• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
8 //
9 // The public functions are base::Unretained() and base::ConstRef().
10 // Unretained() allows Bind() to bind a non-refcounted class.
11 // ConstRef() allows binding a constant reference to an argument rather
12 // than a copy.
13 //
14 //
15 // EXAMPLE OF Unretained():
16 //
17 //   class Foo {
18 //    public:
19 //     void func() { cout << "Foo:f" << endl;
20 //   };
21 //
22 //   // In some function somewhere.
23 //   Foo foo;
24 //   Callback<void(void)> foo_callback =
25 //       Bind(&Foo::func, Unretained(&foo));
26 //   foo_callback.Run();  // Prints "Foo:f".
27 //
28 // Without the Unretained() wrapper on |&foo|, the above call would fail
29 // to compile because Foo does not support the AddRef() and Release() methods.
30 //
31 //
32 // EXAMPLE OF ConstRef();
33 //   void foo(int arg) { cout << arg << endl }
34 //
35 //   int n = 1;
36 //   Callback<void(void)> no_ref = Bind(&foo, n);
37 //   Callback<void(void)> has_ref = Bind(&foo, ConstRef(n));
38 //
39 //   no_ref.Run();  // Prints "1"
40 //   has_ref.Run();  // Prints "1"
41 //
42 //   n = 2;
43 //   no_ref.Run();  // Prints "1"
44 //   has_ref.Run();  // Prints "2"
45 //
46 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
47 // its bound callbacks.
48 //
49 
50 #ifndef BASE_BIND_HELPERS_H_
51 #define BASE_BIND_HELPERS_H_
52 #pragma once
53 
54 #include "base/basictypes.h"
55 #include "base/template_util.h"
56 
57 namespace base {
58 namespace internal {
59 
60 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
61 // for the existence of AddRef() and Release() functions of the correct
62 // signature.
63 //
64 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
65 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
66 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
67 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
68 //
69 // The last link in particular show the method used below.
70 //
71 // For SFINAE to work with inherited methods, we need to pull some extra tricks
72 // with multiple inheritance.  In the more standard formulation, the overloads
73 // of Check would be:
74 //
75 //   template <typename C>
76 //   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
77 //
78 //   template <typename C>
79 //   No NotTheCheckWeWant(...);
80 //
81 //   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
82 //
83 // The problem here is that template resolution will not match
84 // C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
85 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
86 // |value| will be false.  This formulation only checks for whether or
87 // not TargetFunc exist directly in the class being introspected.
88 //
89 // To get around this, we play a dirty trick with multiple inheritance.
90 // First, We create a class BaseMixin that declares each function that we
91 // want to probe for.  Then we create a class Base that inherits from both T
92 // (the class we wish to probe) and BaseMixin.  Note that the function
93 // signature in BaseMixin does not need to match the signature of the function
94 // we are probing for; thus it's easiest to just use void(void).
95 //
96 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
97 // ambiguous resolution between BaseMixin and T.  This lets us write the
98 // following:
99 //
100 //   template <typename C>
101 //   No GoodCheck(Helper<&C::TargetFunc>*);
102 //
103 //   template <typename C>
104 //   Yes GoodCheck(...);
105 //
106 //   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
107 //
108 // Notice here that the variadic version of GoodCheck() returns Yes here
109 // instead of No like the previous one. Also notice that we calculate |value|
110 // by specializing GoodCheck() on Base instead of T.
111 //
112 // We've reversed the roles of the variadic, and Helper overloads.
113 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
114 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
115 // to the variadic version if T has TargetFunc.  If T::TargetFunc does not
116 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
117 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
118 //
119 // This method of SFINAE will correctly probe for inherited names, but it cannot
120 // typecheck those names.  It's still a good enough sanity check though.
121 //
122 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
123 //
124 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
125 // this works well.
126 template <typename T>
127 class SupportsAddRefAndRelease {
128   typedef char Yes[1];
129   typedef char No[2];
130 
131   struct BaseMixin {
132     void AddRef();
133     void Release();
134   };
135 
136 // MSVC warns when you try to use Base if T has a private destructor, the
137 // common pattern for refcounted types. It does this even though no attempt to
138 // instantiate Base is made.  We disable the warning for this definition.
139 #if defined(OS_WIN)
140 #pragma warning(disable:4624)
141 #endif
142   struct Base : public T, public BaseMixin {
143   };
144 #if defined(OS_WIN)
145 #pragma warning(default:4624)
146 #endif
147 
148   template <void(BaseMixin::*)(void)>  struct Helper {};
149 
150   template <typename C>
151   static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*);
152 
153   template <typename >
154   static Yes& Check(...);
155 
156  public:
157   static const bool value = sizeof(Check<Base>(0,0)) == sizeof(Yes);
158 };
159 
160 
161 // Helpers to assert that arguments of a recounted type are bound with a
162 // scoped_refptr.
163 template <bool IsClasstype, typename T>
164 struct UnsafeBindtoRefCountedArgHelper : false_type {
165 };
166 
167 template <typename T>
168 struct UnsafeBindtoRefCountedArgHelper<true, T>
169     : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
170 };
171 
172 template <typename T>
173 struct UnsafeBindtoRefCountedArg : false_type {
174 };
175 
176 template <typename T>
177 struct UnsafeBindtoRefCountedArg<T*>
178     : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
179 };
180 
181 
182 template <typename T>
183 class UnretainedWrapper {
184  public:
185   explicit UnretainedWrapper(T* o) : obj_(o) {}
186   T* get() { return obj_; }
187  private:
188   T* obj_;
189 };
190 
191 template <typename T>
192 class ConstRefWrapper {
193  public:
194   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
195   const T& get() { return *ptr_; }
196  private:
197   const T* ptr_;
198 };
199 
200 
201 // Unwrap the stored parameters for the wrappers above.
202 template <typename T>
203 T Unwrap(T o) { return o; }
204 
205 template <typename T>
206 T* Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); }
207 
208 template <typename T>
209 const T& Unwrap(ConstRefWrapper<T> const_ref) {
210   return const_ref.get();
211 }
212 
213 
214 // Utility for handling different refcounting semantics in the Bind()
215 // function.
216 template <typename ref, typename T>
217 struct MaybeRefcount;
218 
219 template <typename T>
220 struct MaybeRefcount<base::false_type, T> {
221   static void AddRef(const T&) {}
222   static void Release(const T&) {}
223 };
224 
225 template <typename T, size_t n>
226 struct MaybeRefcount<base::false_type, T[n]> {
227   static void AddRef(const T*) {}
228   static void Release(const T*) {}
229 };
230 
231 template <typename T>
232 struct MaybeRefcount<base::true_type, UnretainedWrapper<T> > {
233   static void AddRef(const UnretainedWrapper<T>&) {}
234   static void Release(const UnretainedWrapper<T>&) {}
235 };
236 
237 template <typename T>
238 struct MaybeRefcount<base::true_type, T*> {
239   static void AddRef(T* o) { o->AddRef(); }
240   static void Release(T* o) { o->Release(); }
241 };
242 
243 template <typename T>
244 struct MaybeRefcount<base::true_type, const T*> {
245   static void AddRef(const T* o) { o->AddRef(); }
246   static void Release(const T* o) { o->Release(); }
247 };
248 
249 }  // namespace internal
250 
251 template <typename T>
252 inline internal::UnretainedWrapper<T> Unretained(T* o) {
253   return internal::UnretainedWrapper<T>(o);
254 }
255 
256 template <typename T>
257 inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
258   return internal::ConstRefWrapper<T>(o);
259 }
260 
261 }  // namespace base
262 
263 #endif  // BASE_BIND_HELPERS_H_
264