1
2 /*--------------------------------------------------------------------*/
3 /*--- An ordered set implemented using an AVL tree. m_oset.c ---*/
4 /*--------------------------------------------------------------------*/
5
6 /*
7 This file is part of Valgrind, a dynamic binary instrumentation
8 framework.
9
10 Copyright (C) 2005-2010 Nicholas Nethercote
11 njn@valgrind.org
12
13 This program is free software; you can redistribute it and/or
14 modify it under the terms of the GNU General Public License as
15 published by the Free Software Foundation; either version 2 of the
16 License, or (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26 02111-1307, USA.
27
28 The GNU General Public License is contained in the file COPYING.
29 */
30
31 //----------------------------------------------------------------------
32 // This file is based on:
33 //
34 // ANSI C Library for maintainance of AVL Balanced Trees
35 // (C) 2000 Daniel Nagy, Budapest University of Technology and Economics
36 // Released under GNU General Public License (GPL) version 2
37 //----------------------------------------------------------------------
38
39 // This file implements a generic ordered set using an AVL tree.
40 //
41 // Each node in the tree has two parts.
42 // - First is the AVL metadata, which is three words: a left pointer, a
43 // right pointer, and a word containing balancing information and a
44 // "magic" value which provides some checking that the user has not
45 // corrupted the metadata. So the overhead is 12 bytes on 32-bit
46 // platforms and 24 bytes on 64-bit platforms.
47 // - Second is the user's data. This can be anything. Note that because it
48 // comes after the metadata, it will only be word-aligned, even if the
49 // user data is a struct that would normally be doubleword-aligned.
50 //
51 // AvlNode* node -> +---------------+ V
52 // | struct |
53 // | AvlNode |
54 // void* element -> +---------------+ ^
55 // | element | |
56 // keyOff -> | key | elemSize
57 // +---------------+ v
58 //
59 // Users have to allocate AvlNodes with OSetGen_AllocNode(), which allocates
60 // space for the metadata.
61 //
62 // The terminology used throughout this file:
63 // - a "node", usually called "n", is a pointer to the metadata.
64 // - an "element", usually called "e", is a pointer to the user data.
65 // - a "key", usually called "k", is a pointer to a key.
66 //
67 // The helper functions elem_of_node and node_of_elem do the pointer
68 // arithmetic to switch between the node and the element. The node magic is
69 // checked after each operation to make sure that we're really operating on
70 // an AvlNode.
71 //
72 // Each tree also has an iterator. Note that we cannot use the iterator
73 // internally within this file (eg. we could implement OSetGen_Size() by
74 // stepping through with the iterator and counting nodes) because it's
75 // non-reentrant -- the user might be using it themselves, and the
76 // concurrent uses would screw things up.
77
78 #include "pub_core_basics.h"
79 #include "pub_core_libcbase.h"
80 #include "pub_core_libcassert.h"
81 #include "pub_core_libcprint.h"
82 #include "pub_core_oset.h"
83
84 /*--------------------------------------------------------------------*/
85 /*--- Types and constants ---*/
86 /*--------------------------------------------------------------------*/
87
88 typedef struct _OSetNode OSetNode;
89
90 // Internal names for the OSet types.
91 typedef OSet AvlTree;
92 typedef OSetNode AvlNode;
93
94 // The padding ensures that magic is right at the end of the node,
95 // regardless of the machine's word size, so that any overwrites will be
96 // detected earlier.
97 struct _OSetNode {
98 AvlNode* left;
99 AvlNode* right;
100 Char balance;
101 Char padding[sizeof(void*)-sizeof(Char)-sizeof(Short)];
102 Short magic;
103 };
104
105 #define STACK_MAX 32 // At most 2**32 entries can be iterated over
106 #define OSET_MAGIC 0x5b1f
107
108 // An OSet (AVL tree). If cmp is NULL, the key must be a UWord, and must
109 // be the first word in the element. If cmp is set, arbitrary keys in
110 // arbitrary positions can be used.
111 struct _OSet {
112 SizeT keyOff; // key offset
113 OSetCmp_t cmp; // compare a key and an element, or NULL
114 OSetAlloc_t alloc; // allocator
115 HChar* cc; // cc for allocator
116 OSetFree_t free; // deallocator
117 Word nElems; // number of elements in the tree
118 AvlNode* root; // root node
119
120 AvlNode* nodeStack[STACK_MAX]; // Iterator node stack
121 Int numStack[STACK_MAX]; // Iterator num stack
122 Int stackTop; // Iterator stack pointer, one past end
123 };
124
125 /*--------------------------------------------------------------------*/
126 /*--- Helper operations ---*/
127 /*--------------------------------------------------------------------*/
128
129 // Given a pointer to the node's element, return the pointer to the AvlNode
130 // structure. If the node has a bad magic number, it will die with an
131 // assertion failure.
132 static inline
node_of_elem(const void * elem)133 AvlNode* node_of_elem(const void *elem)
134 {
135 AvlNode* n = (AvlNode*)((Addr)elem - sizeof(AvlNode));
136 vg_assert2(n->magic == OSET_MAGIC,
137 "bad magic on node %p = %x (expected %x)\n"
138 "possible causes:\n"
139 " - node not allocated with VG_(OSetGen_AllocNode)()?\n"
140 " - node metadata corrupted by underwriting start of element?\n",
141 n, n->magic, OSET_MAGIC);
142 return n;
143 }
144
145 // Given an AvlNode, return the pointer to the element.
146 static inline
elem_of_node(const AvlNode * n)147 void* elem_of_node(const AvlNode *n)
148 {
149 vg_assert2(n->magic == OSET_MAGIC,
150 "bad magic on node %p = %x (expected %x)\n"
151 "possible causes:\n"
152 " - node metadata corrupted by overwriting end of element?\n",
153 n, n->magic, OSET_MAGIC);
154 return (void*)((Addr)n + sizeof(AvlNode));
155 }
156
157 // Like elem_of_node, but no magic checking.
158 static inline
elem_of_node_no_check(const AvlNode * n)159 void* elem_of_node_no_check(const AvlNode *n)
160 {
161 return (void*)((Addr)n + sizeof(AvlNode));
162 }
163
164 static inline
slow_key_of_node(AvlTree * t,AvlNode * n)165 void* slow_key_of_node(AvlTree* t, AvlNode* n)
166 {
167 return (void*)((Addr)elem_of_node(n) + t->keyOff);
168 }
169
170 static inline
fast_key_of_node(AvlNode * n)171 void* fast_key_of_node(AvlNode* n)
172 {
173 return elem_of_node(n);
174 }
175
176 // Compare the first word of each element. Inlining is *crucial*.
fast_cmp(const void * k,const AvlNode * n)177 static inline Word fast_cmp(const void* k, const AvlNode* n)
178 {
179 UWord w1 = *(UWord*)k;
180 UWord w2 = *(UWord*)elem_of_node(n);
181 // In previous versions, we tried to do this faster by doing
182 // "return w1 - w2". But it didn't work reliably, because the
183 // complete result of subtracting two N-bit numbers is an N+1-bit
184 // number, and what the caller is interested in is the sign of
185 // the complete N+1-bit result. The branching version is slightly
186 // slower, but safer and easier to understand.
187 if (w1 > w2) return 1;
188 if (w1 < w2) return -1;
189 return 0;
190 }
191
192 // Compare a key and an element. Inlining is *crucial*.
193 static
slow_cmp(const AvlTree * t,const void * k,const AvlNode * n)194 inline Word slow_cmp(const AvlTree* t, const void* k, const AvlNode* n)
195 {
196 return t->cmp(k, elem_of_node(n));
197 }
198
199
200 // Swing to the left. Warning: no balance maintainance.
avl_swl(AvlNode ** root)201 static void avl_swl ( AvlNode** root )
202 {
203 AvlNode* a = *root;
204 AvlNode* b = a->right;
205 *root = b;
206 a->right = b->left;
207 b->left = a;
208 }
209
210 // Swing to the right. Warning: no balance maintainance.
avl_swr(AvlNode ** root)211 static void avl_swr ( AvlNode** root )
212 {
213 AvlNode* a = *root;
214 AvlNode* b = a->left;
215 *root = b;
216 a->left = b->right;
217 b->right = a;
218 }
219
220 // Balance maintainance after especially nasty swings.
avl_nasty(AvlNode * root)221 static void avl_nasty ( AvlNode* root )
222 {
223 switch (root->balance) {
224 case -1:
225 root->left->balance = 0;
226 root->right->balance = 1;
227 break;
228 case 1:
229 root->left->balance =-1;
230 root->right->balance = 0;
231 break;
232 case 0:
233 root->left->balance = 0;
234 root->right->balance = 0;
235 }
236 root->balance = 0;
237 }
238
239
240 // Clear the iterator stack.
stackClear(AvlTree * t)241 static void stackClear(AvlTree* t)
242 {
243 Int i;
244 vg_assert(t);
245 for (i = 0; i < STACK_MAX; i++) {
246 t->nodeStack[i] = NULL;
247 t->numStack[i] = 0;
248 }
249 t->stackTop = 0;
250 }
251
252 // Push onto the iterator stack.
stackPush(AvlTree * t,AvlNode * n,Int i)253 static inline void stackPush(AvlTree* t, AvlNode* n, Int i)
254 {
255 vg_assert(t->stackTop < STACK_MAX);
256 vg_assert(1 <= i && i <= 3);
257 t->nodeStack[t->stackTop] = n;
258 t-> numStack[t->stackTop] = i;
259 t->stackTop++;
260 }
261
262 // Pop from the iterator stack.
stackPop(AvlTree * t,AvlNode ** n,Int * i)263 static inline Bool stackPop(AvlTree* t, AvlNode** n, Int* i)
264 {
265 vg_assert(t->stackTop <= STACK_MAX);
266
267 if (t->stackTop > 0) {
268 t->stackTop--;
269 *n = t->nodeStack[t->stackTop];
270 *i = t-> numStack[t->stackTop];
271 vg_assert(1 <= *i && *i <= 3);
272 t->nodeStack[t->stackTop] = NULL;
273 t-> numStack[t->stackTop] = 0;
274 return True;
275 } else {
276 return False;
277 }
278 }
279
280 /*--------------------------------------------------------------------*/
281 /*--- Creating and destroying AvlTrees and AvlNodes ---*/
282 /*--------------------------------------------------------------------*/
283
284 // The underscores avoid GCC complaints about overshadowing global names.
VG_(OSetGen_Create)285 AvlTree* VG_(OSetGen_Create)(PtrdiffT _keyOff, OSetCmp_t _cmp,
286 OSetAlloc_t _alloc, HChar* _cc,
287 OSetFree_t _free)
288 {
289 AvlTree* t;
290
291 // Check the padding is right and the AvlNode is the expected size.
292 vg_assert(sizeof(AvlNode) == 3*sizeof(void*));
293
294 // Sanity check args
295 vg_assert(_alloc);
296 vg_assert(_free);
297 if (!_cmp) vg_assert(0 == _keyOff); // If no cmp, offset must be zero
298
299 t = _alloc(_cc, sizeof(AvlTree));
300 t->keyOff = _keyOff;
301 t->cmp = _cmp;
302 t->alloc = _alloc;
303 t->cc = _cc;
304 t->free = _free;
305 t->nElems = 0;
306 t->root = NULL;
307 stackClear(t);
308
309 return t;
310 }
311
VG_(OSetWord_Create)312 AvlTree* VG_(OSetWord_Create)(OSetAlloc_t _alloc, HChar* _cc,
313 OSetFree_t _free)
314 {
315 return VG_(OSetGen_Create)(/*keyOff*/0, /*cmp*/NULL, _alloc, _cc, _free);
316 }
317
318 // Destructor, frees up all memory held by remaining nodes.
VG_(OSetGen_Destroy)319 void VG_(OSetGen_Destroy)(AvlTree* t)
320 {
321 AvlNode* n = NULL;
322 Int i = 0;
323 Word sz = 0;
324
325 vg_assert(t);
326 stackClear(t);
327 if (t->root)
328 stackPush(t, t->root, 1);
329
330 /* Free all the AvlNodes. This is a post-order traversal, because we */
331 /* must free all children of a node before the node itself. */
332 while (stackPop(t, &n, &i)) {
333 switch (i) {
334 case 1:
335 stackPush(t, n, 2);
336 if (n->left) stackPush(t, n->left, 1);
337 break;
338 case 2:
339 stackPush(t, n, 3);
340 if (n->right) stackPush(t, n->right, 1);
341 break;
342 case 3:
343 t->free(n);
344 sz++;
345 break;
346 }
347 }
348 vg_assert(sz == t->nElems);
349
350 /* Free the AvlTree itself. */
351 t->free(t);
352 }
353
VG_(OSetWord_Destroy)354 void VG_(OSetWord_Destroy)(AvlTree* t)
355 {
356 VG_(OSetGen_Destroy)(t);
357 }
358
359 // Allocate and initialise a new node.
VG_(OSetGen_AllocNode)360 void* VG_(OSetGen_AllocNode)(AvlTree* t, SizeT elemSize)
361 {
362 Int nodeSize = sizeof(AvlNode) + elemSize;
363 AvlNode* n = t->alloc( t->cc, nodeSize );
364 vg_assert(elemSize > 0);
365 VG_(memset)(n, 0, nodeSize);
366 n->magic = OSET_MAGIC;
367 return elem_of_node(n);
368 }
369
VG_(OSetGen_FreeNode)370 void VG_(OSetGen_FreeNode)(AvlTree* t, void* e)
371 {
372 t->free( node_of_elem(e) );
373 }
374
375 /*--------------------------------------------------------------------*/
376 /*--- Insertion ---*/
377 /*--------------------------------------------------------------------*/
378
cmp_key_root(AvlTree * t,AvlNode * n)379 static inline Word cmp_key_root(AvlTree* t, AvlNode* n)
380 {
381 return t->cmp
382 ? slow_cmp(t, slow_key_of_node(t, n), t->root)
383 : fast_cmp( fast_key_of_node( n), t->root);
384 }
385
386 // Insert element e into the non-empty AVL tree t.
387 // Returns True if the depth of the tree has grown.
avl_insert(AvlTree * t,AvlNode * n)388 static Bool avl_insert(AvlTree* t, AvlNode* n)
389 {
390 Word cmpres = cmp_key_root(t, n);
391
392 if (cmpres < 0) {
393 // Insert into the left subtree.
394 if (t->root->left) {
395 // Only need to set the used fields in the subtree.
396 AvlTree left_subtree;
397 left_subtree.root = t->root->left;
398 left_subtree.cmp = t->cmp;
399 left_subtree.keyOff = t->keyOff;
400 if (avl_insert(&left_subtree, n)) {
401 switch (t->root->balance--) {
402 case 1: return False;
403 case 0: return True;
404 }
405 if (t->root->left->balance < 0) {
406 avl_swr(&(t->root));
407 t->root->balance = 0;
408 t->root->right->balance = 0;
409 } else {
410 avl_swl(&(t->root->left));
411 avl_swr(&(t->root));
412 avl_nasty(t->root);
413 }
414 } else {
415 t->root->left=left_subtree.root;
416 }
417 return False;
418 } else {
419 t->root->left = n;
420 if (t->root->balance--) return False;
421 return True;
422 }
423
424 } else if (cmpres > 0) {
425 // Insert into the right subtree
426 if (t->root->right) {
427 // Only need to set the used fields in the subtree.
428 AvlTree right_subtree;
429 right_subtree.root = t->root->right;
430 right_subtree.cmp = t->cmp;
431 right_subtree.keyOff = t->keyOff;
432 if (avl_insert(&right_subtree, n)) {
433 switch (t->root->balance++) {
434 case -1: return False;
435 case 0: return True;
436 }
437 if (t->root->right->balance > 0) {
438 avl_swl(&(t->root));
439 t->root->balance = 0;
440 t->root->left->balance = 0;
441 } else {
442 avl_swr(&(t->root->right));
443 avl_swl(&(t->root));
444 avl_nasty(t->root);
445 }
446 } else {
447 t->root->right=right_subtree.root;
448 }
449 return False;
450 } else {
451 t->root->right = n;
452 if (t->root->balance++) return False;
453 return True;
454 }
455
456 } else {
457 vg_assert2(0, "OSet{Word,Gen}_Insert: duplicate element added");
458 }
459 }
460
461 // Insert element e into the AVL tree t. This is just a wrapper for
462 // avl_insert() which doesn't return a Bool.
VG_(OSetGen_Insert)463 void VG_(OSetGen_Insert)(AvlTree* t, void* e)
464 {
465 AvlNode* n;
466
467 vg_assert(t);
468
469 // Initialise. Even though OSetGen_AllocNode zeroes these fields,
470 // we should do it again in case a node is removed and then
471 // re-added to the tree.
472 n = node_of_elem(e);
473 n->left = 0;
474 n->right = 0;
475 n->balance = 0;
476
477 // Insert into an empty tree
478 if (!t->root) {
479 t->root = n;
480 } else {
481 avl_insert(t, n);
482 }
483
484 t->nElems++;
485 t->stackTop = 0; // So the iterator can't get out of sync
486 }
487
VG_(OSetWord_Insert)488 void VG_(OSetWord_Insert)(AvlTree* t, UWord val)
489 {
490 Word* node = VG_(OSetGen_AllocNode)(t, sizeof(UWord));
491 *node = val;
492 VG_(OSetGen_Insert)(t, node);
493 }
494
495 /*--------------------------------------------------------------------*/
496 /*--- Lookup ---*/
497 /*--------------------------------------------------------------------*/
498
499 // Find the *node* in t matching k, or NULL if not found.
avl_lookup(const AvlTree * t,const void * k)500 static AvlNode* avl_lookup(const AvlTree* t, const void* k)
501 {
502 Word cmpres;
503 AvlNode* curr = t->root;
504
505 if (t->cmp) {
506 // General case
507 while (True) {
508 if (curr == NULL) return NULL;
509 cmpres = slow_cmp(t, k, curr);
510 if (cmpres < 0) curr = curr->left;
511 else if (cmpres > 0) curr = curr->right;
512 else return curr;
513 }
514 } else {
515 // Fast-track special case. We use the no-check version of
516 // elem_of_node because it saves about 10% on lookup time. This
517 // shouldn't be very dangerous because each node will have been
518 // checked on insertion.
519 UWord w1 = *(UWord*)k;
520 UWord w2;
521 while (True) {
522 if (curr == NULL) return NULL;
523 w2 = *(UWord*)elem_of_node_no_check(curr);
524 if (w1 < w2) curr = curr->left;
525 else if (w1 > w2) curr = curr->right;
526 else return curr;
527 }
528 }
529 }
530
531 // Find the *element* in t matching k, or NULL if not found.
VG_(OSetGen_Lookup)532 void* VG_(OSetGen_Lookup)(const AvlTree* t, const void* k)
533 {
534 AvlNode* n;
535 vg_assert(t);
536 n = avl_lookup(t, k);
537 return ( n ? elem_of_node(n) : NULL );
538 }
539
540 // Find the *element* in t matching k, or NULL if not found; use the given
541 // comparison function rather than the standard one.
VG_(OSetGen_LookupWithCmp)542 void* VG_(OSetGen_LookupWithCmp)(AvlTree* t, const void* k, OSetCmp_t cmp)
543 {
544 // Save the normal one to the side, then restore once we're done.
545 void* e;
546 OSetCmp_t tmpcmp;
547 vg_assert(t);
548 tmpcmp = t->cmp;
549 t->cmp = cmp;
550 e = VG_(OSetGen_Lookup)(t, k);
551 t->cmp = tmpcmp;
552 return e;
553 }
554
555 // Is there an element matching k?
VG_(OSetGen_Contains)556 Bool VG_(OSetGen_Contains)(const AvlTree* t, const void* k)
557 {
558 return (NULL != VG_(OSetGen_Lookup)(t, k));
559 }
560
VG_(OSetWord_Contains)561 Bool VG_(OSetWord_Contains)(AvlTree* t, UWord val)
562 {
563 return (NULL != VG_(OSetGen_Lookup)(t, &val));
564 }
565
566 /*--------------------------------------------------------------------*/
567 /*--- Deletion ---*/
568 /*--------------------------------------------------------------------*/
569
570 static Bool avl_removeroot(AvlTree* t);
571
572 // Remove an already-selected node n from the AVL tree t.
573 // Returns True if the depth of the tree has shrunk.
avl_remove(AvlTree * t,AvlNode * n)574 static Bool avl_remove(AvlTree* t, AvlNode* n)
575 {
576 Bool ch;
577 Word cmpres = cmp_key_root(t, n);
578
579 if (cmpres < 0) {
580 AvlTree left_subtree;
581 // Remove from the left subtree
582 vg_assert(t->root->left);
583 // Only need to set the used fields in the subtree.
584 left_subtree.root = t->root->left;
585 left_subtree.cmp = t->cmp;
586 left_subtree.keyOff = t->keyOff;
587 ch = avl_remove(&left_subtree, n);
588 t->root->left = left_subtree.root;
589 if (ch) {
590 switch (t->root->balance++) {
591 case -1: return True;
592 case 0: return False;
593 }
594 switch (t->root->right->balance) {
595 case 0:
596 avl_swl(&(t->root));
597 t->root->balance = -1;
598 t->root->left->balance = 1;
599 return False;
600 case 1:
601 avl_swl(&(t->root));
602 t->root->balance = 0;
603 t->root->left->balance = 0;
604 return True;
605 }
606 avl_swr(&(t->root->right));
607 avl_swl(&(t->root));
608 avl_nasty(t->root);
609 return True;
610 } else {
611 return False;
612 }
613
614 } else if (cmpres > 0) {
615 // Remove from the right subtree
616 AvlTree right_subtree;
617 vg_assert(t->root->right);
618 // Only need to set the used fields in the subtree.
619 right_subtree.root = t->root->right;
620 right_subtree.cmp = t->cmp;
621 right_subtree.keyOff = t->keyOff;
622 ch = avl_remove(&right_subtree, n);
623 t->root->right = right_subtree.root;
624 if (ch) {
625 switch (t->root->balance--) {
626 case 1: return True;
627 case 0: return False;
628 }
629 switch (t->root->left->balance) {
630 case 0:
631 avl_swr(&(t->root));
632 t->root->balance = 1;
633 t->root->right->balance = -1;
634 return False;
635 case -1:
636 avl_swr(&(t->root));
637 t->root->balance = 0;
638 t->root->right->balance = 0;
639 return True;
640 }
641 avl_swl(&(t->root->left));
642 avl_swr(&(t->root));
643 avl_nasty(t->root);
644 return True;
645 } else {
646 return False;
647 }
648
649 } else {
650 // Found the node to be removed.
651 vg_assert(t->root == n);
652 return avl_removeroot(t);
653 }
654 }
655
656 // Remove the root of the AVL tree t.
657 // Returns True if the depth of the tree has shrunk.
avl_removeroot(AvlTree * t)658 static Bool avl_removeroot(AvlTree* t)
659 {
660 Bool ch;
661 AvlNode* n;
662
663 if (!t->root->left) {
664 if (!t->root->right) {
665 t->root = NULL;
666 return True;
667 }
668 t->root = t->root->right;
669 return True;
670 }
671 if (!t->root->right) {
672 t->root = t->root->left;
673 return True;
674 }
675 if (t->root->balance < 0) {
676 // Remove from the left subtree
677 n = t->root->left;
678 while (n->right) n = n->right;
679 } else {
680 // Remove from the right subtree
681 n = t->root->right;
682 while (n->left) n = n->left;
683 }
684 ch = avl_remove(t, n);
685 n->left = t->root->left;
686 n->right = t->root->right;
687 n->balance = t->root->balance;
688 t->root = n;
689 if (n->balance == 0) return ch;
690 return False;
691 }
692
693 // Remove and return the element matching the key 'k', or NULL
694 // if not present.
VG_(OSetGen_Remove)695 void* VG_(OSetGen_Remove)(AvlTree* t, const void* k)
696 {
697 // Have to find the node first, then remove it.
698 AvlNode* n = avl_lookup(t, k);
699 if (n) {
700 avl_remove(t, n);
701 t->nElems--;
702 t->stackTop = 0; // So the iterator can't get out of sync
703 return elem_of_node(n);
704 } else {
705 return NULL;
706 }
707 }
708
VG_(OSetWord_Remove)709 Bool VG_(OSetWord_Remove)(AvlTree* t, UWord val)
710 {
711 void* n = VG_(OSetGen_Remove)(t, &val);
712 if (n) {
713 VG_(OSetGen_FreeNode)(t, n);
714 return True;
715 } else {
716 return False;
717 }
718 }
719
720 /*--------------------------------------------------------------------*/
721 /*--- Iterator ---*/
722 /*--------------------------------------------------------------------*/
723
724 // The iterator is implemented using in-order traversal with an explicit
725 // stack, which lets us do the traversal one step at a time and remember
726 // where we are between each call to OSetGen_Next().
727
VG_(OSetGen_ResetIter)728 void VG_(OSetGen_ResetIter)(AvlTree* t)
729 {
730 vg_assert(t);
731 stackClear(t);
732 if (t->root)
733 stackPush(t, t->root, 1);
734 }
735
VG_(OSetWord_ResetIter)736 void VG_(OSetWord_ResetIter)(AvlTree* t)
737 {
738 VG_(OSetGen_ResetIter)(t);
739 }
740
VG_(OSetGen_Next)741 void* VG_(OSetGen_Next)(AvlTree* t)
742 {
743 Int i = 0;
744 OSetNode* n = NULL;
745
746 vg_assert(t);
747
748 // This in-order traversal requires each node to be pushed and popped
749 // three times. These could be avoided by updating nodes in-situ on the
750 // top of the stack, but the push/pop cost is so small that it's worth
751 // keeping this loop in this simpler form.
752 while (stackPop(t, &n, &i)) {
753 switch (i) {
754 case 1: case_1:
755 stackPush(t, n, 2);
756 /* if (n->left) stackPush(t, n->left, 1); */
757 if (n->left) { n = n->left; goto case_1; }
758 break;
759 case 2:
760 stackPush(t, n, 3);
761 return elem_of_node(n);
762 case 3:
763 /* if (n->right) stackPush(t, n->right, 1); */
764 if (n->right) { n = n->right; goto case_1; }
765 break;
766 }
767 }
768
769 // Stack empty, iterator is exhausted, return NULL
770 return NULL;
771 }
772
VG_(OSetWord_Next)773 Bool VG_(OSetWord_Next)(AvlTree* t, UWord* val)
774 {
775 UWord* n = VG_(OSetGen_Next)(t);
776 if (n) {
777 *val = *n;
778 return True;
779 } else {
780 return False;
781 }
782 }
783
784 // set up 'oset' for iteration so that the first key subsequently
785 // produced VG_(OSetGen_Next) is the smallest key in the map
786 // >= start_at. Naturally ">=" is defined by the comparison
787 // function supplied to VG_(OSetGen_Create).
VG_(OSetGen_ResetIterAt)788 void VG_(OSetGen_ResetIterAt)(AvlTree* oset, const void* k)
789 {
790 Int i;
791 AvlNode *n, *t;
792 Word cmpresS; /* signed */
793 UWord cmpresU; /* unsigned */
794
795 vg_assert(oset);
796 stackClear(oset);
797
798 if (!oset->root)
799 return;
800
801 n = NULL;
802 // We need to do regular search and fill in the stack.
803 t = oset->root;
804
805 while (True) {
806 if (t == NULL) return;
807
808 if (oset->cmp) {
809 cmpresS = (Word)slow_cmp(oset, k, t);
810 } else {
811 cmpresS = fast_cmp(k, t);
812 }
813
814 /* Switch the sense of the comparison, since the comparison
815 order of args (k vs t) above is opposite to that of the
816 corresponding code in hg_wordfm.c. */
817 if (cmpresS < 0) { cmpresS = 1; }
818 else if (cmpresS > 0) { cmpresS = -1; }
819
820 if (cmpresS == 0) {
821 // We found the exact key -- we are done.
822 // The iteration should start with this node.
823 stackPush(oset, t, 2);
824 // The stack now looks like {2, 2, ... ,2, 2}
825 return;
826 }
827 cmpresU = (UWord)cmpresS;
828 cmpresU >>=/*unsigned*/ (8 * sizeof(cmpresU) - 1);
829 vg_assert(cmpresU == 0 || cmpresU == 1);
830 if (!cmpresU) {
831 // Push this node only if we go to the left child.
832 stackPush(oset, t, 2);
833 }
834 t = cmpresU==0 ? t->left : t->right;
835 }
836 if (stackPop(oset, &n, &i)) {
837 // If we've pushed something to stack and did not find the exact key,
838 // we must fix the top element of stack.
839 vg_assert(i == 2);
840 stackPush(oset, n, 3);
841 // the stack looks like {2, 2, ..., 2, 3}
842 }
843 }
844
845 /*--------------------------------------------------------------------*/
846 /*--- Miscellaneous operations ---*/
847 /*--------------------------------------------------------------------*/
848
VG_(OSetGen_Size)849 Word VG_(OSetGen_Size)(const AvlTree* t)
850 {
851 vg_assert(t);
852 return t->nElems;
853 }
854
VG_(OSetWord_Size)855 Word VG_(OSetWord_Size)(AvlTree* t)
856 {
857 return VG_(OSetGen_Size)(t);
858 }
859
OSet_Print2(AvlTree * t,AvlNode * n,Char * (* strElem)(void *),Int p)860 static void OSet_Print2( AvlTree* t, AvlNode* n,
861 Char*(*strElem)(void *), Int p )
862 {
863 // This is a recursive in-order traversal.
864 Int q = p;
865 if (NULL == n) return;
866 if (n->right) OSet_Print2(t, n->right, strElem, p+1);
867 while (q--) VG_(printf)(".. ");
868 VG_(printf)("%s\n", strElem(elem_of_node(n)));
869 if (n->left) OSet_Print2(t, n->left, strElem, p+1);
870 }
871
872 __attribute__((unused))
OSet_Print(AvlTree * t,const HChar * where,Char * (* strElem)(void *))873 static void OSet_Print( AvlTree* t, const HChar *where, Char*(*strElem)(void *) )
874 {
875 VG_(printf)("-- start %s ----------------\n", where);
876 OSet_Print2(t, t->root, strElem, 0);
877 VG_(printf)("-- end %s ----------------\n", where);
878 }
879
880 /*--------------------------------------------------------------------*/
881 /*--- end ---*/
882 /*--------------------------------------------------------------------*/
883