1 // Copyright 2007-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29 #include "accessors.h"
30
31 #include "cctest.h"
32
33
34 using namespace v8::internal;
35
36
AllocateAfterFailures()37 static MaybeObject* AllocateAfterFailures() {
38 static int attempts = 0;
39 if (++attempts < 3) return Failure::RetryAfterGC();
40 Heap* heap = Isolate::Current()->heap();
41
42 // New space.
43 NewSpace* new_space = heap->new_space();
44 static const int kNewSpaceFillerSize = ByteArray::SizeFor(0);
45 while (new_space->Available() > kNewSpaceFillerSize) {
46 int available_before = static_cast<int>(new_space->Available());
47 CHECK(!heap->AllocateByteArray(0)->IsFailure());
48 if (available_before == new_space->Available()) {
49 // It seems that we are avoiding new space allocations when
50 // allocation is forced, so no need to fill up new space
51 // in order to make the test harder.
52 break;
53 }
54 }
55 CHECK(!heap->AllocateByteArray(100)->IsFailure());
56 CHECK(!heap->AllocateFixedArray(100, NOT_TENURED)->IsFailure());
57
58 // Make sure we can allocate through optimized allocation functions
59 // for specific kinds.
60 CHECK(!heap->AllocateFixedArray(100)->IsFailure());
61 CHECK(!heap->AllocateHeapNumber(0.42)->IsFailure());
62 CHECK(!heap->AllocateArgumentsObject(Smi::FromInt(87), 10)->IsFailure());
63 Object* object = heap->AllocateJSObject(
64 *Isolate::Current()->object_function())->ToObjectChecked();
65 CHECK(!heap->CopyJSObject(JSObject::cast(object))->IsFailure());
66
67 // Old data space.
68 OldSpace* old_data_space = heap->old_data_space();
69 static const int kOldDataSpaceFillerSize = ByteArray::SizeFor(0);
70 while (old_data_space->Available() > kOldDataSpaceFillerSize) {
71 CHECK(!heap->AllocateByteArray(0, TENURED)->IsFailure());
72 }
73 CHECK(!heap->AllocateRawAsciiString(100, TENURED)->IsFailure());
74
75 // Large object space.
76 while (!heap->OldGenerationAllocationLimitReached()) {
77 CHECK(!heap->AllocateFixedArray(10000, TENURED)->IsFailure());
78 }
79 CHECK(!heap->AllocateFixedArray(10000, TENURED)->IsFailure());
80
81 // Map space.
82 MapSpace* map_space = heap->map_space();
83 static const int kMapSpaceFillerSize = Map::kSize;
84 InstanceType instance_type = JS_OBJECT_TYPE;
85 int instance_size = JSObject::kHeaderSize;
86 while (map_space->Available() > kMapSpaceFillerSize) {
87 CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure());
88 }
89 CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure());
90
91 // Test that we can allocate in old pointer space and code space.
92 CHECK(!heap->AllocateFixedArray(100, TENURED)->IsFailure());
93 CHECK(!heap->CopyCode(Isolate::Current()->builtins()->builtin(
94 Builtins::kIllegal))->IsFailure());
95
96 // Return success.
97 return Smi::FromInt(42);
98 }
99
100
Test()101 static Handle<Object> Test() {
102 CALL_HEAP_FUNCTION(ISOLATE, AllocateAfterFailures(), Object);
103 }
104
105
TEST(StressHandles)106 TEST(StressHandles) {
107 v8::Persistent<v8::Context> env = v8::Context::New();
108 v8::HandleScope scope;
109 env->Enter();
110 Handle<Object> o = Test();
111 CHECK(o->IsSmi() && Smi::cast(*o)->value() == 42);
112 env->Exit();
113 }
114
115
TestAccessorGet(Object * object,void *)116 static MaybeObject* TestAccessorGet(Object* object, void*) {
117 return AllocateAfterFailures();
118 }
119
120
121 const AccessorDescriptor kDescriptor = {
122 TestAccessorGet,
123 0,
124 0
125 };
126
127
TEST(StressJS)128 TEST(StressJS) {
129 v8::Persistent<v8::Context> env = v8::Context::New();
130 v8::HandleScope scope;
131 env->Enter();
132 Handle<JSFunction> function =
133 FACTORY->NewFunction(FACTORY->function_symbol(), FACTORY->null_value());
134 // Force the creation of an initial map and set the code to
135 // something empty.
136 FACTORY->NewJSObject(function);
137 function->ReplaceCode(Isolate::Current()->builtins()->builtin(
138 Builtins::kEmptyFunction));
139 // Patch the map to have an accessor for "get".
140 Handle<Map> map(function->initial_map());
141 Handle<DescriptorArray> instance_descriptors(map->instance_descriptors());
142 Handle<Proxy> proxy = FACTORY->NewProxy(&kDescriptor);
143 instance_descriptors = FACTORY->CopyAppendProxyDescriptor(
144 instance_descriptors,
145 FACTORY->NewStringFromAscii(Vector<const char>("get", 3)),
146 proxy,
147 static_cast<PropertyAttributes>(0));
148 map->set_instance_descriptors(*instance_descriptors);
149 // Add the Foo constructor the global object.
150 env->Global()->Set(v8::String::New("Foo"), v8::Utils::ToLocal(function));
151 // Call the accessor through JavaScript.
152 v8::Handle<v8::Value> result =
153 v8::Script::Compile(v8::String::New("(new Foo).get"))->Run();
154 CHECK_EQ(42, result->Int32Value());
155 env->Exit();
156 }
157
158
159 // CodeRange test.
160 // Tests memory management in a CodeRange by allocating and freeing blocks,
161 // using a pseudorandom generator to choose block sizes geometrically
162 // distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize.
163 // Ensure that the freed chunks are collected and reused by allocating (in
164 // total) more than the size of the CodeRange.
165
166 // This pseudorandom generator does not need to be particularly good.
167 // Use the lower half of the V8::Random() generator.
Pseudorandom()168 unsigned int Pseudorandom() {
169 static uint32_t lo = 2345;
170 lo = 18273 * (lo & 0xFFFF) + (lo >> 16); // Provably not 0.
171 return lo & 0xFFFF;
172 }
173
174
175 // Plain old data class. Represents a block of allocated memory.
176 class Block {
177 public:
Block(void * base_arg,int size_arg)178 Block(void* base_arg, int size_arg)
179 : base(base_arg), size(size_arg) {}
180
181 void *base;
182 int size;
183 };
184
185
TEST(CodeRange)186 TEST(CodeRange) {
187 const int code_range_size = 16*MB;
188 OS::Setup();
189 Isolate::Current()->InitializeLoggingAndCounters();
190 CodeRange* code_range = new CodeRange(Isolate::Current());
191 code_range->Setup(code_range_size);
192 int current_allocated = 0;
193 int total_allocated = 0;
194 List<Block> blocks(1000);
195
196 while (total_allocated < 5 * code_range_size) {
197 if (current_allocated < code_range_size / 10) {
198 // Allocate a block.
199 // Geometrically distributed sizes, greater than Page::kPageSize.
200 size_t requested = (Page::kPageSize << (Pseudorandom() % 6)) +
201 Pseudorandom() % 5000 + 1;
202 size_t allocated = 0;
203 void* base = code_range->AllocateRawMemory(requested, &allocated);
204 CHECK(base != NULL);
205 blocks.Add(Block(base, static_cast<int>(allocated)));
206 current_allocated += static_cast<int>(allocated);
207 total_allocated += static_cast<int>(allocated);
208 } else {
209 // Free a block.
210 int index = Pseudorandom() % blocks.length();
211 code_range->FreeRawMemory(blocks[index].base, blocks[index].size);
212 current_allocated -= blocks[index].size;
213 if (index < blocks.length() - 1) {
214 blocks[index] = blocks.RemoveLast();
215 } else {
216 blocks.RemoveLast();
217 }
218 }
219 }
220
221 code_range->TearDown();
222 delete code_range;
223 }
224