1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19
20 #include <utils/threads.h>
21 #include <utils/Log.h>
22
23 #include <cutils/sched_policy.h>
24 #include <cutils/properties.h>
25
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <memory.h>
29 #include <errno.h>
30 #include <assert.h>
31 #include <unistd.h>
32
33 #if defined(HAVE_PTHREADS)
34 # include <pthread.h>
35 # include <sched.h>
36 # include <sys/resource.h>
37 #elif defined(HAVE_WIN32_THREADS)
38 # include <windows.h>
39 # include <stdint.h>
40 # include <process.h>
41 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
42 #endif
43
44 #if defined(HAVE_PRCTL)
45 #include <sys/prctl.h>
46 #endif
47
48 /*
49 * ===========================================================================
50 * Thread wrappers
51 * ===========================================================================
52 */
53
54 using namespace android;
55
56 // ----------------------------------------------------------------------------
57 #if defined(HAVE_PTHREADS)
58 // ----------------------------------------------------------------------------
59
60 /*
61 * Create and run a new thread.
62 *
63 * We create it "detached", so it cleans up after itself.
64 */
65
66 typedef void* (*android_pthread_entry)(void*);
67
68 static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT;
69 static bool gDoSchedulingGroup = true;
70
checkDoSchedulingGroup(void)71 static void checkDoSchedulingGroup(void) {
72 char buf[PROPERTY_VALUE_MAX];
73 int len = property_get("debug.sys.noschedgroups", buf, "");
74 if (len > 0) {
75 int temp;
76 if (sscanf(buf, "%d", &temp) == 1) {
77 gDoSchedulingGroup = temp == 0;
78 }
79 }
80 }
81
82 struct thread_data_t {
83 thread_func_t entryFunction;
84 void* userData;
85 int priority;
86 char * threadName;
87
88 // we use this trampoline when we need to set the priority with
89 // nice/setpriority.
trampolinethread_data_t90 static int trampoline(const thread_data_t* t) {
91 thread_func_t f = t->entryFunction;
92 void* u = t->userData;
93 int prio = t->priority;
94 char * name = t->threadName;
95 delete t;
96 setpriority(PRIO_PROCESS, 0, prio);
97 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
98 if (gDoSchedulingGroup) {
99 if (prio >= ANDROID_PRIORITY_BACKGROUND) {
100 set_sched_policy(androidGetTid(), SP_BACKGROUND);
101 } else {
102 set_sched_policy(androidGetTid(), SP_FOREGROUND);
103 }
104 }
105
106 if (name) {
107 #if defined(HAVE_PRCTL)
108 // Mac OS doesn't have this, and we build libutil for the host too
109 int hasAt = 0;
110 int hasDot = 0;
111 char *s = name;
112 while (*s) {
113 if (*s == '.') hasDot = 1;
114 else if (*s == '@') hasAt = 1;
115 s++;
116 }
117 int len = s - name;
118 if (len < 15 || hasAt || !hasDot) {
119 s = name;
120 } else {
121 s = name + len - 15;
122 }
123 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
124 #endif
125 free(name);
126 }
127 return f(u);
128 }
129 };
130
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)131 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
132 void *userData,
133 const char* threadName,
134 int32_t threadPriority,
135 size_t threadStackSize,
136 android_thread_id_t *threadId)
137 {
138 pthread_attr_t attr;
139 pthread_attr_init(&attr);
140 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
141
142 #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */
143 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
144 // We could avoid the trampoline if there was a way to get to the
145 // android_thread_id_t (pid) from pthread_t
146 thread_data_t* t = new thread_data_t;
147 t->priority = threadPriority;
148 t->threadName = threadName ? strdup(threadName) : NULL;
149 t->entryFunction = entryFunction;
150 t->userData = userData;
151 entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
152 userData = t;
153 }
154 #endif
155
156 if (threadStackSize) {
157 pthread_attr_setstacksize(&attr, threadStackSize);
158 }
159
160 errno = 0;
161 pthread_t thread;
162 int result = pthread_create(&thread, &attr,
163 (android_pthread_entry)entryFunction, userData);
164 pthread_attr_destroy(&attr);
165 if (result != 0) {
166 LOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
167 "(android threadPriority=%d)",
168 entryFunction, result, errno, threadPriority);
169 return 0;
170 }
171
172 // Note that *threadID is directly available to the parent only, as it is
173 // assigned after the child starts. Use memory barrier / lock if the child
174 // or other threads also need access.
175 if (threadId != NULL) {
176 *threadId = (android_thread_id_t)thread; // XXX: this is not portable
177 }
178 return 1;
179 }
180
androidGetThreadId()181 android_thread_id_t androidGetThreadId()
182 {
183 return (android_thread_id_t)pthread_self();
184 }
185
186 // ----------------------------------------------------------------------------
187 #elif defined(HAVE_WIN32_THREADS)
188 // ----------------------------------------------------------------------------
189
190 /*
191 * Trampoline to make us __stdcall-compliant.
192 *
193 * We're expected to delete "vDetails" when we're done.
194 */
195 struct threadDetails {
196 int (*func)(void*);
197 void* arg;
198 };
threadIntermediary(void * vDetails)199 static __stdcall unsigned int threadIntermediary(void* vDetails)
200 {
201 struct threadDetails* pDetails = (struct threadDetails*) vDetails;
202 int result;
203
204 result = (*(pDetails->func))(pDetails->arg);
205
206 delete pDetails;
207
208 LOG(LOG_VERBOSE, "thread", "thread exiting\n");
209 return (unsigned int) result;
210 }
211
212 /*
213 * Create and run a new thread.
214 */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)215 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
216 {
217 HANDLE hThread;
218 struct threadDetails* pDetails = new threadDetails; // must be on heap
219 unsigned int thrdaddr;
220
221 pDetails->func = fn;
222 pDetails->arg = arg;
223
224 #if defined(HAVE__BEGINTHREADEX)
225 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
226 &thrdaddr);
227 if (hThread == 0)
228 #elif defined(HAVE_CREATETHREAD)
229 hThread = CreateThread(NULL, 0,
230 (LPTHREAD_START_ROUTINE) threadIntermediary,
231 (void*) pDetails, 0, (DWORD*) &thrdaddr);
232 if (hThread == NULL)
233 #endif
234 {
235 LOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
236 return false;
237 }
238
239 #if defined(HAVE_CREATETHREAD)
240 /* close the management handle */
241 CloseHandle(hThread);
242 #endif
243
244 if (id != NULL) {
245 *id = (android_thread_id_t)thrdaddr;
246 }
247
248 return true;
249 }
250
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)251 int androidCreateRawThreadEtc(android_thread_func_t fn,
252 void *userData,
253 const char* threadName,
254 int32_t threadPriority,
255 size_t threadStackSize,
256 android_thread_id_t *threadId)
257 {
258 return doCreateThread( fn, userData, threadId);
259 }
260
androidGetThreadId()261 android_thread_id_t androidGetThreadId()
262 {
263 return (android_thread_id_t)GetCurrentThreadId();
264 }
265
266 // ----------------------------------------------------------------------------
267 #else
268 #error "Threads not supported"
269 #endif
270
271 // ----------------------------------------------------------------------------
272
androidCreateThread(android_thread_func_t fn,void * arg)273 int androidCreateThread(android_thread_func_t fn, void* arg)
274 {
275 return createThreadEtc(fn, arg);
276 }
277
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)278 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
279 {
280 return createThreadEtc(fn, arg, "android:unnamed_thread",
281 PRIORITY_DEFAULT, 0, id);
282 }
283
284 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
285
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)286 int androidCreateThreadEtc(android_thread_func_t entryFunction,
287 void *userData,
288 const char* threadName,
289 int32_t threadPriority,
290 size_t threadStackSize,
291 android_thread_id_t *threadId)
292 {
293 return gCreateThreadFn(entryFunction, userData, threadName,
294 threadPriority, threadStackSize, threadId);
295 }
296
androidSetCreateThreadFunc(android_create_thread_fn func)297 void androidSetCreateThreadFunc(android_create_thread_fn func)
298 {
299 gCreateThreadFn = func;
300 }
301
androidGetTid()302 pid_t androidGetTid()
303 {
304 #ifdef HAVE_GETTID
305 return gettid();
306 #else
307 return getpid();
308 #endif
309 }
310
androidSetThreadSchedulingGroup(pid_t tid,int grp)311 int androidSetThreadSchedulingGroup(pid_t tid, int grp)
312 {
313 if (grp > ANDROID_TGROUP_MAX || grp < 0) {
314 return BAD_VALUE;
315 }
316
317 #if defined(HAVE_PTHREADS)
318 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
319 if (gDoSchedulingGroup) {
320 // set_sched_policy does not support tid == 0
321 if (tid == 0) {
322 tid = androidGetTid();
323 }
324 if (set_sched_policy(tid, (grp == ANDROID_TGROUP_BG_NONINTERACT) ?
325 SP_BACKGROUND : SP_FOREGROUND)) {
326 return PERMISSION_DENIED;
327 }
328 }
329 #endif
330
331 return NO_ERROR;
332 }
333
androidSetThreadPriority(pid_t tid,int pri)334 int androidSetThreadPriority(pid_t tid, int pri)
335 {
336 int rc = 0;
337
338 #if defined(HAVE_PTHREADS)
339 int lasterr = 0;
340
341 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
342 if (gDoSchedulingGroup) {
343 // set_sched_policy does not support tid == 0
344 int policy_tid;
345 if (tid == 0) {
346 policy_tid = androidGetTid();
347 } else {
348 policy_tid = tid;
349 }
350 if (pri >= ANDROID_PRIORITY_BACKGROUND) {
351 rc = set_sched_policy(policy_tid, SP_BACKGROUND);
352 } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
353 rc = set_sched_policy(policy_tid, SP_FOREGROUND);
354 }
355 }
356
357 if (rc) {
358 lasterr = errno;
359 }
360
361 if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
362 rc = INVALID_OPERATION;
363 } else {
364 errno = lasterr;
365 }
366 #endif
367
368 return rc;
369 }
370
androidGetThreadPriority(pid_t tid)371 int androidGetThreadPriority(pid_t tid) {
372 #if defined(HAVE_PTHREADS)
373 return getpriority(PRIO_PROCESS, tid);
374 #else
375 return ANDROID_PRIORITY_NORMAL;
376 #endif
377 }
378
androidGetThreadSchedulingGroup(pid_t tid)379 int androidGetThreadSchedulingGroup(pid_t tid)
380 {
381 int ret = ANDROID_TGROUP_DEFAULT;
382
383 #if defined(HAVE_PTHREADS)
384 // convention is to not call get/set_sched_policy methods if disabled by property
385 pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
386 if (gDoSchedulingGroup) {
387 SchedPolicy policy;
388 // get_sched_policy does not support tid == 0
389 if (tid == 0) {
390 tid = androidGetTid();
391 }
392 if (get_sched_policy(tid, &policy) < 0) {
393 ret = INVALID_OPERATION;
394 } else {
395 switch (policy) {
396 case SP_BACKGROUND:
397 ret = ANDROID_TGROUP_BG_NONINTERACT;
398 break;
399 case SP_FOREGROUND:
400 ret = ANDROID_TGROUP_FG_BOOST;
401 break;
402 default:
403 // should not happen, as enum SchedPolicy does not have any other values
404 ret = INVALID_OPERATION;
405 break;
406 }
407 }
408 }
409 #endif
410
411 return ret;
412 }
413
414 namespace android {
415
416 /*
417 * ===========================================================================
418 * Mutex class
419 * ===========================================================================
420 */
421
422 #if defined(HAVE_PTHREADS)
423 // implemented as inlines in threads.h
424 #elif defined(HAVE_WIN32_THREADS)
425
426 Mutex::Mutex()
427 {
428 HANDLE hMutex;
429
430 assert(sizeof(hMutex) == sizeof(mState));
431
432 hMutex = CreateMutex(NULL, FALSE, NULL);
433 mState = (void*) hMutex;
434 }
435
436 Mutex::Mutex(const char* name)
437 {
438 // XXX: name not used for now
439 HANDLE hMutex;
440
441 assert(sizeof(hMutex) == sizeof(mState));
442
443 hMutex = CreateMutex(NULL, FALSE, NULL);
444 mState = (void*) hMutex;
445 }
446
447 Mutex::Mutex(int type, const char* name)
448 {
449 // XXX: type and name not used for now
450 HANDLE hMutex;
451
452 assert(sizeof(hMutex) == sizeof(mState));
453
454 hMutex = CreateMutex(NULL, FALSE, NULL);
455 mState = (void*) hMutex;
456 }
457
458 Mutex::~Mutex()
459 {
460 CloseHandle((HANDLE) mState);
461 }
462
463 status_t Mutex::lock()
464 {
465 DWORD dwWaitResult;
466 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
467 return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
468 }
469
470 void Mutex::unlock()
471 {
472 if (!ReleaseMutex((HANDLE) mState))
473 LOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
474 }
475
476 status_t Mutex::tryLock()
477 {
478 DWORD dwWaitResult;
479
480 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
481 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
482 LOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
483 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
484 }
485
486 #else
487 #error "Somebody forgot to implement threads for this platform."
488 #endif
489
490
491 /*
492 * ===========================================================================
493 * Condition class
494 * ===========================================================================
495 */
496
497 #if defined(HAVE_PTHREADS)
498 // implemented as inlines in threads.h
499 #elif defined(HAVE_WIN32_THREADS)
500
501 /*
502 * Windows doesn't have a condition variable solution. It's possible
503 * to create one, but it's easy to get it wrong. For a discussion, and
504 * the origin of this implementation, see:
505 *
506 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
507 *
508 * The implementation shown on the page does NOT follow POSIX semantics.
509 * As an optimization they require acquiring the external mutex before
510 * calling signal() and broadcast(), whereas POSIX only requires grabbing
511 * it before calling wait(). The implementation here has been un-optimized
512 * to have the correct behavior.
513 */
514 typedef struct WinCondition {
515 // Number of waiting threads.
516 int waitersCount;
517
518 // Serialize access to waitersCount.
519 CRITICAL_SECTION waitersCountLock;
520
521 // Semaphore used to queue up threads waiting for the condition to
522 // become signaled.
523 HANDLE sema;
524
525 // An auto-reset event used by the broadcast/signal thread to wait
526 // for all the waiting thread(s) to wake up and be released from
527 // the semaphore.
528 HANDLE waitersDone;
529
530 // This mutex wouldn't be necessary if we required that the caller
531 // lock the external mutex before calling signal() and broadcast().
532 // I'm trying to mimic pthread semantics though.
533 HANDLE internalMutex;
534
535 // Keeps track of whether we were broadcasting or signaling. This
536 // allows us to optimize the code if we're just signaling.
537 bool wasBroadcast;
538
539 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
540 {
541 // Increment the wait count, avoiding race conditions.
542 EnterCriticalSection(&condState->waitersCountLock);
543 condState->waitersCount++;
544 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
545 // condState->waitersCount, getThreadId());
546 LeaveCriticalSection(&condState->waitersCountLock);
547
548 DWORD timeout = INFINITE;
549 if (abstime) {
550 nsecs_t reltime = *abstime - systemTime();
551 if (reltime < 0)
552 reltime = 0;
553 timeout = reltime/1000000;
554 }
555
556 // Atomically release the external mutex and wait on the semaphore.
557 DWORD res =
558 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
559
560 //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
561
562 // Reacquire lock to avoid race conditions.
563 EnterCriticalSection(&condState->waitersCountLock);
564
565 // No longer waiting.
566 condState->waitersCount--;
567
568 // Check to see if we're the last waiter after a broadcast.
569 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
570
571 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
572 // lastWaiter, condState->wasBroadcast, condState->waitersCount);
573
574 LeaveCriticalSection(&condState->waitersCountLock);
575
576 // If we're the last waiter thread during this particular broadcast
577 // then signal broadcast() that we're all awake. It'll drop the
578 // internal mutex.
579 if (lastWaiter) {
580 // Atomically signal the "waitersDone" event and wait until we
581 // can acquire the internal mutex. We want to do this in one step
582 // because it ensures that everybody is in the mutex FIFO before
583 // any thread has a chance to run. Without it, another thread
584 // could wake up, do work, and hop back in ahead of us.
585 SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
586 INFINITE, FALSE);
587 } else {
588 // Grab the internal mutex.
589 WaitForSingleObject(condState->internalMutex, INFINITE);
590 }
591
592 // Release the internal and grab the external.
593 ReleaseMutex(condState->internalMutex);
594 WaitForSingleObject(hMutex, INFINITE);
595
596 return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
597 }
598 } WinCondition;
599
600 /*
601 * Constructor. Set up the WinCondition stuff.
602 */
603 Condition::Condition()
604 {
605 WinCondition* condState = new WinCondition;
606
607 condState->waitersCount = 0;
608 condState->wasBroadcast = false;
609 // semaphore: no security, initial value of 0
610 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
611 InitializeCriticalSection(&condState->waitersCountLock);
612 // auto-reset event, not signaled initially
613 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
614 // used so we don't have to lock external mutex on signal/broadcast
615 condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
616
617 mState = condState;
618 }
619
620 /*
621 * Destructor. Free Windows resources as well as our allocated storage.
622 */
623 Condition::~Condition()
624 {
625 WinCondition* condState = (WinCondition*) mState;
626 if (condState != NULL) {
627 CloseHandle(condState->sema);
628 CloseHandle(condState->waitersDone);
629 delete condState;
630 }
631 }
632
633
634 status_t Condition::wait(Mutex& mutex)
635 {
636 WinCondition* condState = (WinCondition*) mState;
637 HANDLE hMutex = (HANDLE) mutex.mState;
638
639 return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
640 }
641
642 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
643 {
644 WinCondition* condState = (WinCondition*) mState;
645 HANDLE hMutex = (HANDLE) mutex.mState;
646 nsecs_t absTime = systemTime()+reltime;
647
648 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
649 }
650
651 /*
652 * Signal the condition variable, allowing one thread to continue.
653 */
654 void Condition::signal()
655 {
656 WinCondition* condState = (WinCondition*) mState;
657
658 // Lock the internal mutex. This ensures that we don't clash with
659 // broadcast().
660 WaitForSingleObject(condState->internalMutex, INFINITE);
661
662 EnterCriticalSection(&condState->waitersCountLock);
663 bool haveWaiters = (condState->waitersCount > 0);
664 LeaveCriticalSection(&condState->waitersCountLock);
665
666 // If no waiters, then this is a no-op. Otherwise, knock the semaphore
667 // down a notch.
668 if (haveWaiters)
669 ReleaseSemaphore(condState->sema, 1, 0);
670
671 // Release internal mutex.
672 ReleaseMutex(condState->internalMutex);
673 }
674
675 /*
676 * Signal the condition variable, allowing all threads to continue.
677 *
678 * First we have to wake up all threads waiting on the semaphore, then
679 * we wait until all of the threads have actually been woken before
680 * releasing the internal mutex. This ensures that all threads are woken.
681 */
682 void Condition::broadcast()
683 {
684 WinCondition* condState = (WinCondition*) mState;
685
686 // Lock the internal mutex. This keeps the guys we're waking up
687 // from getting too far.
688 WaitForSingleObject(condState->internalMutex, INFINITE);
689
690 EnterCriticalSection(&condState->waitersCountLock);
691 bool haveWaiters = false;
692
693 if (condState->waitersCount > 0) {
694 haveWaiters = true;
695 condState->wasBroadcast = true;
696 }
697
698 if (haveWaiters) {
699 // Wake up all the waiters.
700 ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
701
702 LeaveCriticalSection(&condState->waitersCountLock);
703
704 // Wait for all awakened threads to acquire the counting semaphore.
705 // The last guy who was waiting sets this.
706 WaitForSingleObject(condState->waitersDone, INFINITE);
707
708 // Reset wasBroadcast. (No crit section needed because nobody
709 // else can wake up to poke at it.)
710 condState->wasBroadcast = 0;
711 } else {
712 // nothing to do
713 LeaveCriticalSection(&condState->waitersCountLock);
714 }
715
716 // Release internal mutex.
717 ReleaseMutex(condState->internalMutex);
718 }
719
720 #else
721 #error "condition variables not supported on this platform"
722 #endif
723
724 // ----------------------------------------------------------------------------
725
726 /*
727 * This is our thread object!
728 */
729
Thread(bool canCallJava)730 Thread::Thread(bool canCallJava)
731 : mCanCallJava(canCallJava),
732 mThread(thread_id_t(-1)),
733 mLock("Thread::mLock"),
734 mStatus(NO_ERROR),
735 mExitPending(false), mRunning(false)
736 #ifdef HAVE_ANDROID_OS
737 , mTid(-1)
738 #endif
739 {
740 }
741
~Thread()742 Thread::~Thread()
743 {
744 }
745
readyToRun()746 status_t Thread::readyToRun()
747 {
748 return NO_ERROR;
749 }
750
run(const char * name,int32_t priority,size_t stack)751 status_t Thread::run(const char* name, int32_t priority, size_t stack)
752 {
753 Mutex::Autolock _l(mLock);
754
755 if (mRunning) {
756 // thread already started
757 return INVALID_OPERATION;
758 }
759
760 // reset status and exitPending to their default value, so we can
761 // try again after an error happened (either below, or in readyToRun())
762 mStatus = NO_ERROR;
763 mExitPending = false;
764 mThread = thread_id_t(-1);
765
766 // hold a strong reference on ourself
767 mHoldSelf = this;
768
769 mRunning = true;
770
771 bool res;
772 if (mCanCallJava) {
773 res = createThreadEtc(_threadLoop,
774 this, name, priority, stack, &mThread);
775 } else {
776 res = androidCreateRawThreadEtc(_threadLoop,
777 this, name, priority, stack, &mThread);
778 }
779
780 if (res == false) {
781 mStatus = UNKNOWN_ERROR; // something happened!
782 mRunning = false;
783 mThread = thread_id_t(-1);
784 mHoldSelf.clear(); // "this" may have gone away after this.
785
786 return UNKNOWN_ERROR;
787 }
788
789 // Do not refer to mStatus here: The thread is already running (may, in fact
790 // already have exited with a valid mStatus result). The NO_ERROR indication
791 // here merely indicates successfully starting the thread and does not
792 // imply successful termination/execution.
793 return NO_ERROR;
794
795 // Exiting scope of mLock is a memory barrier and allows new thread to run
796 }
797
_threadLoop(void * user)798 int Thread::_threadLoop(void* user)
799 {
800 Thread* const self = static_cast<Thread*>(user);
801
802 sp<Thread> strong(self->mHoldSelf);
803 wp<Thread> weak(strong);
804 self->mHoldSelf.clear();
805
806 #ifdef HAVE_ANDROID_OS
807 // this is very useful for debugging with gdb
808 self->mTid = gettid();
809 #endif
810
811 bool first = true;
812
813 do {
814 bool result;
815 if (first) {
816 first = false;
817 self->mStatus = self->readyToRun();
818 result = (self->mStatus == NO_ERROR);
819
820 if (result && !self->exitPending()) {
821 // Binder threads (and maybe others) rely on threadLoop
822 // running at least once after a successful ::readyToRun()
823 // (unless, of course, the thread has already been asked to exit
824 // at that point).
825 // This is because threads are essentially used like this:
826 // (new ThreadSubclass())->run();
827 // The caller therefore does not retain a strong reference to
828 // the thread and the thread would simply disappear after the
829 // successful ::readyToRun() call instead of entering the
830 // threadLoop at least once.
831 result = self->threadLoop();
832 }
833 } else {
834 result = self->threadLoop();
835 }
836
837 // establish a scope for mLock
838 {
839 Mutex::Autolock _l(self->mLock);
840 if (result == false || self->mExitPending) {
841 self->mExitPending = true;
842 self->mRunning = false;
843 // clear thread ID so that requestExitAndWait() does not exit if
844 // called by a new thread using the same thread ID as this one.
845 self->mThread = thread_id_t(-1);
846 // note that interested observers blocked in requestExitAndWait are
847 // awoken by broadcast, but blocked on mLock until break exits scope
848 self->mThreadExitedCondition.broadcast();
849 break;
850 }
851 }
852
853 // Release our strong reference, to let a chance to the thread
854 // to die a peaceful death.
855 strong.clear();
856 // And immediately, re-acquire a strong reference for the next loop
857 strong = weak.promote();
858 } while(strong != 0);
859
860 return 0;
861 }
862
requestExit()863 void Thread::requestExit()
864 {
865 Mutex::Autolock _l(mLock);
866 mExitPending = true;
867 }
868
requestExitAndWait()869 status_t Thread::requestExitAndWait()
870 {
871 Mutex::Autolock _l(mLock);
872 if (mThread == getThreadId()) {
873 LOGW(
874 "Thread (this=%p): don't call waitForExit() from this "
875 "Thread object's thread. It's a guaranteed deadlock!",
876 this);
877
878 return WOULD_BLOCK;
879 }
880
881 mExitPending = true;
882
883 while (mRunning == true) {
884 mThreadExitedCondition.wait(mLock);
885 }
886 // This next line is probably not needed any more, but is being left for
887 // historical reference. Note that each interested party will clear flag.
888 mExitPending = false;
889
890 return mStatus;
891 }
892
join()893 status_t Thread::join()
894 {
895 Mutex::Autolock _l(mLock);
896 if (mThread == getThreadId()) {
897 LOGW(
898 "Thread (this=%p): don't call join() from this "
899 "Thread object's thread. It's a guaranteed deadlock!",
900 this);
901
902 return WOULD_BLOCK;
903 }
904
905 while (mRunning == true) {
906 mThreadExitedCondition.wait(mLock);
907 }
908
909 return mStatus;
910 }
911
exitPending() const912 bool Thread::exitPending() const
913 {
914 Mutex::Autolock _l(mLock);
915 return mExitPending;
916 }
917
918
919
920 }; // namespace android
921