• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc.
2 //
3 // This code is licensed under the same terms as WebM:
4 //  Software License Agreement:  http://www.webmproject.org/license/software/
5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // speed-critical functions.
9 //
10 // Author: Skal (pascal.massimino@gmail.com)
11 
12 #include <assert.h>
13 #include "vp8enci.h"
14 
15 #if defined(__cplusplus) || defined(c_plusplus)
16 extern "C" {
17 #endif
18 
19 //-----------------------------------------------------------------------------
20 // Compute susceptibility based on DCT-coeff histograms:
21 // the higher, the "easier" the macroblock is to compress.
22 
ClipAlpha(int alpha)23 static int ClipAlpha(int alpha) {
24   return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
25 }
26 
VP8GetAlpha(const int histo[MAX_COEFF_THRESH+1])27 int VP8GetAlpha(const int histo[MAX_COEFF_THRESH + 1]) {
28   int num = 0, den = 0, val = 0;
29   int k;
30   int alpha;
31   // note: changing this loop to avoid the numerous "k + 1" slows things down.
32   for (k = 0; k < MAX_COEFF_THRESH; ++k) {
33     if (histo[k + 1]) {
34       val += histo[k + 1];
35       num += val * (k + 1);
36       den += (k + 1) * (k + 1);
37     }
38   }
39   // we scale the value to a usable [0..255] range
40   alpha = den ? 10 * num / den - 5 : 0;
41   return ClipAlpha(alpha);
42 }
43 
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block)44 static int CollectHistogram(const uint8_t* ref, const uint8_t* pred,
45                             int start_block, int end_block) {
46   int histo[MAX_COEFF_THRESH + 1] = { 0 };
47   int16_t out[16];
48   int j, k;
49   for (j = start_block; j < end_block; ++j) {
50     VP8FTransform(ref + VP8Scan[j], pred + VP8Scan[j], out);
51 
52     // Convert coefficients to bin (within out[]).
53     for (k = 0; k < 16; ++k) {
54       const int v = abs(out[k]) >> 2;
55       out[k] = (v > MAX_COEFF_THRESH) ? MAX_COEFF_THRESH : v;
56     }
57 
58     // Use bin to update histogram.
59     for (k = 0; k < 16; ++k) {
60       histo[out[k]]++;
61     }
62   }
63 
64   return VP8GetAlpha(histo);
65 }
66 
67 //-----------------------------------------------------------------------------
68 // run-time tables (~4k)
69 
70 static uint8_t clip1[255 + 510 + 1];    // clips [-255,510] to [0,255]
71 
72 // We declare this variable 'volatile' to prevent instruction reordering
73 // and make sure it's set to true _last_ (so as to be thread-safe)
74 static volatile int tables_ok = 0;
75 
InitTables(void)76 static void InitTables(void) {
77   if (!tables_ok) {
78     int i;
79     for (i = -255; i <= 255 + 255; ++i) {
80       clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
81     }
82     tables_ok = 1;
83   }
84 }
85 
clip_8b(int v)86 static inline uint8_t clip_8b(int v) {
87   return (!(v & ~0xff)) ? v : v < 0 ? 0 : 255;
88 }
89 
90 //-----------------------------------------------------------------------------
91 // Transforms (Paragraph 14.4)
92 
93 #define STORE(x, y, v) \
94   dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
95 
96 static const int kC1 = 20091 + (1 << 16);
97 static const int kC2 = 35468;
98 #define MUL(a, b) (((a) * (b)) >> 16)
99 
ITransformOne(const uint8_t * ref,const int16_t * in,uint8_t * dst)100 static inline void ITransformOne(const uint8_t* ref, const int16_t* in,
101                                  uint8_t* dst) {
102   int C[4 * 4], *tmp;
103   int i;
104   tmp = C;
105   for (i = 0; i < 4; ++i) {    // vertical pass
106     const int a = in[0] + in[8];
107     const int b = in[0] - in[8];
108     const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
109     const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
110     tmp[0] = a + d;
111     tmp[1] = b + c;
112     tmp[2] = b - c;
113     tmp[3] = a - d;
114     tmp += 4;
115     in++;
116   }
117 
118   tmp = C;
119   for (i = 0; i < 4; ++i) {    // horizontal pass
120     const int dc = tmp[0] + 4;
121     const int a =  dc +  tmp[8];
122     const int b =  dc -  tmp[8];
123     const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
124     const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
125     STORE(0, i, a + d);
126     STORE(1, i, b + c);
127     STORE(2, i, b - c);
128     STORE(3, i, a - d);
129     tmp++;
130   }
131 }
132 
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)133 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
134                        int do_two) {
135   ITransformOne(ref, in, dst);
136   if (do_two) {
137     ITransformOne(ref + 4, in + 16, dst + 4);
138   }
139 }
140 
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)141 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
142   int i;
143   int tmp[16];
144   for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
145     const int d0 = src[0] - ref[0];
146     const int d1 = src[1] - ref[1];
147     const int d2 = src[2] - ref[2];
148     const int d3 = src[3] - ref[3];
149     const int a0 = (d0 + d3) << 3;
150     const int a1 = (d1 + d2) << 3;
151     const int a2 = (d1 - d2) << 3;
152     const int a3 = (d0 - d3) << 3;
153     tmp[0 + i * 4] = (a0 + a1);
154     tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 14500) >> 12;
155     tmp[2 + i * 4] = (a0 - a1);
156     tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 +  7500) >> 12;
157   }
158   for (i = 0; i < 4; ++i) {
159     const int a0 = (tmp[0 + i] + tmp[12 + i]);
160     const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
161     const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
162     const int a3 = (tmp[0 + i] - tmp[12 + i]);
163     out[0 + i] = (a0 + a1 + 7) >> 4;
164     out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
165     out[8 + i] = (a0 - a1 + 7) >> 4;
166     out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
167   }
168 }
169 
ITransformWHT(const int16_t * in,int16_t * out)170 static void ITransformWHT(const int16_t* in, int16_t* out) {
171   int tmp[16];
172   int i;
173   for (i = 0; i < 4; ++i) {
174     const int a0 = in[0 + i] + in[12 + i];
175     const int a1 = in[4 + i] + in[ 8 + i];
176     const int a2 = in[4 + i] - in[ 8 + i];
177     const int a3 = in[0 + i] - in[12 + i];
178     tmp[0  + i] = a0 + a1;
179     tmp[8  + i] = a0 - a1;
180     tmp[4  + i] = a3 + a2;
181     tmp[12 + i] = a3 - a2;
182   }
183   for (i = 0; i < 4; ++i) {
184     const int dc = tmp[0 + i * 4] + 3;    // w/ rounder
185     const int a0 = dc             + tmp[3 + i * 4];
186     const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
187     const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
188     const int a3 = dc             - tmp[3 + i * 4];
189     out[ 0] = (a0 + a1) >> 3;
190     out[16] = (a3 + a2) >> 3;
191     out[32] = (a0 - a1) >> 3;
192     out[48] = (a3 - a2) >> 3;
193     out += 64;
194   }
195 }
196 
FTransformWHT(const int16_t * in,int16_t * out)197 static void FTransformWHT(const int16_t* in, int16_t* out) {
198   int tmp[16];
199   int i;
200   for (i = 0; i < 4; ++i, in += 64) {
201     const int a0 = (in[0 * 16] + in[2 * 16]) << 2;
202     const int a1 = (in[1 * 16] + in[3 * 16]) << 2;
203     const int a2 = (in[1 * 16] - in[3 * 16]) << 2;
204     const int a3 = (in[0 * 16] - in[2 * 16]) << 2;
205     tmp[0 + i * 4] = (a0 + a1) + (a0 != 0);
206     tmp[1 + i * 4] = a3 + a2;
207     tmp[2 + i * 4] = a3 - a2;
208     tmp[3 + i * 4] = a0 - a1;
209   }
210   for (i = 0; i < 4; ++i) {
211     const int a0 = (tmp[0 + i] + tmp[8 + i]);
212     const int a1 = (tmp[4 + i] + tmp[12+ i]);
213     const int a2 = (tmp[4 + i] - tmp[12+ i]);
214     const int a3 = (tmp[0 + i] - tmp[8 + i]);
215     const int b0 = a0 + a1;
216     const int b1 = a3 + a2;
217     const int b2 = a3 - a2;
218     const int b3 = a0 - a1;
219     out[ 0 + i] = (b0 + (b0 > 0) + 3) >> 3;
220     out[ 4 + i] = (b1 + (b1 > 0) + 3) >> 3;
221     out[ 8 + i] = (b2 + (b2 > 0) + 3) >> 3;
222     out[12 + i] = (b3 + (b3 > 0) + 3) >> 3;
223   }
224 }
225 
226 #undef MUL
227 #undef STORE
228 
229 //-----------------------------------------------------------------------------
230 // Intra predictions
231 
232 #define OUT(x, y) dst[(x) + (y) * BPS]
233 
Fill(uint8_t * dst,int value,int size)234 static inline void Fill(uint8_t* dst, int value, int size) {
235   int j;
236   for (j = 0; j < size; ++j) {
237     memset(dst + j * BPS, value, size);
238   }
239 }
240 
VerticalPred(uint8_t * dst,const uint8_t * top,int size)241 static inline void VerticalPred(uint8_t* dst, const uint8_t* top, int size) {
242   int j;
243   if (top) {
244     for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
245   } else {
246     Fill(dst, 127, size);
247   }
248 }
249 
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)250 static inline void HorizontalPred(uint8_t* dst, const uint8_t* left, int size) {
251   if (left) {
252     int j;
253     for (j = 0; j < size; ++j) {
254       memset(dst + j * BPS, left[j], size);
255     }
256   } else {
257     Fill(dst, 129, size);
258   }
259 }
260 
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)261 static inline void TrueMotion(uint8_t* dst, const uint8_t* left,
262                               const uint8_t* top, int size) {
263   int y;
264   if (left) {
265     if (top) {
266       const uint8_t* const clip = clip1 + 255 - left[-1];
267       for (y = 0; y < size; ++y) {
268         const uint8_t* const clip_table = clip + left[y];
269         int x;
270         for (x = 0; x < size; ++x) {
271           dst[x] = clip_table[top[x]];
272         }
273         dst += BPS;
274       }
275     } else {
276       HorizontalPred(dst, left, size);
277     }
278   } else {
279     // true motion without left samples (hence: with default 129 value)
280     // is equivalent to VE prediction where you just copy the top samples.
281     // Note that if top samples are not available, the default value is
282     // then 129, and not 127 as in the VerticalPred case.
283     if (top) {
284       VerticalPred(dst, top, size);
285     } else {
286       Fill(dst, 129, size);
287     }
288   }
289 }
290 
DCMode(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size,int round,int shift)291 static inline void DCMode(uint8_t* dst, const uint8_t* left,
292                           const uint8_t* top,
293                           int size, int round, int shift) {
294   int DC = 0;
295   int j;
296   if (top) {
297     for (j = 0; j < size; ++j) DC += top[j];
298     if (left) {   // top and left present
299       for (j = 0; j < size; ++j) DC += left[j];
300     } else {      // top, but no left
301       DC += DC;
302     }
303     DC = (DC + round) >> shift;
304   } else if (left) {   // left but no top
305     for (j = 0; j < size; ++j) DC += left[j];
306     DC += DC;
307     DC = (DC + round) >> shift;
308   } else {   // no top, no left, nothing.
309     DC = 0x80;
310   }
311   Fill(dst, DC, size);
312 }
313 
314 //-----------------------------------------------------------------------------
315 // Chroma 8x8 prediction (paragraph 12.2)
316 
IntraChromaPreds(uint8_t * dst,const uint8_t * left,const uint8_t * top)317 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
318                              const uint8_t* top) {
319   // U block
320   DCMode(C8DC8 + dst, left, top, 8, 8, 4);
321   VerticalPred(C8VE8 + dst, top, 8);
322   HorizontalPred(C8HE8 + dst, left, 8);
323   TrueMotion(C8TM8 + dst, left, top, 8);
324   // V block
325   dst += 8;
326   if (top) top += 8;
327   if (left) left += 16;
328   DCMode(C8DC8 + dst, left, top, 8, 8, 4);
329   VerticalPred(C8VE8 + dst, top, 8);
330   HorizontalPred(C8HE8 + dst, left, 8);
331   TrueMotion(C8TM8 + dst, left, top, 8);
332 }
333 
334 //-----------------------------------------------------------------------------
335 // luma 16x16 prediction (paragraph 12.3)
336 
Intra16Preds(uint8_t * dst,const uint8_t * left,const uint8_t * top)337 static void Intra16Preds(uint8_t* dst,
338                          const uint8_t* left, const uint8_t* top) {
339   DCMode(I16DC16 + dst, left, top, 16, 16, 5);
340   VerticalPred(I16VE16 + dst, top, 16);
341   HorizontalPred(I16HE16 + dst, left, 16);
342   TrueMotion(I16TM16 + dst, left, top, 16);
343 }
344 
345 //-----------------------------------------------------------------------------
346 // luma 4x4 prediction
347 
348 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
349 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
350 
VE4(uint8_t * dst,const uint8_t * top)351 static void VE4(uint8_t* dst, const uint8_t* top) {    // vertical
352   const uint8_t vals[4] = {
353     AVG3(top[-1], top[0], top[1]),
354     AVG3(top[ 0], top[1], top[2]),
355     AVG3(top[ 1], top[2], top[3]),
356     AVG3(top[ 2], top[3], top[4])
357   };
358   int i;
359   for (i = 0; i < 4; ++i) {
360     memcpy(dst + i * BPS, vals, 4);
361   }
362 }
363 
HE4(uint8_t * dst,const uint8_t * top)364 static void HE4(uint8_t* dst, const uint8_t* top) {    // horizontal
365   const int X = top[-1];
366   const int I = top[-2];
367   const int J = top[-3];
368   const int K = top[-4];
369   const int L = top[-5];
370   *(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(X, I, J);
371   *(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(I, J, K);
372   *(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(J, K, L);
373   *(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(K, L, L);
374 }
375 
DC4(uint8_t * dst,const uint8_t * top)376 static void DC4(uint8_t* dst, const uint8_t* top) {
377   uint32_t dc = 4;
378   int i;
379   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
380   Fill(dst, dc >> 3, 4);
381 }
382 
RD4(uint8_t * dst,const uint8_t * top)383 static void RD4(uint8_t* dst, const uint8_t* top) {
384   const int X = top[-1];
385   const int I = top[-2];
386   const int J = top[-3];
387   const int K = top[-4];
388   const int L = top[-5];
389   const int A = top[0];
390   const int B = top[1];
391   const int C = top[2];
392   const int D = top[3];
393   OUT(0, 3)                                     = AVG3(J, K, L);
394   OUT(0, 2) = OUT(1, 3)                         = AVG3(I, J, K);
395   OUT(0, 1) = OUT(1, 2) = OUT(2, 3)             = AVG3(X, I, J);
396   OUT(0, 0) = OUT(1, 1) = OUT(2, 2) = OUT(3, 3) = AVG3(A, X, I);
397   OUT(1, 0) = OUT(2, 1) = OUT(3, 2)             = AVG3(B, A, X);
398   OUT(2, 0) = OUT(3, 1)                         = AVG3(C, B, A);
399   OUT(3, 0)                                     = AVG3(D, C, B);
400 }
401 
LD4(uint8_t * dst,const uint8_t * top)402 static void LD4(uint8_t* dst, const uint8_t* top) {
403   const int A = top[0];
404   const int B = top[1];
405   const int C = top[2];
406   const int D = top[3];
407   const int E = top[4];
408   const int F = top[5];
409   const int G = top[6];
410   const int H = top[7];
411   OUT(0, 0)                                     = AVG3(A, B, C);
412   OUT(1, 0) = OUT(0, 1)                         = AVG3(B, C, D);
413   OUT(2, 0) = OUT(1, 1) = OUT(0, 2)             = AVG3(C, D, E);
414   OUT(3, 0) = OUT(2, 1) = OUT(1, 2) = OUT(0, 3) = AVG3(D, E, F);
415   OUT(3, 1) = OUT(2, 2) = OUT(1, 3)             = AVG3(E, F, G);
416   OUT(3, 2) = OUT(2, 3)                         = AVG3(F, G, H);
417   OUT(3, 3)                                     = AVG3(G, H, H);
418 }
419 
VR4(uint8_t * dst,const uint8_t * top)420 static void VR4(uint8_t* dst, const uint8_t* top) {
421   const int X = top[-1];
422   const int I = top[-2];
423   const int J = top[-3];
424   const int K = top[-4];
425   const int A = top[0];
426   const int B = top[1];
427   const int C = top[2];
428   const int D = top[3];
429   OUT(0, 0) = OUT(1, 2) = AVG2(X, A);
430   OUT(1, 0) = OUT(2, 2) = AVG2(A, B);
431   OUT(2, 0) = OUT(3, 2) = AVG2(B, C);
432   OUT(3, 0)             = AVG2(C, D);
433 
434   OUT(0, 3) =             AVG3(K, J, I);
435   OUT(0, 2) =             AVG3(J, I, X);
436   OUT(0, 1) = OUT(1, 3) = AVG3(I, X, A);
437   OUT(1, 1) = OUT(2, 3) = AVG3(X, A, B);
438   OUT(2, 1) = OUT(3, 3) = AVG3(A, B, C);
439   OUT(3, 1) =             AVG3(B, C, D);
440 }
441 
VL4(uint8_t * dst,const uint8_t * top)442 static void VL4(uint8_t* dst, const uint8_t* top) {
443   const int A = top[0];
444   const int B = top[1];
445   const int C = top[2];
446   const int D = top[3];
447   const int E = top[4];
448   const int F = top[5];
449   const int G = top[6];
450   const int H = top[7];
451   OUT(0, 0) =             AVG2(A, B);
452   OUT(1, 0) = OUT(0, 2) = AVG2(B, C);
453   OUT(2, 0) = OUT(1, 2) = AVG2(C, D);
454   OUT(3, 0) = OUT(2, 2) = AVG2(D, E);
455 
456   OUT(0, 1) =             AVG3(A, B, C);
457   OUT(1, 1) = OUT(0, 3) = AVG3(B, C, D);
458   OUT(2, 1) = OUT(1, 3) = AVG3(C, D, E);
459   OUT(3, 1) = OUT(2, 3) = AVG3(D, E, F);
460               OUT(3, 2) = AVG3(E, F, G);
461               OUT(3, 3) = AVG3(F, G, H);
462 }
463 
HU4(uint8_t * dst,const uint8_t * top)464 static void HU4(uint8_t* dst, const uint8_t* top) {
465   const int I = top[-2];
466   const int J = top[-3];
467   const int K = top[-4];
468   const int L = top[-5];
469   OUT(0, 0) =             AVG2(I, J);
470   OUT(2, 0) = OUT(0, 1) = AVG2(J, K);
471   OUT(2, 1) = OUT(0, 2) = AVG2(K, L);
472   OUT(1, 0) =             AVG3(I, J, K);
473   OUT(3, 0) = OUT(1, 1) = AVG3(J, K, L);
474   OUT(3, 1) = OUT(1, 2) = AVG3(K, L, L);
475   OUT(3, 2) = OUT(2, 2) =
476   OUT(0, 3) = OUT(1, 3) = OUT(2, 3) = OUT(3, 3) = L;
477 }
478 
HD4(uint8_t * dst,const uint8_t * top)479 static void HD4(uint8_t* dst, const uint8_t* top) {
480   const int X = top[-1];
481   const int I = top[-2];
482   const int J = top[-3];
483   const int K = top[-4];
484   const int L = top[-5];
485   const int A = top[0];
486   const int B = top[1];
487   const int C = top[2];
488 
489   OUT(0, 0) = OUT(2, 1) = AVG2(I, X);
490   OUT(0, 1) = OUT(2, 2) = AVG2(J, I);
491   OUT(0, 2) = OUT(2, 3) = AVG2(K, J);
492   OUT(0, 3)             = AVG2(L, K);
493 
494   OUT(3, 0)             = AVG3(A, B, C);
495   OUT(2, 0)             = AVG3(X, A, B);
496   OUT(1, 0) = OUT(3, 1) = AVG3(I, X, A);
497   OUT(1, 1) = OUT(3, 2) = AVG3(J, I, X);
498   OUT(1, 2) = OUT(3, 3) = AVG3(K, J, I);
499   OUT(1, 3)             = AVG3(L, K, J);
500 }
501 
TM4(uint8_t * dst,const uint8_t * top)502 static void TM4(uint8_t* dst, const uint8_t* top) {
503   int x, y;
504   const uint8_t* const clip = clip1 + 255 - top[-1];
505   for (y = 0; y < 4; ++y) {
506     const uint8_t* const clip_table = clip + top[-2 - y];
507     for (x = 0; x < 4; ++x) {
508       dst[x] = clip_table[top[x]];
509     }
510     dst += BPS;
511   }
512 }
513 
514 #undef AVG3
515 #undef AVG2
516 
517 // Left samples are top[-5 .. -2], top_left is top[-1], top are
518 // located at top[0..3], and top right is top[4..7]
Intra4Preds(uint8_t * dst,const uint8_t * top)519 static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
520   DC4(I4DC4 + dst, top);
521   TM4(I4TM4 + dst, top);
522   VE4(I4VE4 + dst, top);
523   HE4(I4HE4 + dst, top);
524   RD4(I4RD4 + dst, top);
525   VR4(I4VR4 + dst, top);
526   LD4(I4LD4 + dst, top);
527   VL4(I4VL4 + dst, top);
528   HD4(I4HD4 + dst, top);
529   HU4(I4HU4 + dst, top);
530 }
531 
532 //-----------------------------------------------------------------------------
533 // Metric
534 
GetSSE(const uint8_t * a,const uint8_t * b,int w,int h)535 static inline int GetSSE(const uint8_t* a, const uint8_t* b, int w, int h) {
536   int count = 0;
537   int y, x;
538   for (y = 0; y < h; ++y) {
539     for (x = 0; x < w; ++x) {
540       const int diff = (int)a[x] - b[x];
541       count += diff * diff;
542     }
543     a += BPS;
544     b += BPS;
545   }
546   return count;
547 }
548 
SSE16x16(const uint8_t * a,const uint8_t * b)549 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
550   return GetSSE(a, b, 16, 16);
551 }
SSE16x8(const uint8_t * a,const uint8_t * b)552 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
553   return GetSSE(a, b, 16, 8);
554 }
SSE8x8(const uint8_t * a,const uint8_t * b)555 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
556   return GetSSE(a, b, 8, 8);
557 }
SSE4x4(const uint8_t * a,const uint8_t * b)558 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
559   return GetSSE(a, b, 4, 4);
560 }
561 
562 //-----------------------------------------------------------------------------
563 // Texture distortion
564 //
565 // We try to match the spectral content (weighted) between source and
566 // reconstructed samples.
567 
568 // Hadamard transform
569 // Returns the weighted sum of the absolute value of transformed coefficients.
TTransform(const uint8_t * in,const uint16_t * w)570 static int TTransform(const uint8_t* in, const uint16_t* w) {
571   int sum = 0;
572   int tmp[16];
573   int i;
574   // horizontal pass
575   for (i = 0; i < 4; ++i, in += BPS) {
576     const int a0 = (in[0] + in[2]) << 2;
577     const int a1 = (in[1] + in[3]) << 2;
578     const int a2 = (in[1] - in[3]) << 2;
579     const int a3 = (in[0] - in[2]) << 2;
580     tmp[0 + i * 4] = a0 + a1 + (a0 != 0);
581     tmp[1 + i * 4] = a3 + a2;
582     tmp[2 + i * 4] = a3 - a2;
583     tmp[3 + i * 4] = a0 - a1;
584   }
585   // vertical pass
586   for (i = 0; i < 4; ++i, ++w) {
587     const int a0 = (tmp[0 + i] + tmp[8 + i]);
588     const int a1 = (tmp[4 + i] + tmp[12+ i]);
589     const int a2 = (tmp[4 + i] - tmp[12+ i]);
590     const int a3 = (tmp[0 + i] - tmp[8 + i]);
591     const int b0 = a0 + a1;
592     const int b1 = a3 + a2;
593     const int b2 = a3 - a2;
594     const int b3 = a0 - a1;
595     // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
596     sum += w[ 0] * ((abs(b0) + 3) >> 3);
597     sum += w[ 4] * ((abs(b1) + 3) >> 3);
598     sum += w[ 8] * ((abs(b2) + 3) >> 3);
599     sum += w[12] * ((abs(b3) + 3) >> 3);
600   }
601   return sum;
602 }
603 
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)604 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
605                     const uint16_t* const w) {
606   const int sum1 = TTransform(a, w);
607   const int sum2 = TTransform(b, w);
608   return (abs(sum2 - sum1) + 8) >> 4;
609 }
610 
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)611 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
612                       const uint16_t* const w) {
613   int D = 0;
614   int x, y;
615   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
616     for (x = 0; x < 16; x += 4) {
617       D += Disto4x4(a + x + y, b + x + y, w);
618     }
619   }
620   return D;
621 }
622 
623 //-----------------------------------------------------------------------------
624 // Quantization
625 //
626 
627 // Simple quantization
QuantizeBlock(int16_t in[16],int16_t out[16],int n,const VP8Matrix * const mtx)628 static int QuantizeBlock(int16_t in[16], int16_t out[16],
629                          int n, const VP8Matrix* const mtx) {
630   int last = -1;
631   for (; n < 16; ++n) {
632     const int j = VP8Zigzag[n];
633     const int sign = (in[j] < 0);
634     int coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
635     if (coeff > 2047) coeff = 2047;
636     if (coeff > mtx->zthresh_[j]) {
637       const int Q = mtx->q_[j];
638       const int iQ = mtx->iq_[j];
639       const int B = mtx->bias_[j];
640       out[n] = QUANTDIV(coeff, iQ, B);
641       if (sign) out[n] = -out[n];
642       in[j] = out[n] * Q;
643       if (out[n]) last = n;
644     } else {
645       out[n] = 0;
646       in[j] = 0;
647     }
648   }
649   return (last >= 0);
650 }
651 
652 //-----------------------------------------------------------------------------
653 // Block copy
654 
Copy(const uint8_t * src,uint8_t * dst,int size)655 static inline void Copy(const uint8_t* src, uint8_t* dst, int size) {
656   int y;
657   for (y = 0; y < size; ++y) {
658     memcpy(dst, src, size);
659     src += BPS;
660     dst += BPS;
661   }
662 }
663 
Copy4x4(const uint8_t * src,uint8_t * dst)664 static void Copy4x4(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 4); }
Copy8x8(const uint8_t * src,uint8_t * dst)665 static void Copy8x8(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 8); }
Copy16x16(const uint8_t * src,uint8_t * dst)666 static void Copy16x16(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 16); }
667 
668 //-----------------------------------------------------------------------------
669 // SSE2 detection.
670 //
671 
672 #if defined(__pic__) && defined(__i386__)
GetCPUInfo(int cpu_info[4],int info_type)673 static inline void GetCPUInfo(int cpu_info[4], int info_type) {
674   __asm__ volatile (
675     "mov %%ebx, %%edi\n"
676     "cpuid\n"
677     "xchg %%edi, %%ebx\n"
678     : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
679     : "a"(info_type));
680 }
681 #elif defined(__i386__) || defined(__x86_64__)
GetCPUInfo(int cpu_info[4],int info_type)682 static inline void GetCPUInfo(int cpu_info[4], int info_type) {
683   __asm__ volatile (
684     "cpuid\n"
685     : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
686     : "a"(info_type));
687 }
688 #elif defined(_MSC_VER)  // Visual C++
689 #define GetCPUInfo __cpuid
690 #endif
691 
692 #if defined(__i386__) || defined(__x86_64__) || defined(_MSC_VER)
x86CPUInfo(CPUFeature feature)693 static int x86CPUInfo(CPUFeature feature) {
694   int cpu_info[4];
695   GetCPUInfo(cpu_info, 1);
696   if (feature == kSSE2) {
697     return 0 != (cpu_info[3] & 0x04000000);
698   }
699   if (feature == kSSE3) {
700     return 0 != (cpu_info[2] & 0x00000001);
701   }
702   return 0;
703 }
704 VP8CPUInfo VP8EncGetCPUInfo = x86CPUInfo;
705 #else
706 VP8CPUInfo VP8EncGetCPUInfo = NULL;
707 #endif
708 
709 // Speed-critical function pointers. We have to initialize them to the default
710 // implementations within VP8EncDspInit().
711 VP8CHisto VP8CollectHistogram;
712 VP8Idct VP8ITransform;
713 VP8Fdct VP8FTransform;
714 VP8WHT VP8ITransformWHT;
715 VP8WHT VP8FTransformWHT;
716 VP8Intra4Preds VP8EncPredLuma4;
717 VP8IntraPreds VP8EncPredLuma16;
718 VP8IntraPreds VP8EncPredChroma8;
719 VP8Metric VP8SSE16x16;
720 VP8Metric VP8SSE8x8;
721 VP8Metric VP8SSE16x8;
722 VP8Metric VP8SSE4x4;
723 VP8WMetric VP8TDisto4x4;
724 VP8WMetric VP8TDisto16x16;
725 VP8QuantizeBlock VP8EncQuantizeBlock;
726 VP8BlockCopy VP8Copy4x4;
727 VP8BlockCopy VP8Copy8x8;
728 VP8BlockCopy VP8Copy16x16;
729 
730 extern void VP8EncDspInitSSE2(void);
731 
VP8EncDspInit(void)732 void VP8EncDspInit(void) {
733   InitTables();
734 
735   // default C implementations
736   VP8CollectHistogram = CollectHistogram;
737   VP8ITransform = ITransform;
738   VP8FTransform = FTransform;
739   VP8ITransformWHT = ITransformWHT;
740   VP8FTransformWHT = FTransformWHT;
741   VP8EncPredLuma4 = Intra4Preds;
742   VP8EncPredLuma16 = Intra16Preds;
743   VP8EncPredChroma8 = IntraChromaPreds;
744   VP8SSE16x16 = SSE16x16;
745   VP8SSE8x8 = SSE8x8;
746   VP8SSE16x8 = SSE16x8;
747   VP8SSE4x4 = SSE4x4;
748   VP8TDisto4x4 = Disto4x4;
749   VP8TDisto16x16 = Disto16x16;
750   VP8EncQuantizeBlock = QuantizeBlock;
751   VP8Copy4x4 = Copy4x4;
752   VP8Copy8x8 = Copy8x8;
753   VP8Copy16x16 = Copy16x16;
754 
755   // If defined, use CPUInfo() to overwrite some pointers with faster versions.
756   if (VP8EncGetCPUInfo) {
757     if (VP8EncGetCPUInfo(kSSE2)) {
758 #if defined(__SSE2__) || defined(_MSC_VER)
759       VP8EncDspInitSSE2();
760 #endif
761     }
762     if (VP8EncGetCPUInfo(kSSE3)) {
763       // later we'll plug some SSE3 variant here
764     }
765   }
766 }
767 
768 #if defined(__cplusplus) || defined(c_plusplus)
769 }    // extern "C"
770 #endif
771