1 /*
2 * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
3 * Copyright (c) 2006-2007 <j@w1.fi>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
11 *
12 * See README and COPYING for more details.
13 *
14 * This file implements an example authentication algorithm defined for 3GPP
15 * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
16 * EAP-AKA to be tested properly with real USIM cards.
17 *
18 * This implementations assumes that the r1..r5 and c1..c5 constants defined in
19 * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
20 * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
21 * be AES (Rijndael).
22 */
23
24 #include "includes.h"
25
26 #include "common.h"
27 #include "crypto/aes_wrap.h"
28 #include "milenage.h"
29
30
31 /**
32 * milenage_f1 - Milenage f1 and f1* algorithms
33 * @opc: OPc = 128-bit value derived from OP and K
34 * @k: K = 128-bit subscriber key
35 * @_rand: RAND = 128-bit random challenge
36 * @sqn: SQN = 48-bit sequence number
37 * @amf: AMF = 16-bit authentication management field
38 * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
39 * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
40 * Returns: 0 on success, -1 on failure
41 */
milenage_f1(const u8 * opc,const u8 * k,const u8 * _rand,const u8 * sqn,const u8 * amf,u8 * mac_a,u8 * mac_s)42 int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
43 const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
44 {
45 u8 tmp1[16], tmp2[16], tmp3[16];
46 int i;
47
48 /* tmp1 = TEMP = E_K(RAND XOR OP_C) */
49 for (i = 0; i < 16; i++)
50 tmp1[i] = _rand[i] ^ opc[i];
51 if (aes_128_encrypt_block(k, tmp1, tmp1))
52 return -1;
53
54 /* tmp2 = IN1 = SQN || AMF || SQN || AMF */
55 os_memcpy(tmp2, sqn, 6);
56 os_memcpy(tmp2 + 6, amf, 2);
57 os_memcpy(tmp2 + 8, tmp2, 8);
58
59 /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
60
61 /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
62 for (i = 0; i < 16; i++)
63 tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
64 /* XOR with TEMP = E_K(RAND XOR OP_C) */
65 for (i = 0; i < 16; i++)
66 tmp3[i] ^= tmp1[i];
67 /* XOR with c1 (= ..00, i.e., NOP) */
68
69 /* f1 || f1* = E_K(tmp3) XOR OP_c */
70 if (aes_128_encrypt_block(k, tmp3, tmp1))
71 return -1;
72 for (i = 0; i < 16; i++)
73 tmp1[i] ^= opc[i];
74 if (mac_a)
75 os_memcpy(mac_a, tmp1, 8); /* f1 */
76 if (mac_s)
77 os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
78 return 0;
79 }
80
81
82 /**
83 * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
84 * @opc: OPc = 128-bit value derived from OP and K
85 * @k: K = 128-bit subscriber key
86 * @_rand: RAND = 128-bit random challenge
87 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
88 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
89 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
90 * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
91 * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
92 * Returns: 0 on success, -1 on failure
93 */
milenage_f2345(const u8 * opc,const u8 * k,const u8 * _rand,u8 * res,u8 * ck,u8 * ik,u8 * ak,u8 * akstar)94 int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
95 u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
96 {
97 u8 tmp1[16], tmp2[16], tmp3[16];
98 int i;
99
100 /* tmp2 = TEMP = E_K(RAND XOR OP_C) */
101 for (i = 0; i < 16; i++)
102 tmp1[i] = _rand[i] ^ opc[i];
103 if (aes_128_encrypt_block(k, tmp1, tmp2))
104 return -1;
105
106 /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
107 /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
108 /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
109 /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
110
111 /* f2 and f5 */
112 /* rotate by r2 (= 0, i.e., NOP) */
113 for (i = 0; i < 16; i++)
114 tmp1[i] = tmp2[i] ^ opc[i];
115 tmp1[15] ^= 1; /* XOR c2 (= ..01) */
116 /* f5 || f2 = E_K(tmp1) XOR OP_c */
117 if (aes_128_encrypt_block(k, tmp1, tmp3))
118 return -1;
119 for (i = 0; i < 16; i++)
120 tmp3[i] ^= opc[i];
121 if (res)
122 os_memcpy(res, tmp3 + 8, 8); /* f2 */
123 if (ak)
124 os_memcpy(ak, tmp3, 6); /* f5 */
125
126 /* f3 */
127 if (ck) {
128 /* rotate by r3 = 0x20 = 4 bytes */
129 for (i = 0; i < 16; i++)
130 tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
131 tmp1[15] ^= 2; /* XOR c3 (= ..02) */
132 if (aes_128_encrypt_block(k, tmp1, ck))
133 return -1;
134 for (i = 0; i < 16; i++)
135 ck[i] ^= opc[i];
136 }
137
138 /* f4 */
139 if (ik) {
140 /* rotate by r4 = 0x40 = 8 bytes */
141 for (i = 0; i < 16; i++)
142 tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
143 tmp1[15] ^= 4; /* XOR c4 (= ..04) */
144 if (aes_128_encrypt_block(k, tmp1, ik))
145 return -1;
146 for (i = 0; i < 16; i++)
147 ik[i] ^= opc[i];
148 }
149
150 /* f5* */
151 if (akstar) {
152 /* rotate by r5 = 0x60 = 12 bytes */
153 for (i = 0; i < 16; i++)
154 tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
155 tmp1[15] ^= 8; /* XOR c5 (= ..08) */
156 if (aes_128_encrypt_block(k, tmp1, tmp1))
157 return -1;
158 for (i = 0; i < 6; i++)
159 akstar[i] = tmp1[i] ^ opc[i];
160 }
161
162 return 0;
163 }
164
165
166 /**
167 * milenage_generate - Generate AKA AUTN,IK,CK,RES
168 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
169 * @amf: AMF = 16-bit authentication management field
170 * @k: K = 128-bit subscriber key
171 * @sqn: SQN = 48-bit sequence number
172 * @_rand: RAND = 128-bit random challenge
173 * @autn: Buffer for AUTN = 128-bit authentication token
174 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
175 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
176 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
177 * @res_len: Max length for res; set to used length or 0 on failure
178 */
milenage_generate(const u8 * opc,const u8 * amf,const u8 * k,const u8 * sqn,const u8 * _rand,u8 * autn,u8 * ik,u8 * ck,u8 * res,size_t * res_len)179 void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
180 const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
181 u8 *ck, u8 *res, size_t *res_len)
182 {
183 int i;
184 u8 mac_a[8], ak[6];
185
186 if (*res_len < 8) {
187 *res_len = 0;
188 return;
189 }
190 if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
191 milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
192 *res_len = 0;
193 return;
194 }
195 *res_len = 8;
196
197 /* AUTN = (SQN ^ AK) || AMF || MAC */
198 for (i = 0; i < 6; i++)
199 autn[i] = sqn[i] ^ ak[i];
200 os_memcpy(autn + 6, amf, 2);
201 os_memcpy(autn + 8, mac_a, 8);
202 }
203
204
205 /**
206 * milenage_auts - Milenage AUTS validation
207 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
208 * @k: K = 128-bit subscriber key
209 * @_rand: RAND = 128-bit random challenge
210 * @auts: AUTS = 112-bit authentication token from client
211 * @sqn: Buffer for SQN = 48-bit sequence number
212 * Returns: 0 = success (sqn filled), -1 on failure
213 */
milenage_auts(const u8 * opc,const u8 * k,const u8 * _rand,const u8 * auts,u8 * sqn)214 int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
215 u8 *sqn)
216 {
217 u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
218 u8 ak[6], mac_s[8];
219 int i;
220
221 if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
222 return -1;
223 for (i = 0; i < 6; i++)
224 sqn[i] = auts[i] ^ ak[i];
225 if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
226 memcmp(mac_s, auts + 6, 8) != 0)
227 return -1;
228 return 0;
229 }
230
231
232 /**
233 * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
234 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
235 * @k: K = 128-bit subscriber key
236 * @_rand: RAND = 128-bit random challenge
237 * @sres: Buffer for SRES = 32-bit SRES
238 * @kc: Buffer for Kc = 64-bit Kc
239 * Returns: 0 on success, -1 on failure
240 */
gsm_milenage(const u8 * opc,const u8 * k,const u8 * _rand,u8 * sres,u8 * kc)241 int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
242 {
243 u8 res[8], ck[16], ik[16];
244 int i;
245
246 if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
247 return -1;
248
249 for (i = 0; i < 8; i++)
250 kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
251
252 #ifdef GSM_MILENAGE_ALT_SRES
253 os_memcpy(sres, res, 4);
254 #else /* GSM_MILENAGE_ALT_SRES */
255 for (i = 0; i < 4; i++)
256 sres[i] = res[i] ^ res[i + 4];
257 #endif /* GSM_MILENAGE_ALT_SRES */
258 return 0;
259 }
260
261
262 /**
263 * milenage_generate - Generate AKA AUTN,IK,CK,RES
264 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
265 * @k: K = 128-bit subscriber key
266 * @sqn: SQN = 48-bit sequence number
267 * @_rand: RAND = 128-bit random challenge
268 * @autn: AUTN = 128-bit authentication token
269 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
270 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
271 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
272 * @res_len: Variable that will be set to RES length
273 * @auts: 112-bit buffer for AUTS
274 * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
275 */
milenage_check(const u8 * opc,const u8 * k,const u8 * sqn,const u8 * _rand,const u8 * autn,u8 * ik,u8 * ck,u8 * res,size_t * res_len,u8 * auts)276 int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
277 const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
278 u8 *auts)
279 {
280 int i;
281 u8 mac_a[8], ak[6], rx_sqn[6];
282 const u8 *amf;
283
284 wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
285 wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
286
287 if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
288 return -1;
289
290 *res_len = 8;
291 wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
292 wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
293 wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
294 wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
295
296 /* AUTN = (SQN ^ AK) || AMF || MAC */
297 for (i = 0; i < 6; i++)
298 rx_sqn[i] = autn[i] ^ ak[i];
299 wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
300
301 if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
302 u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
303 if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
304 return -1;
305 wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
306 for (i = 0; i < 6; i++)
307 auts[i] = sqn[i] ^ ak[i];
308 if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
309 return -1;
310 wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
311 return -2;
312 }
313
314 amf = autn + 6;
315 wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
316 if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
317 return -1;
318
319 wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
320
321 if (os_memcmp(mac_a, autn + 8, 8) != 0) {
322 wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
323 wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
324 autn + 8, 8);
325 return -1;
326 }
327
328 return 0;
329 }
330