1 //
2 // Copyright 2010 The Android Open Source Project
3 //
4 // Provides a pipe-based transport for native events in the NDK.
5 //
6 #define LOG_TAG "Input"
7
8 //#define LOG_NDEBUG 0
9
10 // Log debug messages about keymap probing.
11 #define DEBUG_PROBE 0
12
13 // Log debug messages about velocity tracking.
14 #define DEBUG_VELOCITY 0
15
16 // Log debug messages about least squares fitting.
17 #define DEBUG_LEAST_SQUARES 0
18
19 // Log debug messages about acceleration.
20 #define DEBUG_ACCELERATION 0
21
22
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include <ctype.h>
26
27 #include <ui/Input.h>
28
29 #include <math.h>
30 #include <limits.h>
31
32 #ifdef HAVE_ANDROID_OS
33 #include <binder/Parcel.h>
34
35 #include "SkPoint.h"
36 #include "SkMatrix.h"
37 #include "SkScalar.h"
38 #endif
39
40 namespace android {
41
42 static const char* CONFIGURATION_FILE_DIR[] = {
43 "idc/",
44 "keylayout/",
45 "keychars/",
46 };
47
48 static const char* CONFIGURATION_FILE_EXTENSION[] = {
49 ".idc",
50 ".kl",
51 ".kcm",
52 };
53
isValidNameChar(char ch)54 static bool isValidNameChar(char ch) {
55 return isascii(ch) && (isdigit(ch) || isalpha(ch) || ch == '-' || ch == '_');
56 }
57
appendInputDeviceConfigurationFileRelativePath(String8 & path,const String8 & name,InputDeviceConfigurationFileType type)58 static void appendInputDeviceConfigurationFileRelativePath(String8& path,
59 const String8& name, InputDeviceConfigurationFileType type) {
60 path.append(CONFIGURATION_FILE_DIR[type]);
61 for (size_t i = 0; i < name.length(); i++) {
62 char ch = name[i];
63 if (!isValidNameChar(ch)) {
64 ch = '_';
65 }
66 path.append(&ch, 1);
67 }
68 path.append(CONFIGURATION_FILE_EXTENSION[type]);
69 }
70
getInputDeviceConfigurationFilePathByDeviceIdentifier(const InputDeviceIdentifier & deviceIdentifier,InputDeviceConfigurationFileType type)71 String8 getInputDeviceConfigurationFilePathByDeviceIdentifier(
72 const InputDeviceIdentifier& deviceIdentifier,
73 InputDeviceConfigurationFileType type) {
74 if (deviceIdentifier.vendor !=0 && deviceIdentifier.product != 0) {
75 if (deviceIdentifier.version != 0) {
76 // Try vendor product version.
77 String8 versionPath(getInputDeviceConfigurationFilePathByName(
78 String8::format("Vendor_%04x_Product_%04x_Version_%04x",
79 deviceIdentifier.vendor, deviceIdentifier.product,
80 deviceIdentifier.version),
81 type));
82 if (!versionPath.isEmpty()) {
83 return versionPath;
84 }
85 }
86
87 // Try vendor product.
88 String8 productPath(getInputDeviceConfigurationFilePathByName(
89 String8::format("Vendor_%04x_Product_%04x",
90 deviceIdentifier.vendor, deviceIdentifier.product),
91 type));
92 if (!productPath.isEmpty()) {
93 return productPath;
94 }
95 }
96
97 // Try device name.
98 return getInputDeviceConfigurationFilePathByName(deviceIdentifier.name, type);
99 }
100
getInputDeviceConfigurationFilePathByName(const String8 & name,InputDeviceConfigurationFileType type)101 String8 getInputDeviceConfigurationFilePathByName(
102 const String8& name, InputDeviceConfigurationFileType type) {
103 // Search system repository.
104 String8 path;
105 path.setTo(getenv("ANDROID_ROOT"));
106 path.append("/usr/");
107 appendInputDeviceConfigurationFileRelativePath(path, name, type);
108 #if DEBUG_PROBE
109 LOGD("Probing for system provided input device configuration file: path='%s'", path.string());
110 #endif
111 if (!access(path.string(), R_OK)) {
112 #if DEBUG_PROBE
113 LOGD("Found");
114 #endif
115 return path;
116 }
117
118 // Search user repository.
119 // TODO Should only look here if not in safe mode.
120 path.setTo(getenv("ANDROID_DATA"));
121 path.append("/system/devices/");
122 appendInputDeviceConfigurationFileRelativePath(path, name, type);
123 #if DEBUG_PROBE
124 LOGD("Probing for system user input device configuration file: path='%s'", path.string());
125 #endif
126 if (!access(path.string(), R_OK)) {
127 #if DEBUG_PROBE
128 LOGD("Found");
129 #endif
130 return path;
131 }
132
133 // Not found.
134 #if DEBUG_PROBE
135 LOGD("Probe failed to find input device configuration file: name='%s', type=%d",
136 name.string(), type);
137 #endif
138 return String8();
139 }
140
141
142 // --- InputEvent ---
143
initialize(int32_t deviceId,int32_t source)144 void InputEvent::initialize(int32_t deviceId, int32_t source) {
145 mDeviceId = deviceId;
146 mSource = source;
147 }
148
initialize(const InputEvent & from)149 void InputEvent::initialize(const InputEvent& from) {
150 mDeviceId = from.mDeviceId;
151 mSource = from.mSource;
152 }
153
154 // --- KeyEvent ---
155
hasDefaultAction(int32_t keyCode)156 bool KeyEvent::hasDefaultAction(int32_t keyCode) {
157 switch (keyCode) {
158 case AKEYCODE_HOME:
159 case AKEYCODE_BACK:
160 case AKEYCODE_CALL:
161 case AKEYCODE_ENDCALL:
162 case AKEYCODE_VOLUME_UP:
163 case AKEYCODE_VOLUME_DOWN:
164 case AKEYCODE_VOLUME_MUTE:
165 case AKEYCODE_POWER:
166 case AKEYCODE_CAMERA:
167 case AKEYCODE_HEADSETHOOK:
168 case AKEYCODE_MENU:
169 case AKEYCODE_NOTIFICATION:
170 case AKEYCODE_FOCUS:
171 case AKEYCODE_SEARCH:
172 case AKEYCODE_MEDIA_PLAY:
173 case AKEYCODE_MEDIA_PAUSE:
174 case AKEYCODE_MEDIA_PLAY_PAUSE:
175 case AKEYCODE_MEDIA_STOP:
176 case AKEYCODE_MEDIA_NEXT:
177 case AKEYCODE_MEDIA_PREVIOUS:
178 case AKEYCODE_MEDIA_REWIND:
179 case AKEYCODE_MEDIA_RECORD:
180 case AKEYCODE_MEDIA_FAST_FORWARD:
181 case AKEYCODE_MUTE:
182 return true;
183 }
184
185 return false;
186 }
187
hasDefaultAction() const188 bool KeyEvent::hasDefaultAction() const {
189 return hasDefaultAction(getKeyCode());
190 }
191
isSystemKey(int32_t keyCode)192 bool KeyEvent::isSystemKey(int32_t keyCode) {
193 switch (keyCode) {
194 case AKEYCODE_MENU:
195 case AKEYCODE_SOFT_RIGHT:
196 case AKEYCODE_HOME:
197 case AKEYCODE_BACK:
198 case AKEYCODE_CALL:
199 case AKEYCODE_ENDCALL:
200 case AKEYCODE_VOLUME_UP:
201 case AKEYCODE_VOLUME_DOWN:
202 case AKEYCODE_VOLUME_MUTE:
203 case AKEYCODE_MUTE:
204 case AKEYCODE_POWER:
205 case AKEYCODE_HEADSETHOOK:
206 case AKEYCODE_MEDIA_PLAY:
207 case AKEYCODE_MEDIA_PAUSE:
208 case AKEYCODE_MEDIA_PLAY_PAUSE:
209 case AKEYCODE_MEDIA_STOP:
210 case AKEYCODE_MEDIA_NEXT:
211 case AKEYCODE_MEDIA_PREVIOUS:
212 case AKEYCODE_MEDIA_REWIND:
213 case AKEYCODE_MEDIA_RECORD:
214 case AKEYCODE_MEDIA_FAST_FORWARD:
215 case AKEYCODE_CAMERA:
216 case AKEYCODE_FOCUS:
217 case AKEYCODE_SEARCH:
218 return true;
219 }
220
221 return false;
222 }
223
isSystemKey() const224 bool KeyEvent::isSystemKey() const {
225 return isSystemKey(getKeyCode());
226 }
227
initialize(int32_t deviceId,int32_t source,int32_t action,int32_t flags,int32_t keyCode,int32_t scanCode,int32_t metaState,int32_t repeatCount,nsecs_t downTime,nsecs_t eventTime)228 void KeyEvent::initialize(
229 int32_t deviceId,
230 int32_t source,
231 int32_t action,
232 int32_t flags,
233 int32_t keyCode,
234 int32_t scanCode,
235 int32_t metaState,
236 int32_t repeatCount,
237 nsecs_t downTime,
238 nsecs_t eventTime) {
239 InputEvent::initialize(deviceId, source);
240 mAction = action;
241 mFlags = flags;
242 mKeyCode = keyCode;
243 mScanCode = scanCode;
244 mMetaState = metaState;
245 mRepeatCount = repeatCount;
246 mDownTime = downTime;
247 mEventTime = eventTime;
248 }
249
initialize(const KeyEvent & from)250 void KeyEvent::initialize(const KeyEvent& from) {
251 InputEvent::initialize(from);
252 mAction = from.mAction;
253 mFlags = from.mFlags;
254 mKeyCode = from.mKeyCode;
255 mScanCode = from.mScanCode;
256 mMetaState = from.mMetaState;
257 mRepeatCount = from.mRepeatCount;
258 mDownTime = from.mDownTime;
259 mEventTime = from.mEventTime;
260 }
261
262
263 // --- PointerCoords ---
264
getAxisValue(int32_t axis) const265 float PointerCoords::getAxisValue(int32_t axis) const {
266 if (axis < 0 || axis > 63) {
267 return 0;
268 }
269
270 uint64_t axisBit = 1LL << axis;
271 if (!(bits & axisBit)) {
272 return 0;
273 }
274 uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL));
275 return values[index];
276 }
277
setAxisValue(int32_t axis,float value)278 status_t PointerCoords::setAxisValue(int32_t axis, float value) {
279 if (axis < 0 || axis > 63) {
280 return NAME_NOT_FOUND;
281 }
282
283 uint64_t axisBit = 1LL << axis;
284 uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL));
285 if (!(bits & axisBit)) {
286 if (value == 0) {
287 return OK; // axes with value 0 do not need to be stored
288 }
289 uint32_t count = __builtin_popcountll(bits);
290 if (count >= MAX_AXES) {
291 tooManyAxes(axis);
292 return NO_MEMORY;
293 }
294 bits |= axisBit;
295 for (uint32_t i = count; i > index; i--) {
296 values[i] = values[i - 1];
297 }
298 }
299 values[index] = value;
300 return OK;
301 }
302
scaleAxisValue(PointerCoords & c,int axis,float scaleFactor)303 static inline void scaleAxisValue(PointerCoords& c, int axis, float scaleFactor) {
304 float value = c.getAxisValue(axis);
305 if (value != 0) {
306 c.setAxisValue(axis, value * scaleFactor);
307 }
308 }
309
scale(float scaleFactor)310 void PointerCoords::scale(float scaleFactor) {
311 // No need to scale pressure or size since they are normalized.
312 // No need to scale orientation since it is meaningless to do so.
313 scaleAxisValue(*this, AMOTION_EVENT_AXIS_X, scaleFactor);
314 scaleAxisValue(*this, AMOTION_EVENT_AXIS_Y, scaleFactor);
315 scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MAJOR, scaleFactor);
316 scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MINOR, scaleFactor);
317 scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MAJOR, scaleFactor);
318 scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MINOR, scaleFactor);
319 }
320
321 #ifdef HAVE_ANDROID_OS
readFromParcel(Parcel * parcel)322 status_t PointerCoords::readFromParcel(Parcel* parcel) {
323 bits = parcel->readInt64();
324
325 uint32_t count = __builtin_popcountll(bits);
326 if (count > MAX_AXES) {
327 return BAD_VALUE;
328 }
329
330 for (uint32_t i = 0; i < count; i++) {
331 values[i] = parcel->readInt32();
332 }
333 return OK;
334 }
335
writeToParcel(Parcel * parcel) const336 status_t PointerCoords::writeToParcel(Parcel* parcel) const {
337 parcel->writeInt64(bits);
338
339 uint32_t count = __builtin_popcountll(bits);
340 for (uint32_t i = 0; i < count; i++) {
341 parcel->writeInt32(values[i]);
342 }
343 return OK;
344 }
345 #endif
346
tooManyAxes(int axis)347 void PointerCoords::tooManyAxes(int axis) {
348 LOGW("Could not set value for axis %d because the PointerCoords structure is full and "
349 "cannot contain more than %d axis values.", axis, int(MAX_AXES));
350 }
351
operator ==(const PointerCoords & other) const352 bool PointerCoords::operator==(const PointerCoords& other) const {
353 if (bits != other.bits) {
354 return false;
355 }
356 uint32_t count = __builtin_popcountll(bits);
357 for (uint32_t i = 0; i < count; i++) {
358 if (values[i] != other.values[i]) {
359 return false;
360 }
361 }
362 return true;
363 }
364
copyFrom(const PointerCoords & other)365 void PointerCoords::copyFrom(const PointerCoords& other) {
366 bits = other.bits;
367 uint32_t count = __builtin_popcountll(bits);
368 for (uint32_t i = 0; i < count; i++) {
369 values[i] = other.values[i];
370 }
371 }
372
373
374 // --- PointerProperties ---
375
operator ==(const PointerProperties & other) const376 bool PointerProperties::operator==(const PointerProperties& other) const {
377 return id == other.id
378 && toolType == other.toolType;
379 }
380
copyFrom(const PointerProperties & other)381 void PointerProperties::copyFrom(const PointerProperties& other) {
382 id = other.id;
383 toolType = other.toolType;
384 }
385
386
387 // --- MotionEvent ---
388
initialize(int32_t deviceId,int32_t source,int32_t action,int32_t flags,int32_t edgeFlags,int32_t metaState,int32_t buttonState,float xOffset,float yOffset,float xPrecision,float yPrecision,nsecs_t downTime,nsecs_t eventTime,size_t pointerCount,const PointerProperties * pointerProperties,const PointerCoords * pointerCoords)389 void MotionEvent::initialize(
390 int32_t deviceId,
391 int32_t source,
392 int32_t action,
393 int32_t flags,
394 int32_t edgeFlags,
395 int32_t metaState,
396 int32_t buttonState,
397 float xOffset,
398 float yOffset,
399 float xPrecision,
400 float yPrecision,
401 nsecs_t downTime,
402 nsecs_t eventTime,
403 size_t pointerCount,
404 const PointerProperties* pointerProperties,
405 const PointerCoords* pointerCoords) {
406 InputEvent::initialize(deviceId, source);
407 mAction = action;
408 mFlags = flags;
409 mEdgeFlags = edgeFlags;
410 mMetaState = metaState;
411 mButtonState = buttonState;
412 mXOffset = xOffset;
413 mYOffset = yOffset;
414 mXPrecision = xPrecision;
415 mYPrecision = yPrecision;
416 mDownTime = downTime;
417 mPointerProperties.clear();
418 mPointerProperties.appendArray(pointerProperties, pointerCount);
419 mSampleEventTimes.clear();
420 mSamplePointerCoords.clear();
421 addSample(eventTime, pointerCoords);
422 }
423
copyFrom(const MotionEvent * other,bool keepHistory)424 void MotionEvent::copyFrom(const MotionEvent* other, bool keepHistory) {
425 InputEvent::initialize(other->mDeviceId, other->mSource);
426 mAction = other->mAction;
427 mFlags = other->mFlags;
428 mEdgeFlags = other->mEdgeFlags;
429 mMetaState = other->mMetaState;
430 mButtonState = other->mButtonState;
431 mXOffset = other->mXOffset;
432 mYOffset = other->mYOffset;
433 mXPrecision = other->mXPrecision;
434 mYPrecision = other->mYPrecision;
435 mDownTime = other->mDownTime;
436 mPointerProperties = other->mPointerProperties;
437
438 if (keepHistory) {
439 mSampleEventTimes = other->mSampleEventTimes;
440 mSamplePointerCoords = other->mSamplePointerCoords;
441 } else {
442 mSampleEventTimes.clear();
443 mSampleEventTimes.push(other->getEventTime());
444 mSamplePointerCoords.clear();
445 size_t pointerCount = other->getPointerCount();
446 size_t historySize = other->getHistorySize();
447 mSamplePointerCoords.appendArray(other->mSamplePointerCoords.array()
448 + (historySize * pointerCount), pointerCount);
449 }
450 }
451
addSample(int64_t eventTime,const PointerCoords * pointerCoords)452 void MotionEvent::addSample(
453 int64_t eventTime,
454 const PointerCoords* pointerCoords) {
455 mSampleEventTimes.push(eventTime);
456 mSamplePointerCoords.appendArray(pointerCoords, getPointerCount());
457 }
458
getRawPointerCoords(size_t pointerIndex) const459 const PointerCoords* MotionEvent::getRawPointerCoords(size_t pointerIndex) const {
460 return &mSamplePointerCoords[getHistorySize() * getPointerCount() + pointerIndex];
461 }
462
getRawAxisValue(int32_t axis,size_t pointerIndex) const463 float MotionEvent::getRawAxisValue(int32_t axis, size_t pointerIndex) const {
464 return getRawPointerCoords(pointerIndex)->getAxisValue(axis);
465 }
466
getAxisValue(int32_t axis,size_t pointerIndex) const467 float MotionEvent::getAxisValue(int32_t axis, size_t pointerIndex) const {
468 float value = getRawPointerCoords(pointerIndex)->getAxisValue(axis);
469 switch (axis) {
470 case AMOTION_EVENT_AXIS_X:
471 return value + mXOffset;
472 case AMOTION_EVENT_AXIS_Y:
473 return value + mYOffset;
474 }
475 return value;
476 }
477
getHistoricalRawPointerCoords(size_t pointerIndex,size_t historicalIndex) const478 const PointerCoords* MotionEvent::getHistoricalRawPointerCoords(
479 size_t pointerIndex, size_t historicalIndex) const {
480 return &mSamplePointerCoords[historicalIndex * getPointerCount() + pointerIndex];
481 }
482
getHistoricalRawAxisValue(int32_t axis,size_t pointerIndex,size_t historicalIndex) const483 float MotionEvent::getHistoricalRawAxisValue(int32_t axis, size_t pointerIndex,
484 size_t historicalIndex) const {
485 return getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis);
486 }
487
getHistoricalAxisValue(int32_t axis,size_t pointerIndex,size_t historicalIndex) const488 float MotionEvent::getHistoricalAxisValue(int32_t axis, size_t pointerIndex,
489 size_t historicalIndex) const {
490 float value = getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis);
491 switch (axis) {
492 case AMOTION_EVENT_AXIS_X:
493 return value + mXOffset;
494 case AMOTION_EVENT_AXIS_Y:
495 return value + mYOffset;
496 }
497 return value;
498 }
499
findPointerIndex(int32_t pointerId) const500 ssize_t MotionEvent::findPointerIndex(int32_t pointerId) const {
501 size_t pointerCount = mPointerProperties.size();
502 for (size_t i = 0; i < pointerCount; i++) {
503 if (mPointerProperties.itemAt(i).id == pointerId) {
504 return i;
505 }
506 }
507 return -1;
508 }
509
offsetLocation(float xOffset,float yOffset)510 void MotionEvent::offsetLocation(float xOffset, float yOffset) {
511 mXOffset += xOffset;
512 mYOffset += yOffset;
513 }
514
scale(float scaleFactor)515 void MotionEvent::scale(float scaleFactor) {
516 mXOffset *= scaleFactor;
517 mYOffset *= scaleFactor;
518 mXPrecision *= scaleFactor;
519 mYPrecision *= scaleFactor;
520
521 size_t numSamples = mSamplePointerCoords.size();
522 for (size_t i = 0; i < numSamples; i++) {
523 mSamplePointerCoords.editItemAt(i).scale(scaleFactor);
524 }
525 }
526
527 #ifdef HAVE_ANDROID_OS
transformAngle(const SkMatrix * matrix,float angleRadians)528 static inline float transformAngle(const SkMatrix* matrix, float angleRadians) {
529 // Construct and transform a vector oriented at the specified clockwise angle from vertical.
530 // Coordinate system: down is increasing Y, right is increasing X.
531 SkPoint vector;
532 vector.fX = SkFloatToScalar(sinf(angleRadians));
533 vector.fY = SkFloatToScalar(-cosf(angleRadians));
534 matrix->mapVectors(& vector, 1);
535
536 // Derive the transformed vector's clockwise angle from vertical.
537 float result = atan2f(SkScalarToFloat(vector.fX), SkScalarToFloat(-vector.fY));
538 if (result < - M_PI_2) {
539 result += M_PI;
540 } else if (result > M_PI_2) {
541 result -= M_PI;
542 }
543 return result;
544 }
545
transform(const SkMatrix * matrix)546 void MotionEvent::transform(const SkMatrix* matrix) {
547 float oldXOffset = mXOffset;
548 float oldYOffset = mYOffset;
549
550 // The tricky part of this implementation is to preserve the value of
551 // rawX and rawY. So we apply the transformation to the first point
552 // then derive an appropriate new X/Y offset that will preserve rawX and rawY.
553 SkPoint point;
554 float rawX = getRawX(0);
555 float rawY = getRawY(0);
556 matrix->mapXY(SkFloatToScalar(rawX + oldXOffset), SkFloatToScalar(rawY + oldYOffset),
557 & point);
558 float newX = SkScalarToFloat(point.fX);
559 float newY = SkScalarToFloat(point.fY);
560 float newXOffset = newX - rawX;
561 float newYOffset = newY - rawY;
562
563 mXOffset = newXOffset;
564 mYOffset = newYOffset;
565
566 // Apply the transformation to all samples.
567 size_t numSamples = mSamplePointerCoords.size();
568 for (size_t i = 0; i < numSamples; i++) {
569 PointerCoords& c = mSamplePointerCoords.editItemAt(i);
570 float x = c.getAxisValue(AMOTION_EVENT_AXIS_X) + oldXOffset;
571 float y = c.getAxisValue(AMOTION_EVENT_AXIS_Y) + oldYOffset;
572 matrix->mapXY(SkFloatToScalar(x), SkFloatToScalar(y), &point);
573 c.setAxisValue(AMOTION_EVENT_AXIS_X, SkScalarToFloat(point.fX) - newXOffset);
574 c.setAxisValue(AMOTION_EVENT_AXIS_Y, SkScalarToFloat(point.fY) - newYOffset);
575
576 float orientation = c.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION);
577 c.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, transformAngle(matrix, orientation));
578 }
579 }
580
readFromParcel(Parcel * parcel)581 status_t MotionEvent::readFromParcel(Parcel* parcel) {
582 size_t pointerCount = parcel->readInt32();
583 size_t sampleCount = parcel->readInt32();
584 if (pointerCount == 0 || pointerCount > MAX_POINTERS || sampleCount == 0) {
585 return BAD_VALUE;
586 }
587
588 mDeviceId = parcel->readInt32();
589 mSource = parcel->readInt32();
590 mAction = parcel->readInt32();
591 mFlags = parcel->readInt32();
592 mEdgeFlags = parcel->readInt32();
593 mMetaState = parcel->readInt32();
594 mButtonState = parcel->readInt32();
595 mXOffset = parcel->readFloat();
596 mYOffset = parcel->readFloat();
597 mXPrecision = parcel->readFloat();
598 mYPrecision = parcel->readFloat();
599 mDownTime = parcel->readInt64();
600
601 mPointerProperties.clear();
602 mPointerProperties.setCapacity(pointerCount);
603 mSampleEventTimes.clear();
604 mSampleEventTimes.setCapacity(sampleCount);
605 mSamplePointerCoords.clear();
606 mSamplePointerCoords.setCapacity(sampleCount * pointerCount);
607
608 for (size_t i = 0; i < pointerCount; i++) {
609 mPointerProperties.push();
610 PointerProperties& properties = mPointerProperties.editTop();
611 properties.id = parcel->readInt32();
612 properties.toolType = parcel->readInt32();
613 }
614
615 while (sampleCount-- > 0) {
616 mSampleEventTimes.push(parcel->readInt64());
617 for (size_t i = 0; i < pointerCount; i++) {
618 mSamplePointerCoords.push();
619 status_t status = mSamplePointerCoords.editTop().readFromParcel(parcel);
620 if (status) {
621 return status;
622 }
623 }
624 }
625 return OK;
626 }
627
writeToParcel(Parcel * parcel) const628 status_t MotionEvent::writeToParcel(Parcel* parcel) const {
629 size_t pointerCount = mPointerProperties.size();
630 size_t sampleCount = mSampleEventTimes.size();
631
632 parcel->writeInt32(pointerCount);
633 parcel->writeInt32(sampleCount);
634
635 parcel->writeInt32(mDeviceId);
636 parcel->writeInt32(mSource);
637 parcel->writeInt32(mAction);
638 parcel->writeInt32(mFlags);
639 parcel->writeInt32(mEdgeFlags);
640 parcel->writeInt32(mMetaState);
641 parcel->writeInt32(mButtonState);
642 parcel->writeFloat(mXOffset);
643 parcel->writeFloat(mYOffset);
644 parcel->writeFloat(mXPrecision);
645 parcel->writeFloat(mYPrecision);
646 parcel->writeInt64(mDownTime);
647
648 for (size_t i = 0; i < pointerCount; i++) {
649 const PointerProperties& properties = mPointerProperties.itemAt(i);
650 parcel->writeInt32(properties.id);
651 parcel->writeInt32(properties.toolType);
652 }
653
654 const PointerCoords* pc = mSamplePointerCoords.array();
655 for (size_t h = 0; h < sampleCount; h++) {
656 parcel->writeInt64(mSampleEventTimes.itemAt(h));
657 for (size_t i = 0; i < pointerCount; i++) {
658 status_t status = (pc++)->writeToParcel(parcel);
659 if (status) {
660 return status;
661 }
662 }
663 }
664 return OK;
665 }
666 #endif
667
isTouchEvent(int32_t source,int32_t action)668 bool MotionEvent::isTouchEvent(int32_t source, int32_t action) {
669 if (source & AINPUT_SOURCE_CLASS_POINTER) {
670 // Specifically excludes HOVER_MOVE and SCROLL.
671 switch (action & AMOTION_EVENT_ACTION_MASK) {
672 case AMOTION_EVENT_ACTION_DOWN:
673 case AMOTION_EVENT_ACTION_MOVE:
674 case AMOTION_EVENT_ACTION_UP:
675 case AMOTION_EVENT_ACTION_POINTER_DOWN:
676 case AMOTION_EVENT_ACTION_POINTER_UP:
677 case AMOTION_EVENT_ACTION_CANCEL:
678 case AMOTION_EVENT_ACTION_OUTSIDE:
679 return true;
680 }
681 }
682 return false;
683 }
684
685
686 // --- VelocityTracker ---
687
688 const uint32_t VelocityTracker::DEFAULT_DEGREE;
689 const nsecs_t VelocityTracker::DEFAULT_HORIZON;
690 const uint32_t VelocityTracker::HISTORY_SIZE;
691
vectorDot(const float * a,const float * b,uint32_t m)692 static inline float vectorDot(const float* a, const float* b, uint32_t m) {
693 float r = 0;
694 while (m--) {
695 r += *(a++) * *(b++);
696 }
697 return r;
698 }
699
vectorNorm(const float * a,uint32_t m)700 static inline float vectorNorm(const float* a, uint32_t m) {
701 float r = 0;
702 while (m--) {
703 float t = *(a++);
704 r += t * t;
705 }
706 return sqrtf(r);
707 }
708
709 #if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)710 static String8 vectorToString(const float* a, uint32_t m) {
711 String8 str;
712 str.append("[");
713 while (m--) {
714 str.appendFormat(" %f", *(a++));
715 if (m) {
716 str.append(",");
717 }
718 }
719 str.append(" ]");
720 return str;
721 }
722
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)723 static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
724 String8 str;
725 str.append("[");
726 for (size_t i = 0; i < m; i++) {
727 if (i) {
728 str.append(",");
729 }
730 str.append(" [");
731 for (size_t j = 0; j < n; j++) {
732 if (j) {
733 str.append(",");
734 }
735 str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
736 }
737 str.append(" ]");
738 }
739 str.append(" ]");
740 return str;
741 }
742 #endif
743
VelocityTracker()744 VelocityTracker::VelocityTracker() {
745 clear();
746 }
747
clear()748 void VelocityTracker::clear() {
749 mIndex = 0;
750 mMovements[0].idBits.clear();
751 mActivePointerId = -1;
752 }
753
clearPointers(BitSet32 idBits)754 void VelocityTracker::clearPointers(BitSet32 idBits) {
755 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
756 mMovements[mIndex].idBits = remainingIdBits;
757
758 if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
759 mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
760 }
761 }
762
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)763 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
764 if (++mIndex == HISTORY_SIZE) {
765 mIndex = 0;
766 }
767
768 while (idBits.count() > MAX_POINTERS) {
769 idBits.clearLastMarkedBit();
770 }
771
772 Movement& movement = mMovements[mIndex];
773 movement.eventTime = eventTime;
774 movement.idBits = idBits;
775 uint32_t count = idBits.count();
776 for (uint32_t i = 0; i < count; i++) {
777 movement.positions[i] = positions[i];
778 }
779
780 if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
781 mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1;
782 }
783
784 #if DEBUG_VELOCITY
785 LOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
786 eventTime, idBits.value, mActivePointerId);
787 for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
788 uint32_t id = iterBits.firstMarkedBit();
789 uint32_t index = idBits.getIndexOfBit(id);
790 iterBits.clearBit(id);
791 Estimator estimator;
792 getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator);
793 LOGD(" %d: position (%0.3f, %0.3f), "
794 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
795 id, positions[index].x, positions[index].y,
796 int(estimator.degree),
797 vectorToString(estimator.xCoeff, estimator.degree).string(),
798 vectorToString(estimator.yCoeff, estimator.degree).string(),
799 estimator.confidence);
800 }
801 #endif
802 }
803
addMovement(const MotionEvent * event)804 void VelocityTracker::addMovement(const MotionEvent* event) {
805 int32_t actionMasked = event->getActionMasked();
806
807 switch (actionMasked) {
808 case AMOTION_EVENT_ACTION_DOWN:
809 case AMOTION_EVENT_ACTION_HOVER_ENTER:
810 // Clear all pointers on down before adding the new movement.
811 clear();
812 break;
813 case AMOTION_EVENT_ACTION_POINTER_DOWN: {
814 // Start a new movement trace for a pointer that just went down.
815 // We do this on down instead of on up because the client may want to query the
816 // final velocity for a pointer that just went up.
817 BitSet32 downIdBits;
818 downIdBits.markBit(event->getPointerId(event->getActionIndex()));
819 clearPointers(downIdBits);
820 break;
821 }
822 case AMOTION_EVENT_ACTION_MOVE:
823 case AMOTION_EVENT_ACTION_HOVER_MOVE:
824 break;
825 default:
826 // Ignore all other actions because they do not convey any new information about
827 // pointer movement. We also want to preserve the last known velocity of the pointers.
828 // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
829 // of the pointers that went up. ACTION_POINTER_UP does include the new position of
830 // pointers that remained down but we will also receive an ACTION_MOVE with this
831 // information if any of them actually moved. Since we don't know how many pointers
832 // will be going up at once it makes sense to just wait for the following ACTION_MOVE
833 // before adding the movement.
834 return;
835 }
836
837 size_t pointerCount = event->getPointerCount();
838 if (pointerCount > MAX_POINTERS) {
839 pointerCount = MAX_POINTERS;
840 }
841
842 BitSet32 idBits;
843 for (size_t i = 0; i < pointerCount; i++) {
844 idBits.markBit(event->getPointerId(i));
845 }
846
847 nsecs_t eventTime;
848 Position positions[pointerCount];
849
850 size_t historySize = event->getHistorySize();
851 for (size_t h = 0; h < historySize; h++) {
852 eventTime = event->getHistoricalEventTime(h);
853 for (size_t i = 0; i < pointerCount; i++) {
854 positions[i].x = event->getHistoricalX(i, h);
855 positions[i].y = event->getHistoricalY(i, h);
856 }
857 addMovement(eventTime, idBits, positions);
858 }
859
860 eventTime = event->getEventTime();
861 for (size_t i = 0; i < pointerCount; i++) {
862 positions[i].x = event->getX(i);
863 positions[i].y = event->getY(i);
864 }
865 addMovement(eventTime, idBits, positions);
866 }
867
868 /**
869 * Solves a linear least squares problem to obtain a N degree polynomial that fits
870 * the specified input data as nearly as possible.
871 *
872 * Returns true if a solution is found, false otherwise.
873 *
874 * The input consists of two vectors of data points X and Y with indices 0..m-1.
875 * The output is a vector B with indices 0..n-1 that describes a polynomial
876 * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n))
877 * for all i between 0 and m-1 is minimized.
878 *
879 * That is to say, the function that generated the input data can be approximated
880 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
881 *
882 * The coefficient of determination (R^2) is also returned to describe the goodness
883 * of fit of the model for the given data. It is a value between 0 and 1, where 1
884 * indicates perfect correspondence.
885 *
886 * This function first expands the X vector to a m by n matrix A such that
887 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n.
888 *
889 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
890 * and an m by n upper triangular matrix R. Because R is upper triangular (lower
891 * part is all zeroes), we can simplify the decomposition into an m by n matrix
892 * Q1 and a n by n matrix R1 such that A = Q1 R1.
893 *
894 * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y)
895 * to find B.
896 *
897 * For efficiency, we lay out A and Q column-wise in memory because we frequently
898 * operate on the column vectors. Conversely, we lay out R row-wise.
899 *
900 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
901 * http://en.wikipedia.org/wiki/Gram-Schmidt
902 */
solveLeastSquares(const float * x,const float * y,uint32_t m,uint32_t n,float * outB,float * outDet)903 static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n,
904 float* outB, float* outDet) {
905 #if DEBUG_LEAST_SQUARES
906 LOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n),
907 vectorToString(x, m).string(), vectorToString(y, m).string());
908 #endif
909
910 // Expand the X vector to a matrix A.
911 float a[n][m]; // column-major order
912 for (uint32_t h = 0; h < m; h++) {
913 a[0][h] = 1;
914 for (uint32_t i = 1; i < n; i++) {
915 a[i][h] = a[i - 1][h] * x[h];
916 }
917 }
918 #if DEBUG_LEAST_SQUARES
919 LOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
920 #endif
921
922 // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
923 float q[n][m]; // orthonormal basis, column-major order
924 float r[n][n]; // upper triangular matrix, row-major order
925 for (uint32_t j = 0; j < n; j++) {
926 for (uint32_t h = 0; h < m; h++) {
927 q[j][h] = a[j][h];
928 }
929 for (uint32_t i = 0; i < j; i++) {
930 float dot = vectorDot(&q[j][0], &q[i][0], m);
931 for (uint32_t h = 0; h < m; h++) {
932 q[j][h] -= dot * q[i][h];
933 }
934 }
935
936 float norm = vectorNorm(&q[j][0], m);
937 if (norm < 0.000001f) {
938 // vectors are linearly dependent or zero so no solution
939 #if DEBUG_LEAST_SQUARES
940 LOGD(" - no solution, norm=%f", norm);
941 #endif
942 return false;
943 }
944
945 float invNorm = 1.0f / norm;
946 for (uint32_t h = 0; h < m; h++) {
947 q[j][h] *= invNorm;
948 }
949 for (uint32_t i = 0; i < n; i++) {
950 r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
951 }
952 }
953 #if DEBUG_LEAST_SQUARES
954 LOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
955 LOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
956
957 // calculate QR, if we factored A correctly then QR should equal A
958 float qr[n][m];
959 for (uint32_t h = 0; h < m; h++) {
960 for (uint32_t i = 0; i < n; i++) {
961 qr[i][h] = 0;
962 for (uint32_t j = 0; j < n; j++) {
963 qr[i][h] += q[j][h] * r[j][i];
964 }
965 }
966 }
967 LOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
968 #endif
969
970 // Solve R B = Qt Y to find B. This is easy because R is upper triangular.
971 // We just work from bottom-right to top-left calculating B's coefficients.
972 for (uint32_t i = n; i-- != 0; ) {
973 outB[i] = vectorDot(&q[i][0], y, m);
974 for (uint32_t j = n - 1; j > i; j--) {
975 outB[i] -= r[i][j] * outB[j];
976 }
977 outB[i] /= r[i][i];
978 }
979 #if DEBUG_LEAST_SQUARES
980 LOGD(" - b=%s", vectorToString(outB, n).string());
981 #endif
982
983 // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
984 // SSerr is the residual sum of squares (squared variance of the error),
985 // and SStot is the total sum of squares (squared variance of the data).
986 float ymean = 0;
987 for (uint32_t h = 0; h < m; h++) {
988 ymean += y[h];
989 }
990 ymean /= m;
991
992 float sserr = 0;
993 float sstot = 0;
994 for (uint32_t h = 0; h < m; h++) {
995 float err = y[h] - outB[0];
996 float term = 1;
997 for (uint32_t i = 1; i < n; i++) {
998 term *= x[h];
999 err -= term * outB[i];
1000 }
1001 sserr += err * err;
1002 float var = y[h] - ymean;
1003 sstot += var * var;
1004 }
1005 *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
1006 #if DEBUG_LEAST_SQUARES
1007 LOGD(" - sserr=%f", sserr);
1008 LOGD(" - sstot=%f", sstot);
1009 LOGD(" - det=%f", *outDet);
1010 #endif
1011 return true;
1012 }
1013
getVelocity(uint32_t id,float * outVx,float * outVy) const1014 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
1015 Estimator estimator;
1016 if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) {
1017 if (estimator.degree >= 1) {
1018 *outVx = estimator.xCoeff[1];
1019 *outVy = estimator.yCoeff[1];
1020 return true;
1021 }
1022 }
1023 *outVx = 0;
1024 *outVy = 0;
1025 return false;
1026 }
1027
getEstimator(uint32_t id,uint32_t degree,nsecs_t horizon,Estimator * outEstimator) const1028 bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon,
1029 Estimator* outEstimator) const {
1030 outEstimator->clear();
1031
1032 // Iterate over movement samples in reverse time order and collect samples.
1033 float x[HISTORY_SIZE];
1034 float y[HISTORY_SIZE];
1035 float time[HISTORY_SIZE];
1036 uint32_t m = 0;
1037 uint32_t index = mIndex;
1038 const Movement& newestMovement = mMovements[mIndex];
1039 do {
1040 const Movement& movement = mMovements[index];
1041 if (!movement.idBits.hasBit(id)) {
1042 break;
1043 }
1044
1045 nsecs_t age = newestMovement.eventTime - movement.eventTime;
1046 if (age > horizon) {
1047 break;
1048 }
1049
1050 const Position& position = movement.getPosition(id);
1051 x[m] = position.x;
1052 y[m] = position.y;
1053 time[m] = -age * 0.000000001f;
1054 index = (index == 0 ? HISTORY_SIZE : index) - 1;
1055 } while (++m < HISTORY_SIZE);
1056
1057 if (m == 0) {
1058 return false; // no data
1059 }
1060
1061 // Calculate a least squares polynomial fit.
1062 if (degree > Estimator::MAX_DEGREE) {
1063 degree = Estimator::MAX_DEGREE;
1064 }
1065 if (degree > m - 1) {
1066 degree = m - 1;
1067 }
1068 if (degree >= 1) {
1069 float xdet, ydet;
1070 uint32_t n = degree + 1;
1071 if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet)
1072 && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) {
1073 outEstimator->degree = degree;
1074 outEstimator->confidence = xdet * ydet;
1075 #if DEBUG_LEAST_SQUARES
1076 LOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
1077 int(outEstimator->degree),
1078 vectorToString(outEstimator->xCoeff, n).string(),
1079 vectorToString(outEstimator->yCoeff, n).string(),
1080 outEstimator->confidence);
1081 #endif
1082 return true;
1083 }
1084 }
1085
1086 // No velocity data available for this pointer, but we do have its current position.
1087 outEstimator->xCoeff[0] = x[0];
1088 outEstimator->yCoeff[0] = y[0];
1089 outEstimator->degree = 0;
1090 outEstimator->confidence = 1;
1091 return true;
1092 }
1093
1094
1095 // --- VelocityControl ---
1096
1097 const nsecs_t VelocityControl::STOP_TIME;
1098
VelocityControl()1099 VelocityControl::VelocityControl() {
1100 reset();
1101 }
1102
setParameters(const VelocityControlParameters & parameters)1103 void VelocityControl::setParameters(const VelocityControlParameters& parameters) {
1104 mParameters = parameters;
1105 reset();
1106 }
1107
reset()1108 void VelocityControl::reset() {
1109 mLastMovementTime = LLONG_MIN;
1110 mRawPosition.x = 0;
1111 mRawPosition.y = 0;
1112 mVelocityTracker.clear();
1113 }
1114
move(nsecs_t eventTime,float * deltaX,float * deltaY)1115 void VelocityControl::move(nsecs_t eventTime, float* deltaX, float* deltaY) {
1116 if ((deltaX && *deltaX) || (deltaY && *deltaY)) {
1117 if (eventTime >= mLastMovementTime + STOP_TIME) {
1118 #if DEBUG_ACCELERATION
1119 LOGD("VelocityControl: stopped, last movement was %0.3fms ago",
1120 (eventTime - mLastMovementTime) * 0.000001f);
1121 #endif
1122 reset();
1123 }
1124
1125 mLastMovementTime = eventTime;
1126 if (deltaX) {
1127 mRawPosition.x += *deltaX;
1128 }
1129 if (deltaY) {
1130 mRawPosition.y += *deltaY;
1131 }
1132 mVelocityTracker.addMovement(eventTime, BitSet32(BitSet32::valueForBit(0)), &mRawPosition);
1133
1134 float vx, vy;
1135 float scale = mParameters.scale;
1136 if (mVelocityTracker.getVelocity(0, &vx, &vy)) {
1137 float speed = hypotf(vx, vy) * scale;
1138 if (speed >= mParameters.highThreshold) {
1139 // Apply full acceleration above the high speed threshold.
1140 scale *= mParameters.acceleration;
1141 } else if (speed > mParameters.lowThreshold) {
1142 // Linearly interpolate the acceleration to apply between the low and high
1143 // speed thresholds.
1144 scale *= 1 + (speed - mParameters.lowThreshold)
1145 / (mParameters.highThreshold - mParameters.lowThreshold)
1146 * (mParameters.acceleration - 1);
1147 }
1148
1149 #if DEBUG_ACCELERATION
1150 LOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): "
1151 "vx=%0.3f, vy=%0.3f, speed=%0.3f, accel=%0.3f",
1152 mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold,
1153 mParameters.acceleration,
1154 vx, vy, speed, scale / mParameters.scale);
1155 #endif
1156 } else {
1157 #if DEBUG_ACCELERATION
1158 LOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): unknown velocity",
1159 mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold,
1160 mParameters.acceleration);
1161 #endif
1162 }
1163
1164 if (deltaX) {
1165 *deltaX *= scale;
1166 }
1167 if (deltaY) {
1168 *deltaY *= scale;
1169 }
1170 }
1171 }
1172
1173
1174 // --- InputDeviceInfo ---
1175
InputDeviceInfo()1176 InputDeviceInfo::InputDeviceInfo() {
1177 initialize(-1, String8("uninitialized device info"));
1178 }
1179
InputDeviceInfo(const InputDeviceInfo & other)1180 InputDeviceInfo::InputDeviceInfo(const InputDeviceInfo& other) :
1181 mId(other.mId), mName(other.mName), mSources(other.mSources),
1182 mKeyboardType(other.mKeyboardType),
1183 mMotionRanges(other.mMotionRanges) {
1184 }
1185
~InputDeviceInfo()1186 InputDeviceInfo::~InputDeviceInfo() {
1187 }
1188
initialize(int32_t id,const String8 & name)1189 void InputDeviceInfo::initialize(int32_t id, const String8& name) {
1190 mId = id;
1191 mName = name;
1192 mSources = 0;
1193 mKeyboardType = AINPUT_KEYBOARD_TYPE_NONE;
1194 mMotionRanges.clear();
1195 }
1196
getMotionRange(int32_t axis,uint32_t source) const1197 const InputDeviceInfo::MotionRange* InputDeviceInfo::getMotionRange(
1198 int32_t axis, uint32_t source) const {
1199 size_t numRanges = mMotionRanges.size();
1200 for (size_t i = 0; i < numRanges; i++) {
1201 const MotionRange& range = mMotionRanges.itemAt(i);
1202 if (range.axis == axis && range.source == source) {
1203 return ⦥
1204 }
1205 }
1206 return NULL;
1207 }
1208
addSource(uint32_t source)1209 void InputDeviceInfo::addSource(uint32_t source) {
1210 mSources |= source;
1211 }
1212
addMotionRange(int32_t axis,uint32_t source,float min,float max,float flat,float fuzz)1213 void InputDeviceInfo::addMotionRange(int32_t axis, uint32_t source, float min, float max,
1214 float flat, float fuzz) {
1215 MotionRange range = { axis, source, min, max, flat, fuzz };
1216 mMotionRanges.add(range);
1217 }
1218
addMotionRange(const MotionRange & range)1219 void InputDeviceInfo::addMotionRange(const MotionRange& range) {
1220 mMotionRanges.add(range);
1221 }
1222
1223 } // namespace android
1224