• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * MD4 hash implementation
3  * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Alternatively, this software may be distributed under the terms of BSD
10  * license.
11  *
12  * See README and COPYING for more details.
13  */
14 
15 #include "includes.h"
16 
17 #include "common.h"
18 #include "crypto.h"
19 
20 
21 #ifdef INTERNAL_MD4
22 
23 #define	MD4_BLOCK_LENGTH		64
24 #define	MD4_DIGEST_LENGTH		16
25 
26 typedef struct MD4Context {
27 	u32 state[4];			/* state */
28 	u64 count;			/* number of bits, mod 2^64 */
29 	u8 buffer[MD4_BLOCK_LENGTH];	/* input buffer */
30 } MD4_CTX;
31 
32 
33 static void MD4Init(MD4_CTX *ctx);
34 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
35 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
36 
37 
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)38 void md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
39 {
40 	MD4_CTX ctx;
41 	size_t i;
42 
43 	MD4Init(&ctx);
44 	for (i = 0; i < num_elem; i++)
45 		MD4Update(&ctx, addr[i], len[i]);
46 	MD4Final(mac, &ctx);
47 }
48 
49 
50 /* ===== start - public domain MD4 implementation ===== */
51 /*	$OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $	*/
52 
53 /*
54  * This code implements the MD4 message-digest algorithm.
55  * The algorithm is due to Ron Rivest.	This code was
56  * written by Colin Plumb in 1993, no copyright is claimed.
57  * This code is in the public domain; do with it what you wish.
58  * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
59  *
60  * Equivalent code is available from RSA Data Security, Inc.
61  * This code has been tested against that, and is equivalent,
62  * except that you don't need to include two pages of legalese
63  * with every copy.
64  *
65  * To compute the message digest of a chunk of bytes, declare an
66  * MD4Context structure, pass it to MD4Init, call MD4Update as
67  * needed on buffers full of bytes, and then call MD4Final, which
68  * will fill a supplied 16-byte array with the digest.
69  */
70 
71 #define	MD4_DIGEST_STRING_LENGTH	(MD4_DIGEST_LENGTH * 2 + 1)
72 
73 
74 static void
75 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
76 
77 #define PUT_64BIT_LE(cp, value) do {					\
78 	(cp)[7] = (value) >> 56;					\
79 	(cp)[6] = (value) >> 48;					\
80 	(cp)[5] = (value) >> 40;					\
81 	(cp)[4] = (value) >> 32;					\
82 	(cp)[3] = (value) >> 24;					\
83 	(cp)[2] = (value) >> 16;					\
84 	(cp)[1] = (value) >> 8;						\
85 	(cp)[0] = (value); } while (0)
86 
87 #define PUT_32BIT_LE(cp, value) do {					\
88 	(cp)[3] = (value) >> 24;					\
89 	(cp)[2] = (value) >> 16;					\
90 	(cp)[1] = (value) >> 8;						\
91 	(cp)[0] = (value); } while (0)
92 
93 static u8 PADDING[MD4_BLOCK_LENGTH] = {
94 	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
95 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
96 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
97 };
98 
99 /*
100  * Start MD4 accumulation.
101  * Set bit count to 0 and buffer to mysterious initialization constants.
102  */
MD4Init(MD4_CTX * ctx)103 static void MD4Init(MD4_CTX *ctx)
104 {
105 	ctx->count = 0;
106 	ctx->state[0] = 0x67452301;
107 	ctx->state[1] = 0xefcdab89;
108 	ctx->state[2] = 0x98badcfe;
109 	ctx->state[3] = 0x10325476;
110 }
111 
112 /*
113  * Update context to reflect the concatenation of another buffer full
114  * of bytes.
115  */
MD4Update(MD4_CTX * ctx,const unsigned char * input,size_t len)116 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
117 {
118 	size_t have, need;
119 
120 	/* Check how many bytes we already have and how many more we need. */
121 	have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
122 	need = MD4_BLOCK_LENGTH - have;
123 
124 	/* Update bitcount */
125 	ctx->count += (u64)len << 3;
126 
127 	if (len >= need) {
128 		if (have != 0) {
129 			os_memcpy(ctx->buffer + have, input, need);
130 			MD4Transform(ctx->state, ctx->buffer);
131 			input += need;
132 			len -= need;
133 			have = 0;
134 		}
135 
136 		/* Process data in MD4_BLOCK_LENGTH-byte chunks. */
137 		while (len >= MD4_BLOCK_LENGTH) {
138 			MD4Transform(ctx->state, input);
139 			input += MD4_BLOCK_LENGTH;
140 			len -= MD4_BLOCK_LENGTH;
141 		}
142 	}
143 
144 	/* Handle any remaining bytes of data. */
145 	if (len != 0)
146 		os_memcpy(ctx->buffer + have, input, len);
147 }
148 
149 /*
150  * Pad pad to 64-byte boundary with the bit pattern
151  * 1 0* (64-bit count of bits processed, MSB-first)
152  */
MD4Pad(MD4_CTX * ctx)153 static void MD4Pad(MD4_CTX *ctx)
154 {
155 	u8 count[8];
156 	size_t padlen;
157 
158 	/* Convert count to 8 bytes in little endian order. */
159 	PUT_64BIT_LE(count, ctx->count);
160 
161 	/* Pad out to 56 mod 64. */
162 	padlen = MD4_BLOCK_LENGTH -
163 	    ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
164 	if (padlen < 1 + 8)
165 		padlen += MD4_BLOCK_LENGTH;
166 	MD4Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */
167 	MD4Update(ctx, count, 8);
168 }
169 
170 /*
171  * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
172  */
MD4Final(unsigned char digest[MD4_DIGEST_LENGTH],MD4_CTX * ctx)173 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
174 {
175 	int i;
176 
177 	MD4Pad(ctx);
178 	if (digest != NULL) {
179 		for (i = 0; i < 4; i++)
180 			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
181 		os_memset(ctx, 0, sizeof(*ctx));
182 	}
183 }
184 
185 
186 /* The three core functions - F1 is optimized somewhat */
187 
188 /* #define F1(x, y, z) (x & y | ~x & z) */
189 #define F1(x, y, z) (z ^ (x & (y ^ z)))
190 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
191 #define F3(x, y, z) (x ^ y ^ z)
192 
193 /* This is the central step in the MD4 algorithm. */
194 #define MD4STEP(f, w, x, y, z, data, s) \
195 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s) )
196 
197 /*
198  * The core of the MD4 algorithm, this alters an existing MD4 hash to
199  * reflect the addition of 16 longwords of new data.  MD4Update blocks
200  * the data and converts bytes into longwords for this routine.
201  */
202 static void
MD4Transform(u32 state[4],const u8 block[MD4_BLOCK_LENGTH])203 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
204 {
205 	u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
206 
207 #if BYTE_ORDER == LITTLE_ENDIAN
208 	os_memcpy(in, block, sizeof(in));
209 #else
210 	for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
211 		in[a] = (u32)(
212 		    (u32)(block[a * 4 + 0]) |
213 		    (u32)(block[a * 4 + 1]) <<  8 |
214 		    (u32)(block[a * 4 + 2]) << 16 |
215 		    (u32)(block[a * 4 + 3]) << 24);
216 	}
217 #endif
218 
219 	a = state[0];
220 	b = state[1];
221 	c = state[2];
222 	d = state[3];
223 
224 	MD4STEP(F1, a, b, c, d, in[ 0],  3);
225 	MD4STEP(F1, d, a, b, c, in[ 1],  7);
226 	MD4STEP(F1, c, d, a, b, in[ 2], 11);
227 	MD4STEP(F1, b, c, d, a, in[ 3], 19);
228 	MD4STEP(F1, a, b, c, d, in[ 4],  3);
229 	MD4STEP(F1, d, a, b, c, in[ 5],  7);
230 	MD4STEP(F1, c, d, a, b, in[ 6], 11);
231 	MD4STEP(F1, b, c, d, a, in[ 7], 19);
232 	MD4STEP(F1, a, b, c, d, in[ 8],  3);
233 	MD4STEP(F1, d, a, b, c, in[ 9],  7);
234 	MD4STEP(F1, c, d, a, b, in[10], 11);
235 	MD4STEP(F1, b, c, d, a, in[11], 19);
236 	MD4STEP(F1, a, b, c, d, in[12],  3);
237 	MD4STEP(F1, d, a, b, c, in[13],  7);
238 	MD4STEP(F1, c, d, a, b, in[14], 11);
239 	MD4STEP(F1, b, c, d, a, in[15], 19);
240 
241 	MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999,  3);
242 	MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999,  5);
243 	MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999,  9);
244 	MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
245 	MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999,  3);
246 	MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999,  5);
247 	MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999,  9);
248 	MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
249 	MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999,  3);
250 	MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999,  5);
251 	MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999,  9);
252 	MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
253 	MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999,  3);
254 	MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999,  5);
255 	MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999,  9);
256 	MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
257 
258 	MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1,  3);
259 	MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1,  9);
260 	MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
261 	MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
262 	MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1,  3);
263 	MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1,  9);
264 	MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
265 	MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
266 	MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1,  3);
267 	MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1,  9);
268 	MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
269 	MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
270 	MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1,  3);
271 	MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1,  9);
272 	MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
273 	MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
274 
275 	state[0] += a;
276 	state[1] += b;
277 	state[2] += c;
278 	state[3] += d;
279 }
280 /* ===== end - public domain MD4 implementation ===== */
281 
282 #endif /* INTERNAL_MD4 */
283