1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 � Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 /*!
85 \file dct.cpp
86 \brief DCT Implementations
87 Library functions to calculate standard DCTs. This will most likely be replaced by hand-optimized
88 functions for the specific target processor.
89
90 Three different implementations of the dct type II and the dct type III transforms are provided.
91
92 By default implementations which are based on a single, standard complex FFT-kernel are used (dctII_f() and dctIII_f()).
93 These are specifically helpful in cases where optimized FFT libraries are already available. The FFT used in these
94 implementation is FFT rad2 from FDK_tools.
95
96 Of course, one might also use DCT-libraries should they be available. The DCT and DST
97 type IV implementations are only available in a version based on a complex FFT kernel.
98 */
99
100 #include "dct.h"
101
102
103 #include "FDK_tools_rom.h"
104 #include "fft.h"
105
106
107 #if defined(__arm__)
108 #include "arm/dct_arm.cpp"
109 #endif
110
111
112 #if !defined(FUNCTION_dct_III)
dct_III(FIXP_DBL * pDat,FIXP_DBL * tmp,int L,int * pDat_e)113 void dct_III(FIXP_DBL *pDat, /*!< pointer to input/output */
114 FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
115 int L, /*!< lenght of transform */
116 int *pDat_e
117 )
118 {
119 FDK_ASSERT(L == 64 || L == 32);
120 int i;
121 FIXP_DBL xr, accu1, accu2;
122 int inc;
123 int M = L>>1;
124 int ld_M;
125
126 if (L == 64) ld_M = 5;
127 else ld_M = 4;
128
129 /* This loop performs multiplication for index i (i*inc) */
130 inc = (64/2) >> ld_M; /* 64/L */
131
132 FIXP_DBL *pTmp_0 = &tmp[2];
133 FIXP_DBL *pTmp_1 = &tmp[(M-1)*2];
134
135 for(i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) {
136
137 FIXP_DBL accu3,accu4,accu5,accu6;
138
139 cplxMultDiv2(&accu2, &accu1, pDat[L - i], pDat[i], sin_twiddle_L64[i*inc]);
140 cplxMultDiv2(&accu4, &accu3, pDat[M+i], pDat[M-i], sin_twiddle_L64[(M-i)*inc]);
141 accu3 >>= 1; accu4 >>= 1;
142
143 /* This method is better for ARM926, that uses operand2 shifted right by 1 always */
144 cplxMultDiv2(&accu6, &accu5, (accu3 - (accu1>>1)), ((accu2>>1) + accu4), sin_twiddle_L64[(4*i)*inc]);
145 xr = (accu1>>1) + accu3;
146 pTmp_0[0] = (xr>>1) - accu5;
147 pTmp_1[0] = (xr>>1) + accu5;
148
149 xr = (accu2>>1) - accu4;
150 pTmp_0[1] = (xr>>1) - accu6;
151 pTmp_1[1] = -((xr>>1) + accu6);
152
153 }
154
155 xr = fMultDiv2(pDat[M], sin_twiddle_L64[64/2].v.re );/* cos((PI/(2*L))*M); */
156 tmp[0] = ((pDat[0]>>1) + xr)>>1;
157 tmp[1] = ((pDat[0]>>1) - xr)>>1;
158
159 cplxMultDiv2(&accu2, &accu1, pDat[L - (M/2)], pDat[M/2], sin_twiddle_L64[64/4]);
160 tmp[M] = accu1>>1;
161 tmp[M+1] = accu2>>1;
162
163 /* dit_fft expects 1 bit scaled input values */
164 fft(M, tmp, pDat_e);
165
166 /* ARM926: 12 cycles per 2-iteration, no overhead code by compiler */
167 pTmp_1 = &tmp[L];
168 for (i = M>>1; i--;)
169 {
170 FIXP_DBL tmp1, tmp2, tmp3, tmp4;
171 tmp1 = *tmp++;
172 tmp2 = *tmp++;
173 tmp3 = *--pTmp_1;
174 tmp4 = *--pTmp_1;
175 *pDat++ = tmp1;
176 *pDat++ = tmp3;
177 *pDat++ = tmp2;
178 *pDat++ = tmp4;
179 }
180
181 *pDat_e += 2;
182 }
183 #endif
184
185 #if !defined(FUNCTION_dct_II)
dct_II(FIXP_DBL * pDat,FIXP_DBL * tmp,int L,int * pDat_e)186 void dct_II(FIXP_DBL *pDat, /*!< pointer to input/output */
187 FIXP_DBL *tmp, /*!< pointer to temporal working buffer */
188 int L, /*!< lenght of transform */
189 int *pDat_e
190 )
191 {
192 FDK_ASSERT(L == 64 || L == 32);
193 FIXP_DBL accu1,accu2;
194 FIXP_DBL *pTmp_0, *pTmp_1;
195
196 int i;
197 int inc;
198 int M = L>>1;
199 int ld_M;
200
201 FDK_ASSERT(L == 64 || L == 32);
202 ld_M = 4 + (L >> 6); /* L=64: 5, L=32: 4 */
203
204 inc = (64/2) >> ld_M; /* L=64: 1, L=32: 2 */
205
206 FIXP_DBL *pdat = &pDat[0];
207 FIXP_DBL accu3, accu4;
208 pTmp_0 = &tmp[0];
209 pTmp_1 = &tmp[L-1];
210 for (i = M>>1; i--; )
211 {
212 accu1 = *pdat++;
213 accu2 = *pdat++;
214 accu3 = *pdat++;
215 accu4 = *pdat++;
216 accu1 >>= 1;
217 accu2 >>= 1;
218 accu3 >>= 1;
219 accu4 >>= 1;
220 *pTmp_0++ = accu1;
221 *pTmp_0++ = accu3;
222 *pTmp_1-- = accu2;
223 *pTmp_1-- = accu4;
224 }
225
226
227 fft(M, tmp, pDat_e);
228
229 pTmp_0 = &tmp[2];
230 pTmp_1 = &tmp[(M-1)*2];
231
232 for (i=1; i<M>>1; i++,pTmp_0+=2,pTmp_1-=2) {
233
234 FIXP_DBL a1,a2;
235 FIXP_DBL accu3, accu4;
236
237 a1 = ((pTmp_0[1]>>1) + (pTmp_1[1]>>1));
238 a2 = ((pTmp_1[0]>>1) - (pTmp_0[0]>>1));
239
240 cplxMultDiv2(&accu1, &accu2, a2, a1, sin_twiddle_L64[(4*i)*inc]);
241 accu1<<=1; accu2<<=1;
242
243 a1 = ((pTmp_0[0]>>1) + (pTmp_1[0]>>1));
244 a2 = ((pTmp_0[1]>>1) - (pTmp_1[1]>>1));
245
246 cplxMultDiv2(&accu3, &accu4, (a1 + accu2), -(accu1 + a2), sin_twiddle_L64[i*inc]);
247 pDat[L - i] = accu4;
248 pDat[i] = accu3;
249
250 cplxMultDiv2(&accu3, &accu4, (a1 - accu2), -(accu1 - a2), sin_twiddle_L64[(M-i)*inc]);
251 pDat[M + i] = accu4;
252 pDat[M - i] = accu3;
253
254 }
255
256 cplxMultDiv2(&accu1, &accu2, tmp[M], tmp[M+1], sin_twiddle_L64[(M/2)*inc]);
257 pDat[L - (M/2)] = accu2;
258 pDat[M/2] = accu1;
259
260 pDat[0] = (tmp[0]>>1)+(tmp[1]>>1);
261 pDat[M] = fMult(((tmp[0]>>1)-(tmp[1]>>1)), sin_twiddle_L64[64/2].v.re);/* cos((PI/(2*L))*M); */
262
263 *pDat_e += 2;
264 }
265 #endif
266
267 static
getTables(const FIXP_WTP ** twiddle,const FIXP_STP ** sin_twiddle,int * sin_step,int length)268 void getTables(const FIXP_WTP **twiddle, const FIXP_STP **sin_twiddle, int *sin_step, int length)
269 {
270 int ld2_length;
271
272 /* Get ld2 of length - 2 + 1
273 -2: because first table entry is window of size 4
274 +1: because we already include +1 because of ceil(log2(length)) */
275 ld2_length = DFRACT_BITS-1-fNormz((FIXP_DBL)length) - 1;
276
277 /* Extract sort of "eigenvalue" (the 4 left most bits) of length. */
278 switch ( (length) >> (ld2_length-1) ) {
279 case 0x4: /* radix 2 */
280 *sin_twiddle = SineTable512;
281 *sin_step = 1<<(9 - ld2_length);
282 *twiddle = windowSlopes[0][0][ld2_length-1];
283 break;
284 case 0x7: /* 10 ms */
285 *sin_twiddle = SineTable480;
286 *sin_step = 1<<(8 - ld2_length);
287 *twiddle = windowSlopes[0][1][ld2_length];
288 break;
289 default:
290 *sin_twiddle = NULL;
291 *sin_step = 0;
292 *twiddle = NULL;
293 break;
294 }
295
296 FDK_ASSERT(*twiddle != NULL);
297
298 FDK_ASSERT(*sin_step > 0);
299
300 }
301
302 #if !defined(FUNCTION_dct_IV)
303
dct_IV(FIXP_DBL * pDat,int L,int * pDat_e)304 void dct_IV(FIXP_DBL *pDat,
305 int L,
306 int *pDat_e)
307 {
308 int sin_step = 0;
309 int M = L >> 1;
310
311 const FIXP_WTP *twiddle;
312 const FIXP_STP *sin_twiddle;
313
314 FDK_ASSERT(L >= 4);
315
316 getTables(&twiddle, &sin_twiddle, &sin_step, L);
317
318 #ifdef FUNCTION_dct_IV_func1
319 if (M>=4 && (M&3) == 0) {
320 /* ARM926: 44 cycles for 2 iterations = 22 cycles/iteration */
321 dct_IV_func1(M>>2, twiddle, &pDat[0], &pDat[L-1]);
322 } else
323 #endif /* FUNCTION_dct_IV_func1 */
324 {
325 FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
326 FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
327 register int i;
328
329 /* 29 cycles on ARM926 */
330 for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2)
331 {
332 register FIXP_DBL accu1,accu2,accu3,accu4;
333
334 accu1 = pDat_1[1]; accu2 = pDat_0[0];
335 accu3 = pDat_0[1]; accu4 = pDat_1[0];
336
337 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
338 cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]);
339
340 pDat_0[0] = accu2; pDat_0[1] = accu1;
341 pDat_1[0] = accu4; pDat_1[1] = -accu3;
342 }
343 if (M&1)
344 {
345 register FIXP_DBL accu1,accu2;
346
347 accu1 = pDat_1[1]; accu2 = pDat_0[0];
348
349 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
350
351 pDat_0[0] = accu2; pDat_0[1] = accu1;
352 }
353 }
354
355 fft(M, pDat, pDat_e);
356
357 #ifdef FUNCTION_dct_IV_func2
358 if (M>=4 && (M&3) == 0) {
359 /* ARM926: 42 cycles for 2 iterations = 21 cycles/iteration */
360 dct_IV_func2(M>>2, sin_twiddle, &pDat[0], &pDat[L], sin_step);
361 } else
362 #endif /* FUNCTION_dct_IV_func2 */
363 {
364 FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
365 FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
366 register FIXP_DBL accu1,accu2,accu3,accu4;
367 int idx, i;
368
369 /* Sin and Cos values are 0.0f and 1.0f */
370 accu1 = pDat_1[0];
371 accu2 = pDat_1[1];
372
373 pDat_1[1] = -(pDat_0[1]>>1);
374 pDat_0[0] = (pDat_0[0]>>1);
375
376
377 /* 28 cycles for ARM926 */
378 for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step)
379 {
380 FIXP_STP twd = sin_twiddle[idx];
381 cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd);
382 pDat_0[1] = accu3;
383 pDat_1[0] = accu4;
384
385 pDat_0+=2;
386 pDat_1-=2;
387
388 cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
389
390 accu1 = pDat_1[0];
391 accu2 = pDat_1[1];
392
393 pDat_1[1] = -accu3;
394 pDat_0[0] = accu4;
395 }
396
397 if ( (M&1) == 0 )
398 {
399 /* Last Sin and Cos value pair are the same */
400 accu1 = fMultDiv2(accu1, WTC(0x5a82799a));
401 accu2 = fMultDiv2(accu2, WTC(0x5a82799a));
402
403 pDat_1[0] = accu1 + accu2;
404 pDat_0[1] = accu1 - accu2;
405 }
406 }
407
408 /* Add twiddeling scale. */
409 *pDat_e += 2;
410 }
411 #endif /* defined (FUNCTION_dct_IV) */
412
413 #if !defined(FUNCTION_dst_IV)
dst_IV(FIXP_DBL * pDat,int L,int * pDat_e)414 void dst_IV(FIXP_DBL *pDat,
415 int L,
416 int *pDat_e )
417 {
418 int sin_step = 0;
419 int M = L >> 1;
420
421 const FIXP_WTP *twiddle;
422 const FIXP_STP *sin_twiddle;
423
424 #ifdef DSTIV2_ENABLE
425 if (L == 2) {
426 const FIXP_STP tab = STCP(0x7641AF3D, 0x30FB9452);
427 FIXP_DBL tmp1, tmp2;
428
429 cplxMultDiv2(&tmp2, &tmp1, pDat[0], pDat[1], tab);
430
431 pDat[0] = tmp1;
432 pDat[1] = tmp2;
433
434 *pDat_e += 1;
435
436 return;
437 }
438 #else
439 FDK_ASSERT(L >= 4);
440 #endif
441
442 getTables(&twiddle, &sin_twiddle, &sin_step, L);
443
444 #ifdef FUNCTION_dst_IV_func1
445 if ( (M>=4) && ((M&3) == 0) ) {
446 dst_IV_func1(M, twiddle, &pDat[0], &pDat[L]);
447 } else
448 #endif
449 {
450 FIXP_DBL *RESTRICT pDat_0 = &pDat[0];
451 FIXP_DBL *RESTRICT pDat_1 = &pDat[L - 2];
452
453 register int i;
454
455 /* 34 cycles on ARM926 */
456 for (i = 0; i < M-1; i+=2,pDat_0+=2,pDat_1-=2)
457 {
458 register FIXP_DBL accu1,accu2,accu3,accu4;
459
460 accu1 = pDat_1[1]; accu2 = -pDat_0[0];
461 accu3 = pDat_0[1]; accu4 = -pDat_1[0];
462
463 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
464 cplxMultDiv2(&accu3, &accu4, accu4, accu3, twiddle[i+1]);
465
466 pDat_0[0] = accu2; pDat_0[1] = accu1;
467 pDat_1[0] = accu4; pDat_1[1] = -accu3;
468 }
469 if (M&1)
470 {
471 register FIXP_DBL accu1,accu2;
472
473 accu1 = pDat_1[1]; accu2 = -pDat_0[0];
474
475 cplxMultDiv2(&accu1, &accu2, accu1, accu2, twiddle[i]);
476
477 pDat_0[0] = accu2; pDat_0[1] = accu1;
478 }
479 }
480
481 fft(M, pDat, pDat_e);
482
483 #ifdef FUNCTION_dst_IV_func2
484 if ( (M>=4) && ((M&3) == 0) ) {
485 dst_IV_func2(M>>2, sin_twiddle + sin_step, &pDat[0], &pDat[L - 1], sin_step);
486 } else
487 #endif /* FUNCTION_dst_IV_func2 */
488 {
489 FIXP_DBL *RESTRICT pDat_0;
490 FIXP_DBL *RESTRICT pDat_1;
491 register FIXP_DBL accu1,accu2,accu3,accu4;
492 int idx, i;
493
494 pDat_0 = &pDat[0];
495 pDat_1 = &pDat[L - 2];
496
497 /* Sin and Cos values are 0.0f and 1.0f */
498 accu1 = pDat_1[0];
499 accu2 = pDat_1[1];
500
501 pDat_1[1] = -(pDat_0[0]>>1);
502 pDat_0[0] = (pDat_0[1]>>1);
503
504 for (idx = sin_step,i=1; i<(M+1)>>1; i++, idx+=sin_step)
505 {
506 FIXP_STP twd = sin_twiddle[idx];
507
508 cplxMultDiv2(&accu3, &accu4, accu1, accu2, twd);
509 pDat_1[0] = -accu3;
510 pDat_0[1] = -accu4;
511
512 pDat_0+=2;
513 pDat_1-=2;
514
515 cplxMultDiv2(&accu3, &accu4, pDat_0[1], pDat_0[0], twd);
516
517 accu1 = pDat_1[0];
518 accu2 = pDat_1[1];
519
520 pDat_0[0] = accu3;
521 pDat_1[1] = -accu4;
522 }
523
524 if ( (M&1) == 0 )
525 {
526 /* Last Sin and Cos value pair are the same */
527 accu1 = fMultDiv2(accu1, WTC(0x5a82799a));
528 accu2 = fMultDiv2(accu2, WTC(0x5a82799a));
529
530 pDat_0[1] = - accu1 - accu2;
531 pDat_1[0] = accu2 - accu1;
532 }
533 }
534
535 /* Add twiddeling scale. */
536 *pDat_e += 2;
537 }
538 #endif /* !defined(FUNCTION_dst_IV) */
539
540
541