1 /*
2 **
3 ** Copyright 2010, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 #include <assert.h>
19 #include <string.h>
20
21 #define LOG_TAG "LatinIME: unigram_dictionary.cpp"
22
23 #include "char_utils.h"
24 #include "dictionary.h"
25 #include "unigram_dictionary.h"
26
27 #include "binary_format.h"
28
29 namespace latinime {
30
31 const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
32 { { 'a', 'e' },
33 { 'o', 'e' },
34 { 'u', 'e' } };
35
36 // TODO: check the header
UnigramDictionary(const uint8_t * const streamStart,int typedLetterMultiplier,int fullWordMultiplier,int maxWordLength,int maxWords,int maxProximityChars,const bool isLatestDictVersion)37 UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
38 int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
39 const bool isLatestDictVersion)
40 : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE),
41 MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
42 MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
43 TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
44 // TODO : remove this variable.
45 ROOT_POS(0),
46 BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)),
47 MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
48 if (DEBUG_DICT) {
49 LOGI("UnigramDictionary - constructor");
50 }
51 mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier);
52 }
53
~UnigramDictionary()54 UnigramDictionary::~UnigramDictionary() {
55 delete mCorrection;
56 }
57
getCodesBufferSize(const int * codes,const int codesSize,const int MAX_PROXIMITY_CHARS)58 static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize,
59 const int MAX_PROXIMITY_CHARS) {
60 return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize;
61 }
62
isDigraph(const int * codes,const int i,const int codesSize) const63 bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const {
64
65 // There can't be a digraph if we don't have at least 2 characters to examine
66 if (i + 2 > codesSize) return false;
67
68 // Search for the first char of some digraph
69 int lastDigraphIndex = -1;
70 const int thisChar = codes[i * MAX_PROXIMITY_CHARS];
71 for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1;
72 lastDigraphIndex >= 0; --lastDigraphIndex) {
73 if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break;
74 }
75 // No match: return early
76 if (lastDigraphIndex < 0) return false;
77
78 // It's an interesting digraph if the second char matches too.
79 return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS];
80 }
81
82 // Mostly the same arguments as the non-recursive version, except:
83 // codes is the original value. It points to the start of the work buffer, and gets passed as is.
84 // codesSize is the size of the user input (thus, it is the size of codesSrc).
85 // codesDest is the current point in the work buffer.
86 // codesSrc is the current point in the user-input, original, content-unmodified buffer.
87 // codesRemain is the remaining size in codesSrc.
getWordWithDigraphSuggestionsRec(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codesBuffer,const int codesBufferSize,const int flags,const int * codesSrc,const int codesRemain,const int currentDepth,int * codesDest,unsigned short * outWords,int * frequencies)88 void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
89 const int *xcoordinates, const int* ycoordinates, const int *codesBuffer,
90 const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain,
91 const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) {
92
93 if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) {
94 for (int i = 0; i < codesRemain; ++i) {
95 if (isDigraph(codesSrc, i, codesRemain)) {
96 // Found a digraph. We will try both spellings. eg. the word is "pruefen"
97
98 // Copy the word up to the first char of the digraph, then continue processing
99 // on the remaining part of the word, skipping the second char of the digraph.
100 // In our example, copy "pru" and continue running on "fen"
101 // Make i the index of the second char of the digraph for simplicity. Forgetting
102 // to do that results in an infinite recursion so take care!
103 ++i;
104 memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
105 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
106 codesBuffer, codesBufferSize, flags,
107 codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1,
108 currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords,
109 frequencies);
110
111 // Copy the second char of the digraph in place, then continue processing on
112 // the remaining part of the word.
113 // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
114 memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS,
115 BYTES_IN_ONE_CHAR);
116 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
117 codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS,
118 codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS,
119 outWords, frequencies);
120 return;
121 }
122 }
123 }
124
125 // If we come here, we hit the end of the word: let's check it against the dictionary.
126 // In our example, we'll come here once for "prufen" and then once for "pruefen".
127 // If the word contains several digraphs, we'll come it for the product of them.
128 // eg. if the word is "ueberpruefen" we'll test, in order, against
129 // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
130 const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
131 if (0 != remainingBytes)
132 memcpy(codesDest, codesSrc, remainingBytes);
133
134 getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
135 (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies,
136 flags);
137 }
138
getSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const int codesSize,const int flags,unsigned short * outWords,int * frequencies)139 int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
140 const int *ycoordinates, const int *codes, const int codesSize, const int flags,
141 unsigned short *outWords, int *frequencies) {
142
143 if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags)
144 { // Incrementally tune the word and try all possibilities
145 int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)];
146 getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
147 codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies);
148 } else { // Normal processing
149 getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
150 outWords, frequencies, flags);
151 }
152
153 PROF_START(20);
154 // Get the word count
155 int suggestedWordsCount = 0;
156 while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
157 suggestedWordsCount++;
158 }
159
160 if (DEBUG_DICT) {
161 LOGI("Returning %d words", suggestedWordsCount);
162 /// Print the returned words
163 for (int j = 0; j < suggestedWordsCount; ++j) {
164 #ifdef FLAG_DBG
165 short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH;
166 char s[MAX_WORD_LENGTH];
167 for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
168 LOGI("%s %i", s, mFrequencies[j]);
169 #endif
170 }
171 }
172 PROF_END(20);
173 PROF_CLOSE;
174 return suggestedWordsCount;
175 }
176
getWordSuggestions(ProximityInfo * proximityInfo,const int * xcoordinates,const int * ycoordinates,const int * codes,const int codesSize,unsigned short * outWords,int * frequencies,const int flags)177 void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
178 const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize,
179 unsigned short *outWords, int *frequencies, const int flags) {
180
181 PROF_OPEN;
182 PROF_START(0);
183 initSuggestions(
184 proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies);
185 if (DEBUG_DICT) assert(codesSize == mInputLength);
186
187 const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
188 mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth);
189 PROF_END(0);
190
191 const bool useFullEditDistance = USE_FULL_EDIT_DISTANCE & flags;
192 // TODO: remove
193 PROF_START(1);
194 getSuggestionCandidates(useFullEditDistance);
195 PROF_END(1);
196
197 PROF_START(2);
198 // Note: This line is intentionally left blank
199 PROF_END(2);
200
201 PROF_START(3);
202 // Note: This line is intentionally left blank
203 PROF_END(3);
204
205 PROF_START(4);
206 // Note: This line is intentionally left blank
207 PROF_END(4);
208
209 PROF_START(5);
210 // Suggestions with missing space
211 if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
212 && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
213 for (int i = 1; i < codesSize; ++i) {
214 if (DEBUG_DICT) {
215 LOGI("--- Suggest missing space characters %d", i);
216 }
217 getMissingSpaceWords(mInputLength, i, mCorrection, useFullEditDistance);
218 }
219 }
220 PROF_END(5);
221
222 PROF_START(6);
223 if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) {
224 // The first and last "mistyped spaces" are taken care of by excessive character handling
225 for (int i = 1; i < codesSize - 1; ++i) {
226 if (DEBUG_DICT) {
227 LOGI("--- Suggest words with proximity space %d", i);
228 }
229 const int x = xcoordinates[i];
230 const int y = ycoordinates[i];
231 if (DEBUG_PROXIMITY_INFO) {
232 LOGI("Input[%d] x = %d, y = %d, has space proximity = %d",
233 i, x, y, proximityInfo->hasSpaceProximity(x, y));
234 }
235 if (proximityInfo->hasSpaceProximity(x, y)) {
236 getMistypedSpaceWords(mInputLength, i, mCorrection, useFullEditDistance);
237 }
238 }
239 }
240 PROF_END(6);
241 }
242
initSuggestions(ProximityInfo * proximityInfo,const int * xCoordinates,const int * yCoordinates,const int * codes,const int codesSize,unsigned short * outWords,int * frequencies)243 void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates,
244 const int *yCoordinates, const int *codes, const int codesSize,
245 unsigned short *outWords, int *frequencies) {
246 if (DEBUG_DICT) {
247 LOGI("initSuggest");
248 }
249 mFrequencies = frequencies;
250 mOutputChars = outWords;
251 mInputLength = codesSize;
252 proximityInfo->setInputParams(codes, codesSize, xCoordinates, yCoordinates);
253 mProximityInfo = proximityInfo;
254 }
255
registerNextLetter(unsigned short c,int * nextLetters,int nextLettersSize)256 static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) {
257 if (c < nextLettersSize) {
258 nextLetters[c]++;
259 }
260 }
261
262 // TODO: We need to optimize addWord by using STL or something
263 // TODO: This needs to take an const unsigned short* and not tinker with its contents
addWord(unsigned short * word,int length,int frequency)264 bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
265 word[length] = 0;
266 if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
267 #ifdef FLAG_DBG
268 char s[length + 1];
269 for (int i = 0; i <= length; i++) s[i] = word[i];
270 LOGI("Found word = %s, freq = %d", s, frequency);
271 #endif
272 }
273 if (length > MAX_WORD_LENGTH) {
274 if (DEBUG_DICT) {
275 LOGI("Exceeded max word length.");
276 }
277 return false;
278 }
279
280 // Find the right insertion point
281 int insertAt = 0;
282 while (insertAt < MAX_WORDS) {
283 // TODO: How should we sort words with the same frequency?
284 if (frequency > mFrequencies[insertAt]) {
285 break;
286 }
287 insertAt++;
288 }
289 if (insertAt < MAX_WORDS) {
290 if (DEBUG_DICT) {
291 #ifdef FLAG_DBG
292 char s[length + 1];
293 for (int i = 0; i <= length; i++) s[i] = word[i];
294 LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX);
295 #endif
296 }
297 memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
298 (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
299 (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
300 mFrequencies[insertAt] = frequency;
301 memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
302 (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
303 (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
304 unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
305 while (length--) {
306 *dest++ = *word++;
307 }
308 *dest = 0; // NULL terminate
309 if (DEBUG_DICT) {
310 LOGI("Added word at %d", insertAt);
311 }
312 return true;
313 }
314 return false;
315 }
316
317 static const char QUOTE = '\'';
318 static const char SPACE = ' ';
319
getSuggestionCandidates(const bool useFullEditDistance)320 void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance) {
321 // TODO: Remove setCorrectionParams
322 mCorrection->setCorrectionParams(0, 0, 0,
323 -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance);
324 int rootPosition = ROOT_POS;
325 // Get the number of children of root, then increment the position
326 int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition);
327 int outputIndex = 0;
328
329 mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0));
330
331 // Depth first search
332 while (outputIndex >= 0) {
333 if (mCorrection->initProcessState(outputIndex)) {
334 int siblingPos = mCorrection->getTreeSiblingPos(outputIndex);
335 int firstChildPos;
336
337 const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
338 mCorrection, &childCount, &firstChildPos, &siblingPos);
339 // Update next sibling pos
340 mCorrection->setTreeSiblingPos(outputIndex, siblingPos);
341
342 if (needsToTraverseChildrenNodes) {
343 // Goes to child node
344 outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos);
345 }
346 } else {
347 // Goes to parent sibling node
348 outputIndex = mCorrection->getTreeParentIndex(outputIndex);
349 }
350 }
351 }
352
getMissingSpaceWords(const int inputLength,const int missingSpacePos,Correction * correction,const bool useFullEditDistance)353 void UnigramDictionary::getMissingSpaceWords(
354 const int inputLength, const int missingSpacePos, Correction *correction,
355 const bool useFullEditDistance) {
356 correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */,
357 -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos,
358 useFullEditDistance);
359 getSplitTwoWordsSuggestion(inputLength, correction);
360 }
361
getMistypedSpaceWords(const int inputLength,const int spaceProximityPos,Correction * correction,const bool useFullEditDistance)362 void UnigramDictionary::getMistypedSpaceWords(
363 const int inputLength, const int spaceProximityPos, Correction *correction,
364 const bool useFullEditDistance) {
365 correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */,
366 -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */,
367 useFullEditDistance);
368 getSplitTwoWordsSuggestion(inputLength, correction);
369 }
370
needsToSkipCurrentNode(const unsigned short c,const int inputIndex,const int skipPos,const int depth)371 inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
372 const int inputIndex, const int skipPos, const int depth) {
373 const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex);
374 // Skip the ' or other letter and continue deeper
375 return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
376 }
377
onTerminal(const int freq,Correction * correction)378 inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) {
379 int wordLength;
380 unsigned short* wordPointer;
381 const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength);
382 if (finalFreq >= 0) {
383 addWord(wordPointer, wordLength, finalFreq);
384 }
385 }
386
getSplitTwoWordsSuggestion(const int inputLength,Correction * correction)387 void UnigramDictionary::getSplitTwoWordsSuggestion(
388 const int inputLength, Correction* correction) {
389 const int spaceProximityPos = correction->getSpaceProximityPos();
390 const int missingSpacePos = correction->getMissingSpacePos();
391 if (DEBUG_DICT) {
392 int inputCount = 0;
393 if (spaceProximityPos >= 0) ++inputCount;
394 if (missingSpacePos >= 0) ++inputCount;
395 assert(inputCount <= 1);
396 }
397 const bool isSpaceProximity = spaceProximityPos >= 0;
398 const int firstWordStartPos = 0;
399 const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos;
400 const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos;
401 const int secondWordLength = isSpaceProximity
402 ? (inputLength - spaceProximityPos - 1)
403 : (inputLength - missingSpacePos);
404
405 if (inputLength >= MAX_WORD_LENGTH) return;
406 if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
407 || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
408 return;
409
410 const int newWordLength = firstWordLength + secondWordLength + 1;
411 // Allocating variable length array on stack
412 unsigned short word[newWordLength];
413 const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord);
414 if (DEBUG_DICT) {
415 LOGI("First freq: %d", firstFreq);
416 }
417 if (firstFreq <= 0) return;
418
419 for (int i = 0; i < firstWordLength; ++i) {
420 word[i] = mWord[i];
421 }
422
423 const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord);
424 if (DEBUG_DICT) {
425 LOGI("Second freq: %d", secondFreq);
426 }
427 if (secondFreq <= 0) return;
428
429 word[firstWordLength] = SPACE;
430 for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
431 word[i] = mWord[i - firstWordLength - 1];
432 }
433
434 const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq, word);
435 if (DEBUG_DICT) {
436 LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength);
437 }
438 addWord(word, newWordLength, pairFreq);
439 return;
440 }
441
442 // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
443 // interface.
getMostFrequentWordLike(const int startInputIndex,const int inputLength,unsigned short * word)444 inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
445 const int inputLength, unsigned short *word) {
446 uint16_t inWord[inputLength];
447
448 for (int i = 0; i < inputLength; ++i) {
449 inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i);
450 }
451 return getMostFrequentWordLikeInner(inWord, inputLength, word);
452 }
453
454 // This function will take the position of a character array within a CharGroup,
455 // and check it actually like-matches the word in inWord starting at startInputIndex,
456 // that is, it matches it with case and accents squashed.
457 // The function returns true if there was a full match, false otherwise.
458 // The function will copy on-the-fly the characters in the CharGroup to outNewWord.
459 // It will also place the end position of the array in outPos; in outInputIndex,
460 // it will place the index of the first char AFTER the match if there was a match,
461 // and the initial position if there was not. It makes sense because if there was
462 // a match we want to continue searching, but if there was not, we want to go to
463 // the next CharGroup.
464 // In and out parameters may point to the same location. This function takes care
465 // not to use any input parameters after it wrote into its outputs.
testCharGroupForContinuedLikeness(const uint8_t flags,const uint8_t * const root,const int startPos,const uint16_t * const inWord,const int startInputIndex,int32_t * outNewWord,int * outInputIndex,int * outPos)466 static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
467 const uint8_t* const root, const int startPos,
468 const uint16_t* const inWord, const int startInputIndex,
469 int32_t* outNewWord, int* outInputIndex, int* outPos) {
470 const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags));
471 int pos = startPos;
472 int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
473 int32_t baseChar = Dictionary::toBaseLowerCase(character);
474 const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]);
475
476 if (baseChar != wChar) {
477 *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
478 *outInputIndex = startInputIndex;
479 return false;
480 }
481 int inputIndex = startInputIndex;
482 outNewWord[inputIndex] = character;
483 if (hasMultipleChars) {
484 character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
485 while (NOT_A_CHARACTER != character) {
486 baseChar = Dictionary::toBaseLowerCase(character);
487 if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
488 *outPos = BinaryFormat::skipOtherCharacters(root, pos);
489 *outInputIndex = startInputIndex;
490 return false;
491 }
492 outNewWord[inputIndex] = character;
493 character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
494 }
495 }
496 *outInputIndex = inputIndex + 1;
497 *outPos = pos;
498 return true;
499 }
500
501 // This function is invoked when a word like the word searched for is found.
502 // It will compare the frequency to the max frequency, and if greater, will
503 // copy the word into the output buffer. In output value maxFreq, it will
504 // write the new maximum frequency if it changed.
onTerminalWordLike(const int freq,int32_t * newWord,const int length,short unsigned int * outWord,int * maxFreq)505 static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length,
506 short unsigned int* outWord, int* maxFreq) {
507 if (freq > *maxFreq) {
508 for (int q = 0; q < length; ++q)
509 outWord[q] = newWord[q];
510 outWord[length] = 0;
511 *maxFreq = freq;
512 }
513 }
514
515 // Will find the highest frequency of the words like the one passed as an argument,
516 // that is, everything that only differs by case/accents.
getMostFrequentWordLikeInner(const uint16_t * const inWord,const int length,short unsigned int * outWord)517 int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord,
518 const int length, short unsigned int* outWord) {
519 int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
520 int depth = 0;
521 int maxFreq = -1;
522 const uint8_t* const root = DICT_ROOT;
523
524 mStackChildCount[0] = root[0];
525 mStackInputIndex[0] = 0;
526 mStackSiblingPos[0] = 1;
527 while (depth >= 0) {
528 const int charGroupCount = mStackChildCount[depth];
529 int pos = mStackSiblingPos[depth];
530 for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
531 int inputIndex = mStackInputIndex[depth];
532 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
533 // Test whether all chars in this group match with the word we are searching for. If so,
534 // we want to traverse its children (or if the length match, evaluate its frequency).
535 // Note that this function will output the position regardless, but will only write
536 // into inputIndex if there is a match.
537 const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
538 inputIndex, newWord, &inputIndex, &pos);
539 if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) {
540 const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
541 onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
542 }
543 pos = BinaryFormat::skipFrequency(flags, pos);
544 const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
545 const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
546 // If we had a match and the word has children, we want to traverse them. We don't have
547 // to traverse words longer than the one we are searching for, since they will not match
548 // anyway, so don't traverse unless inputIndex < length.
549 if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) {
550 // Save position for this depth, to get back to this once children are done
551 mStackChildCount[depth] = charGroupIndex;
552 mStackSiblingPos[depth] = siblingPos;
553 // Prepare stack values for next depth
554 ++depth;
555 int childrenPos = childrenNodePos;
556 mStackChildCount[depth] =
557 BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
558 mStackSiblingPos[depth] = childrenPos;
559 mStackInputIndex[depth] = inputIndex;
560 pos = childrenPos;
561 // Go to the next depth level.
562 ++depth;
563 break;
564 } else {
565 // No match, or no children, or word too long to ever match: go the next sibling.
566 pos = siblingPos;
567 }
568 }
569 --depth;
570 }
571 return maxFreq;
572 }
573
isValidWord(const uint16_t * const inWord,const int length) const574 bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const {
575 return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length);
576 }
577
578 // TODO: remove this function.
getBigramPosition(int pos,unsigned short * word,int offset,int length) const579 int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
580 int length) const {
581 return -1;
582 }
583
584 // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
585 // If the return value is false, then the caller should read in the output "nextSiblingPosition"
586 // to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
587 // It is worthy to note that when false is returned, the output values other than
588 // nextSiblingPosition are undefined.
589 // If the return value is true, then the caller must proceed to traverse the children of this
590 // node. processCurrentNode will output the information about the children: their count in
591 // newCount, their position in newChildrenPosition, the traverseAllNodes flag in
592 // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
593 // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
594 // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
595 // there aren't any more nodes at this level, it merely returns the address of the first byte after
596 // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
597 // given level, as output into newCount when traversing this level's parent.
processCurrentNode(const int initialPos,Correction * correction,int * newCount,int * newChildrenPosition,int * nextSiblingPosition)598 inline bool UnigramDictionary::processCurrentNode(const int initialPos,
599 Correction *correction, int *newCount,
600 int *newChildrenPosition, int *nextSiblingPosition) {
601 if (DEBUG_DICT) {
602 correction->checkState();
603 }
604 int pos = initialPos;
605
606 // Flags contain the following information:
607 // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
608 // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
609 // is on the specified number of bytes.
610 // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
611 // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
612 // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
613 // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
614 const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
615 const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
616 const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags));
617
618 bool needsToInvokeOnTerminal = false;
619
620 // This gets only ONE character from the stream. Next there will be:
621 // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
622 // else if FLAG_IS_TERMINAL: the frequency
623 // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
624 // Note that you can't have a node that both is not a terminal and has no children.
625 int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
626 assert(NOT_A_CHARACTER != c);
627
628 // We are going to loop through each character and make it look like it's a different
629 // node each time. To do that, we will process characters in this node in order until
630 // we find the character terminator. This is signalled by getCharCode* returning
631 // NOT_A_CHARACTER.
632 // As a special case, if there is only one character in this node, we must not read the
633 // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags.
634 // This way, each loop run will look like a "virtual node".
635 do {
636 // We prefetch the next char. If 'c' is the last char of this node, we will have
637 // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node
638 // should behave as a terminal or not and whether we have children.
639 const int32_t nextc = hasMultipleChars
640 ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER;
641 const bool isLastChar = (NOT_A_CHARACTER == nextc);
642 // If there are more chars in this nodes, then this virtual node is not a terminal.
643 // If we are on the last char, this virtual node is a terminal if this node is.
644 const bool isTerminal = isLastChar && isTerminalNode;
645
646 Correction::CorrectionType stateType = correction->processCharAndCalcState(
647 c, isTerminal);
648 if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
649 || stateType == Correction::ON_TERMINAL) {
650 needsToInvokeOnTerminal = true;
651 } else if (stateType == Correction::UNRELATED) {
652 // We found that this is an unrelated character, so we should give up traversing
653 // this node and its children entirely.
654 // However we may not be on the last virtual node yet so we skip the remaining
655 // characters in this node, the frequency if it's there, read the next sibling
656 // position to output it, then return false.
657 // We don't have to output other values because we return false, as in
658 // "don't traverse children".
659 if (!isLastChar) {
660 pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
661 }
662 pos = BinaryFormat::skipFrequency(flags, pos);
663 *nextSiblingPosition =
664 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
665 return false;
666 }
667
668 // Prepare for the next character. Promote the prefetched char to current char - the loop
669 // will take care of prefetching the next. If we finally found our last char, nextc will
670 // contain NOT_A_CHARACTER.
671 c = nextc;
672 } while (NOT_A_CHARACTER != c);
673
674 if (isTerminalNode) {
675 if (needsToInvokeOnTerminal) {
676 // The frequency should be here, because we come here only if this is actually
677 // a terminal node, and we are on its last char.
678 const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
679 onTerminal(freq, mCorrection);
680 }
681
682 // If there are more chars in this node, then this virtual node has children.
683 // If we are on the last char, this virtual node has children if this node has.
684 const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
685
686 // This character matched the typed character (enough to traverse the node at least)
687 // so we just evaluated it. Now we should evaluate this virtual node's children - that
688 // is, if it has any. If it has no children, we're done here - so we skip the end of
689 // the node, output the siblings position, and return false "don't traverse children".
690 // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
691 // remaining char in this group for there can't be any.
692 if (!hasChildren) {
693 pos = BinaryFormat::skipFrequency(flags, pos);
694 *nextSiblingPosition =
695 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
696 return false;
697 }
698
699 // Optimization: Prune out words that are too long compared to how much was typed.
700 if (correction->needsToPrune()) {
701 pos = BinaryFormat::skipFrequency(flags, pos);
702 *nextSiblingPosition =
703 BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
704 if (DEBUG_DICT_FULL) {
705 LOGI("Traversing was pruned.");
706 }
707 return false;
708 }
709 }
710
711 // Now we finished processing this node, and we want to traverse children. If there are no
712 // children, we can't come here.
713 assert(BinaryFormat::hasChildrenInFlags(flags));
714
715 // If this node was a terminal it still has the frequency under the pointer (it may have been
716 // read, but not skipped - see readFrequencyWithoutMovingPointer).
717 // Next come the children position, then possibly attributes (attributes are bigrams only for
718 // now, maybe something related to shortcuts in the future).
719 // Once this is read, we still need to output the number of nodes in the immediate children of
720 // this node, so we read and output it before returning true, as in "please traverse children".
721 pos = BinaryFormat::skipFrequency(flags, pos);
722 int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
723 *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
724 *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
725 *newChildrenPosition = childrenPos;
726 return true;
727 }
728
729 } // namespace latinime
730