1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * This file contains codegen for the Thumb ISA and is intended to be
19 * includes by:
20 *
21 * Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 */
24
25 /*
26 * Reserve 6 bytes at the beginning of the trace
27 * +----------------------------+
28 * | prof count addr (4 bytes) |
29 * +----------------------------+
30 * | chain cell offset (2 bytes)|
31 * +----------------------------+
32 *
33 * ...and then code to increment the execution
34 *
35 * For continuous profiling (12 bytes):
36 *
37 * mov r0, pc @ move adr of "mov r0,pc" + 4 to r0
38 * sub r0, #10 @ back up to addr prof count pointer
39 * ldr r0, [r0] @ get address of counter
40 * ldr r1, [r0]
41 * add r1, #1
42 * str r1, [r0]
43 *
44 * For periodic profiling (4 bytes):
45 * call TEMPLATE_PERIODIC_PROFILING
46 *
47 * and return the size (in bytes) of the generated code.
48 */
49
genTraceProfileEntry(CompilationUnit * cUnit)50 static int genTraceProfileEntry(CompilationUnit *cUnit)
51 {
52 intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
53 assert(__BYTE_ORDER == __LITTLE_ENDIAN);
54 newLIR1(cUnit, kArm16BitData, addr & 0xffff);
55 newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
56 cUnit->chainCellOffsetLIR =
57 (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
58 cUnit->headerSize = 6;
59 if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
60 (gDvmJit.profileMode == kTraceProfilingDisabled)) {
61 /* Thumb instruction used directly here to ensure correct size */
62 newLIR2(cUnit, kThumbMovRR_H2L, r0, r15pc);
63 newLIR2(cUnit, kThumbSubRI8, r0, 10);
64 newLIR3(cUnit, kThumbLdrRRI5, r0, r0, 0);
65 newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
66 newLIR2(cUnit, kThumbAddRI8, r1, 1);
67 newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
68 return 12;
69 } else {
70 int opcode = TEMPLATE_PERIODIC_PROFILING;
71 newLIR2(cUnit, kThumbBlx1,
72 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
73 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
74 newLIR2(cUnit, kThumbBlx2,
75 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
76 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
77 return 4;
78 }
79 }
80
81 /*
82 * Perform a "reg cmp imm" operation and jump to the PCR region if condition
83 * satisfies.
84 */
genNegFloat(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)85 static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
86 RegLocation rlSrc)
87 {
88 RegLocation rlResult;
89 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
90 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
91 opRegRegImm(cUnit, kOpAdd, rlResult.lowReg,
92 rlSrc.lowReg, 0x80000000);
93 storeValue(cUnit, rlDest, rlResult);
94 }
95
genNegDouble(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc)96 static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
97 RegLocation rlSrc)
98 {
99 RegLocation rlResult;
100 rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
101 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
102 opRegRegImm(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg,
103 0x80000000);
104 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
105 storeValueWide(cUnit, rlDest, rlResult);
106 }
107
genMulLong(CompilationUnit * cUnit,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)108 static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
109 RegLocation rlSrc1, RegLocation rlSrc2)
110 {
111 RegLocation rlResult;
112 loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
113 loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
114 genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG);
115 rlResult = dvmCompilerGetReturnWide(cUnit);
116 storeValueWide(cUnit, rlDest, rlResult);
117 }
118
partialOverlap(int sreg1,int sreg2)119 static bool partialOverlap(int sreg1, int sreg2)
120 {
121 return abs(sreg1 - sreg2) == 1;
122 }
123
genLong3Addr(CompilationUnit * cUnit,MIR * mir,OpKind firstOp,OpKind secondOp,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)124 static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
125 OpKind secondOp, RegLocation rlDest,
126 RegLocation rlSrc1, RegLocation rlSrc2)
127 {
128 RegLocation rlResult;
129 if (partialOverlap(rlSrc1.sRegLow,rlSrc2.sRegLow) ||
130 partialOverlap(rlSrc1.sRegLow,rlDest.sRegLow) ||
131 partialOverlap(rlSrc2.sRegLow,rlDest.sRegLow)) {
132 // Rare case - not enough registers to properly handle
133 genInterpSingleStep(cUnit, mir);
134 } else if (rlDest.sRegLow == rlSrc1.sRegLow) {
135 // Already 2-operand
136 rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
137 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
138 opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
139 opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
140 storeValueWide(cUnit, rlDest, rlResult);
141 } else if (rlDest.sRegLow == rlSrc2.sRegLow) {
142 // Bad case - must use/clobber Src1 and reassign Dest
143 rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
144 rlResult = loadValueWide(cUnit, rlDest, kCoreReg);
145 opRegReg(cUnit, firstOp, rlSrc1.lowReg, rlResult.lowReg);
146 opRegReg(cUnit, secondOp, rlSrc1.highReg, rlResult.highReg);
147 // Old reg assignments are now invalid
148 dvmCompilerClobber(cUnit, rlResult.lowReg);
149 dvmCompilerClobber(cUnit, rlResult.highReg);
150 dvmCompilerClobber(cUnit, rlSrc1.lowReg);
151 dvmCompilerClobber(cUnit, rlSrc1.highReg);
152 rlDest.location = kLocDalvikFrame;
153 assert(rlSrc1.location == kLocPhysReg);
154 // Reassign registers - rlDest will now get rlSrc1's old regs
155 storeValueWide(cUnit, rlDest, rlSrc1);
156 } else {
157 // Copy Src1 to Dest
158 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
159 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, false);
160 loadValueDirectWide(cUnit, rlSrc1, rlResult.lowReg,
161 rlResult.highReg);
162 rlResult.location = kLocPhysReg;
163 opRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc2.lowReg);
164 opRegReg(cUnit, secondOp, rlResult.highReg, rlSrc2.highReg);
165 storeValueWide(cUnit, rlDest, rlResult);
166 }
167 }
168
dvmCompilerInitializeRegAlloc(CompilationUnit * cUnit)169 void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
170 {
171 int numTemps = sizeof(coreTemps)/sizeof(int);
172 RegisterPool *pool = (RegisterPool *) dvmCompilerNew(sizeof(*pool), true);
173 cUnit->regPool = pool;
174 pool->numCoreTemps = numTemps;
175 pool->coreTemps = (RegisterInfo *)
176 dvmCompilerNew(numTemps * sizeof(*pool->coreTemps), true);
177 pool->numFPTemps = 0;
178 pool->FPTemps = NULL;
179 dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
180 dvmCompilerInitPool(pool->FPTemps, NULL, 0);
181 pool->nullCheckedRegs =
182 dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
183 }
184
185 /* Export the Dalvik PC assicated with an instruction to the StackSave area */
genExportPC(CompilationUnit * cUnit,MIR * mir)186 static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
187 {
188 ArmLIR *res;
189 int rDPC = dvmCompilerAllocTemp(cUnit);
190 int rAddr = dvmCompilerAllocTemp(cUnit);
191 int offset = offsetof(StackSaveArea, xtra.currentPc);
192 res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
193 newLIR2(cUnit, kThumbMovRR, rAddr, r5FP);
194 newLIR2(cUnit, kThumbSubRI8, rAddr, sizeof(StackSaveArea) - offset);
195 storeWordDisp( cUnit, rAddr, 0, rDPC);
196 return res;
197 }
198
genMonitor(CompilationUnit * cUnit,MIR * mir)199 static void genMonitor(CompilationUnit *cUnit, MIR *mir)
200 {
201 genMonitorPortable(cUnit, mir);
202 }
203
genCmpLong(CompilationUnit * cUnit,MIR * mir,RegLocation rlDest,RegLocation rlSrc1,RegLocation rlSrc2)204 static void genCmpLong(CompilationUnit *cUnit, MIR *mir, RegLocation rlDest,
205 RegLocation rlSrc1, RegLocation rlSrc2)
206 {
207 RegLocation rlResult;
208 loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
209 loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
210 genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG);
211 rlResult = dvmCompilerGetReturn(cUnit);
212 storeValue(cUnit, rlDest, rlResult);
213 }
214
genInlinedAbsFloat(CompilationUnit * cUnit,MIR * mir)215 static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
216 {
217 int offset = offsetof(Thread, interpSave.retval);
218 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
219 int reg0 = loadValue(cUnit, rlSrc, kCoreReg).lowReg;
220 int signMask = dvmCompilerAllocTemp(cUnit);
221 loadConstant(cUnit, signMask, 0x7fffffff);
222 newLIR2(cUnit, kThumbAndRR, reg0, signMask);
223 dvmCompilerFreeTemp(cUnit, signMask);
224 storeWordDisp(cUnit, r6SELF, offset, reg0);
225 //TUNING: rewrite this to not clobber
226 dvmCompilerClobber(cUnit, reg0);
227 return false;
228 }
229
genInlinedAbsDouble(CompilationUnit * cUnit,MIR * mir)230 static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
231 {
232 int offset = offsetof(Thread, interpSave.retval);
233 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
234 RegLocation regSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
235 int reglo = regSrc.lowReg;
236 int reghi = regSrc.highReg;
237 int signMask = dvmCompilerAllocTemp(cUnit);
238 loadConstant(cUnit, signMask, 0x7fffffff);
239 storeWordDisp(cUnit, r6SELF, offset, reglo);
240 newLIR2(cUnit, kThumbAndRR, reghi, signMask);
241 dvmCompilerFreeTemp(cUnit, signMask);
242 storeWordDisp(cUnit, r6SELF, offset + 4, reghi);
243 //TUNING: rewrite this to not clobber
244 dvmCompilerClobber(cUnit, reghi);
245 return false;
246 }
247
248 /* No select in thumb, so we need to branch. Thumb2 will do better */
genInlinedMinMaxInt(CompilationUnit * cUnit,MIR * mir,bool isMin)249 static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
250 {
251 int offset = offsetof(Thread, interpSave.retval);
252 RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
253 RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
254 int reg0 = loadValue(cUnit, rlSrc1, kCoreReg).lowReg;
255 int reg1 = loadValue(cUnit, rlSrc2, kCoreReg).lowReg;
256 newLIR2(cUnit, kThumbCmpRR, reg0, reg1);
257 ArmLIR *branch1 = newLIR2(cUnit, kThumbBCond, 2,
258 isMin ? kArmCondLt : kArmCondGt);
259 newLIR2(cUnit, kThumbMovRR, reg0, reg1);
260 ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
261 target->defMask = ENCODE_ALL;
262 newLIR3(cUnit, kThumbStrRRI5, reg0, r6SELF, offset >> 2);
263 branch1->generic.target = (LIR *)target;
264 //TUNING: rewrite this to not clobber
265 dvmCompilerClobber(cUnit,reg0);
266 return false;
267 }
268
genMultiplyByTwoBitMultiplier(CompilationUnit * cUnit,RegLocation rlSrc,RegLocation rlResult,int lit,int firstBit,int secondBit)269 static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
270 RegLocation rlSrc, RegLocation rlResult, int lit,
271 int firstBit, int secondBit)
272 {
273 // We can't implement "add src, src, src, lsl#shift" on Thumb, so we have
274 // to do a regular multiply.
275 opRegRegImm(cUnit, kOpMul, rlResult.lowReg, rlSrc.lowReg, lit);
276 }
277