• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_SENSORS_INTERFACE_H
18 #define ANDROID_SENSORS_INTERFACE_H
19 
20 #include <stdint.h>
21 #include <sys/cdefs.h>
22 #include <sys/types.h>
23 
24 #include <hardware/hardware.h>
25 #include <cutils/native_handle.h>
26 
27 __BEGIN_DECLS
28 
29 /**
30  * The id of this module
31  */
32 #define SENSORS_HARDWARE_MODULE_ID "sensors"
33 
34 /**
35  * Name of the sensors device to open
36  */
37 #define SENSORS_HARDWARE_POLL       "poll"
38 
39 /**
40  * Handles must be higher than SENSORS_HANDLE_BASE and must be unique.
41  * A Handle identifies a given sensors. The handle is used to activate
42  * and/or deactivate sensors.
43  * In this version of the API there can only be 256 handles.
44  */
45 #define SENSORS_HANDLE_BASE             0
46 #define SENSORS_HANDLE_BITS             8
47 #define SENSORS_HANDLE_COUNT            (1<<SENSORS_HANDLE_BITS)
48 
49 
50 /**
51  * Sensor types
52  */
53 #define SENSOR_TYPE_ACCELEROMETER       1
54 #define SENSOR_TYPE_MAGNETIC_FIELD      2
55 #define SENSOR_TYPE_ORIENTATION         3
56 #define SENSOR_TYPE_GYROSCOPE           4
57 #define SENSOR_TYPE_LIGHT               5
58 #define SENSOR_TYPE_PRESSURE            6
59 #define SENSOR_TYPE_TEMPERATURE         7   // deprecated
60 #define SENSOR_TYPE_PROXIMITY           8
61 #define SENSOR_TYPE_GRAVITY             9
62 #define SENSOR_TYPE_LINEAR_ACCELERATION 10
63 #define SENSOR_TYPE_ROTATION_VECTOR     11
64 #define SENSOR_TYPE_RELATIVE_HUMIDITY   12
65 #define SENSOR_TYPE_AMBIENT_TEMPERATURE 13
66 
67 /**
68  * Values returned by the accelerometer in various locations in the universe.
69  * all values are in SI units (m/s^2)
70  */
71 
72 #define GRAVITY_SUN             (275.0f)
73 #define GRAVITY_EARTH           (9.80665f)
74 
75 /** Maximum magnetic field on Earth's surface */
76 #define MAGNETIC_FIELD_EARTH_MAX    (60.0f)
77 
78 /** Minimum magnetic field on Earth's surface */
79 #define MAGNETIC_FIELD_EARTH_MIN    (30.0f)
80 
81 
82 /**
83  * status of each sensor
84  */
85 
86 #define SENSOR_STATUS_UNRELIABLE        0
87 #define SENSOR_STATUS_ACCURACY_LOW      1
88 #define SENSOR_STATUS_ACCURACY_MEDIUM   2
89 #define SENSOR_STATUS_ACCURACY_HIGH     3
90 
91 /**
92  * Definition of the axis
93  * ----------------------
94  *
95  * This API is relative to the screen of the device in its default orientation,
96  * that is, if the device can be used in portrait or landscape, this API
97  * is only relative to the NATURAL orientation of the screen. In other words,
98  * the axis are not swapped when the device's screen orientation changes.
99  * Higher level services /may/ perform this transformation.
100  *
101  *   x<0         x>0
102  *                ^
103  *                |
104  *    +-----------+-->  y>0
105  *    |           |
106  *    |           |
107  *    |           |
108  *    |           |   / z<0
109  *    |           |  /
110  *    |           | /
111  *    O-----------+/
112  *    |[]  [ ]  []/
113  *    +----------/+     y<0
114  *              /
115  *             /
116  *           |/ z>0 (toward the sky)
117  *
118  *    O: Origin (x=0,y=0,z=0)
119  *
120  *
121  * Orientation
122  * -----------
123  *
124  * All values are angles in degrees.
125  *
126  * Orientation sensors return sensor events for all 3 axes at a constant
127  * rate defined by setDelay().
128  *
129  * azimuth: angle between the magnetic north direction and the Y axis, around
130  *  the Z axis (0<=azimuth<360).
131  *      0=North, 90=East, 180=South, 270=West
132  *
133  * pitch: Rotation around X axis (-180<=pitch<=180), with positive values when
134  *  the z-axis moves toward the y-axis.
135  *
136  * roll: Rotation around Y axis (-90<=roll<=90), with positive values when
137  *  the x-axis moves towards the z-axis.
138  *
139  * Note: For historical reasons the roll angle is positive in the clockwise
140  *  direction (mathematically speaking, it should be positive in the
141  *  counter-clockwise direction):
142  *
143  *                Z
144  *                ^
145  *  (+roll)  .--> |
146  *          /     |
147  *         |      |  roll: rotation around Y axis
148  *     X <-------(.)
149  *                 Y
150  *       note that +Y == -roll
151  *
152  *
153  *
154  * Note: This definition is different from yaw, pitch and roll used in aviation
155  *  where the X axis is along the long side of the plane (tail to nose).
156  *
157  *
158  * Acceleration
159  * ------------
160  *
161  *  All values are in SI units (m/s^2) and measure the acceleration of the
162  *  device minus the force of gravity.
163  *
164  *  Acceleration sensors return sensor events for all 3 axes at a constant
165  *  rate defined by setDelay().
166  *
167  *  x: Acceleration minus Gx on the x-axis
168  *  y: Acceleration minus Gy on the y-axis
169  *  z: Acceleration minus Gz on the z-axis
170  *
171  *  Examples:
172  *    When the device lies flat on a table and is pushed on its left side
173  *    toward the right, the x acceleration value is positive.
174  *
175  *    When the device lies flat on a table, the acceleration value is +9.81,
176  *    which correspond to the acceleration of the device (0 m/s^2) minus the
177  *    force of gravity (-9.81 m/s^2).
178  *
179  *    When the device lies flat on a table and is pushed toward the sky, the
180  *    acceleration value is greater than +9.81, which correspond to the
181  *    acceleration of the device (+A m/s^2) minus the force of
182  *    gravity (-9.81 m/s^2).
183  *
184  *
185  * Magnetic Field
186  * --------------
187  *
188  *  All values are in micro-Tesla (uT) and measure the ambient magnetic
189  *  field in the X, Y and Z axis.
190  *
191  *  Magnetic Field sensors return sensor events for all 3 axes at a constant
192  *  rate defined by setDelay().
193  *
194  * Gyroscope
195  * ---------
196  *  All values are in radians/second and measure the rate of rotation
197  *  around the X, Y and Z axis.  The coordinate system is the same as is
198  *  used for the acceleration sensor. Rotation is positive in the
199  *  counter-clockwise direction (right-hand rule). That is, an observer
200  *  looking from some positive location on the x, y or z axis at a device
201  *  positioned on the origin would report positive rotation if the device
202  *  appeared to be rotating counter clockwise. Note that this is the
203  *  standard mathematical definition of positive rotation and does not agree
204  *  with the definition of roll given earlier.
205  *  The range should at least be 17.45 rad/s (ie: ~1000 deg/s).
206  *
207  * Proximity
208  * ---------
209  *
210  * The distance value is measured in centimeters.  Note that some proximity
211  * sensors only support a binary "close" or "far" measurement.  In this case,
212  * the sensor should report its maxRange value in the "far" state and a value
213  * less than maxRange in the "near" state.
214  *
215  * Proximity sensors report a value only when it changes and each time the
216  * sensor is enabled. setDelay() is ignored.
217  *
218  * Light
219  * -----
220  *
221  * The light sensor value is returned in SI lux units.
222  *
223  * Light sensors report a value only when it changes and each time the
224  * sensor is enabled. setDelay() is ignored.
225  *
226  * Pressure
227  * --------
228  *
229  * The pressure sensor value is returned in hectopascal (hPa)
230  *
231  * Pressure sensors report events at a constant rate defined by setDelay().
232  *
233  * Gyro
234  * --------
235  *
236  * The gyroscope sensor values are returned in degrees per second (dps)
237  *
238  * Gyroscope sensor report events at a constant rate defined by setDelay().
239  *
240  * Gravity
241  * -------
242  * A gravity output indicates the direction of and magnitude of gravity in the devices's
243  * coordinates.  On Earth, the magnitude is 9.8.  Units are m/s^2.  The coordinate system
244  * is the same as is used for the acceleration sensor.
245  * When the device is at rest, the output of the gravity sensor should be identical
246  * to that of the accelerometer.
247  *
248  * Linear Acceleration
249  * -------------------
250  * Indicates the linear acceleration of the device in device coordinates, not including gravity.
251  * This output is essentially Acceleration - Gravity.  Units are m/s^2.  The coordinate system is
252  * the same as is used for the acceleration sensor.
253  * The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
254  * following relation:
255  *
256  *   acceleration = gravity + linear-acceleration
257  *
258  *
259  * Rotation Vector
260  * ---------------
261  * A rotation vector represents the orientation of the device as a combination
262  * of an angle and an axis, in which the device has rotated through an angle
263  * theta around an axis <x, y, z>. The three elements of the rotation vector
264  * are <x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>, such that the magnitude
265  * of the rotation vector is equal to sin(theta/2), and the direction of the
266  * rotation vector is equal to the direction of the axis of rotation. The three
267  * elements of the rotation vector are equal to the last three components of a
268  * unit quaternion <cos(theta/2), x*sin(theta/2), y*sin(theta/2), z*sin(theta/2)>.
269  * Elements of the rotation vector are unitless.  The x, y, and z axis are defined
270  * in the same was as for the acceleration sensor.
271  *
272  * The reference coordinate system is defined as a direct orthonormal basis,
273  * where:
274  *
275  * - X is defined as the vector product Y.Z (It is tangential to
276  * the ground at the device's current location and roughly points East).
277  *
278  * - Y is tangential to the ground at the device's current location and
279  * points towards the magnetic North Pole.
280  *
281  * - Z points towards the sky and is perpendicular to the ground.
282  *
283  *
284  * The rotation-vector is stored as:
285  *
286  *   sensors_event_t.data[0] = x*sin(theta/2)
287  *   sensors_event_t.data[1] = y*sin(theta/2)
288  *   sensors_event_t.data[2] = z*sin(theta/2)
289  *   sensors_event_t.data[3] =   cos(theta/2)
290  *
291  *
292  * Relative Humidity
293  * -----------------
294  *
295  * A relative humidity sensor measures relative ambient air humidity and
296  * returns a value in percent.
297  *
298  * Relative humidity sensors report a value only when it changes and each
299  * time the sensor is enabled. setDelay() is ignored.
300  *
301  *
302  * Ambient Temperature
303  * -------------------
304  *
305  * The ambient (room) temperature in degree Celsius.
306  *
307  * Temperature sensors report a value only when it changes and each time the
308  * sensor is enabled. setDelay() is ignored.
309  *
310  */
311 
312 typedef struct {
313     union {
314         float v[3];
315         struct {
316             float x;
317             float y;
318             float z;
319         };
320         struct {
321             float azimuth;
322             float pitch;
323             float roll;
324         };
325     };
326     int8_t status;
327     uint8_t reserved[3];
328 } sensors_vec_t;
329 
330 /**
331  * Union of the various types of sensor data
332  * that can be returned.
333  */
334 typedef struct sensors_event_t {
335     /* must be sizeof(struct sensors_event_t) */
336     int32_t version;
337 
338     /* sensor identifier */
339     int32_t sensor;
340 
341     /* sensor type */
342     int32_t type;
343 
344     /* reserved */
345     int32_t reserved0;
346 
347     /* time is in nanosecond */
348     int64_t timestamp;
349 
350     union {
351         float           data[16];
352 
353         /* acceleration values are in meter per second per second (m/s^2) */
354         sensors_vec_t   acceleration;
355 
356         /* magnetic vector values are in micro-Tesla (uT) */
357         sensors_vec_t   magnetic;
358 
359         /* orientation values are in degrees */
360         sensors_vec_t   orientation;
361 
362         /* gyroscope values are in rad/s */
363         sensors_vec_t   gyro;
364 
365         /* temperature is in degrees centigrade (Celsius) */
366         float           temperature;
367 
368         /* distance in centimeters */
369         float           distance;
370 
371         /* light in SI lux units */
372         float           light;
373 
374         /* pressure in hectopascal (hPa) */
375         float           pressure;
376 
377         /* relative humidity in percent */
378         float           relative_humidity;
379     };
380     uint32_t        reserved1[4];
381 } sensors_event_t;
382 
383 
384 
385 struct sensor_t;
386 
387 /**
388  * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
389  * and the fields of this data structure must begin with hw_module_t
390  * followed by module specific information.
391  */
392 struct sensors_module_t {
393     struct hw_module_t common;
394 
395     /**
396      * Enumerate all available sensors. The list is returned in "list".
397      * @return number of sensors in the list
398      */
399     int (*get_sensors_list)(struct sensors_module_t* module,
400             struct sensor_t const** list);
401 };
402 
403 struct sensor_t {
404     /* name of this sensors */
405     const char*     name;
406     /* vendor of the hardware part */
407     const char*     vendor;
408     /* version of the hardware part + driver. The value of this field is
409      * left to the implementation and doesn't have to be monotonically
410      * increasing.
411      */
412     int             version;
413     /* handle that identifies this sensors. This handle is used to activate
414      * and deactivate this sensor. The value of the handle must be 8 bits
415      * in this version of the API.
416      */
417     int             handle;
418     /* this sensor's type. */
419     int             type;
420     /* maximaum range of this sensor's value in SI units */
421     float           maxRange;
422     /* smallest difference between two values reported by this sensor */
423     float           resolution;
424     /* rough estimate of this sensor's power consumption in mA */
425     float           power;
426     /* minimum delay allowed between events in microseconds. A value of zero
427      * means that this sensor doesn't report events at a constant rate, but
428      * rather only when a new data is available */
429     int32_t         minDelay;
430     /* reserved fields, must be zero */
431     void*           reserved[8];
432 };
433 
434 
435 /**
436  * Every device data structure must begin with hw_device_t
437  * followed by module specific public methods and attributes.
438  */
439 struct sensors_poll_device_t {
440     struct hw_device_t common;
441 
442     /** Activate/deactivate one sensor.
443      *
444      * @param handle is the handle of the sensor to change.
445      * @param enabled set to 1 to enable, or 0 to disable the sensor.
446      *
447      * @return 0 on success, negative errno code otherwise
448      */
449     int (*activate)(struct sensors_poll_device_t *dev,
450             int handle, int enabled);
451 
452     /**
453      * Set the delay between sensor events in nanoseconds for a given sensor.
454      * It is an error to set a delay inferior to the value defined by
455      * sensor_t::minDelay. If sensor_t::minDelay is zero, setDelay() is
456      * ignored and returns 0.
457      *
458      * @return 0 if successful, < 0 on error
459      */
460     int (*setDelay)(struct sensors_poll_device_t *dev,
461             int handle, int64_t ns);
462 
463     /**
464      * Returns an array of sensor data.
465      * This function must block until events are available.
466      *
467      * @return the number of events read on success, or -errno in case of an error.
468      * This function should never return 0 (no event).
469      *
470      */
471     int (*poll)(struct sensors_poll_device_t *dev,
472             sensors_event_t* data, int count);
473 };
474 
475 /** convenience API for opening and closing a device */
476 
sensors_open(const struct hw_module_t * module,struct sensors_poll_device_t ** device)477 static inline int sensors_open(const struct hw_module_t* module,
478         struct sensors_poll_device_t** device) {
479     return module->methods->open(module,
480             SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
481 }
482 
sensors_close(struct sensors_poll_device_t * device)483 static inline int sensors_close(struct sensors_poll_device_t* device) {
484     return device->common.close(&device->common);
485 }
486 
487 __END_DECLS
488 
489 #endif  // ANDROID_SENSORS_INTERFACE_H
490