __ j(cc, &jump_table_.last().label);
570 }
571 }
572
573
PopulateDeoptimizationData(Handle<Code> code)574 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
575 int length = deoptimizations_.length();
576 if (length == 0) return;
577 ASSERT(FLAG_deopt);
578 Handle<DeoptimizationInputData> data =
579 factory()->NewDeoptimizationInputData(length, TENURED);
580
581 Handle<ByteArray> translations = translations_.CreateByteArray();
582 data->SetTranslationByteArray(*translations);
583 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
584
585 Handle<FixedArray> literals =
586 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
587 for (int i = 0; i < deoptimization_literals_.length(); i++) {
588 literals->set(i, *deoptimization_literals_[i]);
589 }
590 data->SetLiteralArray(*literals);
591
592 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
593 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
594
595 // Populate the deoptimization entries.
596 for (int i = 0; i < length; i++) {
597 LEnvironment* env = deoptimizations_[i];
598 data->SetAstId(i, Smi::FromInt(env->ast_id()));
599 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
600 data->SetArgumentsStackHeight(i,
601 Smi::FromInt(env->arguments_stack_height()));
602 }
603 code->set_deoptimization_data(*data);
604 }
605
606
DefineDeoptimizationLiteral(Handle<Object> literal)607 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
608 int result = deoptimization_literals_.length();
609 for (int i = 0; i < deoptimization_literals_.length(); ++i) {
610 if (deoptimization_literals_[i].is_identical_to(literal)) return i;
611 }
612 deoptimization_literals_.Add(literal);
613 return result;
614 }
615
616
PopulateDeoptimizationLiteralsWithInlinedFunctions()617 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
618 ASSERT(deoptimization_literals_.length() == 0);
619
620 const ZoneList<Handle<JSFunction> >* inlined_closures =
621 chunk()->inlined_closures();
622
623 for (int i = 0, length = inlined_closures->length();
624 i < length;
625 i++) {
626 DefineDeoptimizationLiteral(inlined_closures->at(i));
627 }
628
629 inlined_function_count_ = deoptimization_literals_.length();
630 }
631
632
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,int deoptimization_index)633 void LCodeGen::RecordSafepoint(
634 LPointerMap* pointers,
635 Safepoint::Kind kind,
636 int arguments,
637 int deoptimization_index) {
638 ASSERT(kind == expected_safepoint_kind_);
639
640 const ZoneList<LOperand*>* operands = pointers->operands();
641
642 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
643 kind, arguments, deoptimization_index);
644 for (int i = 0; i < operands->length(); i++) {
645 LOperand* pointer = operands->at(i);
646 if (pointer->IsStackSlot()) {
647 safepoint.DefinePointerSlot(pointer->index());
648 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
649 safepoint.DefinePointerRegister(ToRegister(pointer));
650 }
651 }
652 if (kind & Safepoint::kWithRegisters) {
653 // Register rsi always contains a pointer to the context.
654 safepoint.DefinePointerRegister(rsi);
655 }
656 }
657
658
RecordSafepoint(LPointerMap * pointers,int deoptimization_index)659 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
660 int deoptimization_index) {
661 RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
662 }
663
664
RecordSafepoint(int deoptimization_index)665 void LCodeGen::RecordSafepoint(int deoptimization_index) {
666 LPointerMap empty_pointers(RelocInfo::kNoPosition);
667 RecordSafepoint(&empty_pointers, deoptimization_index);
668 }
669
670
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,int deoptimization_index)671 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
672 int arguments,
673 int deoptimization_index) {
674 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
675 deoptimization_index);
676 }
677
678
RecordPosition(int position)679 void LCodeGen::RecordPosition(int position) {
680 if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return;
681 masm()->positions_recorder()->RecordPosition(position);
682 }
683
684
DoLabel(LLabel * label)685 void LCodeGen::DoLabel(LLabel* label) {
686 if (label->is_loop_header()) {
687 Comment(";;; B%d - LOOP entry", label->block_id());
688 } else {
689 Comment(";;; B%d", label->block_id());
690 }
691 __ bind(label->label());
692 current_block_ = label->block_id();
693 LCodeGen::DoGap(label);
694 }
695
696
DoParallelMove(LParallelMove * move)697 void LCodeGen::DoParallelMove(LParallelMove* move) {
698 resolver_.Resolve(move);
699 }
700
701
DoGap(LGap * gap)702 void LCodeGen::DoGap(LGap* gap) {
703 for (int i = LGap::FIRST_INNER_POSITION;
704 i <= LGap::LAST_INNER_POSITION;
705 i++) {
706 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
707 LParallelMove* move = gap->GetParallelMove(inner_pos);
708 if (move != NULL) DoParallelMove(move);
709 }
710
711 LInstruction* next = GetNextInstruction();
712 if (next != NULL && next->IsLazyBailout()) {
713 int pc = masm()->pc_offset();
714 safepoints_.SetPcAfterGap(pc);
715 }
716 }
717
718
DoParameter(LParameter * instr)719 void LCodeGen::DoParameter(LParameter* instr) {
720 // Nothing to do.
721 }
722
723
DoCallStub(LCallStub * instr)724 void LCodeGen::DoCallStub(LCallStub* instr) {
725 ASSERT(ToRegister(instr->result()).is(rax));
726 switch (instr->hydrogen()->major_key()) {
727 case CodeStub::RegExpConstructResult: {
728 RegExpConstructResultStub stub;
729 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
730 break;
731 }
732 case CodeStub::RegExpExec: {
733 RegExpExecStub stub;
734 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
735 break;
736 }
737 case CodeStub::SubString: {
738 SubStringStub stub;
739 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
740 break;
741 }
742 case CodeStub::NumberToString: {
743 NumberToStringStub stub;
744 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
745 break;
746 }
747 case CodeStub::StringAdd: {
748 StringAddStub stub(NO_STRING_ADD_FLAGS);
749 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
750 break;
751 }
752 case CodeStub::StringCompare: {
753 StringCompareStub stub;
754 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
755 break;
756 }
757 case CodeStub::TranscendentalCache: {
758 TranscendentalCacheStub stub(instr->transcendental_type(),
759 TranscendentalCacheStub::TAGGED);
760 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
761 break;
762 }
763 default:
764 UNREACHABLE();
765 }
766 }
767
768
DoUnknownOSRValue(LUnknownOSRValue * instr)769 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
770 // Nothing to do.
771 }
772
773
DoModI(LModI * instr)774 void LCodeGen::DoModI(LModI* instr) {
775 if (instr->hydrogen()->HasPowerOf2Divisor()) {
776 Register dividend = ToRegister(instr->InputAt(0));
777
778 int32_t divisor =
779 HConstant::cast(instr->hydrogen()->right())->Integer32Value();
780
781 if (divisor < 0) divisor = -divisor;
782
783 NearLabel positive_dividend, done;
784 __ testl(dividend, dividend);
785 __ j(not_sign, &positive_dividend);
786 __ negl(dividend);
787 __ andl(dividend, Immediate(divisor - 1));
788 __ negl(dividend);
789 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
790 __ j(not_zero, &done);
791 DeoptimizeIf(no_condition, instr->environment());
792 } else {
793 __ jmp(&done);
794 }
795 __ bind(&positive_dividend);
796 __ andl(dividend, Immediate(divisor - 1));
797 __ bind(&done);
798 } else {
799 LOperand* right = instr->InputAt(1);
800 Register right_reg = ToRegister(right);
801
802 ASSERT(ToRegister(instr->result()).is(rdx));
803 ASSERT(ToRegister(instr->InputAt(0)).is(rax));
804 ASSERT(!right_reg.is(rax));
805 ASSERT(!right_reg.is(rdx));
806
807 // Check for x % 0.
808 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
809 __ testl(right_reg, right_reg);
810 DeoptimizeIf(zero, instr->environment());
811 }
812
813 // Sign extend eax to edx.
814 // (We are using only the low 32 bits of the values.)
815 __ cdq();
816
817 // Check for (0 % -x) that will produce negative zero.
818 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
819 NearLabel positive_left;
820 NearLabel done;
821 __ testl(rax, rax);
822 __ j(not_sign, &positive_left);
823 __ idivl(right_reg);
824
825 // Test the remainder for 0, because then the result would be -0.
826 __ testl(rdx, rdx);
827 __ j(not_zero, &done);
828
829 DeoptimizeIf(no_condition, instr->environment());
830 __ bind(&positive_left);
831 __ idivl(right_reg);
832 __ bind(&done);
833 } else {
834 __ idivl(right_reg);
835 }
836 }
837 }
838
839
DoDivI(LDivI * instr)840 void LCodeGen::DoDivI(LDivI* instr) {
841 LOperand* right = instr->InputAt(1);
842 ASSERT(ToRegister(instr->result()).is(rax));
843 ASSERT(ToRegister(instr->InputAt(0)).is(rax));
844 ASSERT(!ToRegister(instr->InputAt(1)).is(rax));
845 ASSERT(!ToRegister(instr->InputAt(1)).is(rdx));
846
847 Register left_reg = rax;
848
849 // Check for x / 0.
850 Register right_reg = ToRegister(right);
851 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
852 __ testl(right_reg, right_reg);
853 DeoptimizeIf(zero, instr->environment());
854 }
855
856 // Check for (0 / -x) that will produce negative zero.
857 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
858 NearLabel left_not_zero;
859 __ testl(left_reg, left_reg);
860 __ j(not_zero, &left_not_zero);
861 __ testl(right_reg, right_reg);
862 DeoptimizeIf(sign, instr->environment());
863 __ bind(&left_not_zero);
864 }
865
866 // Check for (-kMinInt / -1).
867 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
868 NearLabel left_not_min_int;
869 __ cmpl(left_reg, Immediate(kMinInt));
870 __ j(not_zero, &left_not_min_int);
871 __ cmpl(right_reg, Immediate(-1));
872 DeoptimizeIf(zero, instr->environment());
873 __ bind(&left_not_min_int);
874 }
875
876 // Sign extend to rdx.
877 __ cdq();
878 __ idivl(right_reg);
879
880 // Deoptimize if remainder is not 0.
881 __ testl(rdx, rdx);
882 DeoptimizeIf(not_zero, instr->environment());
883 }
884
885
DoMulI(LMulI * instr)886 void LCodeGen::DoMulI(LMulI* instr) {
887 Register left = ToRegister(instr->InputAt(0));
888 LOperand* right = instr->InputAt(1);
889
890 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
891 __ movl(kScratchRegister, left);
892 }
893
894 bool can_overflow =
895 instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
896 if (right->IsConstantOperand()) {
897 int right_value = ToInteger32(LConstantOperand::cast(right));
898 if (right_value == -1) {
899 __ negl(left);
900 } else if (right_value == 0) {
901 __ xorl(left, left);
902 } else if (right_value == 2) {
903 __ addl(left, left);
904 } else if (!can_overflow) {
905 // If the multiplication is known to not overflow, we
906 // can use operations that don't set the overflow flag
907 // correctly.
908 switch (right_value) {
909 case 1:
910 // Do nothing.
911 break;
912 case 3:
913 __ leal(left, Operand(left, left, times_2, 0));
914 break;
915 case 4:
916 __ shll(left, Immediate(2));
917 break;
918 case 5:
919 __ leal(left, Operand(left, left, times_4, 0));
920 break;
921 case 8:
922 __ shll(left, Immediate(3));
923 break;
924 case 9:
925 __ leal(left, Operand(left, left, times_8, 0));
926 break;
927 case 16:
928 __ shll(left, Immediate(4));
929 break;
930 default:
931 __ imull(left, left, Immediate(right_value));
932 break;
933 }
934 } else {
935 __ imull(left, left, Immediate(right_value));
936 }
937 } else if (right->IsStackSlot()) {
938 __ imull(left, ToOperand(right));
939 } else {
940 __ imull(left, ToRegister(right));
941 }
942
943 if (can_overflow) {
944 DeoptimizeIf(overflow, instr->environment());
945 }
946
947 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
948 // Bail out if the result is supposed to be negative zero.
949 NearLabel done;
950 __ testl(left, left);
951 __ j(not_zero, &done);
952 if (right->IsConstantOperand()) {
953 if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
954 DeoptimizeIf(no_condition, instr->environment());
955 }
956 } else if (right->IsStackSlot()) {
957 __ or_(kScratchRegister, ToOperand(right));
958 DeoptimizeIf(sign, instr->environment());
959 } else {
960 // Test the non-zero operand for negative sign.
961 __ or_(kScratchRegister, ToRegister(right));
962 DeoptimizeIf(sign, instr->environment());
963 }
964 __ bind(&done);
965 }
966 }
967
968
DoBitI(LBitI * instr)969 void LCodeGen::DoBitI(LBitI* instr) {
970 LOperand* left = instr->InputAt(0);
971 LOperand* right = instr->InputAt(1);
972 ASSERT(left->Equals(instr->result()));
973 ASSERT(left->IsRegister());
974
975 if (right->IsConstantOperand()) {
976 int right_operand = ToInteger32(LConstantOperand::cast(right));
977 switch (instr->op()) {
978 case Token::BIT_AND:
979 __ andl(ToRegister(left), Immediate(right_operand));
980 break;
981 case Token::BIT_OR:
982 __ orl(ToRegister(left), Immediate(right_operand));
983 break;
984 case Token::BIT_XOR:
985 __ xorl(ToRegister(left), Immediate(right_operand));
986 break;
987 default:
988 UNREACHABLE();
989 break;
990 }
991 } else if (right->IsStackSlot()) {
992 switch (instr->op()) {
993 case Token::BIT_AND:
994 __ andl(ToRegister(left), ToOperand(right));
995 break;
996 case Token::BIT_OR:
997 __ orl(ToRegister(left), ToOperand(right));
998 break;
999 case Token::BIT_XOR:
1000 __ xorl(ToRegister(left), ToOperand(right));
1001 break;
1002 default:
1003 UNREACHABLE();
1004 break;
1005 }
1006 } else {
1007 ASSERT(right->IsRegister());
1008 switch (instr->op()) {
1009 case Token::BIT_AND:
1010 __ andl(ToRegister(left), ToRegister(right));
1011 break;
1012 case Token::BIT_OR:
1013 __ orl(ToRegister(left), ToRegister(right));
1014 break;
1015 case Token::BIT_XOR:
1016 __ xorl(ToRegister(left), ToRegister(right));
1017 break;
1018 default:
1019 UNREACHABLE();
1020 break;
1021 }
1022 }
1023 }
1024
1025
DoShiftI(LShiftI * instr)1026 void LCodeGen::DoShiftI(LShiftI* instr) {
1027 LOperand* left = instr->InputAt(0);
1028 LOperand* right = instr->InputAt(1);
1029 ASSERT(left->Equals(instr->result()));
1030 ASSERT(left->IsRegister());
1031 if (right->IsRegister()) {
1032 ASSERT(ToRegister(right).is(rcx));
1033
1034 switch (instr->op()) {
1035 case Token::SAR:
1036 __ sarl_cl(ToRegister(left));
1037 break;
1038 case Token::SHR:
1039 __ shrl_cl(ToRegister(left));
1040 if (instr->can_deopt()) {
1041 __ testl(ToRegister(left), ToRegister(left));
1042 DeoptimizeIf(negative, instr->environment());
1043 }
1044 break;
1045 case Token::SHL:
1046 __ shll_cl(ToRegister(left));
1047 break;
1048 default:
1049 UNREACHABLE();
1050 break;
1051 }
1052 } else {
1053 int value = ToInteger32(LConstantOperand::cast(right));
1054 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1055 switch (instr->op()) {
1056 case Token::SAR:
1057 if (shift_count != 0) {
1058 __ sarl(ToRegister(left), Immediate(shift_count));
1059 }
1060 break;
1061 case Token::SHR:
1062 if (shift_count == 0 && instr->can_deopt()) {
1063 __ testl(ToRegister(left), ToRegister(left));
1064 DeoptimizeIf(negative, instr->environment());
1065 } else {
1066 __ shrl(ToRegister(left), Immediate(shift_count));
1067 }
1068 break;
1069 case Token::SHL:
1070 if (shift_count != 0) {
1071 __ shll(ToRegister(left), Immediate(shift_count));
1072 }
1073 break;
1074 default:
1075 UNREACHABLE();
1076 break;
1077 }
1078 }
1079 }
1080
1081
DoSubI(LSubI * instr)1082 void LCodeGen::DoSubI(LSubI* instr) {
1083 LOperand* left = instr->InputAt(0);
1084 LOperand* right = instr->InputAt(1);
1085 ASSERT(left->Equals(instr->result()));
1086
1087 if (right->IsConstantOperand()) {
1088 __ subl(ToRegister(left),
1089 Immediate(ToInteger32(LConstantOperand::cast(right))));
1090 } else if (right->IsRegister()) {
1091 __ subl(ToRegister(left), ToRegister(right));
1092 } else {
1093 __ subl(ToRegister(left), ToOperand(right));
1094 }
1095
1096 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1097 DeoptimizeIf(overflow, instr->environment());
1098 }
1099 }
1100
1101
DoConstantI(LConstantI * instr)1102 void LCodeGen::DoConstantI(LConstantI* instr) {
1103 ASSERT(instr->result()->IsRegister());
1104 __ Set(ToRegister(instr->result()), instr->value());
1105 }
1106
1107
DoConstantD(LConstantD * instr)1108 void LCodeGen::DoConstantD(LConstantD* instr) {
1109 ASSERT(instr->result()->IsDoubleRegister());
1110 XMMRegister res = ToDoubleRegister(instr->result());
1111 double v = instr->value();
1112 uint64_t int_val = BitCast<uint64_t, double>(v);
1113 // Use xor to produce +0.0 in a fast and compact way, but avoid to
1114 // do so if the constant is -0.0.
1115 if (int_val == 0) {
1116 __ xorpd(res, res);
1117 } else {
1118 Register tmp = ToRegister(instr->TempAt(0));
1119 __ Set(tmp, int_val);
1120 __ movq(res, tmp);
1121 }
1122 }
1123
1124
DoConstantT(LConstantT * instr)1125 void LCodeGen::DoConstantT(LConstantT* instr) {
1126 ASSERT(instr->result()->IsRegister());
1127 __ Move(ToRegister(instr->result()), instr->value());
1128 }
1129
1130
DoJSArrayLength(LJSArrayLength * instr)1131 void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1132 Register result = ToRegister(instr->result());
1133 Register array = ToRegister(instr->InputAt(0));
1134 __ movq(result, FieldOperand(array, JSArray::kLengthOffset));
1135 }
1136
1137
DoFixedArrayLength(LFixedArrayLength * instr)1138 void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
1139 Register result = ToRegister(instr->result());
1140 Register array = ToRegister(instr->InputAt(0));
1141 __ movq(result, FieldOperand(array, FixedArray::kLengthOffset));
1142 }
1143
1144
DoExternalArrayLength(LExternalArrayLength * instr)1145 void LCodeGen::DoExternalArrayLength(LExternalArrayLength* instr) {
1146 Register result = ToRegister(instr->result());
1147 Register array = ToRegister(instr->InputAt(0));
1148 __ movl(result, FieldOperand(array, ExternalPixelArray::kLengthOffset));
1149 }
1150
1151
DoValueOf(LValueOf * instr)1152 void LCodeGen::DoValueOf(LValueOf* instr) {
1153 Register input = ToRegister(instr->InputAt(0));
1154 Register result = ToRegister(instr->result());
1155 ASSERT(input.is(result));
1156 NearLabel done;
1157 // If the object is a smi return the object.
1158 __ JumpIfSmi(input, &done);
1159
1160 // If the object is not a value type, return the object.
1161 __ CmpObjectType(input, JS_VALUE_TYPE, kScratchRegister);
1162 __ j(not_equal, &done);
1163 __ movq(result, FieldOperand(input, JSValue::kValueOffset));
1164
1165 __ bind(&done);
1166 }
1167
1168
DoBitNotI(LBitNotI * instr)1169 void LCodeGen::DoBitNotI(LBitNotI* instr) {
1170 LOperand* input = instr->InputAt(0);
1171 ASSERT(input->Equals(instr->result()));
1172 __ not_(ToRegister(input));
1173 }
1174
1175
DoThrow(LThrow * instr)1176 void LCodeGen::DoThrow(LThrow* instr) {
1177 __ push(ToRegister(instr->InputAt(0)));
1178 CallRuntime(Runtime::kThrow, 1, instr);
1179
1180 if (FLAG_debug_code) {
1181 Comment("Unreachable code.");
1182 __ int3();
1183 }
1184 }
1185
1186
DoAddI(LAddI * instr)1187 void LCodeGen::DoAddI(LAddI* instr) {
1188 LOperand* left = instr->InputAt(0);
1189 LOperand* right = instr->InputAt(1);
1190 ASSERT(left->Equals(instr->result()));
1191
1192 if (right->IsConstantOperand()) {
1193 __ addl(ToRegister(left),
1194 Immediate(ToInteger32(LConstantOperand::cast(right))));
1195 } else if (right->IsRegister()) {
1196 __ addl(ToRegister(left), ToRegister(right));
1197 } else {
1198 __ addl(ToRegister(left), ToOperand(right));
1199 }
1200
1201 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1202 DeoptimizeIf(overflow, instr->environment());
1203 }
1204 }
1205
1206
DoArithmeticD(LArithmeticD * instr)1207 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1208 XMMRegister left = ToDoubleRegister(instr->InputAt(0));
1209 XMMRegister right = ToDoubleRegister(instr->InputAt(1));
1210 XMMRegister result = ToDoubleRegister(instr->result());
1211 // All operations except MOD are computed in-place.
1212 ASSERT(instr->op() == Token::MOD || left.is(result));
1213 switch (instr->op()) {
1214 case Token::ADD:
1215 __ addsd(left, right);
1216 break;
1217 case Token::SUB:
1218 __ subsd(left, right);
1219 break;
1220 case Token::MUL:
1221 __ mulsd(left, right);
1222 break;
1223 case Token::DIV:
1224 __ divsd(left, right);
1225 break;
1226 case Token::MOD:
1227 __ PrepareCallCFunction(2);
1228 __ movsd(xmm0, left);
1229 ASSERT(right.is(xmm1));
1230 __ CallCFunction(
1231 ExternalReference::double_fp_operation(Token::MOD, isolate()), 2);
1232 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
1233 __ movsd(result, xmm0);
1234 break;
1235 default:
1236 UNREACHABLE();
1237 break;
1238 }
1239 }
1240
1241
DoArithmeticT(LArithmeticT * instr)1242 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1243 ASSERT(ToRegister(instr->InputAt(0)).is(rdx));
1244 ASSERT(ToRegister(instr->InputAt(1)).is(rax));
1245 ASSERT(ToRegister(instr->result()).is(rax));
1246
1247 TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE);
1248 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1249 __ nop(); // Signals no inlined code.
1250 }
1251
1252
GetNextEmittedBlock(int block)1253 int LCodeGen::GetNextEmittedBlock(int block) {
1254 for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1255 LLabel* label = chunk_->GetLabel(i);
1256 if (!label->HasReplacement()) return i;
1257 }
1258 return -1;
1259 }
1260
1261
EmitBranch(int left_block,int right_block,Condition cc)1262 void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
1263 int next_block = GetNextEmittedBlock(current_block_);
1264 right_block = chunk_->LookupDestination(right_block);
1265 left_block = chunk_->LookupDestination(left_block);
1266
1267 if (right_block == left_block) {
1268 EmitGoto(left_block);
1269 } else if (left_block == next_block) {
1270 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1271 } else if (right_block == next_block) {
1272 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1273 } else {
1274 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1275 if (cc != always) {
1276 __ jmp(chunk_->GetAssemblyLabel(right_block));
1277 }
1278 }
1279 }
1280
1281
DoBranch(LBranch * instr)1282 void LCodeGen::DoBranch(LBranch* instr) {
1283 int true_block = chunk_->LookupDestination(instr->true_block_id());
1284 int false_block = chunk_->LookupDestination(instr->false_block_id());
1285
1286 Representation r = instr->hydrogen()->representation();
1287 if (r.IsInteger32()) {
1288 Register reg = ToRegister(instr->InputAt(0));
1289 __ testl(reg, reg);
1290 EmitBranch(true_block, false_block, not_zero);
1291 } else if (r.IsDouble()) {
1292 XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
1293 __ xorpd(xmm0, xmm0);
1294 __ ucomisd(reg, xmm0);
1295 EmitBranch(true_block, false_block, not_equal);
1296 } else {
1297 ASSERT(r.IsTagged());
1298 Register reg = ToRegister(instr->InputAt(0));
1299 HType type = instr->hydrogen()->type();
1300 if (type.IsBoolean()) {
1301 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1302 EmitBranch(true_block, false_block, equal);
1303 } else if (type.IsSmi()) {
1304 __ SmiCompare(reg, Smi::FromInt(0));
1305 EmitBranch(true_block, false_block, not_equal);
1306 } else {
1307 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1308 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1309
1310 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1311 __ j(equal, false_label);
1312 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1313 __ j(equal, true_label);
1314 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
1315 __ j(equal, false_label);
1316 __ Cmp(reg, Smi::FromInt(0));
1317 __ j(equal, false_label);
1318 __ JumpIfSmi(reg, true_label);
1319
1320 // Test for double values. Plus/minus zero and NaN are false.
1321 NearLabel call_stub;
1322 __ CompareRoot(FieldOperand(reg, HeapObject::kMapOffset),
1323 Heap::kHeapNumberMapRootIndex);
1324 __ j(not_equal, &call_stub);
1325
1326 // HeapNumber => false iff +0, -0, or NaN. These three cases set the
1327 // zero flag when compared to zero using ucomisd.
1328 __ xorpd(xmm0, xmm0);
1329 __ ucomisd(xmm0, FieldOperand(reg, HeapNumber::kValueOffset));
1330 __ j(zero, false_label);
1331 __ jmp(true_label);
1332
1333 // The conversion stub doesn't cause garbage collections so it's
1334 // safe to not record a safepoint after the call.
1335 __ bind(&call_stub);
1336 ToBooleanStub stub;
1337 __ Pushad();
1338 __ push(reg);
1339 __ CallStub(&stub);
1340 __ testq(rax, rax);
1341 __ Popad();
1342 EmitBranch(true_block, false_block, not_zero);
1343 }
1344 }
1345 }
1346
1347
EmitGoto(int block,LDeferredCode * deferred_stack_check)1348 void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) {
1349 block = chunk_->LookupDestination(block);
1350 int next_block = GetNextEmittedBlock(current_block_);
1351 if (block != next_block) {
1352 // Perform stack overflow check if this goto needs it before jumping.
1353 if (deferred_stack_check != NULL) {
1354 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
1355 __ j(above_equal, chunk_->GetAssemblyLabel(block));
1356 __ jmp(deferred_stack_check->entry());
1357 deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block));
1358 } else {
1359 __ jmp(chunk_->GetAssemblyLabel(block));
1360 }
1361 }
1362 }
1363
1364
DoDeferredStackCheck(LGoto * instr)1365 void LCodeGen::DoDeferredStackCheck(LGoto* instr) {
1366 PushSafepointRegistersScope scope(this);
1367 CallRuntimeFromDeferred(Runtime::kStackGuard, 0, instr);
1368 }
1369
1370
DoGoto(LGoto * instr)1371 void LCodeGen::DoGoto(LGoto* instr) {
1372 class DeferredStackCheck: public LDeferredCode {
1373 public:
1374 DeferredStackCheck(LCodeGen* codegen, LGoto* instr)
1375 : LDeferredCode(codegen), instr_(instr) { }
1376 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
1377 private:
1378 LGoto* instr_;
1379 };
1380
1381 DeferredStackCheck* deferred = NULL;
1382 if (instr->include_stack_check()) {
1383 deferred = new DeferredStackCheck(this, instr);
1384 }
1385 EmitGoto(instr->block_id(), deferred);
1386 }
1387
1388
TokenToCondition(Token::Value op,bool is_unsigned)1389 inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1390 Condition cond = no_condition;
1391 switch (op) {
1392 case Token::EQ:
1393 case Token::EQ_STRICT:
1394 cond = equal;
1395 break;
1396 case Token::LT:
1397 cond = is_unsigned ? below : less;
1398 break;
1399 case Token::GT:
1400 cond = is_unsigned ? above : greater;
1401 break;
1402 case Token::LTE:
1403 cond = is_unsigned ? below_equal : less_equal;
1404 break;
1405 case Token::GTE:
1406 cond = is_unsigned ? above_equal : greater_equal;
1407 break;
1408 case Token::IN:
1409 case Token::INSTANCEOF:
1410 default:
1411 UNREACHABLE();
1412 }
1413 return cond;
1414 }
1415
1416
EmitCmpI(LOperand * left,LOperand * right)1417 void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
1418 if (right->IsConstantOperand()) {
1419 int32_t value = ToInteger32(LConstantOperand::cast(right));
1420 if (left->IsRegister()) {
1421 __ cmpl(ToRegister(left), Immediate(value));
1422 } else {
1423 __ cmpl(ToOperand(left), Immediate(value));
1424 }
1425 } else if (right->IsRegister()) {
1426 __ cmpl(ToRegister(left), ToRegister(right));
1427 } else {
1428 __ cmpl(ToRegister(left), ToOperand(right));
1429 }
1430 }
1431
1432
DoCmpID(LCmpID * instr)1433 void LCodeGen::DoCmpID(LCmpID* instr) {
1434 LOperand* left = instr->InputAt(0);
1435 LOperand* right = instr->InputAt(1);
1436 LOperand* result = instr->result();
1437
1438 NearLabel unordered;
1439 if (instr->is_double()) {
1440 // Don't base result on EFLAGS when a NaN is involved. Instead
1441 // jump to the unordered case, which produces a false value.
1442 __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
1443 __ j(parity_even, &unordered);
1444 } else {
1445 EmitCmpI(left, right);
1446 }
1447
1448 NearLabel done;
1449 Condition cc = TokenToCondition(instr->op(), instr->is_double());
1450 __ LoadRoot(ToRegister(result), Heap::kTrueValueRootIndex);
1451 __ j(cc, &done);
1452
1453 __ bind(&unordered);
1454 __ LoadRoot(ToRegister(result), Heap::kFalseValueRootIndex);
1455 __ bind(&done);
1456 }
1457
1458
DoCmpIDAndBranch(LCmpIDAndBranch * instr)1459 void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1460 LOperand* left = instr->InputAt(0);
1461 LOperand* right = instr->InputAt(1);
1462 int false_block = chunk_->LookupDestination(instr->false_block_id());
1463 int true_block = chunk_->LookupDestination(instr->true_block_id());
1464
1465 if (instr->is_double()) {
1466 // Don't base result on EFLAGS when a NaN is involved. Instead
1467 // jump to the false block.
1468 __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
1469 __ j(parity_even, chunk_->GetAssemblyLabel(false_block));
1470 } else {
1471 EmitCmpI(left, right);
1472 }
1473
1474 Condition cc = TokenToCondition(instr->op(), instr->is_double());
1475 EmitBranch(true_block, false_block, cc);
1476 }
1477
1478
DoCmpJSObjectEq(LCmpJSObjectEq * instr)1479 void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
1480 Register left = ToRegister(instr->InputAt(0));
1481 Register right = ToRegister(instr->InputAt(1));
1482 Register result = ToRegister(instr->result());
1483
1484 NearLabel different, done;
1485 __ cmpq(left, right);
1486 __ j(not_equal, &different);
1487 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1488 __ jmp(&done);
1489 __ bind(&different);
1490 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1491 __ bind(&done);
1492 }
1493
1494
DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch * instr)1495 void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
1496 Register left = ToRegister(instr->InputAt(0));
1497 Register right = ToRegister(instr->InputAt(1));
1498 int false_block = chunk_->LookupDestination(instr->false_block_id());
1499 int true_block = chunk_->LookupDestination(instr->true_block_id());
1500
1501 __ cmpq(left, right);
1502 EmitBranch(true_block, false_block, equal);
1503 }
1504
1505
DoIsNull(LIsNull * instr)1506 void LCodeGen::DoIsNull(LIsNull* instr) {
1507 Register reg = ToRegister(instr->InputAt(0));
1508 Register result = ToRegister(instr->result());
1509
1510 // If the expression is known to be a smi, then it's
1511 // definitely not null. Materialize false.
1512 // Consider adding other type and representation tests too.
1513 if (instr->hydrogen()->value()->type().IsSmi()) {
1514 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1515 return;
1516 }
1517
1518 __ CompareRoot(reg, Heap::kNullValueRootIndex);
1519 if (instr->is_strict()) {
1520 ASSERT(Heap::kTrueValueRootIndex >= 0);
1521 __ movl(result, Immediate(Heap::kTrueValueRootIndex));
1522 NearLabel load;
1523 __ j(equal, &load);
1524 __ Set(result, Heap::kFalseValueRootIndex);
1525 __ bind(&load);
1526 __ LoadRootIndexed(result, result, 0);
1527 } else {
1528 NearLabel true_value, false_value, done;
1529 __ j(equal, &true_value);
1530 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1531 __ j(equal, &true_value);
1532 __ JumpIfSmi(reg, &false_value);
1533 // Check for undetectable objects by looking in the bit field in
1534 // the map. The object has already been smi checked.
1535 Register scratch = result;
1536 __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
1537 __ testb(FieldOperand(scratch, Map::kBitFieldOffset),
1538 Immediate(1 << Map::kIsUndetectable));
1539 __ j(not_zero, &true_value);
1540 __ bind(&false_value);
1541 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1542 __ jmp(&done);
1543 __ bind(&true_value);
1544 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1545 __ bind(&done);
1546 }
1547 }
1548
1549
DoIsNullAndBranch(LIsNullAndBranch * instr)1550 void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
1551 Register reg = ToRegister(instr->InputAt(0));
1552
1553 int false_block = chunk_->LookupDestination(instr->false_block_id());
1554
1555 if (instr->hydrogen()->representation().IsSpecialization() ||
1556 instr->hydrogen()->type().IsSmi()) {
1557 // If the expression is known to untagged or smi, then it's definitely
1558 // not null, and it can't be a an undetectable object.
1559 // Jump directly to the false block.
1560 EmitGoto(false_block);
1561 return;
1562 }
1563
1564 int true_block = chunk_->LookupDestination(instr->true_block_id());
1565
1566 __ CompareRoot(reg, Heap::kNullValueRootIndex);
1567 if (instr->is_strict()) {
1568 EmitBranch(true_block, false_block, equal);
1569 } else {
1570 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1571 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1572 __ j(equal, true_label);
1573 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1574 __ j(equal, true_label);
1575 __ JumpIfSmi(reg, false_label);
1576 // Check for undetectable objects by looking in the bit field in
1577 // the map. The object has already been smi checked.
1578 Register scratch = ToRegister(instr->TempAt(0));
1579 __ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
1580 __ testb(FieldOperand(scratch, Map::kBitFieldOffset),
1581 Immediate(1 << Map::kIsUndetectable));
1582 EmitBranch(true_block, false_block, not_zero);
1583 }
1584 }
1585
1586
EmitIsObject(Register input,Label * is_not_object,Label * is_object)1587 Condition LCodeGen::EmitIsObject(Register input,
1588 Label* is_not_object,
1589 Label* is_object) {
1590 ASSERT(!input.is(kScratchRegister));
1591
1592 __ JumpIfSmi(input, is_not_object);
1593
1594 __ CompareRoot(input, Heap::kNullValueRootIndex);
1595 __ j(equal, is_object);
1596
1597 __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
1598 // Undetectable objects behave like undefined.
1599 __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
1600 Immediate(1 << Map::kIsUndetectable));
1601 __ j(not_zero, is_not_object);
1602
1603 __ movzxbl(kScratchRegister,
1604 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
1605 __ cmpb(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
1606 __ j(below, is_not_object);
1607 __ cmpb(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
1608 return below_equal;
1609 }
1610
1611
DoIsObject(LIsObject * instr)1612 void LCodeGen::DoIsObject(LIsObject* instr) {
1613 Register reg = ToRegister(instr->InputAt(0));
1614 Register result = ToRegister(instr->result());
1615 Label is_false, is_true, done;
1616
1617 Condition true_cond = EmitIsObject(reg, &is_false, &is_true);
1618 __ j(true_cond, &is_true);
1619
1620 __ bind(&is_false);
1621 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1622 __ jmp(&done);
1623
1624 __ bind(&is_true);
1625 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1626
1627 __ bind(&done);
1628 }
1629
1630
DoIsObjectAndBranch(LIsObjectAndBranch * instr)1631 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1632 Register reg = ToRegister(instr->InputAt(0));
1633
1634 int true_block = chunk_->LookupDestination(instr->true_block_id());
1635 int false_block = chunk_->LookupDestination(instr->false_block_id());
1636 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1637 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1638
1639 Condition true_cond = EmitIsObject(reg, false_label, true_label);
1640
1641 EmitBranch(true_block, false_block, true_cond);
1642 }
1643
1644
DoIsSmi(LIsSmi * instr)1645 void LCodeGen::DoIsSmi(LIsSmi* instr) {
1646 LOperand* input_operand = instr->InputAt(0);
1647 Register result = ToRegister(instr->result());
1648 if (input_operand->IsRegister()) {
1649 Register input = ToRegister(input_operand);
1650 __ CheckSmiToIndicator(result, input);
1651 } else {
1652 Operand input = ToOperand(instr->InputAt(0));
1653 __ CheckSmiToIndicator(result, input);
1654 }
1655 // result is zero if input is a smi, and one otherwise.
1656 ASSERT(Heap::kFalseValueRootIndex == Heap::kTrueValueRootIndex + 1);
1657 __ LoadRootIndexed(result, result, Heap::kTrueValueRootIndex);
1658 }
1659
1660
DoIsSmiAndBranch(LIsSmiAndBranch * instr)1661 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1662 int true_block = chunk_->LookupDestination(instr->true_block_id());
1663 int false_block = chunk_->LookupDestination(instr->false_block_id());
1664
1665 Condition is_smi;
1666 if (instr->InputAt(0)->IsRegister()) {
1667 Register input = ToRegister(instr->InputAt(0));
1668 is_smi = masm()->CheckSmi(input);
1669 } else {
1670 Operand input = ToOperand(instr->InputAt(0));
1671 is_smi = masm()->CheckSmi(input);
1672 }
1673 EmitBranch(true_block, false_block, is_smi);
1674 }
1675
1676
TestType(HHasInstanceType * instr)1677 static InstanceType TestType(HHasInstanceType* instr) {
1678 InstanceType from = instr->from();
1679 InstanceType to = instr->to();
1680 if (from == FIRST_TYPE) return to;
1681 ASSERT(from == to || to == LAST_TYPE);
1682 return from;
1683 }
1684
1685
BranchCondition(HHasInstanceType * instr)1686 static Condition BranchCondition(HHasInstanceType* instr) {
1687 InstanceType from = instr->from();
1688 InstanceType to = instr->to();
1689 if (from == to) return equal;
1690 if (to == LAST_TYPE) return above_equal;
1691 if (from == FIRST_TYPE) return below_equal;
1692 UNREACHABLE();
1693 return equal;
1694 }
1695
1696
DoHasInstanceType(LHasInstanceType * instr)1697 void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
1698 Register input = ToRegister(instr->InputAt(0));
1699 Register result = ToRegister(instr->result());
1700
1701 ASSERT(instr->hydrogen()->value()->representation().IsTagged());
1702 __ testl(input, Immediate(kSmiTagMask));
1703 NearLabel done, is_false;
1704 __ j(zero, &is_false);
1705 __ CmpObjectType(input, TestType(instr->hydrogen()), result);
1706 __ j(NegateCondition(BranchCondition(instr->hydrogen())), &is_false);
1707 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1708 __ jmp(&done);
1709 __ bind(&is_false);
1710 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1711 __ bind(&done);
1712 }
1713
1714
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)1715 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
1716 Register input = ToRegister(instr->InputAt(0));
1717
1718 int true_block = chunk_->LookupDestination(instr->true_block_id());
1719 int false_block = chunk_->LookupDestination(instr->false_block_id());
1720
1721 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1722
1723 __ JumpIfSmi(input, false_label);
1724
1725 __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
1726 EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
1727 }
1728
1729
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)1730 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
1731 Register input = ToRegister(instr->InputAt(0));
1732 Register result = ToRegister(instr->result());
1733
1734 if (FLAG_debug_code) {
1735 __ AbortIfNotString(input);
1736 }
1737
1738 __ movl(result, FieldOperand(input, String::kHashFieldOffset));
1739 ASSERT(String::kHashShift >= kSmiTagSize);
1740 __ IndexFromHash(result, result);
1741 }
1742
1743
DoHasCachedArrayIndex(LHasCachedArrayIndex * instr)1744 void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) {
1745 Register input = ToRegister(instr->InputAt(0));
1746 Register result = ToRegister(instr->result());
1747
1748 ASSERT(instr->hydrogen()->value()->representation().IsTagged());
1749 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1750 __ testl(FieldOperand(input, String::kHashFieldOffset),
1751 Immediate(String::kContainsCachedArrayIndexMask));
1752 NearLabel done;
1753 __ j(zero, &done);
1754 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1755 __ bind(&done);
1756 }
1757
1758
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)1759 void LCodeGen::DoHasCachedArrayIndexAndBranch(
1760 LHasCachedArrayIndexAndBranch* instr) {
1761 Register input = ToRegister(instr->InputAt(0));
1762
1763 int true_block = chunk_->LookupDestination(instr->true_block_id());
1764 int false_block = chunk_->LookupDestination(instr->false_block_id());
1765
1766 __ testl(FieldOperand(input, String::kHashFieldOffset),
1767 Immediate(String::kContainsCachedArrayIndexMask));
1768 EmitBranch(true_block, false_block, equal);
1769 }
1770
1771
1772 // Branches to a label or falls through with the answer in the z flag.
1773 // Trashes the temp register and possibly input (if it and temp are aliased).
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp)1774 void LCodeGen::EmitClassOfTest(Label* is_true,
1775 Label* is_false,
1776 Handle<String> class_name,
1777 Register input,
1778 Register temp) {
1779 __ JumpIfSmi(input, is_false);
1780 __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, temp);
1781 __ j(below, is_false);
1782
1783 // Map is now in temp.
1784 // Functions have class 'Function'.
1785 __ CmpInstanceType(temp, JS_FUNCTION_TYPE);
1786 if (class_name->IsEqualTo(CStrVector("Function"))) {
1787 __ j(equal, is_true);
1788 } else {
1789 __ j(equal, is_false);
1790 }
1791
1792 // Check if the constructor in the map is a function.
1793 __ movq(temp, FieldOperand(temp, Map::kConstructorOffset));
1794
1795 // As long as JS_FUNCTION_TYPE is the last instance type and it is
1796 // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
1797 // LAST_JS_OBJECT_TYPE.
1798 ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
1799 ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
1800
1801 // Objects with a non-function constructor have class 'Object'.
1802 __ CmpObjectType(temp, JS_FUNCTION_TYPE, kScratchRegister);
1803 if (class_name->IsEqualTo(CStrVector("Object"))) {
1804 __ j(not_equal, is_true);
1805 } else {
1806 __ j(not_equal, is_false);
1807 }
1808
1809 // temp now contains the constructor function. Grab the
1810 // instance class name from there.
1811 __ movq(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
1812 __ movq(temp, FieldOperand(temp,
1813 SharedFunctionInfo::kInstanceClassNameOffset));
1814 // The class name we are testing against is a symbol because it's a literal.
1815 // The name in the constructor is a symbol because of the way the context is
1816 // booted. This routine isn't expected to work for random API-created
1817 // classes and it doesn't have to because you can't access it with natives
1818 // syntax. Since both sides are symbols it is sufficient to use an identity
1819 // comparison.
1820 ASSERT(class_name->IsSymbol());
1821 __ Cmp(temp, class_name);
1822 // End with the answer in the z flag.
1823 }
1824
1825
DoClassOfTest(LClassOfTest * instr)1826 void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
1827 Register input = ToRegister(instr->InputAt(0));
1828 Register result = ToRegister(instr->result());
1829 ASSERT(input.is(result));
1830 Register temp = ToRegister(instr->TempAt(0));
1831 Handle<String> class_name = instr->hydrogen()->class_name();
1832 NearLabel done;
1833 Label is_true, is_false;
1834
1835 EmitClassOfTest(&is_true, &is_false, class_name, input, temp);
1836
1837 __ j(not_equal, &is_false);
1838
1839 __ bind(&is_true);
1840 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1841 __ jmp(&done);
1842
1843 __ bind(&is_false);
1844 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1845 __ bind(&done);
1846 }
1847
1848
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)1849 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
1850 Register input = ToRegister(instr->InputAt(0));
1851 Register temp = ToRegister(instr->TempAt(0));
1852 Handle<String> class_name = instr->hydrogen()->class_name();
1853
1854 int true_block = chunk_->LookupDestination(instr->true_block_id());
1855 int false_block = chunk_->LookupDestination(instr->false_block_id());
1856
1857 Label* true_label = chunk_->GetAssemblyLabel(true_block);
1858 Label* false_label = chunk_->GetAssemblyLabel(false_block);
1859
1860 EmitClassOfTest(true_label, false_label, class_name, input, temp);
1861
1862 EmitBranch(true_block, false_block, equal);
1863 }
1864
1865
DoCmpMapAndBranch(LCmpMapAndBranch * instr)1866 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
1867 Register reg = ToRegister(instr->InputAt(0));
1868 int true_block = instr->true_block_id();
1869 int false_block = instr->false_block_id();
1870
1871 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
1872 EmitBranch(true_block, false_block, equal);
1873 }
1874
1875
DoInstanceOf(LInstanceOf * instr)1876 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
1877 InstanceofStub stub(InstanceofStub::kNoFlags);
1878 __ push(ToRegister(instr->InputAt(0)));
1879 __ push(ToRegister(instr->InputAt(1)));
1880 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1881 NearLabel true_value, done;
1882 __ testq(rax, rax);
1883 __ j(zero, &true_value);
1884 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1885 __ jmp(&done);
1886 __ bind(&true_value);
1887 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
1888 __ bind(&done);
1889 }
1890
1891
DoInstanceOfAndBranch(LInstanceOfAndBranch * instr)1892 void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) {
1893 int true_block = chunk_->LookupDestination(instr->true_block_id());
1894 int false_block = chunk_->LookupDestination(instr->false_block_id());
1895
1896 InstanceofStub stub(InstanceofStub::kNoFlags);
1897 __ push(ToRegister(instr->InputAt(0)));
1898 __ push(ToRegister(instr->InputAt(1)));
1899 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1900 __ testq(rax, rax);
1901 EmitBranch(true_block, false_block, zero);
1902 }
1903
1904
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)1905 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
1906 class DeferredInstanceOfKnownGlobal: public LDeferredCode {
1907 public:
1908 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
1909 LInstanceOfKnownGlobal* instr)
1910 : LDeferredCode(codegen), instr_(instr) { }
1911 virtual void Generate() {
1912 codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
1913 }
1914
1915 Label* map_check() { return &map_check_; }
1916
1917 private:
1918 LInstanceOfKnownGlobal* instr_;
1919 Label map_check_;
1920 };
1921
1922
1923 DeferredInstanceOfKnownGlobal* deferred;
1924 deferred = new DeferredInstanceOfKnownGlobal(this, instr);
1925
1926 Label done, false_result;
1927 Register object = ToRegister(instr->InputAt(0));
1928
1929 // A Smi is not an instance of anything.
1930 __ JumpIfSmi(object, &false_result);
1931
1932 // This is the inlined call site instanceof cache. The two occurences of the
1933 // hole value will be patched to the last map/result pair generated by the
1934 // instanceof stub.
1935 NearLabel cache_miss;
1936 // Use a temp register to avoid memory operands with variable lengths.
1937 Register map = ToRegister(instr->TempAt(0));
1938 __ movq(map, FieldOperand(object, HeapObject::kMapOffset));
1939 __ bind(deferred->map_check()); // Label for calculating code patching.
1940 __ movq(kScratchRegister, factory()->the_hole_value(),
1941 RelocInfo::EMBEDDED_OBJECT);
1942 __ cmpq(map, kScratchRegister); // Patched to cached map.
1943 __ j(not_equal, &cache_miss);
1944 // Patched to load either true or false.
1945 __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
1946 #ifdef DEBUG
1947 // Check that the code size between patch label and patch sites is invariant.
1948 Label end_of_patched_code;
1949 __ bind(&end_of_patched_code);
1950 ASSERT(true);
1951 #endif
1952 __ jmp(&done);
1953
1954 // The inlined call site cache did not match. Check for null and string
1955 // before calling the deferred code.
1956 __ bind(&cache_miss); // Null is not an instance of anything.
1957 __ CompareRoot(object, Heap::kNullValueRootIndex);
1958 __ j(equal, &false_result);
1959
1960 // String values are not instances of anything.
1961 __ JumpIfNotString(object, kScratchRegister, deferred->entry());
1962
1963 __ bind(&false_result);
1964 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
1965
1966 __ bind(deferred->exit());
1967 __ bind(&done);
1968 }
1969
1970
DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr,Label * map_check)1971 void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
1972 Label* map_check) {
1973 {
1974 PushSafepointRegistersScope scope(this);
1975 InstanceofStub::Flags flags = static_cast<InstanceofStub::Flags>(
1976 InstanceofStub::kNoFlags | InstanceofStub::kCallSiteInlineCheck);
1977 InstanceofStub stub(flags);
1978
1979 __ push(ToRegister(instr->InputAt(0)));
1980 __ Push(instr->function());
1981
1982 Register temp = ToRegister(instr->TempAt(0));
1983 static const int kAdditionalDelta = 10;
1984 int delta =
1985 masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
1986 ASSERT(delta >= 0);
1987 __ push_imm32(delta);
1988
1989 // We are pushing three values on the stack but recording a
1990 // safepoint with two arguments because stub is going to
1991 // remove the third argument from the stack before jumping
1992 // to instanceof builtin on the slow path.
1993 CallCodeGeneric(stub.GetCode(),
1994 RelocInfo::CODE_TARGET,
1995 instr,
1996 RECORD_SAFEPOINT_WITH_REGISTERS,
1997 2);
1998 ASSERT(delta == masm_->SizeOfCodeGeneratedSince(map_check));
1999 // Move result to a register that survives the end of the
2000 // PushSafepointRegisterScope.
2001 __ movq(kScratchRegister, rax);
2002 }
2003 __ testq(kScratchRegister, kScratchRegister);
2004 Label load_false;
2005 Label done;
2006 __ j(not_zero, &load_false);
2007 __ LoadRoot(rax, Heap::kTrueValueRootIndex);
2008 __ jmp(&done);
2009 __ bind(&load_false);
2010 __ LoadRoot(rax, Heap::kFalseValueRootIndex);
2011 __ bind(&done);
2012 }
2013
2014
DoCmpT(LCmpT * instr)2015 void LCodeGen::DoCmpT(LCmpT* instr) {
2016 Token::Value op = instr->op();
2017
2018 Handle<Code> ic = CompareIC::GetUninitialized(op);
2019 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2020
2021 Condition condition = TokenToCondition(op, false);
2022 if (op == Token::GT || op == Token::LTE) {
2023 condition = ReverseCondition(condition);
2024 }
2025 NearLabel true_value, done;
2026 __ testq(rax, rax);
2027 __ j(condition, &true_value);
2028 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2029 __ jmp(&done);
2030 __ bind(&true_value);
2031 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2032 __ bind(&done);
2033 }
2034
2035
DoCmpTAndBranch(LCmpTAndBranch * instr)2036 void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) {
2037 Token::Value op = instr->op();
2038 int true_block = chunk_->LookupDestination(instr->true_block_id());
2039 int false_block = chunk_->LookupDestination(instr->false_block_id());
2040
2041 Handle<Code> ic = CompareIC::GetUninitialized(op);
2042 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2043
2044 // The compare stub expects compare condition and the input operands
2045 // reversed for GT and LTE.
2046 Condition condition = TokenToCondition(op, false);
2047 if (op == Token::GT || op == Token::LTE) {
2048 condition = ReverseCondition(condition);
2049 }
2050 __ testq(rax, rax);
2051 EmitBranch(true_block, false_block, condition);
2052 }
2053
2054
DoReturn(LReturn * instr)2055 void LCodeGen::DoReturn(LReturn* instr) {
2056 if (FLAG_trace) {
2057 // Preserve the return value on the stack and rely on the runtime
2058 // call to return the value in the same register.
2059 __ push(rax);
2060 __ CallRuntime(Runtime::kTraceExit, 1);
2061 }
2062 __ movq(rsp, rbp);
2063 __ pop(rbp);
2064 __ Ret((ParameterCount() + 1) * kPointerSize, rcx);
2065 }
2066
2067
DoLoadGlobalCell(LLoadGlobalCell * instr)2068 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2069 Register result = ToRegister(instr->result());
2070 if (result.is(rax)) {
2071 __ load_rax(instr->hydrogen()->cell().location(),
2072 RelocInfo::GLOBAL_PROPERTY_CELL);
2073 } else {
2074 __ movq(result, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL);
2075 __ movq(result, Operand(result, 0));
2076 }
2077 if (instr->hydrogen()->check_hole_value()) {
2078 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2079 DeoptimizeIf(equal, instr->environment());
2080 }
2081 }
2082
2083
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)2084 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2085 ASSERT(ToRegister(instr->global_object()).is(rax));
2086 ASSERT(ToRegister(instr->result()).is(rax));
2087
2088 __ Move(rcx, instr->name());
2089 RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET :
2090 RelocInfo::CODE_TARGET_CONTEXT;
2091 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2092 CallCode(ic, mode, instr);
2093 }
2094
2095
DoStoreGlobalCell(LStoreGlobalCell * instr)2096 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2097 Register value = ToRegister(instr->InputAt(0));
2098 Register temp = ToRegister(instr->TempAt(0));
2099 ASSERT(!value.is(temp));
2100 bool check_hole = instr->hydrogen()->check_hole_value();
2101 if (!check_hole && value.is(rax)) {
2102 __ store_rax(instr->hydrogen()->cell().location(),
2103 RelocInfo::GLOBAL_PROPERTY_CELL);
2104 return;
2105 }
2106 // If the cell we are storing to contains the hole it could have
2107 // been deleted from the property dictionary. In that case, we need
2108 // to update the property details in the property dictionary to mark
2109 // it as no longer deleted. We deoptimize in that case.
2110 __ movq(temp, instr->hydrogen()->cell(), RelocInfo::GLOBAL_PROPERTY_CELL);
2111 if (check_hole) {
2112 __ CompareRoot(Operand(temp, 0), Heap::kTheHoleValueRootIndex);
2113 DeoptimizeIf(equal, instr->environment());
2114 }
2115 __ movq(Operand(temp, 0), value);
2116 }
2117
2118
DoStoreGlobalGeneric(LStoreGlobalGeneric * instr)2119 void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2120 ASSERT(ToRegister(instr->global_object()).is(rdx));
2121 ASSERT(ToRegister(instr->value()).is(rax));
2122
2123 __ Move(rcx, instr->name());
2124 Handle<Code> ic = instr->strict_mode()
2125 ? isolate()->builtins()->StoreIC_Initialize_Strict()
2126 : isolate()->builtins()->StoreIC_Initialize();
2127 CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2128 }
2129
2130
DoLoadContextSlot(LLoadContextSlot * instr)2131 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2132 Register context = ToRegister(instr->context());
2133 Register result = ToRegister(instr->result());
2134 __ movq(result, ContextOperand(context, instr->slot_index()));
2135 }
2136
2137
DoStoreContextSlot(LStoreContextSlot * instr)2138 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2139 Register context = ToRegister(instr->context());
2140 Register value = ToRegister(instr->value());
2141 __ movq(ContextOperand(context, instr->slot_index()), value);
2142 if (instr->needs_write_barrier()) {
2143 int offset = Context::SlotOffset(instr->slot_index());
2144 Register scratch = ToRegister(instr->TempAt(0));
2145 __ RecordWrite(context, offset, value, scratch);
2146 }
2147 }
2148
2149
DoLoadNamedField(LLoadNamedField * instr)2150 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2151 Register object = ToRegister(instr->InputAt(0));
2152 Register result = ToRegister(instr->result());
2153 if (instr->hydrogen()->is_in_object()) {
2154 __ movq(result, FieldOperand(object, instr->hydrogen()->offset()));
2155 } else {
2156 __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
2157 __ movq(result, FieldOperand(result, instr->hydrogen()->offset()));
2158 }
2159 }
2160
2161
EmitLoadField(Register result,Register object,Handle<Map> type,Handle<String> name)2162 void LCodeGen::EmitLoadField(Register result,
2163 Register object,
2164 Handle<Map> type,
2165 Handle<String> name) {
2166 LookupResult lookup;
2167 type->LookupInDescriptors(NULL, *name, &lookup);
2168 ASSERT(lookup.IsProperty() && lookup.type() == FIELD);
2169 int index = lookup.GetLocalFieldIndexFromMap(*type);
2170 int offset = index * kPointerSize;
2171 if (index < 0) {
2172 // Negative property indices are in-object properties, indexed
2173 // from the end of the fixed part of the object.
2174 __ movq(result, FieldOperand(object, offset + type->instance_size()));
2175 } else {
2176 // Non-negative property indices are in the properties array.
2177 __ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
2178 __ movq(result, FieldOperand(result, offset + FixedArray::kHeaderSize));
2179 }
2180 }
2181
2182
DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic * instr)2183 void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2184 Register object = ToRegister(instr->object());
2185 Register result = ToRegister(instr->result());
2186
2187 int map_count = instr->hydrogen()->types()->length();
2188 Handle<String> name = instr->hydrogen()->name();
2189
2190 if (map_count == 0) {
2191 ASSERT(instr->hydrogen()->need_generic());
2192 __ Move(rcx, instr->hydrogen()->name());
2193 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2194 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2195 } else {
2196 NearLabel done;
2197 for (int i = 0; i < map_count - 1; ++i) {
2198 Handle<Map> map = instr->hydrogen()->types()->at(i);
2199 NearLabel next;
2200 __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2201 __ j(not_equal, &next);
2202 EmitLoadField(result, object, map, name);
2203 __ jmp(&done);
2204 __ bind(&next);
2205 }
2206 Handle<Map> map = instr->hydrogen()->types()->last();
2207 __ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
2208 if (instr->hydrogen()->need_generic()) {
2209 NearLabel generic;
2210 __ j(not_equal, &generic);
2211 EmitLoadField(result, object, map, name);
2212 __ jmp(&done);
2213 __ bind(&generic);
2214 __ Move(rcx, instr->hydrogen()->name());
2215 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2216 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2217 } else {
2218 DeoptimizeIf(not_equal, instr->environment());
2219 EmitLoadField(result, object, map, name);
2220 }
2221 __ bind(&done);
2222 }
2223 }
2224
2225
DoLoadNamedGeneric(LLoadNamedGeneric * instr)2226 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2227 ASSERT(ToRegister(instr->object()).is(rax));
2228 ASSERT(ToRegister(instr->result()).is(rax));
2229
2230 __ Move(rcx, instr->name());
2231 Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2232 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2233 }
2234
2235
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2236 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2237 Register function = ToRegister(instr->function());
2238 Register result = ToRegister(instr->result());
2239
2240 // Check that the function really is a function.
2241 __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
2242 DeoptimizeIf(not_equal, instr->environment());
2243
2244 // Check whether the function has an instance prototype.
2245 NearLabel non_instance;
2246 __ testb(FieldOperand(result, Map::kBitFieldOffset),
2247 Immediate(1 << Map::kHasNonInstancePrototype));
2248 __ j(not_zero, &non_instance);
2249
2250 // Get the prototype or initial map from the function.
2251 __ movq(result,
2252 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2253
2254 // Check that the function has a prototype or an initial map.
2255 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2256 DeoptimizeIf(equal, instr->environment());
2257
2258 // If the function does not have an initial map, we're done.
2259 NearLabel done;
2260 __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2261 __ j(not_equal, &done);
2262
2263 // Get the prototype from the initial map.
2264 __ movq(result, FieldOperand(result, Map::kPrototypeOffset));
2265 __ jmp(&done);
2266
2267 // Non-instance prototype: Fetch prototype from constructor field
2268 // in the function's map.
2269 __ bind(&non_instance);
2270 __ movq(result, FieldOperand(result, Map::kConstructorOffset));
2271
2272 // All done.
2273 __ bind(&done);
2274 }
2275
2276
DoLoadElements(LLoadElements * instr)2277 void LCodeGen::DoLoadElements(LLoadElements* instr) {
2278 Register result = ToRegister(instr->result());
2279 Register input = ToRegister(instr->InputAt(0));
2280 __ movq(result, FieldOperand(input, JSObject::kElementsOffset));
2281 if (FLAG_debug_code) {
2282 NearLabel done;
2283 __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
2284 Heap::kFixedArrayMapRootIndex);
2285 __ j(equal, &done);
2286 __ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
2287 Heap::kFixedCOWArrayMapRootIndex);
2288 __ j(equal, &done);
2289 Register temp((result.is(rax)) ? rbx : rax);
2290 __ push(temp);
2291 __ movq(temp, FieldOperand(result, HeapObject::kMapOffset));
2292 __ movzxbq(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
2293 __ subq(temp, Immediate(FIRST_EXTERNAL_ARRAY_TYPE));
2294 __ cmpq(temp, Immediate(kExternalArrayTypeCount));
2295 __ pop(temp);
2296 __ Check(below, "Check for fast elements failed.");
2297 __ bind(&done);
2298 }
2299 }
2300
2301
DoLoadExternalArrayPointer(LLoadExternalArrayPointer * instr)2302 void LCodeGen::DoLoadExternalArrayPointer(
2303 LLoadExternalArrayPointer* instr) {
2304 Register result = ToRegister(instr->result());
2305 Register input = ToRegister(instr->InputAt(0));
2306 __ movq(result, FieldOperand(input,
2307 ExternalPixelArray::kExternalPointerOffset));
2308 }
2309
2310
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2311 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2312 Register arguments = ToRegister(instr->arguments());
2313 Register length = ToRegister(instr->length());
2314 Register result = ToRegister(instr->result());
2315
2316 if (instr->index()->IsRegister()) {
2317 __ subl(length, ToRegister(instr->index()));
2318 } else {
2319 __ subl(length, ToOperand(instr->index()));
2320 }
2321 DeoptimizeIf(below_equal, instr->environment());
2322
2323 // There are two words between the frame pointer and the last argument.
2324 // Subtracting from length accounts for one of them add one more.
2325 __ movq(result, Operand(arguments, length, times_pointer_size, kPointerSize));
2326 }
2327
2328
DoLoadKeyedFastElement(LLoadKeyedFastElement * instr)2329 void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2330 Register elements = ToRegister(instr->elements());
2331 Register key = ToRegister(instr->key());
2332 Register result = ToRegister(instr->result());
2333 ASSERT(result.is(elements));
2334
2335 // Load the result.
2336 __ movq(result, FieldOperand(elements,
2337 key,
2338 times_pointer_size,
2339 FixedArray::kHeaderSize));
2340
2341 // Check for the hole value.
2342 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2343 DeoptimizeIf(equal, instr->environment());
2344 }
2345
2346
DoLoadKeyedSpecializedArrayElement(LLoadKeyedSpecializedArrayElement * instr)2347 void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2348 LLoadKeyedSpecializedArrayElement* instr) {
2349 Register external_pointer = ToRegister(instr->external_pointer());
2350 Register key = ToRegister(instr->key());
2351 ExternalArrayType array_type = instr->array_type();
2352 if (array_type == kExternalFloatArray) {
2353 XMMRegister result(ToDoubleRegister(instr->result()));
2354 __ movss(result, Operand(external_pointer, key, times_4, 0));
2355 __ cvtss2sd(result, result);
2356 } else {
2357 Register result(ToRegister(instr->result()));
2358 switch (array_type) {
2359 case kExternalByteArray:
2360 __ movsxbq(result, Operand(external_pointer, key, times_1, 0));
2361 break;
2362 case kExternalUnsignedByteArray:
2363 case kExternalPixelArray:
2364 __ movzxbq(result, Operand(external_pointer, key, times_1, 0));
2365 break;
2366 case kExternalShortArray:
2367 __ movsxwq(result, Operand(external_pointer, key, times_2, 0));
2368 break;
2369 case kExternalUnsignedShortArray:
2370 __ movzxwq(result, Operand(external_pointer, key, times_2, 0));
2371 break;
2372 case kExternalIntArray:
2373 __ movsxlq(result, Operand(external_pointer, key, times_4, 0));
2374 break;
2375 case kExternalUnsignedIntArray:
2376 __ movl(result, Operand(external_pointer, key, times_4, 0));
2377 __ testl(result, result);
2378 // TODO(danno): we could be more clever here, perhaps having a special
2379 // version of the stub that detects if the overflow case actually
2380 // happens, and generate code that returns a double rather than int.
2381 DeoptimizeIf(negative, instr->environment());
2382 break;
2383 case kExternalFloatArray:
2384 UNREACHABLE();
2385 break;
2386 }
2387 }
2388 }
2389
2390
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)2391 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2392 ASSERT(ToRegister(instr->object()).is(rdx));
2393 ASSERT(ToRegister(instr->key()).is(rax));
2394
2395 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2396 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2397 }
2398
2399
DoArgumentsElements(LArgumentsElements * instr)2400 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2401 Register result = ToRegister(instr->result());
2402
2403 // Check for arguments adapter frame.
2404 NearLabel done, adapted;
2405 __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2406 __ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
2407 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2408 __ j(equal, &adapted);
2409
2410 // No arguments adaptor frame.
2411 __ movq(result, rbp);
2412 __ jmp(&done);
2413
2414 // Arguments adaptor frame present.
2415 __ bind(&adapted);
2416 __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2417
2418 // Result is the frame pointer for the frame if not adapted and for the real
2419 // frame below the adaptor frame if adapted.
2420 __ bind(&done);
2421 }
2422
2423
DoArgumentsLength(LArgumentsLength * instr)2424 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2425 Register result = ToRegister(instr->result());
2426
2427 NearLabel done;
2428
2429 // If no arguments adaptor frame the number of arguments is fixed.
2430 if (instr->InputAt(0)->IsRegister()) {
2431 __ cmpq(rbp, ToRegister(instr->InputAt(0)));
2432 } else {
2433 __ cmpq(rbp, ToOperand(instr->InputAt(0)));
2434 }
2435 __ movl(result, Immediate(scope()->num_parameters()));
2436 __ j(equal, &done);
2437
2438 // Arguments adaptor frame present. Get argument length from there.
2439 __ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2440 __ SmiToInteger32(result,
2441 Operand(result,
2442 ArgumentsAdaptorFrameConstants::kLengthOffset));
2443
2444 // Argument length is in result register.
2445 __ bind(&done);
2446 }
2447
2448
DoApplyArguments(LApplyArguments * instr)2449 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2450 Register receiver = ToRegister(instr->receiver());
2451 Register function = ToRegister(instr->function());
2452 Register length = ToRegister(instr->length());
2453 Register elements = ToRegister(instr->elements());
2454 ASSERT(receiver.is(rax)); // Used for parameter count.
2455 ASSERT(function.is(rdi)); // Required by InvokeFunction.
2456 ASSERT(ToRegister(instr->result()).is(rax));
2457
2458 // If the receiver is null or undefined, we have to pass the global object
2459 // as a receiver.
2460 NearLabel global_object, receiver_ok;
2461 __ CompareRoot(receiver, Heap::kNullValueRootIndex);
2462 __ j(equal, &global_object);
2463 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
2464 __ j(equal, &global_object);
2465
2466 // The receiver should be a JS object.
2467 Condition is_smi = __ CheckSmi(receiver);
2468 DeoptimizeIf(is_smi, instr->environment());
2469 __ CmpObjectType(receiver, FIRST_JS_OBJECT_TYPE, kScratchRegister);
2470 DeoptimizeIf(below, instr->environment());
2471 __ jmp(&receiver_ok);
2472
2473 __ bind(&global_object);
2474 // TODO(kmillikin): We have a hydrogen value for the global object. See
2475 // if it's better to use it than to explicitly fetch it from the context
2476 // here.
2477 __ movq(receiver, Operand(rbp, StandardFrameConstants::kContextOffset));
2478 __ movq(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX));
2479 __ bind(&receiver_ok);
2480
2481 // Copy the arguments to this function possibly from the
2482 // adaptor frame below it.
2483 const uint32_t kArgumentsLimit = 1 * KB;
2484 __ cmpq(length, Immediate(kArgumentsLimit));
2485 DeoptimizeIf(above, instr->environment());
2486
2487 __ push(receiver);
2488 __ movq(receiver, length);
2489
2490 // Loop through the arguments pushing them onto the execution
2491 // stack.
2492 NearLabel invoke, loop;
2493 // length is a small non-negative integer, due to the test above.
2494 __ testl(length, length);
2495 __ j(zero, &invoke);
2496 __ bind(&loop);
2497 __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
2498 __ decl(length);
2499 __ j(not_zero, &loop);
2500
2501 // Invoke the function.
2502 __ bind(&invoke);
2503 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2504 LPointerMap* pointers = instr->pointer_map();
2505 LEnvironment* env = instr->deoptimization_environment();
2506 RecordPosition(pointers->position());
2507 RegisterEnvironmentForDeoptimization(env);
2508 SafepointGenerator safepoint_generator(this,
2509 pointers,
2510 env->deoptimization_index());
2511 v8::internal::ParameterCount actual(rax);
2512 __ InvokeFunction(function, actual, CALL_FUNCTION, &safepoint_generator);
2513 }
2514
2515
DoPushArgument(LPushArgument * instr)2516 void LCodeGen::DoPushArgument(LPushArgument* instr) {
2517 LOperand* argument = instr->InputAt(0);
2518 if (argument->IsConstantOperand()) {
2519 EmitPushConstantOperand(argument);
2520 } else if (argument->IsRegister()) {
2521 __ push(ToRegister(argument));
2522 } else {
2523 ASSERT(!argument->IsDoubleRegister());
2524 __ push(ToOperand(argument));
2525 }
2526 }
2527
2528
DoContext(LContext * instr)2529 void LCodeGen::DoContext(LContext* instr) {
2530 Register result = ToRegister(instr->result());
2531 __ movq(result, Operand(rbp, StandardFrameConstants::kContextOffset));
2532 }
2533
2534
DoOuterContext(LOuterContext * instr)2535 void LCodeGen::DoOuterContext(LOuterContext* instr) {
2536 Register context = ToRegister(instr->context());
2537 Register result = ToRegister(instr->result());
2538 __ movq(result,
2539 Operand(context, Context::SlotOffset(Context::CLOSURE_INDEX)));
2540 __ movq(result, FieldOperand(result, JSFunction::kContextOffset));
2541 }
2542
2543
DoGlobalObject(LGlobalObject * instr)2544 void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2545 Register result = ToRegister(instr->result());
2546 __ movq(result, GlobalObjectOperand());
2547 }
2548
2549
DoGlobalReceiver(LGlobalReceiver * instr)2550 void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2551 Register global = ToRegister(instr->global());
2552 Register result = ToRegister(instr->result());
2553 __ movq(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
2554 }
2555
2556
CallKnownFunction(Handle<JSFunction> function,int arity,LInstruction * instr)2557 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2558 int arity,
2559 LInstruction* instr) {
2560 // Change context if needed.
2561 bool change_context =
2562 (info()->closure()->context() != function->context()) ||
2563 scope()->contains_with() ||
2564 (scope()->num_heap_slots() > 0);
2565 if (change_context) {
2566 __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
2567 }
2568
2569 // Set rax to arguments count if adaption is not needed. Assumes that rax
2570 // is available to write to at this point.
2571 if (!function->NeedsArgumentsAdaption()) {
2572 __ Set(rax, arity);
2573 }
2574
2575 LPointerMap* pointers = instr->pointer_map();
2576 RecordPosition(pointers->position());
2577
2578 // Invoke function.
2579 if (*function == *info()->closure()) {
2580 __ CallSelf();
2581 } else {
2582 __ call(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2583 }
2584
2585 // Setup deoptimization.
2586 RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT, 0);
2587
2588 // Restore context.
2589 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2590 }
2591
2592
DoCallConstantFunction(LCallConstantFunction * instr)2593 void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2594 ASSERT(ToRegister(instr->result()).is(rax));
2595 __ Move(rdi, instr->function());
2596 CallKnownFunction(instr->function(), instr->arity(), instr);
2597 }
2598
2599
DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation * instr)2600 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
2601 Register input_reg = ToRegister(instr->InputAt(0));
2602 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
2603 Heap::kHeapNumberMapRootIndex);
2604 DeoptimizeIf(not_equal, instr->environment());
2605
2606 Label done;
2607 Register tmp = input_reg.is(rax) ? rcx : rax;
2608 Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
2609
2610 // Preserve the value of all registers.
2611 PushSafepointRegistersScope scope(this);
2612
2613 Label negative;
2614 __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
2615 // Check the sign of the argument. If the argument is positive, just
2616 // return it. We do not need to patch the stack since |input| and
2617 // |result| are the same register and |input| will be restored
2618 // unchanged by popping safepoint registers.
2619 __ testl(tmp, Immediate(HeapNumber::kSignMask));
2620 __ j(not_zero, &negative);
2621 __ jmp(&done);
2622
2623 __ bind(&negative);
2624
2625 Label allocated, slow;
2626 __ AllocateHeapNumber(tmp, tmp2, &slow);
2627 __ jmp(&allocated);
2628
2629 // Slow case: Call the runtime system to do the number allocation.
2630 __ bind(&slow);
2631
2632 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
2633 // Set the pointer to the new heap number in tmp.
2634 if (!tmp.is(rax)) {
2635 __ movq(tmp, rax);
2636 }
2637
2638 // Restore input_reg after call to runtime.
2639 __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
2640
2641 __ bind(&allocated);
2642 __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
2643 __ shl(tmp2, Immediate(1));
2644 __ shr(tmp2, Immediate(1));
2645 __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
2646 __ StoreToSafepointRegisterSlot(input_reg, tmp);
2647
2648 __ bind(&done);
2649 }
2650
2651
EmitIntegerMathAbs(LUnaryMathOperation * instr)2652 void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
2653 Register input_reg = ToRegister(instr->InputAt(0));
2654 __ testl(input_reg, input_reg);
2655 Label is_positive;
2656 __ j(not_sign, &is_positive);
2657 __ negl(input_reg); // Sets flags.
2658 DeoptimizeIf(negative, instr->environment());
2659 __ bind(&is_positive);
2660 }
2661
2662
DoMathAbs(LUnaryMathOperation * instr)2663 void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
2664 // Class for deferred case.
2665 class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
2666 public:
2667 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
2668 LUnaryMathOperation* instr)
2669 : LDeferredCode(codegen), instr_(instr) { }
2670 virtual void Generate() {
2671 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
2672 }
2673 private:
2674 LUnaryMathOperation* instr_;
2675 };
2676
2677 ASSERT(instr->InputAt(0)->Equals(instr->result()));
2678 Representation r = instr->hydrogen()->value()->representation();
2679
2680 if (r.IsDouble()) {
2681 XMMRegister scratch = xmm0;
2682 XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2683 __ xorpd(scratch, scratch);
2684 __ subsd(scratch, input_reg);
2685 __ andpd(input_reg, scratch);
2686 } else if (r.IsInteger32()) {
2687 EmitIntegerMathAbs(instr);
2688 } else { // Tagged case.
2689 DeferredMathAbsTaggedHeapNumber* deferred =
2690 new DeferredMathAbsTaggedHeapNumber(this, instr);
2691 Register input_reg = ToRegister(instr->InputAt(0));
2692 // Smi check.
2693 __ JumpIfNotSmi(input_reg, deferred->entry());
2694 __ SmiToInteger32(input_reg, input_reg);
2695 EmitIntegerMathAbs(instr);
2696 __ Integer32ToSmi(input_reg, input_reg);
2697 __ bind(deferred->exit());
2698 }
2699 }
2700
2701
DoMathFloor(LUnaryMathOperation * instr)2702 void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
2703 XMMRegister xmm_scratch = xmm0;
2704 Register output_reg = ToRegister(instr->result());
2705 XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2706 __ xorpd(xmm_scratch, xmm_scratch); // Zero the register.
2707 __ ucomisd(input_reg, xmm_scratch);
2708
2709 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2710 DeoptimizeIf(below_equal, instr->environment());
2711 } else {
2712 DeoptimizeIf(below, instr->environment());
2713 }
2714
2715 // Use truncating instruction (OK because input is positive).
2716 __ cvttsd2si(output_reg, input_reg);
2717
2718 // Overflow is signalled with minint.
2719 __ cmpl(output_reg, Immediate(0x80000000));
2720 DeoptimizeIf(equal, instr->environment());
2721 }
2722
2723
DoMathRound(LUnaryMathOperation * instr)2724 void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
2725 const XMMRegister xmm_scratch = xmm0;
2726 Register output_reg = ToRegister(instr->result());
2727 XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2728
2729 // xmm_scratch = 0.5
2730 __ movq(kScratchRegister, V8_INT64_C(0x3FE0000000000000), RelocInfo::NONE);
2731 __ movq(xmm_scratch, kScratchRegister);
2732
2733 // input = input + 0.5
2734 __ addsd(input_reg, xmm_scratch);
2735
2736 // We need to return -0 for the input range [-0.5, 0[, otherwise
2737 // compute Math.floor(value + 0.5).
2738 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2739 __ ucomisd(input_reg, xmm_scratch);
2740 DeoptimizeIf(below_equal, instr->environment());
2741 } else {
2742 // If we don't need to bailout on -0, we check only bailout
2743 // on negative inputs.
2744 __ xorpd(xmm_scratch, xmm_scratch); // Zero the register.
2745 __ ucomisd(input_reg, xmm_scratch);
2746 DeoptimizeIf(below, instr->environment());
2747 }
2748
2749 // Compute Math.floor(value + 0.5).
2750 // Use truncating instruction (OK because input is positive).
2751 __ cvttsd2si(output_reg, input_reg);
2752
2753 // Overflow is signalled with minint.
2754 __ cmpl(output_reg, Immediate(0x80000000));
2755 DeoptimizeIf(equal, instr->environment());
2756 }
2757
2758
DoMathSqrt(LUnaryMathOperation * instr)2759 void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
2760 XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2761 ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2762 __ sqrtsd(input_reg, input_reg);
2763 }
2764
2765
DoMathPowHalf(LUnaryMathOperation * instr)2766 void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
2767 XMMRegister xmm_scratch = xmm0;
2768 XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
2769 ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
2770 __ xorpd(xmm_scratch, xmm_scratch);
2771 __ addsd(input_reg, xmm_scratch); // Convert -0 to +0.
2772 __ sqrtsd(input_reg, input_reg);
2773 }
2774
2775
DoPower(LPower * instr)2776 void LCodeGen::DoPower(LPower* instr) {
2777 LOperand* left = instr->InputAt(0);
2778 XMMRegister left_reg = ToDoubleRegister(left);
2779 ASSERT(!left_reg.is(xmm1));
2780 LOperand* right = instr->InputAt(1);
2781 XMMRegister result_reg = ToDoubleRegister(instr->result());
2782 Representation exponent_type = instr->hydrogen()->right()->representation();
2783 if (exponent_type.IsDouble()) {
2784 __ PrepareCallCFunction(2);
2785 // Move arguments to correct registers
2786 __ movsd(xmm0, left_reg);
2787 ASSERT(ToDoubleRegister(right).is(xmm1));
2788 __ CallCFunction(
2789 ExternalReference::power_double_double_function(isolate()), 2);
2790 } else if (exponent_type.IsInteger32()) {
2791 __ PrepareCallCFunction(2);
2792 // Move arguments to correct registers: xmm0 and edi (not rdi).
2793 // On Windows, the registers are xmm0 and edx.
2794 __ movsd(xmm0, left_reg);
2795 #ifdef _WIN64
2796 ASSERT(ToRegister(right).is(rdx));
2797 #else
2798 ASSERT(ToRegister(right).is(rdi));
2799 #endif
2800 __ CallCFunction(
2801 ExternalReference::power_double_int_function(isolate()), 2);
2802 } else {
2803 ASSERT(exponent_type.IsTagged());
2804 Register right_reg = ToRegister(right);
2805
2806 Label non_smi, call;
2807 __ JumpIfNotSmi(right_reg, &non_smi);
2808 __ SmiToInteger32(right_reg, right_reg);
2809 __ cvtlsi2sd(xmm1, right_reg);
2810 __ jmp(&call);
2811
2812 __ bind(&non_smi);
2813 __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , kScratchRegister);
2814 DeoptimizeIf(not_equal, instr->environment());
2815 __ movsd(xmm1, FieldOperand(right_reg, HeapNumber::kValueOffset));
2816
2817 __ bind(&call);
2818 __ PrepareCallCFunction(2);
2819 // Move arguments to correct registers xmm0 and xmm1.
2820 __ movsd(xmm0, left_reg);
2821 // Right argument is already in xmm1.
2822 __ CallCFunction(
2823 ExternalReference::power_double_double_function(isolate()), 2);
2824 }
2825 // Return value is in xmm0.
2826 __ movsd(result_reg, xmm0);
2827 // Restore context register.
2828 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2829 }
2830
2831
DoMathLog(LUnaryMathOperation * instr)2832 void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
2833 ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2834 TranscendentalCacheStub stub(TranscendentalCache::LOG,
2835 TranscendentalCacheStub::UNTAGGED);
2836 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2837 }
2838
2839
DoMathCos(LUnaryMathOperation * instr)2840 void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
2841 ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2842 TranscendentalCacheStub stub(TranscendentalCache::COS,
2843 TranscendentalCacheStub::UNTAGGED);
2844 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2845 }
2846
2847
DoMathSin(LUnaryMathOperation * instr)2848 void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
2849 ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
2850 TranscendentalCacheStub stub(TranscendentalCache::SIN,
2851 TranscendentalCacheStub::UNTAGGED);
2852 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2853 }
2854
2855
DoUnaryMathOperation(LUnaryMathOperation * instr)2856 void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
2857 switch (instr->op()) {
2858 case kMathAbs:
2859 DoMathAbs(instr);
2860 break;
2861 case kMathFloor:
2862 DoMathFloor(instr);
2863 break;
2864 case kMathRound:
2865 DoMathRound(instr);
2866 break;
2867 case kMathSqrt:
2868 DoMathSqrt(instr);
2869 break;
2870 case kMathPowHalf:
2871 DoMathPowHalf(instr);
2872 break;
2873 case kMathCos:
2874 DoMathCos(instr);
2875 break;
2876 case kMathSin:
2877 DoMathSin(instr);
2878 break;
2879 case kMathLog:
2880 DoMathLog(instr);
2881 break;
2882
2883 default:
2884 UNREACHABLE();
2885 }
2886 }
2887
2888
DoCallKeyed(LCallKeyed * instr)2889 void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
2890 ASSERT(ToRegister(instr->key()).is(rcx));
2891 ASSERT(ToRegister(instr->result()).is(rax));
2892
2893 int arity = instr->arity();
2894 Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(
2895 arity, NOT_IN_LOOP);
2896 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2897 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2898 }
2899
2900
DoCallNamed(LCallNamed * instr)2901 void LCodeGen::DoCallNamed(LCallNamed* instr) {
2902 ASSERT(ToRegister(instr->result()).is(rax));
2903
2904 int arity = instr->arity();
2905 Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(
2906 arity, NOT_IN_LOOP);
2907 __ Move(rcx, instr->name());
2908 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2909 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2910 }
2911
2912
DoCallFunction(LCallFunction * instr)2913 void LCodeGen::DoCallFunction(LCallFunction* instr) {
2914 ASSERT(ToRegister(instr->result()).is(rax));
2915
2916 int arity = instr->arity();
2917 CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
2918 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2919 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2920 __ Drop(1);
2921 }
2922
2923
DoCallGlobal(LCallGlobal * instr)2924 void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
2925 ASSERT(ToRegister(instr->result()).is(rax));
2926 int arity = instr->arity();
2927 Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(
2928 arity, NOT_IN_LOOP);
2929 __ Move(rcx, instr->name());
2930 CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2931 __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2932 }
2933
2934
DoCallKnownGlobal(LCallKnownGlobal * instr)2935 void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
2936 ASSERT(ToRegister(instr->result()).is(rax));
2937 __ Move(rdi, instr->target());
2938 CallKnownFunction(instr->target(), instr->arity(), instr);
2939 }
2940
2941
DoCallNew(LCallNew * instr)2942 void LCodeGen::DoCallNew(LCallNew* instr) {
2943 ASSERT(ToRegister(instr->InputAt(0)).is(rdi));
2944 ASSERT(ToRegister(instr->result()).is(rax));
2945
2946 Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
2947 __ Set(rax, instr->arity());
2948 CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
2949 }
2950
2951
DoCallRuntime(LCallRuntime * instr)2952 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2953 CallRuntime(instr->function(), instr->arity(), instr);
2954 }
2955
2956
DoStoreNamedField(LStoreNamedField * instr)2957 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
2958 Register object = ToRegister(instr->object());
2959 Register value = ToRegister(instr->value());
2960 int offset = instr->offset();
2961
2962 if (!instr->transition().is_null()) {
2963 __ Move(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
2964 }
2965
2966 // Do the store.
2967 if (instr->is_in_object()) {
2968 __ movq(FieldOperand(object, offset), value);
2969 if (instr->needs_write_barrier()) {
2970 Register temp = ToRegister(instr->TempAt(0));
2971 // Update the write barrier for the object for in-object properties.
2972 __ RecordWrite(object, offset, value, temp);
2973 }
2974 } else {
2975 Register temp = ToRegister(instr->TempAt(0));
2976 __ movq(temp, FieldOperand(object, JSObject::kPropertiesOffset));
2977 __ movq(FieldOperand(temp, offset), value);
2978 if (instr->needs_write_barrier()) {
2979 // Update the write barrier for the properties array.
2980 // object is used as a scratch register.
2981 __ RecordWrite(temp, offset, value, object);
2982 }
2983 }
2984 }
2985
2986
DoStoreNamedGeneric(LStoreNamedGeneric * instr)2987 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
2988 ASSERT(ToRegister(instr->object()).is(rdx));
2989 ASSERT(ToRegister(instr->value()).is(rax));
2990
2991 __ Move(rcx, instr->hydrogen()->name());
2992 Handle<Code> ic = instr->strict_mode()
2993 ? isolate()->builtins()->StoreIC_Initialize_Strict()
2994 : isolate()->builtins()->StoreIC_Initialize();
2995 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2996 }
2997
2998
DoStoreKeyedSpecializedArrayElement(LStoreKeyedSpecializedArrayElement * instr)2999 void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3000 LStoreKeyedSpecializedArrayElement* instr) {
3001 Register external_pointer = ToRegister(instr->external_pointer());
3002 Register key = ToRegister(instr->key());
3003 ExternalArrayType array_type = instr->array_type();
3004 if (array_type == kExternalFloatArray) {
3005 XMMRegister value(ToDoubleRegister(instr->value()));
3006 __ cvtsd2ss(value, value);
3007 __ movss(Operand(external_pointer, key, times_4, 0), value);
3008 } else {
3009 Register value(ToRegister(instr->value()));
3010 switch (array_type) {
3011 case kExternalPixelArray:
3012 { // Clamp the value to [0..255].
3013 NearLabel done;
3014 __ testl(value, Immediate(0xFFFFFF00));
3015 __ j(zero, &done);
3016 __ setcc(negative, value); // 1 if negative, 0 if positive.
3017 __ decb(value); // 0 if negative, 255 if positive.
3018 __ bind(&done);
3019 __ movb(Operand(external_pointer, key, times_1, 0), value);
3020 }
3021 break;
3022 case kExternalByteArray:
3023 case kExternalUnsignedByteArray:
3024 __ movb(Operand(external_pointer, key, times_1, 0), value);
3025 break;
3026 case kExternalShortArray:
3027 case kExternalUnsignedShortArray:
3028 __ movw(Operand(external_pointer, key, times_2, 0), value);
3029 break;
3030 case kExternalIntArray:
3031 case kExternalUnsignedIntArray:
3032 __ movl(Operand(external_pointer, key, times_4, 0), value);
3033 break;
3034 case kExternalFloatArray:
3035 UNREACHABLE();
3036 break;
3037 }
3038 }
3039 }
3040
3041
DoBoundsCheck(LBoundsCheck * instr)3042 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3043 if (instr->length()->IsRegister()) {
3044 __ cmpq(ToRegister(instr->index()), ToRegister(instr->length()));
3045 } else {
3046 __ cmpq(ToRegister(instr->index()), ToOperand(instr->length()));
3047 }
3048 DeoptimizeIf(above_equal, instr->environment());
3049 }
3050
3051
DoStoreKeyedFastElement(LStoreKeyedFastElement * instr)3052 void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3053 Register value = ToRegister(instr->value());
3054 Register elements = ToRegister(instr->object());
3055 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3056
3057 // Do the store.
3058 if (instr->key()->IsConstantOperand()) {
3059 ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3060 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3061 int offset =
3062 ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3063 __ movq(FieldOperand(elements, offset), value);
3064 } else {
3065 __ movq(FieldOperand(elements,
3066 key,
3067 times_pointer_size,
3068 FixedArray::kHeaderSize),
3069 value);
3070 }
3071
3072 if (instr->hydrogen()->NeedsWriteBarrier()) {
3073 // Compute address of modified element and store it into key register.
3074 __ lea(key, FieldOperand(elements,
3075 key,
3076 times_pointer_size,
3077 FixedArray::kHeaderSize));
3078 __ RecordWrite(elements, key, value);
3079 }
3080 }
3081
3082
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)3083 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3084 ASSERT(ToRegister(instr->object()).is(rdx));
3085 ASSERT(ToRegister(instr->key()).is(rcx));
3086 ASSERT(ToRegister(instr->value()).is(rax));
3087
3088 Handle<Code> ic = instr->strict_mode()
3089 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3090 : isolate()->builtins()->KeyedStoreIC_Initialize();
3091 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3092 }
3093
3094
DoStringCharCodeAt(LStringCharCodeAt * instr)3095 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3096 class DeferredStringCharCodeAt: public LDeferredCode {
3097 public:
3098 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3099 : LDeferredCode(codegen), instr_(instr) { }
3100 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3101 private:
3102 LStringCharCodeAt* instr_;
3103 };
3104
3105 Register string = ToRegister(instr->string());
3106 Register index = no_reg;
3107 int const_index = -1;
3108 if (instr->index()->IsConstantOperand()) {
3109 const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3110 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
3111 if (!Smi::IsValid(const_index)) {
3112 // Guaranteed to be out of bounds because of the assert above.
3113 // So the bounds check that must dominate this instruction must
3114 // have deoptimized already.
3115 if (FLAG_debug_code) {
3116 __ Abort("StringCharCodeAt: out of bounds index.");
3117 }
3118 // No code needs to be generated.
3119 return;
3120 }
3121 } else {
3122 index = ToRegister(instr->index());
3123 }
3124 Register result = ToRegister(instr->result());
3125
3126 DeferredStringCharCodeAt* deferred =
3127 new DeferredStringCharCodeAt(this, instr);
3128
3129 NearLabel flat_string, ascii_string, done;
3130
3131 // Fetch the instance type of the receiver into result register.
3132 __ movq(result, FieldOperand(string, HeapObject::kMapOffset));
3133 __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset));
3134
3135 // We need special handling for non-sequential strings.
3136 STATIC_ASSERT(kSeqStringTag == 0);
3137 __ testb(result, Immediate(kStringRepresentationMask));
3138 __ j(zero, &flat_string);
3139
3140 // Handle cons strings and go to deferred code for the rest.
3141 __ testb(result, Immediate(kIsConsStringMask));
3142 __ j(zero, deferred->entry());
3143
3144 // ConsString.
3145 // Check whether the right hand side is the empty string (i.e. if
3146 // this is really a flat string in a cons string). If that is not
3147 // the case we would rather go to the runtime system now to flatten
3148 // the string.
3149 __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset),
3150 Heap::kEmptyStringRootIndex);
3151 __ j(not_equal, deferred->entry());
3152 // Get the first of the two strings and load its instance type.
3153 __ movq(string, FieldOperand(string, ConsString::kFirstOffset));
3154 __ movq(result, FieldOperand(string, HeapObject::kMapOffset));
3155 __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset));
3156 // If the first cons component is also non-flat, then go to runtime.
3157 STATIC_ASSERT(kSeqStringTag == 0);
3158 __ testb(result, Immediate(kStringRepresentationMask));
3159 __ j(not_zero, deferred->entry());
3160
3161 // Check for ASCII or two-byte string.
3162 __ bind(&flat_string);
3163 STATIC_ASSERT(kAsciiStringTag != 0);
3164 __ testb(result, Immediate(kStringEncodingMask));
3165 __ j(not_zero, &ascii_string);
3166
3167 // Two-byte string.
3168 // Load the two-byte character code into the result register.
3169 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
3170 if (instr->index()->IsConstantOperand()) {
3171 __ movzxwl(result,
3172 FieldOperand(string,
3173 SeqTwoByteString::kHeaderSize +
3174 (kUC16Size * const_index)));
3175 } else {
3176 __ movzxwl(result, FieldOperand(string,
3177 index,
3178 times_2,
3179 SeqTwoByteString::kHeaderSize));
3180 }
3181 __ jmp(&done);
3182
3183 // ASCII string.
3184 // Load the byte into the result register.
3185 __ bind(&ascii_string);
3186 if (instr->index()->IsConstantOperand()) {
3187 __ movzxbl(result, FieldOperand(string,
3188 SeqAsciiString::kHeaderSize + const_index));
3189 } else {
3190 __ movzxbl(result, FieldOperand(string,
3191 index,
3192 times_1,
3193 SeqAsciiString::kHeaderSize));
3194 }
3195 __ bind(&done);
3196 __ bind(deferred->exit());
3197 }
3198
3199
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)3200 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3201 Register string = ToRegister(instr->string());
3202 Register result = ToRegister(instr->result());
3203
3204 // TODO(3095996): Get rid of this. For now, we need to make the
3205 // result register contain a valid pointer because it is already
3206 // contained in the register pointer map.
3207 __ Set(result, 0);
3208
3209 PushSafepointRegistersScope scope(this);
3210 __ push(string);
3211 // Push the index as a smi. This is safe because of the checks in
3212 // DoStringCharCodeAt above.
3213 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
3214 if (instr->index()->IsConstantOperand()) {
3215 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3216 __ Push(Smi::FromInt(const_index));
3217 } else {
3218 Register index = ToRegister(instr->index());
3219 __ Integer32ToSmi(index, index);
3220 __ push(index);
3221 }
3222 CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
3223 if (FLAG_debug_code) {
3224 __ AbortIfNotSmi(rax);
3225 }
3226 __ SmiToInteger32(rax, rax);
3227 __ StoreToSafepointRegisterSlot(result, rax);
3228 }
3229
3230
DoStringCharFromCode(LStringCharFromCode * instr)3231 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3232 class DeferredStringCharFromCode: public LDeferredCode {
3233 public:
3234 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3235 : LDeferredCode(codegen), instr_(instr) { }
3236 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3237 private:
3238 LStringCharFromCode* instr_;
3239 };
3240
3241 DeferredStringCharFromCode* deferred =
3242 new DeferredStringCharFromCode(this, instr);
3243
3244 ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3245 Register char_code = ToRegister(instr->char_code());
3246 Register result = ToRegister(instr->result());
3247 ASSERT(!char_code.is(result));
3248
3249 __ cmpl(char_code, Immediate(String::kMaxAsciiCharCode));
3250 __ j(above, deferred->entry());
3251 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
3252 __ movq(result, FieldOperand(result,
3253 char_code, times_pointer_size,
3254 FixedArray::kHeaderSize));
3255 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
3256 __ j(equal, deferred->entry());
3257 __ bind(deferred->exit());
3258 }
3259
3260
DoDeferredStringCharFromCode(LStringCharFromCode * instr)3261 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3262 Register char_code = ToRegister(instr->char_code());
3263 Register result = ToRegister(instr->result());
3264
3265 // TODO(3095996): Get rid of this. For now, we need to make the
3266 // result register contain a valid pointer because it is already
3267 // contained in the register pointer map.
3268 __ Set(result, 0);
3269
3270 PushSafepointRegistersScope scope(this);
3271 __ Integer32ToSmi(char_code, char_code);
3272 __ push(char_code);
3273 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
3274 __ StoreToSafepointRegisterSlot(result, rax);
3275 }
3276
3277
DoStringLength(LStringLength * instr)3278 void LCodeGen::DoStringLength(LStringLength* instr) {
3279 Register string = ToRegister(instr->string());
3280 Register result = ToRegister(instr->result());
3281 __ movq(result, FieldOperand(string, String::kLengthOffset));
3282 }
3283
3284
DoInteger32ToDouble(LInteger32ToDouble * instr)3285 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3286 LOperand* input = instr->InputAt(0);
3287 ASSERT(input->IsRegister() || input->IsStackSlot());
3288 LOperand* output = instr->result();
3289 ASSERT(output->IsDoubleRegister());
3290 if (input->IsRegister()) {
3291 __ cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
3292 } else {
3293 __ cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
3294 }
3295 }
3296
3297
DoNumberTagI(LNumberTagI * instr)3298 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3299 LOperand* input = instr->InputAt(0);
3300 ASSERT(input->IsRegister() && input->Equals(instr->result()));
3301 Register reg = ToRegister(input);
3302
3303 __ Integer32ToSmi(reg, reg);
3304 }
3305
3306
DoNumberTagD(LNumberTagD * instr)3307 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3308 class DeferredNumberTagD: public LDeferredCode {
3309 public:
3310 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3311 : LDeferredCode(codegen), instr_(instr) { }
3312 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3313 private:
3314 LNumberTagD* instr_;
3315 };
3316
3317 XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3318 Register reg = ToRegister(instr->result());
3319 Register tmp = ToRegister(instr->TempAt(0));
3320
3321 DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3322 if (FLAG_inline_new) {
3323 __ AllocateHeapNumber(reg, tmp, deferred->entry());
3324 } else {
3325 __ jmp(deferred->entry());
3326 }
3327 __ bind(deferred->exit());
3328 __ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
3329 }
3330
3331
DoDeferredNumberTagD(LNumberTagD * instr)3332 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
3333 // TODO(3095996): Get rid of this. For now, we need to make the
3334 // result register contain a valid pointer because it is already
3335 // contained in the register pointer map.
3336 Register reg = ToRegister(instr->result());
3337 __ Move(reg, Smi::FromInt(0));
3338
3339 {
3340 PushSafepointRegistersScope scope(this);
3341 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3342 // Ensure that value in rax survives popping registers.
3343 __ movq(kScratchRegister, rax);
3344 }
3345 __ movq(reg, kScratchRegister);
3346 }
3347
3348
DoSmiTag(LSmiTag * instr)3349 void LCodeGen::DoSmiTag(LSmiTag* instr) {
3350 ASSERT(instr->InputAt(0)->Equals(instr->result()));
3351 Register input = ToRegister(instr->InputAt(0));
3352 ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
3353 __ Integer32ToSmi(input, input);
3354 }
3355
3356
DoSmiUntag(LSmiUntag * instr)3357 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
3358 ASSERT(instr->InputAt(0)->Equals(instr->result()));
3359 Register input = ToRegister(instr->InputAt(0));
3360 if (instr->needs_check()) {
3361 Condition is_smi = __ CheckSmi(input);
3362 DeoptimizeIf(NegateCondition(is_smi), instr->environment());
3363 }
3364 __ SmiToInteger32(input, input);
3365 }
3366
3367
EmitNumberUntagD(Register input_reg,XMMRegister result_reg,bool deoptimize_on_undefined,LEnvironment * env)3368 void LCodeGen::EmitNumberUntagD(Register input_reg,
3369 XMMRegister result_reg,
3370 bool deoptimize_on_undefined,
3371 LEnvironment* env) {
3372 NearLabel load_smi, done;
3373
3374 // Smi check.
3375 __ JumpIfSmi(input_reg, &load_smi);
3376
3377 // Heap number map check.
3378 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3379 Heap::kHeapNumberMapRootIndex);
3380 if (deoptimize_on_undefined) {
3381 DeoptimizeIf(not_equal, env);
3382 } else {
3383 NearLabel heap_number;
3384 __ j(equal, &heap_number);
3385 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
3386 DeoptimizeIf(not_equal, env);
3387
3388 // Convert undefined to NaN. Compute NaN as 0/0.
3389 __ xorpd(result_reg, result_reg);
3390 __ divsd(result_reg, result_reg);
3391 __ jmp(&done);
3392
3393 __ bind(&heap_number);
3394 }
3395 // Heap number to XMM conversion.
3396 __ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
3397 __ jmp(&done);
3398
3399 // Smi to XMM conversion
3400 __ bind(&load_smi);
3401 __ SmiToInteger32(kScratchRegister, input_reg);
3402 __ cvtlsi2sd(result_reg, kScratchRegister);
3403 __ bind(&done);
3404 }
3405
3406
3407 class DeferredTaggedToI: public LDeferredCode {
3408 public:
DeferredTaggedToI(LCodeGen * codegen,LTaggedToI * instr)3409 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
3410 : LDeferredCode(codegen), instr_(instr) { }
Generate()3411 virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
3412 private:
3413 LTaggedToI* instr_;
3414 };
3415
3416
DoDeferredTaggedToI(LTaggedToI * instr)3417 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
3418 NearLabel done, heap_number;
3419 Register input_reg = ToRegister(instr->InputAt(0));
3420
3421 // Heap number map check.
3422 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3423 Heap::kHeapNumberMapRootIndex);
3424
3425 if (instr->truncating()) {
3426 __ j(equal, &heap_number);
3427 // Check for undefined. Undefined is converted to zero for truncating
3428 // conversions.
3429 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
3430 DeoptimizeIf(not_equal, instr->environment());
3431 __ Set(input_reg, 0);
3432 __ jmp(&done);
3433
3434 __ bind(&heap_number);
3435
3436 __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3437 __ cvttsd2siq(input_reg, xmm0);
3438 __ Set(kScratchRegister, V8_UINT64_C(0x8000000000000000));
3439 __ cmpq(input_reg, kScratchRegister);
3440 DeoptimizeIf(equal, instr->environment());
3441 } else {
3442 // Deoptimize if we don't have a heap number.
3443 DeoptimizeIf(not_equal, instr->environment());
3444
3445 XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
3446 __ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
3447 __ cvttsd2si(input_reg, xmm0);
3448 __ cvtlsi2sd(xmm_temp, input_reg);
3449 __ ucomisd(xmm0, xmm_temp);
3450 DeoptimizeIf(not_equal, instr->environment());
3451 DeoptimizeIf(parity_even, instr->environment()); // NaN.
3452 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3453 __ testl(input_reg, input_reg);
3454 __ j(not_zero, &done);
3455 __ movmskpd(input_reg, xmm0);
3456 __ andl(input_reg, Immediate(1));
3457 DeoptimizeIf(not_zero, instr->environment());
3458 }
3459 }
3460 __ bind(&done);
3461 }
3462
3463
DoTaggedToI(LTaggedToI * instr)3464 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
3465 LOperand* input = instr->InputAt(0);
3466 ASSERT(input->IsRegister());
3467 ASSERT(input->Equals(instr->result()));
3468
3469 Register input_reg = ToRegister(input);
3470 DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
3471 __ JumpIfNotSmi(input_reg, deferred->entry());
3472 __ SmiToInteger32(input_reg, input_reg);
3473 __ bind(deferred->exit());
3474 }
3475
3476
DoNumberUntagD(LNumberUntagD * instr)3477 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
3478 LOperand* input = instr->InputAt(0);
3479 ASSERT(input->IsRegister());
3480 LOperand* result = instr->result();
3481 ASSERT(result->IsDoubleRegister());
3482
3483 Register input_reg = ToRegister(input);
3484 XMMRegister result_reg = ToDoubleRegister(result);
3485
3486 EmitNumberUntagD(input_reg, result_reg,
3487 instr->hydrogen()->deoptimize_on_undefined(),
3488 instr->environment());
3489 }
3490
3491
DoDoubleToI(LDoubleToI * instr)3492 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
3493 LOperand* input = instr->InputAt(0);
3494 ASSERT(input->IsDoubleRegister());
3495 LOperand* result = instr->result();
3496 ASSERT(result->IsRegister());
3497
3498 XMMRegister input_reg = ToDoubleRegister(input);
3499 Register result_reg = ToRegister(result);
3500
3501 if (instr->truncating()) {
3502 // Performs a truncating conversion of a floating point number as used by
3503 // the JS bitwise operations.
3504 __ cvttsd2siq(result_reg, input_reg);
3505 __ movq(kScratchRegister, V8_INT64_C(0x8000000000000000), RelocInfo::NONE);
3506 __ cmpq(result_reg, kScratchRegister);
3507 DeoptimizeIf(equal, instr->environment());
3508 } else {
3509 __ cvttsd2si(result_reg, input_reg);
3510 __ cvtlsi2sd(xmm0, result_reg);
3511 __ ucomisd(xmm0, input_reg);
3512 DeoptimizeIf(not_equal, instr->environment());
3513 DeoptimizeIf(parity_even, instr->environment()); // NaN.
3514 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3515 NearLabel done;
3516 // The integer converted back is equal to the original. We
3517 // only have to test if we got -0 as an input.
3518 __ testl(result_reg, result_reg);
3519 __ j(not_zero, &done);
3520 __ movmskpd(result_reg, input_reg);
3521 // Bit 0 contains the sign of the double in input_reg.
3522 // If input was positive, we are ok and return 0, otherwise
3523 // deoptimize.
3524 __ andl(result_reg, Immediate(1));
3525 DeoptimizeIf(not_zero, instr->environment());
3526 __ bind(&done);
3527 }
3528 }
3529 }
3530
3531
DoCheckSmi(LCheckSmi * instr)3532 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
3533 LOperand* input = instr->InputAt(0);
3534 Condition cc = masm()->CheckSmi(ToRegister(input));
3535 DeoptimizeIf(NegateCondition(cc), instr->environment());
3536 }
3537
3538
DoCheckNonSmi(LCheckNonSmi * instr)3539 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
3540 LOperand* input = instr->InputAt(0);
3541 Condition cc = masm()->CheckSmi(ToRegister(input));
3542 DeoptimizeIf(cc, instr->environment());
3543 }
3544
3545
DoCheckInstanceType(LCheckInstanceType * instr)3546 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
3547 Register input = ToRegister(instr->InputAt(0));
3548 InstanceType first = instr->hydrogen()->first();
3549 InstanceType last = instr->hydrogen()->last();
3550
3551 __ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
3552
3553 // If there is only one type in the interval check for equality.
3554 if (first == last) {
3555 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3556 Immediate(static_cast<int8_t>(first)));
3557 DeoptimizeIf(not_equal, instr->environment());
3558 } else if (first == FIRST_STRING_TYPE && last == LAST_STRING_TYPE) {
3559 // String has a dedicated bit in instance type.
3560 __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3561 Immediate(kIsNotStringMask));
3562 DeoptimizeIf(not_zero, instr->environment());
3563 } else {
3564 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3565 Immediate(static_cast<int8_t>(first)));
3566 DeoptimizeIf(below, instr->environment());
3567 // Omit check for the last type.
3568 if (last != LAST_TYPE) {
3569 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
3570 Immediate(static_cast<int8_t>(last)));
3571 DeoptimizeIf(above, instr->environment());
3572 }
3573 }
3574 }
3575
3576
DoCheckFunction(LCheckFunction * instr)3577 void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
3578 ASSERT(instr->InputAt(0)->IsRegister());
3579 Register reg = ToRegister(instr->InputAt(0));
3580 __ Cmp(reg, instr->hydrogen()->target());
3581 DeoptimizeIf(not_equal, instr->environment());
3582 }
3583
3584
DoCheckMap(LCheckMap * instr)3585 void LCodeGen::DoCheckMap(LCheckMap* instr) {
3586 LOperand* input = instr->InputAt(0);
3587 ASSERT(input->IsRegister());
3588 Register reg = ToRegister(input);
3589 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3590 instr->hydrogen()->map());
3591 DeoptimizeIf(not_equal, instr->environment());
3592 }
3593
3594
LoadHeapObject(Register result,Handle<HeapObject> object)3595 void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) {
3596 if (heap()->InNewSpace(*object)) {
3597 Handle<JSGlobalPropertyCell> cell =
3598 factory()->NewJSGlobalPropertyCell(object);
3599 __ movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
3600 __ movq(result, Operand(result, 0));
3601 } else {
3602 __ Move(result, object);
3603 }
3604 }
3605
3606
DoCheckPrototypeMaps(LCheckPrototypeMaps * instr)3607 void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
3608 Register reg = ToRegister(instr->TempAt(0));
3609
3610 Handle<JSObject> holder = instr->holder();
3611 Handle<JSObject> current_prototype = instr->prototype();
3612
3613 // Load prototype object.
3614 LoadHeapObject(reg, current_prototype);
3615
3616 // Check prototype maps up to the holder.
3617 while (!current_prototype.is_identical_to(holder)) {
3618 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3619 Handle<Map>(current_prototype->map()));
3620 DeoptimizeIf(not_equal, instr->environment());
3621 current_prototype =
3622 Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
3623 // Load next prototype object.
3624 LoadHeapObject(reg, current_prototype);
3625 }
3626
3627 // Check the holder map.
3628 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset),
3629 Handle<Map>(current_prototype->map()));
3630 DeoptimizeIf(not_equal, instr->environment());
3631 }
3632
3633
DoArrayLiteral(LArrayLiteral * instr)3634 void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
3635 // Setup the parameters to the stub/runtime call.
3636 __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3637 __ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
3638 __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3639 __ Push(instr->hydrogen()->constant_elements());
3640
3641 // Pick the right runtime function or stub to call.
3642 int length = instr->hydrogen()->length();
3643 if (instr->hydrogen()->IsCopyOnWrite()) {
3644 ASSERT(instr->hydrogen()->depth() == 1);
3645 FastCloneShallowArrayStub::Mode mode =
3646 FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
3647 FastCloneShallowArrayStub stub(mode, length);
3648 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3649 } else if (instr->hydrogen()->depth() > 1) {
3650 CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
3651 } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
3652 CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
3653 } else {
3654 FastCloneShallowArrayStub::Mode mode =
3655 FastCloneShallowArrayStub::CLONE_ELEMENTS;
3656 FastCloneShallowArrayStub stub(mode, length);
3657 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3658 }
3659 }
3660
3661
DoObjectLiteral(LObjectLiteral * instr)3662 void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
3663 // Setup the parameters to the stub/runtime call.
3664 __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3665 __ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
3666 __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3667 __ Push(instr->hydrogen()->constant_properties());
3668 __ Push(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0));
3669
3670 // Pick the right runtime function to call.
3671 if (instr->hydrogen()->depth() > 1) {
3672 CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
3673 } else {
3674 CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
3675 }
3676 }
3677
3678
DoToFastProperties(LToFastProperties * instr)3679 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
3680 ASSERT(ToRegister(instr->InputAt(0)).is(rax));
3681 __ push(rax);
3682 CallRuntime(Runtime::kToFastProperties, 1, instr);
3683 }
3684
3685
DoRegExpLiteral(LRegExpLiteral * instr)3686 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
3687 NearLabel materialized;
3688 // Registers will be used as follows:
3689 // rdi = JS function.
3690 // rcx = literals array.
3691 // rbx = regexp literal.
3692 // rax = regexp literal clone.
3693 __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3694 __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
3695 int literal_offset = FixedArray::kHeaderSize +
3696 instr->hydrogen()->literal_index() * kPointerSize;
3697 __ movq(rbx, FieldOperand(rcx, literal_offset));
3698 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
3699 __ j(not_equal, &materialized);
3700
3701 // Create regexp literal using runtime function
3702 // Result will be in rax.
3703 __ push(rcx);
3704 __ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
3705 __ Push(instr->hydrogen()->pattern());
3706 __ Push(instr->hydrogen()->flags());
3707 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
3708 __ movq(rbx, rax);
3709
3710 __ bind(&materialized);
3711 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
3712 Label allocated, runtime_allocate;
3713 __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
3714 __ jmp(&allocated);
3715
3716 __ bind(&runtime_allocate);
3717 __ push(rbx);
3718 __ Push(Smi::FromInt(size));
3719 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
3720 __ pop(rbx);
3721
3722 __ bind(&allocated);
3723 // Copy the content into the newly allocated memory.
3724 // (Unroll copy loop once for better throughput).
3725 for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
3726 __ movq(rdx, FieldOperand(rbx, i));
3727 __ movq(rcx, FieldOperand(rbx, i + kPointerSize));
3728 __ movq(FieldOperand(rax, i), rdx);
3729 __ movq(FieldOperand(rax, i + kPointerSize), rcx);
3730 }
3731 if ((size % (2 * kPointerSize)) != 0) {
3732 __ movq(rdx, FieldOperand(rbx, size - kPointerSize));
3733 __ movq(FieldOperand(rax, size - kPointerSize), rdx);
3734 }
3735 }
3736
3737
DoFunctionLiteral(LFunctionLiteral * instr)3738 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
3739 // Use the fast case closure allocation code that allocates in new
3740 // space for nested functions that don't need literals cloning.
3741 Handle<SharedFunctionInfo> shared_info = instr->shared_info();
3742 bool pretenure = instr->hydrogen()->pretenure();
3743 if (!pretenure && shared_info->num_literals() == 0) {
3744 FastNewClosureStub stub(
3745 shared_info->strict_mode() ? kStrictMode : kNonStrictMode);
3746 __ Push(shared_info);
3747 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3748 } else {
3749 __ push(rsi);
3750 __ Push(shared_info);
3751 __ PushRoot(pretenure ?
3752 Heap::kTrueValueRootIndex :
3753 Heap::kFalseValueRootIndex);
3754 CallRuntime(Runtime::kNewClosure, 3, instr);
3755 }
3756 }
3757
3758
DoTypeof(LTypeof * instr)3759 void LCodeGen::DoTypeof(LTypeof* instr) {
3760 LOperand* input = instr->InputAt(0);
3761 if (input->IsConstantOperand()) {
3762 __ Push(ToHandle(LConstantOperand::cast(input)));
3763 } else if (input->IsRegister()) {
3764 __ push(ToRegister(input));
3765 } else {
3766 ASSERT(input->IsStackSlot());
3767 __ push(ToOperand(input));
3768 }
3769 CallRuntime(Runtime::kTypeof, 1, instr);
3770 }
3771
3772
DoTypeofIs(LTypeofIs * instr)3773 void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
3774 Register input = ToRegister(instr->InputAt(0));
3775 Register result = ToRegister(instr->result());
3776 Label true_label;
3777 Label false_label;
3778 NearLabel done;
3779
3780 Condition final_branch_condition = EmitTypeofIs(&true_label,
3781 &false_label,
3782 input,
3783 instr->type_literal());
3784 __ j(final_branch_condition, &true_label);
3785 __ bind(&false_label);
3786 __ LoadRoot(result, Heap::kFalseValueRootIndex);
3787 __ jmp(&done);
3788
3789 __ bind(&true_label);
3790 __ LoadRoot(result, Heap::kTrueValueRootIndex);
3791
3792 __ bind(&done);
3793 }
3794
3795
EmitPushConstantOperand(LOperand * operand)3796 void LCodeGen::EmitPushConstantOperand(LOperand* operand) {
3797 ASSERT(operand->IsConstantOperand());
3798 LConstantOperand* const_op = LConstantOperand::cast(operand);
3799 Handle<Object> literal = chunk_->LookupLiteral(const_op);
3800 Representation r = chunk_->LookupLiteralRepresentation(const_op);
3801 if (r.IsInteger32()) {
3802 ASSERT(literal->IsNumber());
3803 __ push(Immediate(static_cast<int32_t>(literal->Number())));
3804 } else if (r.IsDouble()) {
3805 Abort("unsupported double immediate");
3806 } else {
3807 ASSERT(r.IsTagged());
3808 __ Push(literal);
3809 }
3810 }
3811
3812
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)3813 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
3814 Register input = ToRegister(instr->InputAt(0));
3815 int true_block = chunk_->LookupDestination(instr->true_block_id());
3816 int false_block = chunk_->LookupDestination(instr->false_block_id());
3817 Label* true_label = chunk_->GetAssemblyLabel(true_block);
3818 Label* false_label = chunk_->GetAssemblyLabel(false_block);
3819
3820 Condition final_branch_condition = EmitTypeofIs(true_label,
3821 false_label,
3822 input,
3823 instr->type_literal());
3824
3825 EmitBranch(true_block, false_block, final_branch_condition);
3826 }
3827
3828
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name)3829 Condition LCodeGen::EmitTypeofIs(Label* true_label,
3830 Label* false_label,
3831 Register input,
3832 Handle<String> type_name) {
3833 Condition final_branch_condition = no_condition;
3834 if (type_name->Equals(heap()->number_symbol())) {
3835 __ JumpIfSmi(input, true_label);
3836 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
3837 Heap::kHeapNumberMapRootIndex);
3838
3839 final_branch_condition = equal;
3840
3841 } else if (type_name->Equals(heap()->string_symbol())) {
3842 __ JumpIfSmi(input, false_label);
3843 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
3844 __ j(above_equal, false_label);
3845 __ testb(FieldOperand(input, Map::kBitFieldOffset),
3846 Immediate(1 << Map::kIsUndetectable));
3847 final_branch_condition = zero;
3848
3849 } else if (type_name->Equals(heap()->boolean_symbol())) {
3850 __ CompareRoot(input, Heap::kTrueValueRootIndex);
3851 __ j(equal, true_label);
3852 __ CompareRoot(input, Heap::kFalseValueRootIndex);
3853 final_branch_condition = equal;
3854
3855 } else if (type_name->Equals(heap()->undefined_symbol())) {
3856 __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
3857 __ j(equal, true_label);
3858 __ JumpIfSmi(input, false_label);
3859 // Check for undetectable objects => true.
3860 __ movq(input, FieldOperand(input, HeapObject::kMapOffset));
3861 __ testb(FieldOperand(input, Map::kBitFieldOffset),
3862 Immediate(1 << Map::kIsUndetectable));
3863 final_branch_condition = not_zero;
3864
3865 } else if (type_name->Equals(heap()->function_symbol())) {
3866 __ JumpIfSmi(input, false_label);
3867 __ CmpObjectType(input, FIRST_FUNCTION_CLASS_TYPE, input);
3868 final_branch_condition = above_equal;
3869
3870 } else if (type_name->Equals(heap()->object_symbol())) {
3871 __ JumpIfSmi(input, false_label);
3872 __ CompareRoot(input, Heap::kNullValueRootIndex);
3873 __ j(equal, true_label);
3874 __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, input);
3875 __ j(below, false_label);
3876 __ CmpInstanceType(input, FIRST_FUNCTION_CLASS_TYPE);
3877 __ j(above_equal, false_label);
3878 // Check for undetectable objects => false.
3879 __ testb(FieldOperand(input, Map::kBitFieldOffset),
3880 Immediate(1 << Map::kIsUndetectable));
3881 final_branch_condition = zero;
3882
3883 } else {
3884 final_branch_condition = never;
3885 __ jmp(false_label);
3886 }
3887
3888 return final_branch_condition;
3889 }
3890
3891
DoIsConstructCall(LIsConstructCall * instr)3892 void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) {
3893 Register result = ToRegister(instr->result());
3894 NearLabel true_label;
3895 NearLabel false_label;
3896 NearLabel done;
3897
3898 EmitIsConstructCall(result);
3899 __ j(equal, &true_label);
3900
3901 __ LoadRoot(result, Heap::kFalseValueRootIndex);
3902 __ jmp(&done);
3903
3904 __ bind(&true_label);
3905 __ LoadRoot(result, Heap::kTrueValueRootIndex);
3906
3907
3908 __ bind(&done);
3909 }
3910
3911
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)3912 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
3913 Register temp = ToRegister(instr->TempAt(0));
3914 int true_block = chunk_->LookupDestination(instr->true_block_id());
3915 int false_block = chunk_->LookupDestination(instr->false_block_id());
3916
3917 EmitIsConstructCall(temp);
3918 EmitBranch(true_block, false_block, equal);
3919 }
3920
3921
EmitIsConstructCall(Register temp)3922 void LCodeGen::EmitIsConstructCall(Register temp) {
3923 // Get the frame pointer for the calling frame.
3924 __ movq(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3925
3926 // Skip the arguments adaptor frame if it exists.
3927 NearLabel check_frame_marker;
3928 __ Cmp(Operand(temp, StandardFrameConstants::kContextOffset),
3929 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3930 __ j(not_equal, &check_frame_marker);
3931 __ movq(temp, Operand(rax, StandardFrameConstants::kCallerFPOffset));
3932
3933 // Check the marker in the calling frame.
3934 __ bind(&check_frame_marker);
3935 __ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
3936 Smi::FromInt(StackFrame::CONSTRUCT));
3937 }
3938
3939
DoLazyBailout(LLazyBailout * instr)3940 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
3941 // No code for lazy bailout instruction. Used to capture environment after a
3942 // call for populating the safepoint data with deoptimization data.
3943 }
3944
3945
DoDeoptimize(LDeoptimize * instr)3946 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
3947 DeoptimizeIf(no_condition, instr->environment());
3948 }
3949
3950
DoDeleteProperty(LDeleteProperty * instr)3951 void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
3952 LOperand* obj = instr->object();
3953 LOperand* key = instr->key();
3954 // Push object.
3955 if (obj->IsRegister()) {
3956 __ push(ToRegister(obj));
3957 } else {
3958 __ push(ToOperand(obj));
3959 }
3960 // Push key.
3961 if (key->IsConstantOperand()) {
3962 EmitPushConstantOperand(key);
3963 } else if (key->IsRegister()) {
3964 __ push(ToRegister(key));
3965 } else {
3966 __ push(ToOperand(key));
3967 }
3968 ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
3969 LPointerMap* pointers = instr->pointer_map();
3970 LEnvironment* env = instr->deoptimization_environment();
3971 RecordPosition(pointers->position());
3972 RegisterEnvironmentForDeoptimization(env);
3973 // Create safepoint generator that will also ensure enough space in the
3974 // reloc info for patching in deoptimization (since this is invoking a
3975 // builtin)
3976 SafepointGenerator safepoint_generator(this,
3977 pointers,
3978 env->deoptimization_index());
3979 __ Push(Smi::FromInt(strict_mode_flag()));
3980 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, &safepoint_generator);
3981 }
3982
3983
DoStackCheck(LStackCheck * instr)3984 void LCodeGen::DoStackCheck(LStackCheck* instr) {
3985 // Perform stack overflow check.
3986 NearLabel done;
3987 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
3988 __ j(above_equal, &done);
3989
3990 StackCheckStub stub;
3991 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3992 __ bind(&done);
3993 }
3994
3995
DoOsrEntry(LOsrEntry * instr)3996 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
3997 // This is a pseudo-instruction that ensures that the environment here is
3998 // properly registered for deoptimization and records the assembler's PC
3999 // offset.
4000 LEnvironment* environment = instr->environment();
4001 environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
4002 instr->SpilledDoubleRegisterArray());
4003
4004 // If the environment were already registered, we would have no way of
4005 // backpatching it with the spill slot operands.
4006 ASSERT(!environment->HasBeenRegistered());
4007 RegisterEnvironmentForDeoptimization(environment);
4008 ASSERT(osr_pc_offset_ == -1);
4009 osr_pc_offset_ = masm()->pc_offset();
4010 }
4011
4012 #undef __
4013
4014 } } // namespace v8::internal
4015
4016 #endif // V8_TARGET_ARCH_X64
4017