1 /*
2 * Minimal code for RSA support from LibTomMath 0.3.9
3 * http://math.libtomcrypt.com/
4 * http://math.libtomcrypt.com/files/ltm-0.39.tar.bz2
5 * This library was released in public domain by Tom St Denis.
6 *
7 * The combination in this file is not using many of the optimized algorithms
8 * (e.g., Montgomery reduction) and is considerable slower than the LibTomMath
9 * with its default of SC_RSA_1 settins. The main purpose of having this
10 * version here is to make it easier to build bignum.c wrapper without having
11 * to install and build an external library. However, it is likely worth the
12 * effort to use the full library with SC_RSA_1 instead of this minimized copy.
13 * Including the optimized algorithms may increase the size requirements by
14 * 15 kB or so (measured with x86 build).
15 *
16 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
17 * libtommath.c file instead of using the external LibTomMath library.
18 */
19
20 #ifndef CHAR_BIT
21 #define CHAR_BIT 8
22 #endif
23
24 #define BN_MP_INVMOD_C
25 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
26 * require BN_MP_EXPTMOD_FAST_C instead */
27 #define BN_S_MP_MUL_DIGS_C
28 #define BN_MP_INVMOD_SLOW_C
29 #define BN_S_MP_SQR_C
30 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
31 * would require other than mp_reduce */
32
33
34 /* from tommath.h */
35
36 #ifndef MIN
37 #define MIN(x,y) ((x)<(y)?(x):(y))
38 #endif
39
40 #ifndef MAX
41 #define MAX(x,y) ((x)>(y)?(x):(y))
42 #endif
43
44 #define OPT_CAST(x)
45
46 typedef unsigned long mp_digit;
47 typedef u64 mp_word;
48
49 #define DIGIT_BIT 28
50 #define MP_28BIT
51
52
53 #define XMALLOC os_malloc
54 #define XFREE os_free
55 #define XREALLOC os_realloc
56
57
58 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
59
60 #define MP_LT -1 /* less than */
61 #define MP_EQ 0 /* equal to */
62 #define MP_GT 1 /* greater than */
63
64 #define MP_ZPOS 0 /* positive integer */
65 #define MP_NEG 1 /* negative */
66
67 #define MP_OKAY 0 /* ok result */
68 #define MP_MEM -2 /* out of mem */
69 #define MP_VAL -3 /* invalid input */
70
71 #define MP_YES 1 /* yes response */
72 #define MP_NO 0 /* no response */
73
74 typedef int mp_err;
75
76 /* define this to use lower memory usage routines (exptmods mostly) */
77 #define MP_LOW_MEM
78
79 /* default precision */
80 #ifndef MP_PREC
81 #ifndef MP_LOW_MEM
82 #define MP_PREC 32 /* default digits of precision */
83 #else
84 #define MP_PREC 8 /* default digits of precision */
85 #endif
86 #endif
87
88 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
89 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
90
91 /* the infamous mp_int structure */
92 typedef struct {
93 int used, alloc, sign;
94 mp_digit *dp;
95 } mp_int;
96
97
98 /* ---> Basic Manipulations <--- */
99 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
100 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
101 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
102
103
104 /* prototypes for copied functions */
105 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
106 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
107 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
108 static int s_mp_sqr(mp_int * a, mp_int * b);
109 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
110
111 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
112
113 static int mp_init_multi(mp_int *mp, ...);
114 static void mp_clear_multi(mp_int *mp, ...);
115 static int mp_lshd(mp_int * a, int b);
116 static void mp_set(mp_int * a, mp_digit b);
117 static void mp_clamp(mp_int * a);
118 static void mp_exch(mp_int * a, mp_int * b);
119 static void mp_rshd(mp_int * a, int b);
120 static void mp_zero(mp_int * a);
121 static int mp_mod_2d(mp_int * a, int b, mp_int * c);
122 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
123 static int mp_init_copy(mp_int * a, mp_int * b);
124 static int mp_mul_2d(mp_int * a, int b, mp_int * c);
125 static int mp_div_2(mp_int * a, mp_int * b);
126 static int mp_copy(mp_int * a, mp_int * b);
127 static int mp_count_bits(mp_int * a);
128 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
129 static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
130 static int mp_grow(mp_int * a, int size);
131 static int mp_cmp_mag(mp_int * a, mp_int * b);
132 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
133 static int mp_abs(mp_int * a, mp_int * b);
134 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
135 static int mp_sqr(mp_int * a, mp_int * b);
136 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
137 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
138 static int mp_2expt(mp_int * a, int b);
139 static int mp_reduce_setup(mp_int * a, mp_int * b);
140 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
141 static int mp_init_size(mp_int * a, int size);
142
143
144
145 /* functions from bn_<func name>.c */
146
147
148 /* reverse an array, used for radix code */
bn_reverse(unsigned char * s,int len)149 static void bn_reverse (unsigned char *s, int len)
150 {
151 int ix, iy;
152 unsigned char t;
153
154 ix = 0;
155 iy = len - 1;
156 while (ix < iy) {
157 t = s[ix];
158 s[ix] = s[iy];
159 s[iy] = t;
160 ++ix;
161 --iy;
162 }
163 }
164
165
166 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
s_mp_add(mp_int * a,mp_int * b,mp_int * c)167 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
168 {
169 mp_int *x;
170 int olduse, res, min, max;
171
172 /* find sizes, we let |a| <= |b| which means we have to sort
173 * them. "x" will point to the input with the most digits
174 */
175 if (a->used > b->used) {
176 min = b->used;
177 max = a->used;
178 x = a;
179 } else {
180 min = a->used;
181 max = b->used;
182 x = b;
183 }
184
185 /* init result */
186 if (c->alloc < max + 1) {
187 if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
188 return res;
189 }
190 }
191
192 /* get old used digit count and set new one */
193 olduse = c->used;
194 c->used = max + 1;
195
196 {
197 register mp_digit u, *tmpa, *tmpb, *tmpc;
198 register int i;
199
200 /* alias for digit pointers */
201
202 /* first input */
203 tmpa = a->dp;
204
205 /* second input */
206 tmpb = b->dp;
207
208 /* destination */
209 tmpc = c->dp;
210
211 /* zero the carry */
212 u = 0;
213 for (i = 0; i < min; i++) {
214 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
215 *tmpc = *tmpa++ + *tmpb++ + u;
216
217 /* U = carry bit of T[i] */
218 u = *tmpc >> ((mp_digit)DIGIT_BIT);
219
220 /* take away carry bit from T[i] */
221 *tmpc++ &= MP_MASK;
222 }
223
224 /* now copy higher words if any, that is in A+B
225 * if A or B has more digits add those in
226 */
227 if (min != max) {
228 for (; i < max; i++) {
229 /* T[i] = X[i] + U */
230 *tmpc = x->dp[i] + u;
231
232 /* U = carry bit of T[i] */
233 u = *tmpc >> ((mp_digit)DIGIT_BIT);
234
235 /* take away carry bit from T[i] */
236 *tmpc++ &= MP_MASK;
237 }
238 }
239
240 /* add carry */
241 *tmpc++ = u;
242
243 /* clear digits above oldused */
244 for (i = c->used; i < olduse; i++) {
245 *tmpc++ = 0;
246 }
247 }
248
249 mp_clamp (c);
250 return MP_OKAY;
251 }
252
253
254 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
s_mp_sub(mp_int * a,mp_int * b,mp_int * c)255 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
256 {
257 int olduse, res, min, max;
258
259 /* find sizes */
260 min = b->used;
261 max = a->used;
262
263 /* init result */
264 if (c->alloc < max) {
265 if ((res = mp_grow (c, max)) != MP_OKAY) {
266 return res;
267 }
268 }
269 olduse = c->used;
270 c->used = max;
271
272 {
273 register mp_digit u, *tmpa, *tmpb, *tmpc;
274 register int i;
275
276 /* alias for digit pointers */
277 tmpa = a->dp;
278 tmpb = b->dp;
279 tmpc = c->dp;
280
281 /* set carry to zero */
282 u = 0;
283 for (i = 0; i < min; i++) {
284 /* T[i] = A[i] - B[i] - U */
285 *tmpc = *tmpa++ - *tmpb++ - u;
286
287 /* U = carry bit of T[i]
288 * Note this saves performing an AND operation since
289 * if a carry does occur it will propagate all the way to the
290 * MSB. As a result a single shift is enough to get the carry
291 */
292 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
293
294 /* Clear carry from T[i] */
295 *tmpc++ &= MP_MASK;
296 }
297
298 /* now copy higher words if any, e.g. if A has more digits than B */
299 for (; i < max; i++) {
300 /* T[i] = A[i] - U */
301 *tmpc = *tmpa++ - u;
302
303 /* U = carry bit of T[i] */
304 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
305
306 /* Clear carry from T[i] */
307 *tmpc++ &= MP_MASK;
308 }
309
310 /* clear digits above used (since we may not have grown result above) */
311 for (i = c->used; i < olduse; i++) {
312 *tmpc++ = 0;
313 }
314 }
315
316 mp_clamp (c);
317 return MP_OKAY;
318 }
319
320
321 /* init a new mp_int */
mp_init(mp_int * a)322 static int mp_init (mp_int * a)
323 {
324 int i;
325
326 /* allocate memory required and clear it */
327 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
328 if (a->dp == NULL) {
329 return MP_MEM;
330 }
331
332 /* set the digits to zero */
333 for (i = 0; i < MP_PREC; i++) {
334 a->dp[i] = 0;
335 }
336
337 /* set the used to zero, allocated digits to the default precision
338 * and sign to positive */
339 a->used = 0;
340 a->alloc = MP_PREC;
341 a->sign = MP_ZPOS;
342
343 return MP_OKAY;
344 }
345
346
347 /* clear one (frees) */
mp_clear(mp_int * a)348 static void mp_clear (mp_int * a)
349 {
350 int i;
351
352 /* only do anything if a hasn't been freed previously */
353 if (a->dp != NULL) {
354 /* first zero the digits */
355 for (i = 0; i < a->used; i++) {
356 a->dp[i] = 0;
357 }
358
359 /* free ram */
360 XFREE(a->dp);
361
362 /* reset members to make debugging easier */
363 a->dp = NULL;
364 a->alloc = a->used = 0;
365 a->sign = MP_ZPOS;
366 }
367 }
368
369
370 /* high level addition (handles signs) */
mp_add(mp_int * a,mp_int * b,mp_int * c)371 static int mp_add (mp_int * a, mp_int * b, mp_int * c)
372 {
373 int sa, sb, res;
374
375 /* get sign of both inputs */
376 sa = a->sign;
377 sb = b->sign;
378
379 /* handle two cases, not four */
380 if (sa == sb) {
381 /* both positive or both negative */
382 /* add their magnitudes, copy the sign */
383 c->sign = sa;
384 res = s_mp_add (a, b, c);
385 } else {
386 /* one positive, the other negative */
387 /* subtract the one with the greater magnitude from */
388 /* the one of the lesser magnitude. The result gets */
389 /* the sign of the one with the greater magnitude. */
390 if (mp_cmp_mag (a, b) == MP_LT) {
391 c->sign = sb;
392 res = s_mp_sub (b, a, c);
393 } else {
394 c->sign = sa;
395 res = s_mp_sub (a, b, c);
396 }
397 }
398 return res;
399 }
400
401
402 /* high level subtraction (handles signs) */
mp_sub(mp_int * a,mp_int * b,mp_int * c)403 static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
404 {
405 int sa, sb, res;
406
407 sa = a->sign;
408 sb = b->sign;
409
410 if (sa != sb) {
411 /* subtract a negative from a positive, OR */
412 /* subtract a positive from a negative. */
413 /* In either case, ADD their magnitudes, */
414 /* and use the sign of the first number. */
415 c->sign = sa;
416 res = s_mp_add (a, b, c);
417 } else {
418 /* subtract a positive from a positive, OR */
419 /* subtract a negative from a negative. */
420 /* First, take the difference between their */
421 /* magnitudes, then... */
422 if (mp_cmp_mag (a, b) != MP_LT) {
423 /* Copy the sign from the first */
424 c->sign = sa;
425 /* The first has a larger or equal magnitude */
426 res = s_mp_sub (a, b, c);
427 } else {
428 /* The result has the *opposite* sign from */
429 /* the first number. */
430 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
431 /* The second has a larger magnitude */
432 res = s_mp_sub (b, a, c);
433 }
434 }
435 return res;
436 }
437
438
439 /* high level multiplication (handles sign) */
mp_mul(mp_int * a,mp_int * b,mp_int * c)440 static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
441 {
442 int res, neg;
443 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
444
445 /* use Toom-Cook? */
446 #ifdef BN_MP_TOOM_MUL_C
447 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
448 res = mp_toom_mul(a, b, c);
449 } else
450 #endif
451 #ifdef BN_MP_KARATSUBA_MUL_C
452 /* use Karatsuba? */
453 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
454 res = mp_karatsuba_mul (a, b, c);
455 } else
456 #endif
457 {
458 /* can we use the fast multiplier?
459 *
460 * The fast multiplier can be used if the output will
461 * have less than MP_WARRAY digits and the number of
462 * digits won't affect carry propagation
463 */
464 #ifdef BN_FAST_S_MP_MUL_DIGS_C
465 int digs = a->used + b->used + 1;
466
467 if ((digs < MP_WARRAY) &&
468 MIN(a->used, b->used) <=
469 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
470 res = fast_s_mp_mul_digs (a, b, c, digs);
471 } else
472 #endif
473 #ifdef BN_S_MP_MUL_DIGS_C
474 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
475 #else
476 #error mp_mul could fail
477 res = MP_VAL;
478 #endif
479
480 }
481 c->sign = (c->used > 0) ? neg : MP_ZPOS;
482 return res;
483 }
484
485
486 /* d = a * b (mod c) */
mp_mulmod(mp_int * a,mp_int * b,mp_int * c,mp_int * d)487 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
488 {
489 int res;
490 mp_int t;
491
492 if ((res = mp_init (&t)) != MP_OKAY) {
493 return res;
494 }
495
496 if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
497 mp_clear (&t);
498 return res;
499 }
500 res = mp_mod (&t, c, d);
501 mp_clear (&t);
502 return res;
503 }
504
505
506 /* c = a mod b, 0 <= c < b */
mp_mod(mp_int * a,mp_int * b,mp_int * c)507 static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
508 {
509 mp_int t;
510 int res;
511
512 if ((res = mp_init (&t)) != MP_OKAY) {
513 return res;
514 }
515
516 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
517 mp_clear (&t);
518 return res;
519 }
520
521 if (t.sign != b->sign) {
522 res = mp_add (b, &t, c);
523 } else {
524 res = MP_OKAY;
525 mp_exch (&t, c);
526 }
527
528 mp_clear (&t);
529 return res;
530 }
531
532
533 /* this is a shell function that calls either the normal or Montgomery
534 * exptmod functions. Originally the call to the montgomery code was
535 * embedded in the normal function but that wasted alot of stack space
536 * for nothing (since 99% of the time the Montgomery code would be called)
537 */
mp_exptmod(mp_int * G,mp_int * X,mp_int * P,mp_int * Y)538 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
539 {
540 int dr;
541
542 /* modulus P must be positive */
543 if (P->sign == MP_NEG) {
544 return MP_VAL;
545 }
546
547 /* if exponent X is negative we have to recurse */
548 if (X->sign == MP_NEG) {
549 #ifdef BN_MP_INVMOD_C
550 mp_int tmpG, tmpX;
551 int err;
552
553 /* first compute 1/G mod P */
554 if ((err = mp_init(&tmpG)) != MP_OKAY) {
555 return err;
556 }
557 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
558 mp_clear(&tmpG);
559 return err;
560 }
561
562 /* now get |X| */
563 if ((err = mp_init(&tmpX)) != MP_OKAY) {
564 mp_clear(&tmpG);
565 return err;
566 }
567 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
568 mp_clear_multi(&tmpG, &tmpX, NULL);
569 return err;
570 }
571
572 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
573 err = mp_exptmod(&tmpG, &tmpX, P, Y);
574 mp_clear_multi(&tmpG, &tmpX, NULL);
575 return err;
576 #else
577 #error mp_exptmod would always fail
578 /* no invmod */
579 return MP_VAL;
580 #endif
581 }
582
583 /* modified diminished radix reduction */
584 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
585 if (mp_reduce_is_2k_l(P) == MP_YES) {
586 return s_mp_exptmod(G, X, P, Y, 1);
587 }
588 #endif
589
590 #ifdef BN_MP_DR_IS_MODULUS_C
591 /* is it a DR modulus? */
592 dr = mp_dr_is_modulus(P);
593 #else
594 /* default to no */
595 dr = 0;
596 #endif
597
598 #ifdef BN_MP_REDUCE_IS_2K_C
599 /* if not, is it a unrestricted DR modulus? */
600 if (dr == 0) {
601 dr = mp_reduce_is_2k(P) << 1;
602 }
603 #endif
604
605 /* if the modulus is odd or dr != 0 use the montgomery method */
606 #ifdef BN_MP_EXPTMOD_FAST_C
607 if (mp_isodd (P) == 1 || dr != 0) {
608 return mp_exptmod_fast (G, X, P, Y, dr);
609 } else {
610 #endif
611 #ifdef BN_S_MP_EXPTMOD_C
612 /* otherwise use the generic Barrett reduction technique */
613 return s_mp_exptmod (G, X, P, Y, 0);
614 #else
615 #error mp_exptmod could fail
616 /* no exptmod for evens */
617 return MP_VAL;
618 #endif
619 #ifdef BN_MP_EXPTMOD_FAST_C
620 }
621 #endif
622 }
623
624
625 /* compare two ints (signed)*/
mp_cmp(mp_int * a,mp_int * b)626 static int mp_cmp (mp_int * a, mp_int * b)
627 {
628 /* compare based on sign */
629 if (a->sign != b->sign) {
630 if (a->sign == MP_NEG) {
631 return MP_LT;
632 } else {
633 return MP_GT;
634 }
635 }
636
637 /* compare digits */
638 if (a->sign == MP_NEG) {
639 /* if negative compare opposite direction */
640 return mp_cmp_mag(b, a);
641 } else {
642 return mp_cmp_mag(a, b);
643 }
644 }
645
646
647 /* compare a digit */
mp_cmp_d(mp_int * a,mp_digit b)648 static int mp_cmp_d(mp_int * a, mp_digit b)
649 {
650 /* compare based on sign */
651 if (a->sign == MP_NEG) {
652 return MP_LT;
653 }
654
655 /* compare based on magnitude */
656 if (a->used > 1) {
657 return MP_GT;
658 }
659
660 /* compare the only digit of a to b */
661 if (a->dp[0] > b) {
662 return MP_GT;
663 } else if (a->dp[0] < b) {
664 return MP_LT;
665 } else {
666 return MP_EQ;
667 }
668 }
669
670
671 /* hac 14.61, pp608 */
mp_invmod(mp_int * a,mp_int * b,mp_int * c)672 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
673 {
674 /* b cannot be negative */
675 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
676 return MP_VAL;
677 }
678
679 #ifdef BN_FAST_MP_INVMOD_C
680 /* if the modulus is odd we can use a faster routine instead */
681 if (mp_isodd (b) == 1) {
682 return fast_mp_invmod (a, b, c);
683 }
684 #endif
685
686 #ifdef BN_MP_INVMOD_SLOW_C
687 return mp_invmod_slow(a, b, c);
688 #endif
689
690 #ifndef BN_FAST_MP_INVMOD_C
691 #ifndef BN_MP_INVMOD_SLOW_C
692 #error mp_invmod would always fail
693 #endif
694 #endif
695 return MP_VAL;
696 }
697
698
699 /* get the size for an unsigned equivalent */
mp_unsigned_bin_size(mp_int * a)700 static int mp_unsigned_bin_size (mp_int * a)
701 {
702 int size = mp_count_bits (a);
703 return (size / 8 + ((size & 7) != 0 ? 1 : 0));
704 }
705
706
707 /* hac 14.61, pp608 */
mp_invmod_slow(mp_int * a,mp_int * b,mp_int * c)708 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
709 {
710 mp_int x, y, u, v, A, B, C, D;
711 int res;
712
713 /* b cannot be negative */
714 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
715 return MP_VAL;
716 }
717
718 /* init temps */
719 if ((res = mp_init_multi(&x, &y, &u, &v,
720 &A, &B, &C, &D, NULL)) != MP_OKAY) {
721 return res;
722 }
723
724 /* x = a, y = b */
725 if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
726 goto LBL_ERR;
727 }
728 if ((res = mp_copy (b, &y)) != MP_OKAY) {
729 goto LBL_ERR;
730 }
731
732 /* 2. [modified] if x,y are both even then return an error! */
733 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
734 res = MP_VAL;
735 goto LBL_ERR;
736 }
737
738 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
739 if ((res = mp_copy (&x, &u)) != MP_OKAY) {
740 goto LBL_ERR;
741 }
742 if ((res = mp_copy (&y, &v)) != MP_OKAY) {
743 goto LBL_ERR;
744 }
745 mp_set (&A, 1);
746 mp_set (&D, 1);
747
748 top:
749 /* 4. while u is even do */
750 while (mp_iseven (&u) == 1) {
751 /* 4.1 u = u/2 */
752 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
753 goto LBL_ERR;
754 }
755 /* 4.2 if A or B is odd then */
756 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
757 /* A = (A+y)/2, B = (B-x)/2 */
758 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
759 goto LBL_ERR;
760 }
761 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
762 goto LBL_ERR;
763 }
764 }
765 /* A = A/2, B = B/2 */
766 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
767 goto LBL_ERR;
768 }
769 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
770 goto LBL_ERR;
771 }
772 }
773
774 /* 5. while v is even do */
775 while (mp_iseven (&v) == 1) {
776 /* 5.1 v = v/2 */
777 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
778 goto LBL_ERR;
779 }
780 /* 5.2 if C or D is odd then */
781 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
782 /* C = (C+y)/2, D = (D-x)/2 */
783 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
784 goto LBL_ERR;
785 }
786 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
787 goto LBL_ERR;
788 }
789 }
790 /* C = C/2, D = D/2 */
791 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
792 goto LBL_ERR;
793 }
794 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
795 goto LBL_ERR;
796 }
797 }
798
799 /* 6. if u >= v then */
800 if (mp_cmp (&u, &v) != MP_LT) {
801 /* u = u - v, A = A - C, B = B - D */
802 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
803 goto LBL_ERR;
804 }
805
806 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
807 goto LBL_ERR;
808 }
809
810 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
811 goto LBL_ERR;
812 }
813 } else {
814 /* v - v - u, C = C - A, D = D - B */
815 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
816 goto LBL_ERR;
817 }
818
819 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
820 goto LBL_ERR;
821 }
822
823 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
824 goto LBL_ERR;
825 }
826 }
827
828 /* if not zero goto step 4 */
829 if (mp_iszero (&u) == 0)
830 goto top;
831
832 /* now a = C, b = D, gcd == g*v */
833
834 /* if v != 1 then there is no inverse */
835 if (mp_cmp_d (&v, 1) != MP_EQ) {
836 res = MP_VAL;
837 goto LBL_ERR;
838 }
839
840 /* if its too low */
841 while (mp_cmp_d(&C, 0) == MP_LT) {
842 if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
843 goto LBL_ERR;
844 }
845 }
846
847 /* too big */
848 while (mp_cmp_mag(&C, b) != MP_LT) {
849 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
850 goto LBL_ERR;
851 }
852 }
853
854 /* C is now the inverse */
855 mp_exch (&C, c);
856 res = MP_OKAY;
857 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
858 return res;
859 }
860
861
862 /* compare maginitude of two ints (unsigned) */
mp_cmp_mag(mp_int * a,mp_int * b)863 static int mp_cmp_mag (mp_int * a, mp_int * b)
864 {
865 int n;
866 mp_digit *tmpa, *tmpb;
867
868 /* compare based on # of non-zero digits */
869 if (a->used > b->used) {
870 return MP_GT;
871 }
872
873 if (a->used < b->used) {
874 return MP_LT;
875 }
876
877 /* alias for a */
878 tmpa = a->dp + (a->used - 1);
879
880 /* alias for b */
881 tmpb = b->dp + (a->used - 1);
882
883 /* compare based on digits */
884 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
885 if (*tmpa > *tmpb) {
886 return MP_GT;
887 }
888
889 if (*tmpa < *tmpb) {
890 return MP_LT;
891 }
892 }
893 return MP_EQ;
894 }
895
896
897 /* reads a unsigned char array, assumes the msb is stored first [big endian] */
mp_read_unsigned_bin(mp_int * a,const unsigned char * b,int c)898 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
899 {
900 int res;
901
902 /* make sure there are at least two digits */
903 if (a->alloc < 2) {
904 if ((res = mp_grow(a, 2)) != MP_OKAY) {
905 return res;
906 }
907 }
908
909 /* zero the int */
910 mp_zero (a);
911
912 /* read the bytes in */
913 while (c-- > 0) {
914 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
915 return res;
916 }
917
918 #ifndef MP_8BIT
919 a->dp[0] |= *b++;
920 a->used += 1;
921 #else
922 a->dp[0] = (*b & MP_MASK);
923 a->dp[1] |= ((*b++ >> 7U) & 1);
924 a->used += 2;
925 #endif
926 }
927 mp_clamp (a);
928 return MP_OKAY;
929 }
930
931
932 /* store in unsigned [big endian] format */
mp_to_unsigned_bin(mp_int * a,unsigned char * b)933 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
934 {
935 int x, res;
936 mp_int t;
937
938 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
939 return res;
940 }
941
942 x = 0;
943 while (mp_iszero (&t) == 0) {
944 #ifndef MP_8BIT
945 b[x++] = (unsigned char) (t.dp[0] & 255);
946 #else
947 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
948 #endif
949 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
950 mp_clear (&t);
951 return res;
952 }
953 }
954 bn_reverse (b, x);
955 mp_clear (&t);
956 return MP_OKAY;
957 }
958
959
960 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
mp_div_2d(mp_int * a,int b,mp_int * c,mp_int * d)961 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
962 {
963 mp_digit D, r, rr;
964 int x, res;
965 mp_int t;
966
967
968 /* if the shift count is <= 0 then we do no work */
969 if (b <= 0) {
970 res = mp_copy (a, c);
971 if (d != NULL) {
972 mp_zero (d);
973 }
974 return res;
975 }
976
977 if ((res = mp_init (&t)) != MP_OKAY) {
978 return res;
979 }
980
981 /* get the remainder */
982 if (d != NULL) {
983 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
984 mp_clear (&t);
985 return res;
986 }
987 }
988
989 /* copy */
990 if ((res = mp_copy (a, c)) != MP_OKAY) {
991 mp_clear (&t);
992 return res;
993 }
994
995 /* shift by as many digits in the bit count */
996 if (b >= (int)DIGIT_BIT) {
997 mp_rshd (c, b / DIGIT_BIT);
998 }
999
1000 /* shift any bit count < DIGIT_BIT */
1001 D = (mp_digit) (b % DIGIT_BIT);
1002 if (D != 0) {
1003 register mp_digit *tmpc, mask, shift;
1004
1005 /* mask */
1006 mask = (((mp_digit)1) << D) - 1;
1007
1008 /* shift for lsb */
1009 shift = DIGIT_BIT - D;
1010
1011 /* alias */
1012 tmpc = c->dp + (c->used - 1);
1013
1014 /* carry */
1015 r = 0;
1016 for (x = c->used - 1; x >= 0; x--) {
1017 /* get the lower bits of this word in a temp */
1018 rr = *tmpc & mask;
1019
1020 /* shift the current word and mix in the carry bits from the previous word */
1021 *tmpc = (*tmpc >> D) | (r << shift);
1022 --tmpc;
1023
1024 /* set the carry to the carry bits of the current word found above */
1025 r = rr;
1026 }
1027 }
1028 mp_clamp (c);
1029 if (d != NULL) {
1030 mp_exch (&t, d);
1031 }
1032 mp_clear (&t);
1033 return MP_OKAY;
1034 }
1035
1036
mp_init_copy(mp_int * a,mp_int * b)1037 static int mp_init_copy (mp_int * a, mp_int * b)
1038 {
1039 int res;
1040
1041 if ((res = mp_init (a)) != MP_OKAY) {
1042 return res;
1043 }
1044 return mp_copy (b, a);
1045 }
1046
1047
1048 /* set to zero */
mp_zero(mp_int * a)1049 static void mp_zero (mp_int * a)
1050 {
1051 int n;
1052 mp_digit *tmp;
1053
1054 a->sign = MP_ZPOS;
1055 a->used = 0;
1056
1057 tmp = a->dp;
1058 for (n = 0; n < a->alloc; n++) {
1059 *tmp++ = 0;
1060 }
1061 }
1062
1063
1064 /* copy, b = a */
mp_copy(mp_int * a,mp_int * b)1065 static int mp_copy (mp_int * a, mp_int * b)
1066 {
1067 int res, n;
1068
1069 /* if dst == src do nothing */
1070 if (a == b) {
1071 return MP_OKAY;
1072 }
1073
1074 /* grow dest */
1075 if (b->alloc < a->used) {
1076 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1077 return res;
1078 }
1079 }
1080
1081 /* zero b and copy the parameters over */
1082 {
1083 register mp_digit *tmpa, *tmpb;
1084
1085 /* pointer aliases */
1086
1087 /* source */
1088 tmpa = a->dp;
1089
1090 /* destination */
1091 tmpb = b->dp;
1092
1093 /* copy all the digits */
1094 for (n = 0; n < a->used; n++) {
1095 *tmpb++ = *tmpa++;
1096 }
1097
1098 /* clear high digits */
1099 for (; n < b->used; n++) {
1100 *tmpb++ = 0;
1101 }
1102 }
1103
1104 /* copy used count and sign */
1105 b->used = a->used;
1106 b->sign = a->sign;
1107 return MP_OKAY;
1108 }
1109
1110
1111 /* shift right a certain amount of digits */
mp_rshd(mp_int * a,int b)1112 static void mp_rshd (mp_int * a, int b)
1113 {
1114 int x;
1115
1116 /* if b <= 0 then ignore it */
1117 if (b <= 0) {
1118 return;
1119 }
1120
1121 /* if b > used then simply zero it and return */
1122 if (a->used <= b) {
1123 mp_zero (a);
1124 return;
1125 }
1126
1127 {
1128 register mp_digit *bottom, *top;
1129
1130 /* shift the digits down */
1131
1132 /* bottom */
1133 bottom = a->dp;
1134
1135 /* top [offset into digits] */
1136 top = a->dp + b;
1137
1138 /* this is implemented as a sliding window where
1139 * the window is b-digits long and digits from
1140 * the top of the window are copied to the bottom
1141 *
1142 * e.g.
1143
1144 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
1145 /\ | ---->
1146 \-------------------/ ---->
1147 */
1148 for (x = 0; x < (a->used - b); x++) {
1149 *bottom++ = *top++;
1150 }
1151
1152 /* zero the top digits */
1153 for (; x < a->used; x++) {
1154 *bottom++ = 0;
1155 }
1156 }
1157
1158 /* remove excess digits */
1159 a->used -= b;
1160 }
1161
1162
1163 /* swap the elements of two integers, for cases where you can't simply swap the
1164 * mp_int pointers around
1165 */
mp_exch(mp_int * a,mp_int * b)1166 static void mp_exch (mp_int * a, mp_int * b)
1167 {
1168 mp_int t;
1169
1170 t = *a;
1171 *a = *b;
1172 *b = t;
1173 }
1174
1175
1176 /* trim unused digits
1177 *
1178 * This is used to ensure that leading zero digits are
1179 * trimed and the leading "used" digit will be non-zero
1180 * Typically very fast. Also fixes the sign if there
1181 * are no more leading digits
1182 */
mp_clamp(mp_int * a)1183 static void mp_clamp (mp_int * a)
1184 {
1185 /* decrease used while the most significant digit is
1186 * zero.
1187 */
1188 while (a->used > 0 && a->dp[a->used - 1] == 0) {
1189 --(a->used);
1190 }
1191
1192 /* reset the sign flag if used == 0 */
1193 if (a->used == 0) {
1194 a->sign = MP_ZPOS;
1195 }
1196 }
1197
1198
1199 /* grow as required */
mp_grow(mp_int * a,int size)1200 static int mp_grow (mp_int * a, int size)
1201 {
1202 int i;
1203 mp_digit *tmp;
1204
1205 /* if the alloc size is smaller alloc more ram */
1206 if (a->alloc < size) {
1207 /* ensure there are always at least MP_PREC digits extra on top */
1208 size += (MP_PREC * 2) - (size % MP_PREC);
1209
1210 /* reallocate the array a->dp
1211 *
1212 * We store the return in a temporary variable
1213 * in case the operation failed we don't want
1214 * to overwrite the dp member of a.
1215 */
1216 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1217 if (tmp == NULL) {
1218 /* reallocation failed but "a" is still valid [can be freed] */
1219 return MP_MEM;
1220 }
1221
1222 /* reallocation succeeded so set a->dp */
1223 a->dp = tmp;
1224
1225 /* zero excess digits */
1226 i = a->alloc;
1227 a->alloc = size;
1228 for (; i < a->alloc; i++) {
1229 a->dp[i] = 0;
1230 }
1231 }
1232 return MP_OKAY;
1233 }
1234
1235
1236 /* b = |a|
1237 *
1238 * Simple function copies the input and fixes the sign to positive
1239 */
mp_abs(mp_int * a,mp_int * b)1240 static int mp_abs (mp_int * a, mp_int * b)
1241 {
1242 int res;
1243
1244 /* copy a to b */
1245 if (a != b) {
1246 if ((res = mp_copy (a, b)) != MP_OKAY) {
1247 return res;
1248 }
1249 }
1250
1251 /* force the sign of b to positive */
1252 b->sign = MP_ZPOS;
1253
1254 return MP_OKAY;
1255 }
1256
1257
1258 /* set to a digit */
mp_set(mp_int * a,mp_digit b)1259 static void mp_set (mp_int * a, mp_digit b)
1260 {
1261 mp_zero (a);
1262 a->dp[0] = b & MP_MASK;
1263 a->used = (a->dp[0] != 0) ? 1 : 0;
1264 }
1265
1266
1267 /* b = a/2 */
mp_div_2(mp_int * a,mp_int * b)1268 static int mp_div_2(mp_int * a, mp_int * b)
1269 {
1270 int x, res, oldused;
1271
1272 /* copy */
1273 if (b->alloc < a->used) {
1274 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1275 return res;
1276 }
1277 }
1278
1279 oldused = b->used;
1280 b->used = a->used;
1281 {
1282 register mp_digit r, rr, *tmpa, *tmpb;
1283
1284 /* source alias */
1285 tmpa = a->dp + b->used - 1;
1286
1287 /* dest alias */
1288 tmpb = b->dp + b->used - 1;
1289
1290 /* carry */
1291 r = 0;
1292 for (x = b->used - 1; x >= 0; x--) {
1293 /* get the carry for the next iteration */
1294 rr = *tmpa & 1;
1295
1296 /* shift the current digit, add in carry and store */
1297 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1298
1299 /* forward carry to next iteration */
1300 r = rr;
1301 }
1302
1303 /* zero excess digits */
1304 tmpb = b->dp + b->used;
1305 for (x = b->used; x < oldused; x++) {
1306 *tmpb++ = 0;
1307 }
1308 }
1309 b->sign = a->sign;
1310 mp_clamp (b);
1311 return MP_OKAY;
1312 }
1313
1314
1315 /* shift left by a certain bit count */
mp_mul_2d(mp_int * a,int b,mp_int * c)1316 static int mp_mul_2d (mp_int * a, int b, mp_int * c)
1317 {
1318 mp_digit d;
1319 int res;
1320
1321 /* copy */
1322 if (a != c) {
1323 if ((res = mp_copy (a, c)) != MP_OKAY) {
1324 return res;
1325 }
1326 }
1327
1328 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1329 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1330 return res;
1331 }
1332 }
1333
1334 /* shift by as many digits in the bit count */
1335 if (b >= (int)DIGIT_BIT) {
1336 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1337 return res;
1338 }
1339 }
1340
1341 /* shift any bit count < DIGIT_BIT */
1342 d = (mp_digit) (b % DIGIT_BIT);
1343 if (d != 0) {
1344 register mp_digit *tmpc, shift, mask, r, rr;
1345 register int x;
1346
1347 /* bitmask for carries */
1348 mask = (((mp_digit)1) << d) - 1;
1349
1350 /* shift for msbs */
1351 shift = DIGIT_BIT - d;
1352
1353 /* alias */
1354 tmpc = c->dp;
1355
1356 /* carry */
1357 r = 0;
1358 for (x = 0; x < c->used; x++) {
1359 /* get the higher bits of the current word */
1360 rr = (*tmpc >> shift) & mask;
1361
1362 /* shift the current word and OR in the carry */
1363 *tmpc = ((*tmpc << d) | r) & MP_MASK;
1364 ++tmpc;
1365
1366 /* set the carry to the carry bits of the current word */
1367 r = rr;
1368 }
1369
1370 /* set final carry */
1371 if (r != 0) {
1372 c->dp[(c->used)++] = r;
1373 }
1374 }
1375 mp_clamp (c);
1376 return MP_OKAY;
1377 }
1378
1379
mp_init_multi(mp_int * mp,...)1380 static int mp_init_multi(mp_int *mp, ...)
1381 {
1382 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
1383 int n = 0; /* Number of ok inits */
1384 mp_int* cur_arg = mp;
1385 va_list args;
1386
1387 va_start(args, mp); /* init args to next argument from caller */
1388 while (cur_arg != NULL) {
1389 if (mp_init(cur_arg) != MP_OKAY) {
1390 /* Oops - error! Back-track and mp_clear what we already
1391 succeeded in init-ing, then return error.
1392 */
1393 va_list clean_args;
1394
1395 /* end the current list */
1396 va_end(args);
1397
1398 /* now start cleaning up */
1399 cur_arg = mp;
1400 va_start(clean_args, mp);
1401 while (n--) {
1402 mp_clear(cur_arg);
1403 cur_arg = va_arg(clean_args, mp_int*);
1404 }
1405 va_end(clean_args);
1406 res = MP_MEM;
1407 break;
1408 }
1409 n++;
1410 cur_arg = va_arg(args, mp_int*);
1411 }
1412 va_end(args);
1413 return res; /* Assumed ok, if error flagged above. */
1414 }
1415
1416
mp_clear_multi(mp_int * mp,...)1417 static void mp_clear_multi(mp_int *mp, ...)
1418 {
1419 mp_int* next_mp = mp;
1420 va_list args;
1421 va_start(args, mp);
1422 while (next_mp != NULL) {
1423 mp_clear(next_mp);
1424 next_mp = va_arg(args, mp_int*);
1425 }
1426 va_end(args);
1427 }
1428
1429
1430 /* shift left a certain amount of digits */
mp_lshd(mp_int * a,int b)1431 static int mp_lshd (mp_int * a, int b)
1432 {
1433 int x, res;
1434
1435 /* if its less than zero return */
1436 if (b <= 0) {
1437 return MP_OKAY;
1438 }
1439
1440 /* grow to fit the new digits */
1441 if (a->alloc < a->used + b) {
1442 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1443 return res;
1444 }
1445 }
1446
1447 {
1448 register mp_digit *top, *bottom;
1449
1450 /* increment the used by the shift amount then copy upwards */
1451 a->used += b;
1452
1453 /* top */
1454 top = a->dp + a->used - 1;
1455
1456 /* base */
1457 bottom = a->dp + a->used - 1 - b;
1458
1459 /* much like mp_rshd this is implemented using a sliding window
1460 * except the window goes the otherway around. Copying from
1461 * the bottom to the top. see bn_mp_rshd.c for more info.
1462 */
1463 for (x = a->used - 1; x >= b; x--) {
1464 *top-- = *bottom--;
1465 }
1466
1467 /* zero the lower digits */
1468 top = a->dp;
1469 for (x = 0; x < b; x++) {
1470 *top++ = 0;
1471 }
1472 }
1473 return MP_OKAY;
1474 }
1475
1476
1477 /* returns the number of bits in an int */
mp_count_bits(mp_int * a)1478 static int mp_count_bits (mp_int * a)
1479 {
1480 int r;
1481 mp_digit q;
1482
1483 /* shortcut */
1484 if (a->used == 0) {
1485 return 0;
1486 }
1487
1488 /* get number of digits and add that */
1489 r = (a->used - 1) * DIGIT_BIT;
1490
1491 /* take the last digit and count the bits in it */
1492 q = a->dp[a->used - 1];
1493 while (q > ((mp_digit) 0)) {
1494 ++r;
1495 q >>= ((mp_digit) 1);
1496 }
1497 return r;
1498 }
1499
1500
1501 /* calc a value mod 2**b */
mp_mod_2d(mp_int * a,int b,mp_int * c)1502 static int mp_mod_2d (mp_int * a, int b, mp_int * c)
1503 {
1504 int x, res;
1505
1506 /* if b is <= 0 then zero the int */
1507 if (b <= 0) {
1508 mp_zero (c);
1509 return MP_OKAY;
1510 }
1511
1512 /* if the modulus is larger than the value than return */
1513 if (b >= (int) (a->used * DIGIT_BIT)) {
1514 res = mp_copy (a, c);
1515 return res;
1516 }
1517
1518 /* copy */
1519 if ((res = mp_copy (a, c)) != MP_OKAY) {
1520 return res;
1521 }
1522
1523 /* zero digits above the last digit of the modulus */
1524 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1525 c->dp[x] = 0;
1526 }
1527 /* clear the digit that is not completely outside/inside the modulus */
1528 c->dp[b / DIGIT_BIT] &=
1529 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1530 mp_clamp (c);
1531 return MP_OKAY;
1532 }
1533
1534
1535 /* slower bit-bang division... also smaller */
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)1536 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1537 {
1538 mp_int ta, tb, tq, q;
1539 int res, n, n2;
1540
1541 /* is divisor zero ? */
1542 if (mp_iszero (b) == 1) {
1543 return MP_VAL;
1544 }
1545
1546 /* if a < b then q=0, r = a */
1547 if (mp_cmp_mag (a, b) == MP_LT) {
1548 if (d != NULL) {
1549 res = mp_copy (a, d);
1550 } else {
1551 res = MP_OKAY;
1552 }
1553 if (c != NULL) {
1554 mp_zero (c);
1555 }
1556 return res;
1557 }
1558
1559 /* init our temps */
1560 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
1561 return res;
1562 }
1563
1564
1565 mp_set(&tq, 1);
1566 n = mp_count_bits(a) - mp_count_bits(b);
1567 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1568 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1569 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1570 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1571 goto LBL_ERR;
1572 }
1573
1574 while (n-- >= 0) {
1575 if (mp_cmp(&tb, &ta) != MP_GT) {
1576 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1577 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1578 goto LBL_ERR;
1579 }
1580 }
1581 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1582 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1583 goto LBL_ERR;
1584 }
1585 }
1586
1587 /* now q == quotient and ta == remainder */
1588 n = a->sign;
1589 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1590 if (c != NULL) {
1591 mp_exch(c, &q);
1592 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1593 }
1594 if (d != NULL) {
1595 mp_exch(d, &ta);
1596 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1597 }
1598 LBL_ERR:
1599 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1600 return res;
1601 }
1602
1603
1604 #ifdef MP_LOW_MEM
1605 #define TAB_SIZE 32
1606 #else
1607 #define TAB_SIZE 256
1608 #endif
1609
s_mp_exptmod(mp_int * G,mp_int * X,mp_int * P,mp_int * Y,int redmode)1610 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1611 {
1612 mp_int M[TAB_SIZE], res, mu;
1613 mp_digit buf;
1614 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1615 int (*redux)(mp_int*,mp_int*,mp_int*);
1616
1617 /* find window size */
1618 x = mp_count_bits (X);
1619 if (x <= 7) {
1620 winsize = 2;
1621 } else if (x <= 36) {
1622 winsize = 3;
1623 } else if (x <= 140) {
1624 winsize = 4;
1625 } else if (x <= 450) {
1626 winsize = 5;
1627 } else if (x <= 1303) {
1628 winsize = 6;
1629 } else if (x <= 3529) {
1630 winsize = 7;
1631 } else {
1632 winsize = 8;
1633 }
1634
1635 #ifdef MP_LOW_MEM
1636 if (winsize > 5) {
1637 winsize = 5;
1638 }
1639 #endif
1640
1641 /* init M array */
1642 /* init first cell */
1643 if ((err = mp_init(&M[1])) != MP_OKAY) {
1644 return err;
1645 }
1646
1647 /* now init the second half of the array */
1648 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1649 if ((err = mp_init(&M[x])) != MP_OKAY) {
1650 for (y = 1<<(winsize-1); y < x; y++) {
1651 mp_clear (&M[y]);
1652 }
1653 mp_clear(&M[1]);
1654 return err;
1655 }
1656 }
1657
1658 /* create mu, used for Barrett reduction */
1659 if ((err = mp_init (&mu)) != MP_OKAY) {
1660 goto LBL_M;
1661 }
1662
1663 if (redmode == 0) {
1664 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1665 goto LBL_MU;
1666 }
1667 redux = mp_reduce;
1668 } else {
1669 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1670 goto LBL_MU;
1671 }
1672 redux = mp_reduce_2k_l;
1673 }
1674
1675 /* create M table
1676 *
1677 * The M table contains powers of the base,
1678 * e.g. M[x] = G**x mod P
1679 *
1680 * The first half of the table is not
1681 * computed though accept for M[0] and M[1]
1682 */
1683 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1684 goto LBL_MU;
1685 }
1686
1687 /* compute the value at M[1<<(winsize-1)] by squaring
1688 * M[1] (winsize-1) times
1689 */
1690 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1691 goto LBL_MU;
1692 }
1693
1694 for (x = 0; x < (winsize - 1); x++) {
1695 /* square it */
1696 if ((err = mp_sqr (&M[1 << (winsize - 1)],
1697 &M[1 << (winsize - 1)])) != MP_OKAY) {
1698 goto LBL_MU;
1699 }
1700
1701 /* reduce modulo P */
1702 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
1703 goto LBL_MU;
1704 }
1705 }
1706
1707 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1708 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1709 */
1710 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
1711 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
1712 goto LBL_MU;
1713 }
1714 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
1715 goto LBL_MU;
1716 }
1717 }
1718
1719 /* setup result */
1720 if ((err = mp_init (&res)) != MP_OKAY) {
1721 goto LBL_MU;
1722 }
1723 mp_set (&res, 1);
1724
1725 /* set initial mode and bit cnt */
1726 mode = 0;
1727 bitcnt = 1;
1728 buf = 0;
1729 digidx = X->used - 1;
1730 bitcpy = 0;
1731 bitbuf = 0;
1732
1733 for (;;) {
1734 /* grab next digit as required */
1735 if (--bitcnt == 0) {
1736 /* if digidx == -1 we are out of digits */
1737 if (digidx == -1) {
1738 break;
1739 }
1740 /* read next digit and reset the bitcnt */
1741 buf = X->dp[digidx--];
1742 bitcnt = (int) DIGIT_BIT;
1743 }
1744
1745 /* grab the next msb from the exponent */
1746 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
1747 buf <<= (mp_digit)1;
1748
1749 /* if the bit is zero and mode == 0 then we ignore it
1750 * These represent the leading zero bits before the first 1 bit
1751 * in the exponent. Technically this opt is not required but it
1752 * does lower the # of trivial squaring/reductions used
1753 */
1754 if (mode == 0 && y == 0) {
1755 continue;
1756 }
1757
1758 /* if the bit is zero and mode == 1 then we square */
1759 if (mode == 1 && y == 0) {
1760 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
1761 goto LBL_RES;
1762 }
1763 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
1764 goto LBL_RES;
1765 }
1766 continue;
1767 }
1768
1769 /* else we add it to the window */
1770 bitbuf |= (y << (winsize - ++bitcpy));
1771 mode = 2;
1772
1773 if (bitcpy == winsize) {
1774 /* ok window is filled so square as required and multiply */
1775 /* square first */
1776 for (x = 0; x < winsize; x++) {
1777 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
1778 goto LBL_RES;
1779 }
1780 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
1781 goto LBL_RES;
1782 }
1783 }
1784
1785 /* then multiply */
1786 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
1787 goto LBL_RES;
1788 }
1789 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
1790 goto LBL_RES;
1791 }
1792
1793 /* empty window and reset */
1794 bitcpy = 0;
1795 bitbuf = 0;
1796 mode = 1;
1797 }
1798 }
1799
1800 /* if bits remain then square/multiply */
1801 if (mode == 2 && bitcpy > 0) {
1802 /* square then multiply if the bit is set */
1803 for (x = 0; x < bitcpy; x++) {
1804 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
1805 goto LBL_RES;
1806 }
1807 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
1808 goto LBL_RES;
1809 }
1810
1811 bitbuf <<= 1;
1812 if ((bitbuf & (1 << winsize)) != 0) {
1813 /* then multiply */
1814 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
1815 goto LBL_RES;
1816 }
1817 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
1818 goto LBL_RES;
1819 }
1820 }
1821 }
1822 }
1823
1824 mp_exch (&res, Y);
1825 err = MP_OKAY;
1826 LBL_RES:mp_clear (&res);
1827 LBL_MU:mp_clear (&mu);
1828 LBL_M:
1829 mp_clear(&M[1]);
1830 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1831 mp_clear (&M[x]);
1832 }
1833 return err;
1834 }
1835
1836
1837 /* computes b = a*a */
mp_sqr(mp_int * a,mp_int * b)1838 static int mp_sqr (mp_int * a, mp_int * b)
1839 {
1840 int res;
1841
1842 #ifdef BN_MP_TOOM_SQR_C
1843 /* use Toom-Cook? */
1844 if (a->used >= TOOM_SQR_CUTOFF) {
1845 res = mp_toom_sqr(a, b);
1846 /* Karatsuba? */
1847 } else
1848 #endif
1849 #ifdef BN_MP_KARATSUBA_SQR_C
1850 if (a->used >= KARATSUBA_SQR_CUTOFF) {
1851 res = mp_karatsuba_sqr (a, b);
1852 } else
1853 #endif
1854 {
1855 #ifdef BN_FAST_S_MP_SQR_C
1856 /* can we use the fast comba multiplier? */
1857 if ((a->used * 2 + 1) < MP_WARRAY &&
1858 a->used <
1859 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
1860 res = fast_s_mp_sqr (a, b);
1861 } else
1862 #endif
1863 #ifdef BN_S_MP_SQR_C
1864 res = s_mp_sqr (a, b);
1865 #else
1866 #error mp_sqr could fail
1867 res = MP_VAL;
1868 #endif
1869 }
1870 b->sign = MP_ZPOS;
1871 return res;
1872 }
1873
1874
1875 /* reduces a modulo n where n is of the form 2**p - d
1876 This differs from reduce_2k since "d" can be larger
1877 than a single digit.
1878 */
mp_reduce_2k_l(mp_int * a,mp_int * n,mp_int * d)1879 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
1880 {
1881 mp_int q;
1882 int p, res;
1883
1884 if ((res = mp_init(&q)) != MP_OKAY) {
1885 return res;
1886 }
1887
1888 p = mp_count_bits(n);
1889 top:
1890 /* q = a/2**p, a = a mod 2**p */
1891 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
1892 goto ERR;
1893 }
1894
1895 /* q = q * d */
1896 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
1897 goto ERR;
1898 }
1899
1900 /* a = a + q */
1901 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
1902 goto ERR;
1903 }
1904
1905 if (mp_cmp_mag(a, n) != MP_LT) {
1906 s_mp_sub(a, n, a);
1907 goto top;
1908 }
1909
1910 ERR:
1911 mp_clear(&q);
1912 return res;
1913 }
1914
1915
1916 /* determines the setup value */
mp_reduce_2k_setup_l(mp_int * a,mp_int * d)1917 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
1918 {
1919 int res;
1920 mp_int tmp;
1921
1922 if ((res = mp_init(&tmp)) != MP_OKAY) {
1923 return res;
1924 }
1925
1926 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
1927 goto ERR;
1928 }
1929
1930 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
1931 goto ERR;
1932 }
1933
1934 ERR:
1935 mp_clear(&tmp);
1936 return res;
1937 }
1938
1939
1940 /* computes a = 2**b
1941 *
1942 * Simple algorithm which zeroes the int, grows it then just sets one bit
1943 * as required.
1944 */
mp_2expt(mp_int * a,int b)1945 static int mp_2expt (mp_int * a, int b)
1946 {
1947 int res;
1948
1949 /* zero a as per default */
1950 mp_zero (a);
1951
1952 /* grow a to accomodate the single bit */
1953 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
1954 return res;
1955 }
1956
1957 /* set the used count of where the bit will go */
1958 a->used = b / DIGIT_BIT + 1;
1959
1960 /* put the single bit in its place */
1961 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
1962
1963 return MP_OKAY;
1964 }
1965
1966
1967 /* pre-calculate the value required for Barrett reduction
1968 * For a given modulus "b" it calulates the value required in "a"
1969 */
mp_reduce_setup(mp_int * a,mp_int * b)1970 static int mp_reduce_setup (mp_int * a, mp_int * b)
1971 {
1972 int res;
1973
1974 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
1975 return res;
1976 }
1977 return mp_div (a, b, a, NULL);
1978 }
1979
1980
1981 /* reduces x mod m, assumes 0 < x < m**2, mu is
1982 * precomputed via mp_reduce_setup.
1983 * From HAC pp.604 Algorithm 14.42
1984 */
mp_reduce(mp_int * x,mp_int * m,mp_int * mu)1985 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
1986 {
1987 mp_int q;
1988 int res, um = m->used;
1989
1990 /* q = x */
1991 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
1992 return res;
1993 }
1994
1995 /* q1 = x / b**(k-1) */
1996 mp_rshd (&q, um - 1);
1997
1998 /* according to HAC this optimization is ok */
1999 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2000 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2001 goto CLEANUP;
2002 }
2003 } else {
2004 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
2005 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2006 goto CLEANUP;
2007 }
2008 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2009 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2010 goto CLEANUP;
2011 }
2012 #else
2013 {
2014 #error mp_reduce would always fail
2015 res = MP_VAL;
2016 goto CLEANUP;
2017 }
2018 #endif
2019 }
2020
2021 /* q3 = q2 / b**(k+1) */
2022 mp_rshd (&q, um + 1);
2023
2024 /* x = x mod b**(k+1), quick (no division) */
2025 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2026 goto CLEANUP;
2027 }
2028
2029 /* q = q * m mod b**(k+1), quick (no division) */
2030 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2031 goto CLEANUP;
2032 }
2033
2034 /* x = x - q */
2035 if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2036 goto CLEANUP;
2037 }
2038
2039 /* If x < 0, add b**(k+1) to it */
2040 if (mp_cmp_d (x, 0) == MP_LT) {
2041 mp_set (&q, 1);
2042 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2043 goto CLEANUP;
2044 }
2045 if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2046 goto CLEANUP;
2047 }
2048 }
2049
2050 /* Back off if it's too big */
2051 while (mp_cmp (x, m) != MP_LT) {
2052 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2053 goto CLEANUP;
2054 }
2055 }
2056
2057 CLEANUP:
2058 mp_clear (&q);
2059
2060 return res;
2061 }
2062
2063
2064 /* multiplies |a| * |b| and only computes upto digs digits of result
2065 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
2066 * many digits of output are created.
2067 */
s_mp_mul_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2068 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2069 {
2070 mp_int t;
2071 int res, pa, pb, ix, iy;
2072 mp_digit u;
2073 mp_word r;
2074 mp_digit tmpx, *tmpt, *tmpy;
2075
2076 /* can we use the fast multiplier? */
2077 if (((digs) < MP_WARRAY) &&
2078 MIN (a->used, b->used) <
2079 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2080 return fast_s_mp_mul_digs (a, b, c, digs);
2081 }
2082
2083 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2084 return res;
2085 }
2086 t.used = digs;
2087
2088 /* compute the digits of the product directly */
2089 pa = a->used;
2090 for (ix = 0; ix < pa; ix++) {
2091 /* set the carry to zero */
2092 u = 0;
2093
2094 /* limit ourselves to making digs digits of output */
2095 pb = MIN (b->used, digs - ix);
2096
2097 /* setup some aliases */
2098 /* copy of the digit from a used within the nested loop */
2099 tmpx = a->dp[ix];
2100
2101 /* an alias for the destination shifted ix places */
2102 tmpt = t.dp + ix;
2103
2104 /* an alias for the digits of b */
2105 tmpy = b->dp;
2106
2107 /* compute the columns of the output and propagate the carry */
2108 for (iy = 0; iy < pb; iy++) {
2109 /* compute the column as a mp_word */
2110 r = ((mp_word)*tmpt) +
2111 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2112 ((mp_word) u);
2113
2114 /* the new column is the lower part of the result */
2115 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2116
2117 /* get the carry word from the result */
2118 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2119 }
2120 /* set carry if it is placed below digs */
2121 if (ix + iy < digs) {
2122 *tmpt = u;
2123 }
2124 }
2125
2126 mp_clamp (&t);
2127 mp_exch (&t, c);
2128
2129 mp_clear (&t);
2130 return MP_OKAY;
2131 }
2132
2133
2134 /* Fast (comba) multiplier
2135 *
2136 * This is the fast column-array [comba] multiplier. It is
2137 * designed to compute the columns of the product first
2138 * then handle the carries afterwards. This has the effect
2139 * of making the nested loops that compute the columns very
2140 * simple and schedulable on super-scalar processors.
2141 *
2142 * This has been modified to produce a variable number of
2143 * digits of output so if say only a half-product is required
2144 * you don't have to compute the upper half (a feature
2145 * required for fast Barrett reduction).
2146 *
2147 * Based on Algorithm 14.12 on pp.595 of HAC.
2148 *
2149 */
fast_s_mp_mul_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2150 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2151 {
2152 int olduse, res, pa, ix, iz;
2153 mp_digit W[MP_WARRAY];
2154 register mp_word _W;
2155
2156 /* grow the destination as required */
2157 if (c->alloc < digs) {
2158 if ((res = mp_grow (c, digs)) != MP_OKAY) {
2159 return res;
2160 }
2161 }
2162
2163 /* number of output digits to produce */
2164 pa = MIN(digs, a->used + b->used);
2165
2166 /* clear the carry */
2167 _W = 0;
2168 for (ix = 0; ix < pa; ix++) {
2169 int tx, ty;
2170 int iy;
2171 mp_digit *tmpx, *tmpy;
2172
2173 /* get offsets into the two bignums */
2174 ty = MIN(b->used-1, ix);
2175 tx = ix - ty;
2176
2177 /* setup temp aliases */
2178 tmpx = a->dp + tx;
2179 tmpy = b->dp + ty;
2180
2181 /* this is the number of times the loop will iterrate, essentially
2182 while (tx++ < a->used && ty-- >= 0) { ... }
2183 */
2184 iy = MIN(a->used-tx, ty+1);
2185
2186 /* execute loop */
2187 for (iz = 0; iz < iy; ++iz) {
2188 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2189
2190 }
2191
2192 /* store term */
2193 W[ix] = ((mp_digit)_W) & MP_MASK;
2194
2195 /* make next carry */
2196 _W = _W >> ((mp_word)DIGIT_BIT);
2197 }
2198
2199 /* setup dest */
2200 olduse = c->used;
2201 c->used = pa;
2202
2203 {
2204 register mp_digit *tmpc;
2205 tmpc = c->dp;
2206 for (ix = 0; ix < pa+1; ix++) {
2207 /* now extract the previous digit [below the carry] */
2208 *tmpc++ = W[ix];
2209 }
2210
2211 /* clear unused digits [that existed in the old copy of c] */
2212 for (; ix < olduse; ix++) {
2213 *tmpc++ = 0;
2214 }
2215 }
2216 mp_clamp (c);
2217 return MP_OKAY;
2218 }
2219
2220
2221 /* init an mp_init for a given size */
mp_init_size(mp_int * a,int size)2222 static int mp_init_size (mp_int * a, int size)
2223 {
2224 int x;
2225
2226 /* pad size so there are always extra digits */
2227 size += (MP_PREC * 2) - (size % MP_PREC);
2228
2229 /* alloc mem */
2230 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2231 if (a->dp == NULL) {
2232 return MP_MEM;
2233 }
2234
2235 /* set the members */
2236 a->used = 0;
2237 a->alloc = size;
2238 a->sign = MP_ZPOS;
2239
2240 /* zero the digits */
2241 for (x = 0; x < size; x++) {
2242 a->dp[x] = 0;
2243 }
2244
2245 return MP_OKAY;
2246 }
2247
2248
2249 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
s_mp_sqr(mp_int * a,mp_int * b)2250 static int s_mp_sqr (mp_int * a, mp_int * b)
2251 {
2252 mp_int t;
2253 int res, ix, iy, pa;
2254 mp_word r;
2255 mp_digit u, tmpx, *tmpt;
2256
2257 pa = a->used;
2258 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2259 return res;
2260 }
2261
2262 /* default used is maximum possible size */
2263 t.used = 2*pa + 1;
2264
2265 for (ix = 0; ix < pa; ix++) {
2266 /* first calculate the digit at 2*ix */
2267 /* calculate double precision result */
2268 r = ((mp_word) t.dp[2*ix]) +
2269 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2270
2271 /* store lower part in result */
2272 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2273
2274 /* get the carry */
2275 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2276
2277 /* left hand side of A[ix] * A[iy] */
2278 tmpx = a->dp[ix];
2279
2280 /* alias for where to store the results */
2281 tmpt = t.dp + (2*ix + 1);
2282
2283 for (iy = ix + 1; iy < pa; iy++) {
2284 /* first calculate the product */
2285 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2286
2287 /* now calculate the double precision result, note we use
2288 * addition instead of *2 since it's easier to optimize
2289 */
2290 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2291
2292 /* store lower part */
2293 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2294
2295 /* get carry */
2296 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2297 }
2298 /* propagate upwards */
2299 while (u != ((mp_digit) 0)) {
2300 r = ((mp_word) *tmpt) + ((mp_word) u);
2301 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2302 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2303 }
2304 }
2305
2306 mp_clamp (&t);
2307 mp_exch (&t, b);
2308 mp_clear (&t);
2309 return MP_OKAY;
2310 }
2311
2312
2313 /* multiplies |a| * |b| and does not compute the lower digs digits
2314 * [meant to get the higher part of the product]
2315 */
s_mp_mul_high_digs(mp_int * a,mp_int * b,mp_int * c,int digs)2316 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2317 {
2318 mp_int t;
2319 int res, pa, pb, ix, iy;
2320 mp_digit u;
2321 mp_word r;
2322 mp_digit tmpx, *tmpt, *tmpy;
2323
2324 /* can we use the fast multiplier? */
2325 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2326 if (((a->used + b->used + 1) < MP_WARRAY)
2327 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2328 return fast_s_mp_mul_high_digs (a, b, c, digs);
2329 }
2330 #endif
2331
2332 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2333 return res;
2334 }
2335 t.used = a->used + b->used + 1;
2336
2337 pa = a->used;
2338 pb = b->used;
2339 for (ix = 0; ix < pa; ix++) {
2340 /* clear the carry */
2341 u = 0;
2342
2343 /* left hand side of A[ix] * B[iy] */
2344 tmpx = a->dp[ix];
2345
2346 /* alias to the address of where the digits will be stored */
2347 tmpt = &(t.dp[digs]);
2348
2349 /* alias for where to read the right hand side from */
2350 tmpy = b->dp + (digs - ix);
2351
2352 for (iy = digs - ix; iy < pb; iy++) {
2353 /* calculate the double precision result */
2354 r = ((mp_word)*tmpt) +
2355 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2356 ((mp_word) u);
2357
2358 /* get the lower part */
2359 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2360
2361 /* carry the carry */
2362 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2363 }
2364 *tmpt = u;
2365 }
2366 mp_clamp (&t);
2367 mp_exch (&t, c);
2368 mp_clear (&t);
2369 return MP_OKAY;
2370 }
2371