1 // Copyright 2011 Google Inc.
2 //
3 // This code is licensed under the same terms as WebM:
4 // Software License Agreement: http://www.webmproject.org/license/software/
5 // Additional IP Rights Grant: http://www.webmproject.org/license/additional/
6 // -----------------------------------------------------------------------------
7 //
8 // speed-critical functions.
9 //
10 // Author: Skal (pascal.massimino@gmail.com)
11
12 #include <assert.h>
13 #include "vp8enci.h"
14
15 #if defined(__cplusplus) || defined(c_plusplus)
16 extern "C" {
17 #endif
18
19 //-----------------------------------------------------------------------------
20 // Compute susceptibility based on DCT-coeff histograms:
21 // the higher, the "easier" the macroblock is to compress.
22
ClipAlpha(int alpha)23 static int ClipAlpha(int alpha) {
24 return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
25 }
26
VP8GetAlpha(const int histo[MAX_COEFF_THRESH+1])27 int VP8GetAlpha(const int histo[MAX_COEFF_THRESH + 1]) {
28 int num = 0, den = 0, val = 0;
29 int k;
30 int alpha;
31 // note: changing this loop to avoid the numerous "k + 1" slows things down.
32 for (k = 0; k < MAX_COEFF_THRESH; ++k) {
33 if (histo[k + 1]) {
34 val += histo[k + 1];
35 num += val * (k + 1);
36 den += (k + 1) * (k + 1);
37 }
38 }
39 // we scale the value to a usable [0..255] range
40 alpha = den ? 10 * num / den - 5 : 0;
41 return ClipAlpha(alpha);
42 }
43
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block)44 static int CollectHistogram(const uint8_t* ref, const uint8_t* pred,
45 int start_block, int end_block) {
46 int histo[MAX_COEFF_THRESH + 1] = { 0 };
47 int16_t out[16];
48 int j, k;
49 for (j = start_block; j < end_block; ++j) {
50 VP8FTransform(ref + VP8Scan[j], pred + VP8Scan[j], out);
51
52 // Convert coefficients to bin (within out[]).
53 for (k = 0; k < 16; ++k) {
54 const int v = abs(out[k]) >> 2;
55 out[k] = (v > MAX_COEFF_THRESH) ? MAX_COEFF_THRESH : v;
56 }
57
58 // Use bin to update histogram.
59 for (k = 0; k < 16; ++k) {
60 histo[out[k]]++;
61 }
62 }
63
64 return VP8GetAlpha(histo);
65 }
66
67 //-----------------------------------------------------------------------------
68 // run-time tables (~4k)
69
70 static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
71
72 // We declare this variable 'volatile' to prevent instruction reordering
73 // and make sure it's set to true _last_ (so as to be thread-safe)
74 static volatile int tables_ok = 0;
75
InitTables(void)76 static void InitTables(void) {
77 if (!tables_ok) {
78 int i;
79 for (i = -255; i <= 255 + 255; ++i) {
80 clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i;
81 }
82 tables_ok = 1;
83 }
84 }
85
clip_8b(int v)86 static inline uint8_t clip_8b(int v) {
87 return (!(v & ~0xff)) ? v : v < 0 ? 0 : 255;
88 }
89
90 //-----------------------------------------------------------------------------
91 // Transforms (Paragraph 14.4)
92
93 #define STORE(x, y, v) \
94 dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
95
96 static const int kC1 = 20091 + (1 << 16);
97 static const int kC2 = 35468;
98 #define MUL(a, b) (((a) * (b)) >> 16)
99
ITransformOne(const uint8_t * ref,const int16_t * in,uint8_t * dst)100 static inline void ITransformOne(const uint8_t* ref, const int16_t* in,
101 uint8_t* dst) {
102 int C[4 * 4], *tmp;
103 int i;
104 tmp = C;
105 for (i = 0; i < 4; ++i) { // vertical pass
106 const int a = in[0] + in[8];
107 const int b = in[0] - in[8];
108 const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
109 const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
110 tmp[0] = a + d;
111 tmp[1] = b + c;
112 tmp[2] = b - c;
113 tmp[3] = a - d;
114 tmp += 4;
115 in++;
116 }
117
118 tmp = C;
119 for (i = 0; i < 4; ++i) { // horizontal pass
120 const int dc = tmp[0] + 4;
121 const int a = dc + tmp[8];
122 const int b = dc - tmp[8];
123 const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
124 const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
125 STORE(0, i, a + d);
126 STORE(1, i, b + c);
127 STORE(2, i, b - c);
128 STORE(3, i, a - d);
129 tmp++;
130 }
131 }
132
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)133 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
134 int do_two) {
135 ITransformOne(ref, in, dst);
136 if (do_two) {
137 ITransformOne(ref + 4, in + 16, dst + 4);
138 }
139 }
140
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)141 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
142 int i;
143 int tmp[16];
144 for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
145 const int d0 = src[0] - ref[0];
146 const int d1 = src[1] - ref[1];
147 const int d2 = src[2] - ref[2];
148 const int d3 = src[3] - ref[3];
149 const int a0 = (d0 + d3) << 3;
150 const int a1 = (d1 + d2) << 3;
151 const int a2 = (d1 - d2) << 3;
152 const int a3 = (d0 - d3) << 3;
153 tmp[0 + i * 4] = (a0 + a1);
154 tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 14500) >> 12;
155 tmp[2 + i * 4] = (a0 - a1);
156 tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 7500) >> 12;
157 }
158 for (i = 0; i < 4; ++i) {
159 const int a0 = (tmp[0 + i] + tmp[12 + i]);
160 const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
161 const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
162 const int a3 = (tmp[0 + i] - tmp[12 + i]);
163 out[0 + i] = (a0 + a1 + 7) >> 4;
164 out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
165 out[8 + i] = (a0 - a1 + 7) >> 4;
166 out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
167 }
168 }
169
ITransformWHT(const int16_t * in,int16_t * out)170 static void ITransformWHT(const int16_t* in, int16_t* out) {
171 int tmp[16];
172 int i;
173 for (i = 0; i < 4; ++i) {
174 const int a0 = in[0 + i] + in[12 + i];
175 const int a1 = in[4 + i] + in[ 8 + i];
176 const int a2 = in[4 + i] - in[ 8 + i];
177 const int a3 = in[0 + i] - in[12 + i];
178 tmp[0 + i] = a0 + a1;
179 tmp[8 + i] = a0 - a1;
180 tmp[4 + i] = a3 + a2;
181 tmp[12 + i] = a3 - a2;
182 }
183 for (i = 0; i < 4; ++i) {
184 const int dc = tmp[0 + i * 4] + 3; // w/ rounder
185 const int a0 = dc + tmp[3 + i * 4];
186 const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4];
187 const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4];
188 const int a3 = dc - tmp[3 + i * 4];
189 out[ 0] = (a0 + a1) >> 3;
190 out[16] = (a3 + a2) >> 3;
191 out[32] = (a0 - a1) >> 3;
192 out[48] = (a3 - a2) >> 3;
193 out += 64;
194 }
195 }
196
FTransformWHT(const int16_t * in,int16_t * out)197 static void FTransformWHT(const int16_t* in, int16_t* out) {
198 int tmp[16];
199 int i;
200 for (i = 0; i < 4; ++i, in += 64) {
201 const int a0 = (in[0 * 16] + in[2 * 16]) << 2;
202 const int a1 = (in[1 * 16] + in[3 * 16]) << 2;
203 const int a2 = (in[1 * 16] - in[3 * 16]) << 2;
204 const int a3 = (in[0 * 16] - in[2 * 16]) << 2;
205 tmp[0 + i * 4] = (a0 + a1) + (a0 != 0);
206 tmp[1 + i * 4] = a3 + a2;
207 tmp[2 + i * 4] = a3 - a2;
208 tmp[3 + i * 4] = a0 - a1;
209 }
210 for (i = 0; i < 4; ++i) {
211 const int a0 = (tmp[0 + i] + tmp[8 + i]);
212 const int a1 = (tmp[4 + i] + tmp[12+ i]);
213 const int a2 = (tmp[4 + i] - tmp[12+ i]);
214 const int a3 = (tmp[0 + i] - tmp[8 + i]);
215 const int b0 = a0 + a1;
216 const int b1 = a3 + a2;
217 const int b2 = a3 - a2;
218 const int b3 = a0 - a1;
219 out[ 0 + i] = (b0 + (b0 > 0) + 3) >> 3;
220 out[ 4 + i] = (b1 + (b1 > 0) + 3) >> 3;
221 out[ 8 + i] = (b2 + (b2 > 0) + 3) >> 3;
222 out[12 + i] = (b3 + (b3 > 0) + 3) >> 3;
223 }
224 }
225
226 #undef MUL
227 #undef STORE
228
229 //-----------------------------------------------------------------------------
230 // Intra predictions
231
232 #define OUT(x, y) dst[(x) + (y) * BPS]
233
Fill(uint8_t * dst,int value,int size)234 static inline void Fill(uint8_t* dst, int value, int size) {
235 int j;
236 for (j = 0; j < size; ++j) {
237 memset(dst + j * BPS, value, size);
238 }
239 }
240
VerticalPred(uint8_t * dst,const uint8_t * top,int size)241 static inline void VerticalPred(uint8_t* dst, const uint8_t* top, int size) {
242 int j;
243 if (top) {
244 for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
245 } else {
246 Fill(dst, 127, size);
247 }
248 }
249
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)250 static inline void HorizontalPred(uint8_t* dst, const uint8_t* left, int size) {
251 if (left) {
252 int j;
253 for (j = 0; j < size; ++j) {
254 memset(dst + j * BPS, left[j], size);
255 }
256 } else {
257 Fill(dst, 129, size);
258 }
259 }
260
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)261 static inline void TrueMotion(uint8_t* dst, const uint8_t* left,
262 const uint8_t* top, int size) {
263 int y;
264 if (left) {
265 if (top) {
266 const uint8_t* const clip = clip1 + 255 - left[-1];
267 for (y = 0; y < size; ++y) {
268 const uint8_t* const clip_table = clip + left[y];
269 int x;
270 for (x = 0; x < size; ++x) {
271 dst[x] = clip_table[top[x]];
272 }
273 dst += BPS;
274 }
275 } else {
276 HorizontalPred(dst, left, size);
277 }
278 } else {
279 // true motion without left samples (hence: with default 129 value)
280 // is equivalent to VE prediction where you just copy the top samples.
281 // Note that if top samples are not available, the default value is
282 // then 129, and not 127 as in the VerticalPred case.
283 if (top) {
284 VerticalPred(dst, top, size);
285 } else {
286 Fill(dst, 129, size);
287 }
288 }
289 }
290
DCMode(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size,int round,int shift)291 static inline void DCMode(uint8_t* dst, const uint8_t* left,
292 const uint8_t* top,
293 int size, int round, int shift) {
294 int DC = 0;
295 int j;
296 if (top) {
297 for (j = 0; j < size; ++j) DC += top[j];
298 if (left) { // top and left present
299 for (j = 0; j < size; ++j) DC += left[j];
300 } else { // top, but no left
301 DC += DC;
302 }
303 DC = (DC + round) >> shift;
304 } else if (left) { // left but no top
305 for (j = 0; j < size; ++j) DC += left[j];
306 DC += DC;
307 DC = (DC + round) >> shift;
308 } else { // no top, no left, nothing.
309 DC = 0x80;
310 }
311 Fill(dst, DC, size);
312 }
313
314 //-----------------------------------------------------------------------------
315 // Chroma 8x8 prediction (paragraph 12.2)
316
IntraChromaPreds(uint8_t * dst,const uint8_t * left,const uint8_t * top)317 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
318 const uint8_t* top) {
319 // U block
320 DCMode(C8DC8 + dst, left, top, 8, 8, 4);
321 VerticalPred(C8VE8 + dst, top, 8);
322 HorizontalPred(C8HE8 + dst, left, 8);
323 TrueMotion(C8TM8 + dst, left, top, 8);
324 // V block
325 dst += 8;
326 if (top) top += 8;
327 if (left) left += 16;
328 DCMode(C8DC8 + dst, left, top, 8, 8, 4);
329 VerticalPred(C8VE8 + dst, top, 8);
330 HorizontalPred(C8HE8 + dst, left, 8);
331 TrueMotion(C8TM8 + dst, left, top, 8);
332 }
333
334 //-----------------------------------------------------------------------------
335 // luma 16x16 prediction (paragraph 12.3)
336
Intra16Preds(uint8_t * dst,const uint8_t * left,const uint8_t * top)337 static void Intra16Preds(uint8_t* dst,
338 const uint8_t* left, const uint8_t* top) {
339 DCMode(I16DC16 + dst, left, top, 16, 16, 5);
340 VerticalPred(I16VE16 + dst, top, 16);
341 HorizontalPred(I16HE16 + dst, left, 16);
342 TrueMotion(I16TM16 + dst, left, top, 16);
343 }
344
345 //-----------------------------------------------------------------------------
346 // luma 4x4 prediction
347
348 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
349 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
350
VE4(uint8_t * dst,const uint8_t * top)351 static void VE4(uint8_t* dst, const uint8_t* top) { // vertical
352 const uint8_t vals[4] = {
353 AVG3(top[-1], top[0], top[1]),
354 AVG3(top[ 0], top[1], top[2]),
355 AVG3(top[ 1], top[2], top[3]),
356 AVG3(top[ 2], top[3], top[4])
357 };
358 int i;
359 for (i = 0; i < 4; ++i) {
360 memcpy(dst + i * BPS, vals, 4);
361 }
362 }
363
HE4(uint8_t * dst,const uint8_t * top)364 static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
365 const int X = top[-1];
366 const int I = top[-2];
367 const int J = top[-3];
368 const int K = top[-4];
369 const int L = top[-5];
370 *(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(X, I, J);
371 *(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(I, J, K);
372 *(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(J, K, L);
373 *(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(K, L, L);
374 }
375
DC4(uint8_t * dst,const uint8_t * top)376 static void DC4(uint8_t* dst, const uint8_t* top) {
377 uint32_t dc = 4;
378 int i;
379 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
380 Fill(dst, dc >> 3, 4);
381 }
382
RD4(uint8_t * dst,const uint8_t * top)383 static void RD4(uint8_t* dst, const uint8_t* top) {
384 const int X = top[-1];
385 const int I = top[-2];
386 const int J = top[-3];
387 const int K = top[-4];
388 const int L = top[-5];
389 const int A = top[0];
390 const int B = top[1];
391 const int C = top[2];
392 const int D = top[3];
393 OUT(0, 3) = AVG3(J, K, L);
394 OUT(0, 2) = OUT(1, 3) = AVG3(I, J, K);
395 OUT(0, 1) = OUT(1, 2) = OUT(2, 3) = AVG3(X, I, J);
396 OUT(0, 0) = OUT(1, 1) = OUT(2, 2) = OUT(3, 3) = AVG3(A, X, I);
397 OUT(1, 0) = OUT(2, 1) = OUT(3, 2) = AVG3(B, A, X);
398 OUT(2, 0) = OUT(3, 1) = AVG3(C, B, A);
399 OUT(3, 0) = AVG3(D, C, B);
400 }
401
LD4(uint8_t * dst,const uint8_t * top)402 static void LD4(uint8_t* dst, const uint8_t* top) {
403 const int A = top[0];
404 const int B = top[1];
405 const int C = top[2];
406 const int D = top[3];
407 const int E = top[4];
408 const int F = top[5];
409 const int G = top[6];
410 const int H = top[7];
411 OUT(0, 0) = AVG3(A, B, C);
412 OUT(1, 0) = OUT(0, 1) = AVG3(B, C, D);
413 OUT(2, 0) = OUT(1, 1) = OUT(0, 2) = AVG3(C, D, E);
414 OUT(3, 0) = OUT(2, 1) = OUT(1, 2) = OUT(0, 3) = AVG3(D, E, F);
415 OUT(3, 1) = OUT(2, 2) = OUT(1, 3) = AVG3(E, F, G);
416 OUT(3, 2) = OUT(2, 3) = AVG3(F, G, H);
417 OUT(3, 3) = AVG3(G, H, H);
418 }
419
VR4(uint8_t * dst,const uint8_t * top)420 static void VR4(uint8_t* dst, const uint8_t* top) {
421 const int X = top[-1];
422 const int I = top[-2];
423 const int J = top[-3];
424 const int K = top[-4];
425 const int A = top[0];
426 const int B = top[1];
427 const int C = top[2];
428 const int D = top[3];
429 OUT(0, 0) = OUT(1, 2) = AVG2(X, A);
430 OUT(1, 0) = OUT(2, 2) = AVG2(A, B);
431 OUT(2, 0) = OUT(3, 2) = AVG2(B, C);
432 OUT(3, 0) = AVG2(C, D);
433
434 OUT(0, 3) = AVG3(K, J, I);
435 OUT(0, 2) = AVG3(J, I, X);
436 OUT(0, 1) = OUT(1, 3) = AVG3(I, X, A);
437 OUT(1, 1) = OUT(2, 3) = AVG3(X, A, B);
438 OUT(2, 1) = OUT(3, 3) = AVG3(A, B, C);
439 OUT(3, 1) = AVG3(B, C, D);
440 }
441
VL4(uint8_t * dst,const uint8_t * top)442 static void VL4(uint8_t* dst, const uint8_t* top) {
443 const int A = top[0];
444 const int B = top[1];
445 const int C = top[2];
446 const int D = top[3];
447 const int E = top[4];
448 const int F = top[5];
449 const int G = top[6];
450 const int H = top[7];
451 OUT(0, 0) = AVG2(A, B);
452 OUT(1, 0) = OUT(0, 2) = AVG2(B, C);
453 OUT(2, 0) = OUT(1, 2) = AVG2(C, D);
454 OUT(3, 0) = OUT(2, 2) = AVG2(D, E);
455
456 OUT(0, 1) = AVG3(A, B, C);
457 OUT(1, 1) = OUT(0, 3) = AVG3(B, C, D);
458 OUT(2, 1) = OUT(1, 3) = AVG3(C, D, E);
459 OUT(3, 1) = OUT(2, 3) = AVG3(D, E, F);
460 OUT(3, 2) = AVG3(E, F, G);
461 OUT(3, 3) = AVG3(F, G, H);
462 }
463
HU4(uint8_t * dst,const uint8_t * top)464 static void HU4(uint8_t* dst, const uint8_t* top) {
465 const int I = top[-2];
466 const int J = top[-3];
467 const int K = top[-4];
468 const int L = top[-5];
469 OUT(0, 0) = AVG2(I, J);
470 OUT(2, 0) = OUT(0, 1) = AVG2(J, K);
471 OUT(2, 1) = OUT(0, 2) = AVG2(K, L);
472 OUT(1, 0) = AVG3(I, J, K);
473 OUT(3, 0) = OUT(1, 1) = AVG3(J, K, L);
474 OUT(3, 1) = OUT(1, 2) = AVG3(K, L, L);
475 OUT(3, 2) = OUT(2, 2) =
476 OUT(0, 3) = OUT(1, 3) = OUT(2, 3) = OUT(3, 3) = L;
477 }
478
HD4(uint8_t * dst,const uint8_t * top)479 static void HD4(uint8_t* dst, const uint8_t* top) {
480 const int X = top[-1];
481 const int I = top[-2];
482 const int J = top[-3];
483 const int K = top[-4];
484 const int L = top[-5];
485 const int A = top[0];
486 const int B = top[1];
487 const int C = top[2];
488
489 OUT(0, 0) = OUT(2, 1) = AVG2(I, X);
490 OUT(0, 1) = OUT(2, 2) = AVG2(J, I);
491 OUT(0, 2) = OUT(2, 3) = AVG2(K, J);
492 OUT(0, 3) = AVG2(L, K);
493
494 OUT(3, 0) = AVG3(A, B, C);
495 OUT(2, 0) = AVG3(X, A, B);
496 OUT(1, 0) = OUT(3, 1) = AVG3(I, X, A);
497 OUT(1, 1) = OUT(3, 2) = AVG3(J, I, X);
498 OUT(1, 2) = OUT(3, 3) = AVG3(K, J, I);
499 OUT(1, 3) = AVG3(L, K, J);
500 }
501
TM4(uint8_t * dst,const uint8_t * top)502 static void TM4(uint8_t* dst, const uint8_t* top) {
503 int x, y;
504 const uint8_t* const clip = clip1 + 255 - top[-1];
505 for (y = 0; y < 4; ++y) {
506 const uint8_t* const clip_table = clip + top[-2 - y];
507 for (x = 0; x < 4; ++x) {
508 dst[x] = clip_table[top[x]];
509 }
510 dst += BPS;
511 }
512 }
513
514 #undef AVG3
515 #undef AVG2
516
517 // Left samples are top[-5 .. -2], top_left is top[-1], top are
518 // located at top[0..3], and top right is top[4..7]
Intra4Preds(uint8_t * dst,const uint8_t * top)519 static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
520 DC4(I4DC4 + dst, top);
521 TM4(I4TM4 + dst, top);
522 VE4(I4VE4 + dst, top);
523 HE4(I4HE4 + dst, top);
524 RD4(I4RD4 + dst, top);
525 VR4(I4VR4 + dst, top);
526 LD4(I4LD4 + dst, top);
527 VL4(I4VL4 + dst, top);
528 HD4(I4HD4 + dst, top);
529 HU4(I4HU4 + dst, top);
530 }
531
532 //-----------------------------------------------------------------------------
533 // Metric
534
GetSSE(const uint8_t * a,const uint8_t * b,int w,int h)535 static inline int GetSSE(const uint8_t* a, const uint8_t* b, int w, int h) {
536 int count = 0;
537 int y, x;
538 for (y = 0; y < h; ++y) {
539 for (x = 0; x < w; ++x) {
540 const int diff = (int)a[x] - b[x];
541 count += diff * diff;
542 }
543 a += BPS;
544 b += BPS;
545 }
546 return count;
547 }
548
SSE16x16(const uint8_t * a,const uint8_t * b)549 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
550 return GetSSE(a, b, 16, 16);
551 }
SSE16x8(const uint8_t * a,const uint8_t * b)552 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
553 return GetSSE(a, b, 16, 8);
554 }
SSE8x8(const uint8_t * a,const uint8_t * b)555 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
556 return GetSSE(a, b, 8, 8);
557 }
SSE4x4(const uint8_t * a,const uint8_t * b)558 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
559 return GetSSE(a, b, 4, 4);
560 }
561
562 //-----------------------------------------------------------------------------
563 // Texture distortion
564 //
565 // We try to match the spectral content (weighted) between source and
566 // reconstructed samples.
567
568 // Hadamard transform
569 // Returns the weighted sum of the absolute value of transformed coefficients.
TTransform(const uint8_t * in,const uint16_t * w)570 static int TTransform(const uint8_t* in, const uint16_t* w) {
571 int sum = 0;
572 int tmp[16];
573 int i;
574 // horizontal pass
575 for (i = 0; i < 4; ++i, in += BPS) {
576 const int a0 = (in[0] + in[2]) << 2;
577 const int a1 = (in[1] + in[3]) << 2;
578 const int a2 = (in[1] - in[3]) << 2;
579 const int a3 = (in[0] - in[2]) << 2;
580 tmp[0 + i * 4] = a0 + a1 + (a0 != 0);
581 tmp[1 + i * 4] = a3 + a2;
582 tmp[2 + i * 4] = a3 - a2;
583 tmp[3 + i * 4] = a0 - a1;
584 }
585 // vertical pass
586 for (i = 0; i < 4; ++i, ++w) {
587 const int a0 = (tmp[0 + i] + tmp[8 + i]);
588 const int a1 = (tmp[4 + i] + tmp[12+ i]);
589 const int a2 = (tmp[4 + i] - tmp[12+ i]);
590 const int a3 = (tmp[0 + i] - tmp[8 + i]);
591 const int b0 = a0 + a1;
592 const int b1 = a3 + a2;
593 const int b2 = a3 - a2;
594 const int b3 = a0 - a1;
595 // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
596 sum += w[ 0] * ((abs(b0) + 3) >> 3);
597 sum += w[ 4] * ((abs(b1) + 3) >> 3);
598 sum += w[ 8] * ((abs(b2) + 3) >> 3);
599 sum += w[12] * ((abs(b3) + 3) >> 3);
600 }
601 return sum;
602 }
603
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)604 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
605 const uint16_t* const w) {
606 const int sum1 = TTransform(a, w);
607 const int sum2 = TTransform(b, w);
608 return (abs(sum2 - sum1) + 8) >> 4;
609 }
610
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)611 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
612 const uint16_t* const w) {
613 int D = 0;
614 int x, y;
615 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
616 for (x = 0; x < 16; x += 4) {
617 D += Disto4x4(a + x + y, b + x + y, w);
618 }
619 }
620 return D;
621 }
622
623 //-----------------------------------------------------------------------------
624 // Quantization
625 //
626
627 // Simple quantization
QuantizeBlock(int16_t in[16],int16_t out[16],int n,const VP8Matrix * const mtx)628 static int QuantizeBlock(int16_t in[16], int16_t out[16],
629 int n, const VP8Matrix* const mtx) {
630 int last = -1;
631 for (; n < 16; ++n) {
632 const int j = VP8Zigzag[n];
633 const int sign = (in[j] < 0);
634 int coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
635 if (coeff > 2047) coeff = 2047;
636 if (coeff > mtx->zthresh_[j]) {
637 const int Q = mtx->q_[j];
638 const int iQ = mtx->iq_[j];
639 const int B = mtx->bias_[j];
640 out[n] = QUANTDIV(coeff, iQ, B);
641 if (sign) out[n] = -out[n];
642 in[j] = out[n] * Q;
643 if (out[n]) last = n;
644 } else {
645 out[n] = 0;
646 in[j] = 0;
647 }
648 }
649 return (last >= 0);
650 }
651
652 //-----------------------------------------------------------------------------
653 // Block copy
654
Copy(const uint8_t * src,uint8_t * dst,int size)655 static inline void Copy(const uint8_t* src, uint8_t* dst, int size) {
656 int y;
657 for (y = 0; y < size; ++y) {
658 memcpy(dst, src, size);
659 src += BPS;
660 dst += BPS;
661 }
662 }
663
Copy4x4(const uint8_t * src,uint8_t * dst)664 static void Copy4x4(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 4); }
Copy8x8(const uint8_t * src,uint8_t * dst)665 static void Copy8x8(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 8); }
Copy16x16(const uint8_t * src,uint8_t * dst)666 static void Copy16x16(const uint8_t* src, uint8_t* dst) { Copy(src, dst, 16); }
667
668 //-----------------------------------------------------------------------------
669 // SSE2 detection.
670 //
671
672 #if defined(__pic__) && defined(__i386__)
GetCPUInfo(int cpu_info[4],int info_type)673 static inline void GetCPUInfo(int cpu_info[4], int info_type) {
674 __asm__ volatile (
675 "mov %%ebx, %%edi\n"
676 "cpuid\n"
677 "xchg %%edi, %%ebx\n"
678 : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
679 : "a"(info_type));
680 }
681 #elif defined(__i386__) || defined(__x86_64__)
GetCPUInfo(int cpu_info[4],int info_type)682 static inline void GetCPUInfo(int cpu_info[4], int info_type) {
683 __asm__ volatile (
684 "cpuid\n"
685 : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
686 : "a"(info_type));
687 }
688 #elif defined(_MSC_VER) // Visual C++
689 #define GetCPUInfo __cpuid
690 #endif
691
692 #if defined(__i386__) || defined(__x86_64__) || defined(_MSC_VER)
x86CPUInfo(CPUFeature feature)693 static int x86CPUInfo(CPUFeature feature) {
694 int cpu_info[4];
695 GetCPUInfo(cpu_info, 1);
696 if (feature == kSSE2) {
697 return 0 != (cpu_info[3] & 0x04000000);
698 }
699 if (feature == kSSE3) {
700 return 0 != (cpu_info[2] & 0x00000001);
701 }
702 return 0;
703 }
704 VP8CPUInfo VP8EncGetCPUInfo = x86CPUInfo;
705 #else
706 VP8CPUInfo VP8EncGetCPUInfo = NULL;
707 #endif
708
709 // Speed-critical function pointers. We have to initialize them to the default
710 // implementations within VP8EncDspInit().
711 VP8CHisto VP8CollectHistogram;
712 VP8Idct VP8ITransform;
713 VP8Fdct VP8FTransform;
714 VP8WHT VP8ITransformWHT;
715 VP8WHT VP8FTransformWHT;
716 VP8Intra4Preds VP8EncPredLuma4;
717 VP8IntraPreds VP8EncPredLuma16;
718 VP8IntraPreds VP8EncPredChroma8;
719 VP8Metric VP8SSE16x16;
720 VP8Metric VP8SSE8x8;
721 VP8Metric VP8SSE16x8;
722 VP8Metric VP8SSE4x4;
723 VP8WMetric VP8TDisto4x4;
724 VP8WMetric VP8TDisto16x16;
725 VP8QuantizeBlock VP8EncQuantizeBlock;
726 VP8BlockCopy VP8Copy4x4;
727 VP8BlockCopy VP8Copy8x8;
728 VP8BlockCopy VP8Copy16x16;
729
730 extern void VP8EncDspInitSSE2(void);
731
VP8EncDspInit(void)732 void VP8EncDspInit(void) {
733 InitTables();
734
735 // default C implementations
736 VP8CollectHistogram = CollectHistogram;
737 VP8ITransform = ITransform;
738 VP8FTransform = FTransform;
739 VP8ITransformWHT = ITransformWHT;
740 VP8FTransformWHT = FTransformWHT;
741 VP8EncPredLuma4 = Intra4Preds;
742 VP8EncPredLuma16 = Intra16Preds;
743 VP8EncPredChroma8 = IntraChromaPreds;
744 VP8SSE16x16 = SSE16x16;
745 VP8SSE8x8 = SSE8x8;
746 VP8SSE16x8 = SSE16x8;
747 VP8SSE4x4 = SSE4x4;
748 VP8TDisto4x4 = Disto4x4;
749 VP8TDisto16x16 = Disto16x16;
750 VP8EncQuantizeBlock = QuantizeBlock;
751 VP8Copy4x4 = Copy4x4;
752 VP8Copy8x8 = Copy8x8;
753 VP8Copy16x16 = Copy16x16;
754
755 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
756 if (VP8EncGetCPUInfo) {
757 if (VP8EncGetCPUInfo(kSSE2)) {
758 #if defined(__SSE2__) || defined(_MSC_VER)
759 VP8EncDspInitSSE2();
760 #endif
761 }
762 if (VP8EncGetCPUInfo(kSSE3)) {
763 // later we'll plug some SSE3 variant here
764 }
765 }
766 }
767
768 #if defined(__cplusplus) || defined(c_plusplus)
769 } // extern "C"
770 #endif
771