• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <vector>
6 
7 #include "base/eintr_wrapper.h"
8 #include "base/logging.h"
9 #include "base/memory/ref_counted.h"
10 #include "base/message_loop.h"
11 #include "base/task.h"
12 #include "base/threading/platform_thread.h"
13 #include "base/threading/thread.h"
14 #include "testing/gtest/include/gtest/gtest.h"
15 
16 #if defined(OS_WIN)
17 #include "base/message_pump_win.h"
18 #include "base/win/scoped_handle.h"
19 #endif
20 #if defined(OS_POSIX)
21 #include "base/message_pump_libevent.h"
22 #endif
23 
24 using base::PlatformThread;
25 using base::Thread;
26 using base::Time;
27 using base::TimeDelta;
28 
29 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
30 // to avoid chopping this file up with so many #ifdefs.
31 
32 namespace {
33 
34 class MessageLoopTest : public testing::Test {};
35 
36 class Foo : public base::RefCounted<Foo> {
37  public:
Foo()38   Foo() : test_count_(0) {
39   }
40 
Test0()41   void Test0() {
42     ++test_count_;
43   }
44 
Test1ConstRef(const std::string & a)45   void Test1ConstRef(const std::string& a) {
46     ++test_count_;
47     result_.append(a);
48   }
49 
Test1Ptr(std::string * a)50   void Test1Ptr(std::string* a) {
51     ++test_count_;
52     result_.append(*a);
53   }
54 
Test1Int(int a)55   void Test1Int(int a) {
56     test_count_ += a;
57   }
58 
Test2Ptr(std::string * a,std::string * b)59   void Test2Ptr(std::string* a, std::string* b) {
60     ++test_count_;
61     result_.append(*a);
62     result_.append(*b);
63   }
64 
Test2Mixed(const std::string & a,std::string * b)65   void Test2Mixed(const std::string& a, std::string* b) {
66     ++test_count_;
67     result_.append(a);
68     result_.append(*b);
69   }
70 
test_count() const71   int test_count() const { return test_count_; }
result() const72   const std::string& result() const { return result_; }
73 
74  private:
75   friend class base::RefCounted<Foo>;
76 
~Foo()77   ~Foo() {}
78 
79   int test_count_;
80   std::string result_;
81 };
82 
83 class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
84  public:
QuitNow()85   void QuitNow() {
86     MessageLoop::current()->Quit();
87   }
88 
89  private:
90   friend class base::RefCounted<QuitMsgLoop>;
91 
~QuitMsgLoop()92   ~QuitMsgLoop() {}
93 };
94 
RunTest_PostTask(MessageLoop::Type message_loop_type)95 void RunTest_PostTask(MessageLoop::Type message_loop_type) {
96   MessageLoop loop(message_loop_type);
97 
98   // Add tests to message loop
99   scoped_refptr<Foo> foo(new Foo());
100   std::string a("a"), b("b"), c("c"), d("d");
101   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
102       foo.get(), &Foo::Test0));
103   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
104     foo.get(), &Foo::Test1ConstRef, a));
105   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
106       foo.get(), &Foo::Test1Ptr, &b));
107   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
108       foo.get(), &Foo::Test1Int, 100));
109   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
110       foo.get(), &Foo::Test2Ptr, &a, &c));
111   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
112     foo.get(), &Foo::Test2Mixed, a, &d));
113 
114   // After all tests, post a message that will shut down the message loop
115   scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
116   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
117       quit.get(), &QuitMsgLoop::QuitNow));
118 
119   // Now kick things off
120   MessageLoop::current()->Run();
121 
122   EXPECT_EQ(foo->test_count(), 105);
123   EXPECT_EQ(foo->result(), "abacad");
124 }
125 
RunTest_PostTask_SEH(MessageLoop::Type message_loop_type)126 void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
127   MessageLoop loop(message_loop_type);
128 
129   // Add tests to message loop
130   scoped_refptr<Foo> foo(new Foo());
131   std::string a("a"), b("b"), c("c"), d("d");
132   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
133       foo.get(), &Foo::Test0));
134   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
135       foo.get(), &Foo::Test1ConstRef, a));
136   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
137       foo.get(), &Foo::Test1Ptr, &b));
138   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
139       foo.get(), &Foo::Test1Int, 100));
140   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
141       foo.get(), &Foo::Test2Ptr, &a, &c));
142   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
143       foo.get(), &Foo::Test2Mixed, a, &d));
144 
145   // After all tests, post a message that will shut down the message loop
146   scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
147   MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
148       quit.get(), &QuitMsgLoop::QuitNow));
149 
150   // Now kick things off with the SEH block active.
151   MessageLoop::current()->set_exception_restoration(true);
152   MessageLoop::current()->Run();
153   MessageLoop::current()->set_exception_restoration(false);
154 
155   EXPECT_EQ(foo->test_count(), 105);
156   EXPECT_EQ(foo->result(), "abacad");
157 }
158 
159 // This class runs slowly to simulate a large amount of work being done.
160 class SlowTask : public Task {
161  public:
SlowTask(int pause_ms,int * quit_counter)162   SlowTask(int pause_ms, int* quit_counter)
163       : pause_ms_(pause_ms), quit_counter_(quit_counter) {
164   }
Run()165   virtual void Run() {
166     PlatformThread::Sleep(pause_ms_);
167     if (--(*quit_counter_) == 0)
168       MessageLoop::current()->Quit();
169   }
170  private:
171   int pause_ms_;
172   int* quit_counter_;
173 };
174 
175 // This class records the time when Run was called in a Time object, which is
176 // useful for building a variety of MessageLoop tests.
177 class RecordRunTimeTask : public SlowTask {
178  public:
RecordRunTimeTask(Time * run_time,int * quit_counter)179   RecordRunTimeTask(Time* run_time, int* quit_counter)
180       : SlowTask(10, quit_counter), run_time_(run_time) {
181   }
Run()182   virtual void Run() {
183     *run_time_ = Time::Now();
184     // Cause our Run function to take some time to execute.  As a result we can
185     // count on subsequent RecordRunTimeTask objects running at a future time,
186     // without worry about the resolution of our system clock being an issue.
187     SlowTask::Run();
188   }
189  private:
190   Time* run_time_;
191 };
192 
RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type)193 void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
194   MessageLoop loop(message_loop_type);
195 
196   // Test that PostDelayedTask results in a delayed task.
197 
198   const int kDelayMS = 100;
199 
200   int num_tasks = 1;
201   Time run_time;
202 
203   loop.PostDelayedTask(
204       FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
205 
206   Time time_before_run = Time::Now();
207   loop.Run();
208   Time time_after_run = Time::Now();
209 
210   EXPECT_EQ(0, num_tasks);
211   EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
212 }
213 
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type)214 void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
215   MessageLoop loop(message_loop_type);
216 
217   // Test that two tasks with different delays run in the right order.
218 
219   int num_tasks = 2;
220   Time run_time1, run_time2;
221 
222   loop.PostDelayedTask(
223       FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
224   // If we get a large pause in execution (due to a context switch) here, this
225   // test could fail.
226   loop.PostDelayedTask(
227       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
228 
229   loop.Run();
230   EXPECT_EQ(0, num_tasks);
231 
232   EXPECT_TRUE(run_time2 < run_time1);
233 }
234 
RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type)235 void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
236   MessageLoop loop(message_loop_type);
237 
238   // Test that two tasks with the same delay run in the order in which they
239   // were posted.
240   //
241   // NOTE: This is actually an approximate test since the API only takes a
242   // "delay" parameter, so we are not exactly simulating two tasks that get
243   // posted at the exact same time.  It would be nice if the API allowed us to
244   // specify the desired run time.
245 
246   const int kDelayMS = 100;
247 
248   int num_tasks = 2;
249   Time run_time1, run_time2;
250 
251   loop.PostDelayedTask(
252       FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
253   loop.PostDelayedTask(
254       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
255 
256   loop.Run();
257   EXPECT_EQ(0, num_tasks);
258 
259   EXPECT_TRUE(run_time1 < run_time2);
260 }
261 
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::Type message_loop_type)262 void RunTest_PostDelayedTask_InPostOrder_2(
263     MessageLoop::Type message_loop_type) {
264   MessageLoop loop(message_loop_type);
265 
266   // Test that a delayed task still runs after a normal tasks even if the
267   // normal tasks take a long time to run.
268 
269   const int kPauseMS = 50;
270 
271   int num_tasks = 2;
272   Time run_time;
273 
274   loop.PostTask(
275       FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
276   loop.PostDelayedTask(
277       FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
278 
279   Time time_before_run = Time::Now();
280   loop.Run();
281   Time time_after_run = Time::Now();
282 
283   EXPECT_EQ(0, num_tasks);
284 
285   EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
286 }
287 
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::Type message_loop_type)288 void RunTest_PostDelayedTask_InPostOrder_3(
289     MessageLoop::Type message_loop_type) {
290   MessageLoop loop(message_loop_type);
291 
292   // Test that a delayed task still runs after a pile of normal tasks.  The key
293   // difference between this test and the previous one is that here we return
294   // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
295   // to maybe run the delayed task.  It should know not to do so until the
296   // delayed task's delay has passed.
297 
298   int num_tasks = 11;
299   Time run_time1, run_time2;
300 
301   // Clutter the ML with tasks.
302   for (int i = 1; i < num_tasks; ++i)
303     loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
304 
305   loop.PostDelayedTask(
306       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
307 
308   loop.Run();
309   EXPECT_EQ(0, num_tasks);
310 
311   EXPECT_TRUE(run_time2 > run_time1);
312 }
313 
RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type)314 void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
315   MessageLoop loop(message_loop_type);
316 
317   // Test that the interval of the timer, used to run the next delayed task, is
318   // set to a value corresponding to when the next delayed task should run.
319 
320   // By setting num_tasks to 1, we ensure that the first task to run causes the
321   // run loop to exit.
322   int num_tasks = 1;
323   Time run_time1, run_time2;
324 
325   loop.PostDelayedTask(
326       FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
327   loop.PostDelayedTask(
328       FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
329 
330   Time start_time = Time::Now();
331 
332   loop.Run();
333   EXPECT_EQ(0, num_tasks);
334 
335   // Ensure that we ran in far less time than the slower timer.
336   TimeDelta total_time = Time::Now() - start_time;
337   EXPECT_GT(5000, total_time.InMilliseconds());
338 
339   // In case both timers somehow run at nearly the same time, sleep a little
340   // and then run all pending to force them both to have run.  This is just
341   // encouraging flakiness if there is any.
342   PlatformThread::Sleep(100);
343   loop.RunAllPending();
344 
345   EXPECT_TRUE(run_time1.is_null());
346   EXPECT_FALSE(run_time2.is_null());
347 }
348 
349 #if defined(OS_WIN)
350 
351 class SubPumpTask : public Task {
352  public:
Run()353   virtual void Run() {
354     MessageLoop::current()->SetNestableTasksAllowed(true);
355     MSG msg;
356     while (GetMessage(&msg, NULL, 0, 0)) {
357       TranslateMessage(&msg);
358       DispatchMessage(&msg);
359     }
360     MessageLoop::current()->Quit();
361   }
362 };
363 
364 class SubPumpQuitTask : public Task {
365  public:
SubPumpQuitTask()366   SubPumpQuitTask() {
367   }
Run()368   virtual void Run() {
369     PostQuitMessage(0);
370   }
371 };
372 
RunTest_PostDelayedTask_SharedTimer_SubPump()373 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
374   MessageLoop loop(MessageLoop::TYPE_UI);
375 
376   // Test that the interval of the timer, used to run the next delayed task, is
377   // set to a value corresponding to when the next delayed task should run.
378 
379   // By setting num_tasks to 1, we ensure that the first task to run causes the
380   // run loop to exit.
381   int num_tasks = 1;
382   Time run_time;
383 
384   loop.PostTask(FROM_HERE, new SubPumpTask());
385 
386   // This very delayed task should never run.
387   loop.PostDelayedTask(
388       FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
389 
390   // This slightly delayed task should run from within SubPumpTask::Run().
391   loop.PostDelayedTask(
392       FROM_HERE, new SubPumpQuitTask(), 10);
393 
394   Time start_time = Time::Now();
395 
396   loop.Run();
397   EXPECT_EQ(1, num_tasks);
398 
399   // Ensure that we ran in far less time than the slower timer.
400   TimeDelta total_time = Time::Now() - start_time;
401   EXPECT_GT(5000, total_time.InMilliseconds());
402 
403   // In case both timers somehow run at nearly the same time, sleep a little
404   // and then run all pending to force them both to have run.  This is just
405   // encouraging flakiness if there is any.
406   PlatformThread::Sleep(100);
407   loop.RunAllPending();
408 
409   EXPECT_TRUE(run_time.is_null());
410 }
411 
412 #endif  // defined(OS_WIN)
413 
414 class RecordDeletionTask : public Task {
415  public:
RecordDeletionTask(Task * post_on_delete,bool * was_deleted)416   RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
417       : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
418   }
~RecordDeletionTask()419   ~RecordDeletionTask() {
420     *was_deleted_ = true;
421     if (post_on_delete_)
422       MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
423   }
Run()424   virtual void Run() {}
425  private:
426   Task* post_on_delete_;
427   bool* was_deleted_;
428 };
429 
RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type)430 void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
431   bool a_was_deleted = false;
432   bool b_was_deleted = false;
433   {
434     MessageLoop loop(message_loop_type);
435     loop.PostTask(
436         FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
437     loop.PostDelayedTask(
438         FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
439   }
440   EXPECT_TRUE(a_was_deleted);
441   EXPECT_TRUE(b_was_deleted);
442 }
443 
RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type)444 void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
445   bool a_was_deleted = false;
446   bool b_was_deleted = false;
447   bool c_was_deleted = false;
448   {
449     MessageLoop loop(message_loop_type);
450     RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
451     RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
452     RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
453     loop.PostTask(FROM_HERE, c);
454   }
455   EXPECT_TRUE(a_was_deleted);
456   EXPECT_TRUE(b_was_deleted);
457   EXPECT_TRUE(c_was_deleted);
458 }
459 
460 class NestingTest : public Task {
461  public:
NestingTest(int * depth)462   explicit NestingTest(int* depth) : depth_(depth) {
463   }
Run()464   void Run() {
465     if (*depth_ > 0) {
466       *depth_ -= 1;
467       MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
468 
469       MessageLoop::current()->SetNestableTasksAllowed(true);
470       MessageLoop::current()->Run();
471     }
472     MessageLoop::current()->Quit();
473   }
474  private:
475   int* depth_;
476 };
477 
478 #if defined(OS_WIN)
479 
BadExceptionHandler(EXCEPTION_POINTERS * ex_info)480 LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
481   ADD_FAILURE() << "bad exception handler";
482   ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
483   return EXCEPTION_EXECUTE_HANDLER;
484 }
485 
486 // This task throws an SEH exception: initially write to an invalid address.
487 // If the right SEH filter is installed, it will fix the error.
488 class CrasherTask : public Task {
489  public:
490   // Ctor. If trash_SEH_handler is true, the task will override the unhandled
491   // exception handler with one sure to crash this test.
CrasherTask(bool trash_SEH_handler)492   explicit CrasherTask(bool trash_SEH_handler)
493       : trash_SEH_handler_(trash_SEH_handler) {
494   }
Run()495   void Run() {
496     PlatformThread::Sleep(1);
497     if (trash_SEH_handler_)
498       ::SetUnhandledExceptionFilter(&BadExceptionHandler);
499     // Generate a SEH fault. We do it in asm to make sure we know how to undo
500     // the damage.
501 
502 #if defined(_M_IX86)
503 
504     __asm {
505       mov eax, dword ptr [CrasherTask::bad_array_]
506       mov byte ptr [eax], 66
507     }
508 
509 #elif defined(_M_X64)
510 
511     bad_array_[0] = 66;
512 
513 #else
514 #error "needs architecture support"
515 #endif
516 
517     MessageLoop::current()->Quit();
518   }
519   // Points the bad array to a valid memory location.
FixError()520   static void FixError() {
521     bad_array_ = &valid_store_;
522   }
523 
524  private:
525   bool trash_SEH_handler_;
526   static volatile char* bad_array_;
527   static char valid_store_;
528 };
529 
530 volatile char* CrasherTask::bad_array_ = 0;
531 char CrasherTask::valid_store_ = 0;
532 
533 // This SEH filter fixes the problem and retries execution. Fixing requires
534 // that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
535 // so we move the instruction pointer 5 bytes back.
HandleCrasherTaskException(EXCEPTION_POINTERS * ex_info)536 LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
537   if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
538     return EXCEPTION_EXECUTE_HANDLER;
539 
540   CrasherTask::FixError();
541 
542 #if defined(_M_IX86)
543 
544   ex_info->ContextRecord->Eip -= 5;
545 
546 #elif defined(_M_X64)
547 
548   ex_info->ContextRecord->Rip -= 5;
549 
550 #endif
551 
552   return EXCEPTION_CONTINUE_EXECUTION;
553 }
554 
RunTest_Crasher(MessageLoop::Type message_loop_type)555 void RunTest_Crasher(MessageLoop::Type message_loop_type) {
556   MessageLoop loop(message_loop_type);
557 
558   if (::IsDebuggerPresent())
559     return;
560 
561   LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
562       ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
563 
564   MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
565   MessageLoop::current()->set_exception_restoration(true);
566   MessageLoop::current()->Run();
567   MessageLoop::current()->set_exception_restoration(false);
568 
569   ::SetUnhandledExceptionFilter(old_SEH_filter);
570 }
571 
RunTest_CrasherNasty(MessageLoop::Type message_loop_type)572 void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
573   MessageLoop loop(message_loop_type);
574 
575   if (::IsDebuggerPresent())
576     return;
577 
578   LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
579       ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
580 
581   MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
582   MessageLoop::current()->set_exception_restoration(true);
583   MessageLoop::current()->Run();
584   MessageLoop::current()->set_exception_restoration(false);
585 
586   ::SetUnhandledExceptionFilter(old_SEH_filter);
587 }
588 
589 #endif  // defined(OS_WIN)
590 
RunTest_Nesting(MessageLoop::Type message_loop_type)591 void RunTest_Nesting(MessageLoop::Type message_loop_type) {
592   MessageLoop loop(message_loop_type);
593 
594   int depth = 100;
595   MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
596   MessageLoop::current()->Run();
597   EXPECT_EQ(depth, 0);
598 }
599 
600 const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
601 
602 enum TaskType {
603   MESSAGEBOX,
604   ENDDIALOG,
605   RECURSIVE,
606   TIMEDMESSAGELOOP,
607   QUITMESSAGELOOP,
608   ORDERERD,
609   PUMPS,
610   SLEEP,
611 };
612 
613 // Saves the order in which the tasks executed.
614 struct TaskItem {
TaskItem__anon673597830111::TaskItem615   TaskItem(TaskType t, int c, bool s)
616       : type(t),
617         cookie(c),
618         start(s) {
619   }
620 
621   TaskType type;
622   int cookie;
623   bool start;
624 
operator ==__anon673597830111::TaskItem625   bool operator == (const TaskItem& other) const {
626     return type == other.type && cookie == other.cookie && start == other.start;
627   }
628 };
629 
630 typedef std::vector<TaskItem> TaskList;
631 
operator <<(std::ostream & os,TaskType type)632 std::ostream& operator <<(std::ostream& os, TaskType type) {
633   switch (type) {
634   case MESSAGEBOX:        os << "MESSAGEBOX"; break;
635   case ENDDIALOG:         os << "ENDDIALOG"; break;
636   case RECURSIVE:         os << "RECURSIVE"; break;
637   case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
638   case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
639   case ORDERERD:          os << "ORDERERD"; break;
640   case PUMPS:             os << "PUMPS"; break;
641   case SLEEP:             os << "SLEEP"; break;
642   default:
643     NOTREACHED();
644     os << "Unknown TaskType";
645     break;
646   }
647   return os;
648 }
649 
operator <<(std::ostream & os,const TaskItem & item)650 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
651   if (item.start)
652     return os << item.type << " " << item.cookie << " starts";
653   else
654     return os << item.type << " " << item.cookie << " ends";
655 }
656 
657 // Saves the order the tasks ran.
658 class OrderedTasks : public Task {
659  public:
OrderedTasks(TaskList * order,int cookie)660   OrderedTasks(TaskList* order, int cookie)
661       : order_(order),
662         type_(ORDERERD),
663         cookie_(cookie) {
664   }
OrderedTasks(TaskList * order,TaskType type,int cookie)665   OrderedTasks(TaskList* order, TaskType type, int cookie)
666       : order_(order),
667         type_(type),
668         cookie_(cookie) {
669   }
670 
RunStart()671   void RunStart() {
672     TaskItem item(type_, cookie_, true);
673     DVLOG(1) << item;
674     order_->push_back(item);
675   }
RunEnd()676   void RunEnd() {
677     TaskItem item(type_, cookie_, false);
678     DVLOG(1) << item;
679     order_->push_back(item);
680   }
681 
Run()682   virtual void Run() {
683     RunStart();
684     RunEnd();
685   }
686 
687  protected:
order() const688   TaskList* order() const {
689     return order_;
690   }
691 
cookie() const692   int cookie() const {
693     return cookie_;
694   }
695 
696  private:
697   TaskList* order_;
698   TaskType type_;
699   int cookie_;
700 };
701 
702 #if defined(OS_WIN)
703 
704 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
705 // common controls (like OpenFile) and StartDoc printing function can cause
706 // implicit message loops.
707 class MessageBoxTask : public OrderedTasks {
708  public:
MessageBoxTask(TaskList * order,int cookie,bool is_reentrant)709   MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
710       : OrderedTasks(order, MESSAGEBOX, cookie),
711         is_reentrant_(is_reentrant) {
712   }
713 
Run()714   virtual void Run() {
715     RunStart();
716     if (is_reentrant_)
717       MessageLoop::current()->SetNestableTasksAllowed(true);
718     MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
719     RunEnd();
720   }
721 
722  private:
723   bool is_reentrant_;
724 };
725 
726 // Will end the MessageBox.
727 class EndDialogTask : public OrderedTasks {
728  public:
EndDialogTask(TaskList * order,int cookie)729   EndDialogTask(TaskList* order, int cookie)
730       : OrderedTasks(order, ENDDIALOG, cookie) {
731   }
732 
Run()733   virtual void Run() {
734     RunStart();
735     HWND window = GetActiveWindow();
736     if (window != NULL) {
737       EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
738       // Cheap way to signal that the window wasn't found if RunEnd() isn't
739       // called.
740       RunEnd();
741     }
742   }
743 };
744 
745 #endif  // defined(OS_WIN)
746 
747 class RecursiveTask : public OrderedTasks {
748  public:
RecursiveTask(int depth,TaskList * order,int cookie,bool is_reentrant)749   RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
750       : OrderedTasks(order, RECURSIVE, cookie),
751         depth_(depth),
752         is_reentrant_(is_reentrant) {
753   }
754 
Run()755   virtual void Run() {
756     RunStart();
757     if (depth_ > 0) {
758       if (is_reentrant_)
759         MessageLoop::current()->SetNestableTasksAllowed(true);
760       MessageLoop::current()->PostTask(FROM_HERE,
761           new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
762     }
763     RunEnd();
764   }
765 
766  private:
767   int depth_;
768   bool is_reentrant_;
769 };
770 
771 class RecursiveSlowTask : public RecursiveTask {
772  public:
RecursiveSlowTask(int depth,TaskList * order,int cookie,bool is_reentrant)773   RecursiveSlowTask(int depth, TaskList* order, int cookie, bool is_reentrant)
774       : RecursiveTask(depth, order, cookie, is_reentrant) {
775   }
776 
Run()777   virtual void Run() {
778     RecursiveTask::Run();
779     PlatformThread::Sleep(10);  // milliseconds
780   }
781 };
782 
783 class QuitTask : public OrderedTasks {
784  public:
QuitTask(TaskList * order,int cookie)785   QuitTask(TaskList* order, int cookie)
786       : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
787   }
788 
Run()789   virtual void Run() {
790     RunStart();
791     MessageLoop::current()->Quit();
792     RunEnd();
793   }
794 };
795 
796 class SleepTask : public OrderedTasks {
797  public:
SleepTask(TaskList * order,int cookie,int ms)798   SleepTask(TaskList* order, int cookie, int ms)
799       : OrderedTasks(order, SLEEP, cookie), ms_(ms) {
800   }
801 
Run()802   virtual void Run() {
803     RunStart();
804     PlatformThread::Sleep(ms_);
805     RunEnd();
806   }
807 
808  private:
809   int ms_;
810 };
811 
812 #if defined(OS_WIN)
813 
814 class Recursive2Tasks : public Task {
815  public:
Recursive2Tasks(MessageLoop * target,HANDLE event,bool expect_window,TaskList * order,bool is_reentrant)816   Recursive2Tasks(MessageLoop* target,
817                   HANDLE event,
818                   bool expect_window,
819                   TaskList* order,
820                   bool is_reentrant)
821       : target_(target),
822         event_(event),
823         expect_window_(expect_window),
824         order_(order),
825         is_reentrant_(is_reentrant) {
826   }
827 
Run()828   virtual void Run() {
829     target_->PostTask(FROM_HERE,
830                       new RecursiveTask(2, order_, 1, is_reentrant_));
831     target_->PostTask(FROM_HERE,
832                       new MessageBoxTask(order_, 2, is_reentrant_));
833     target_->PostTask(FROM_HERE,
834                       new RecursiveTask(2, order_, 3, is_reentrant_));
835     // The trick here is that for recursive task processing, this task will be
836     // ran _inside_ the MessageBox message loop, dismissing the MessageBox
837     // without a chance.
838     // For non-recursive task processing, this will be executed _after_ the
839     // MessageBox will have been dismissed by the code below, where
840     // expect_window_ is true.
841     target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
842     target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
843 
844     // Enforce that every tasks are sent before starting to run the main thread
845     // message loop.
846     ASSERT_TRUE(SetEvent(event_));
847 
848     // Poll for the MessageBox. Don't do this at home! At the speed we do it,
849     // you will never realize one MessageBox was shown.
850     for (; expect_window_;) {
851       HWND window = FindWindow(L"#32770", kMessageBoxTitle);
852       if (window) {
853         // Dismiss it.
854         for (;;) {
855           HWND button = FindWindowEx(window, NULL, L"Button", NULL);
856           if (button != NULL) {
857             EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
858             EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
859             break;
860           }
861         }
862         break;
863       }
864     }
865   }
866 
867  private:
868   MessageLoop* target_;
869   HANDLE event_;
870   TaskList* order_;
871   bool expect_window_;
872   bool is_reentrant_;
873 };
874 
875 #endif  // defined(OS_WIN)
876 
RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type)877 void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
878   MessageLoop loop(message_loop_type);
879 
880   EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
881   TaskList order;
882   MessageLoop::current()->PostTask(FROM_HERE,
883                                    new RecursiveTask(2, &order, 1, false));
884   MessageLoop::current()->PostTask(FROM_HERE,
885                                    new RecursiveTask(2, &order, 2, false));
886   MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
887 
888   MessageLoop::current()->Run();
889 
890   // FIFO order.
891   ASSERT_EQ(14U, order.size());
892   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
893   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
894   EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
895   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
896   EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
897   EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
898   EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
899   EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
900   EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
901   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
902   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
903   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
904   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
905   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
906 }
907 
RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type)908 void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) {
909   MessageLoop loop(message_loop_type);
910 
911   EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
912   TaskList order;
913   MessageLoop::current()->PostTask(FROM_HERE,
914                                    new RecursiveSlowTask(2, &order, 1, false));
915   MessageLoop::current()->PostTask(FROM_HERE,
916                                    new RecursiveSlowTask(2, &order, 2, false));
917   MessageLoop::current()->PostDelayedTask(FROM_HERE,
918                                           new OrderedTasks(&order, 3), 5);
919   MessageLoop::current()->PostDelayedTask(FROM_HERE,
920                                           new QuitTask(&order, 4), 5);
921 
922   MessageLoop::current()->Run();
923 
924   // FIFO order.
925   ASSERT_EQ(16U, order.size());
926   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
927   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
928   EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
929   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
930   EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 1, true));
931   EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 1, false));
932   EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 3, true));
933   EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 3, false));
934   EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
935   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
936   EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 4, true));
937   EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 4, false));
938   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 1, true));
939   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, false));
940   EXPECT_EQ(order[14], TaskItem(RECURSIVE, 2, true));
941   EXPECT_EQ(order[15], TaskItem(RECURSIVE, 2, false));
942 }
943 
RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type)944 void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
945   MessageLoop loop(message_loop_type);
946 
947   TaskList order;
948   MessageLoop::current()->PostTask(FROM_HERE,
949                                    new RecursiveTask(2, &order, 1, true));
950   MessageLoop::current()->PostTask(FROM_HERE,
951                                    new RecursiveTask(2, &order, 2, true));
952   MessageLoop::current()->PostTask(FROM_HERE,
953                                    new QuitTask(&order, 3));
954 
955   MessageLoop::current()->Run();
956 
957   // FIFO order.
958   ASSERT_EQ(14U, order.size());
959   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
960   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
961   EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
962   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
963   EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
964   EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
965   EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
966   EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
967   EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
968   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
969   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
970   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
971   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
972   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
973 }
974 
975 #if defined(OS_WIN)
976 // TODO(darin): These tests need to be ported since they test critical
977 // message loop functionality.
978 
979 // A side effect of this test is the generation a beep. Sorry.
RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type)980 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
981   MessageLoop loop(message_loop_type);
982 
983   Thread worker("RecursiveDenial2_worker");
984   Thread::Options options;
985   options.message_loop_type = message_loop_type;
986   ASSERT_EQ(true, worker.StartWithOptions(options));
987   TaskList order;
988   base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
989   worker.message_loop()->PostTask(FROM_HERE,
990                                   new Recursive2Tasks(MessageLoop::current(),
991                                                       event,
992                                                       true,
993                                                       &order,
994                                                       false));
995   // Let the other thread execute.
996   WaitForSingleObject(event, INFINITE);
997   MessageLoop::current()->Run();
998 
999   ASSERT_EQ(order.size(), 17);
1000   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
1001   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
1002   EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
1003   EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
1004   EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
1005   EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
1006   // When EndDialogTask is processed, the window is already dismissed, hence no
1007   // "end" entry.
1008   EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
1009   EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
1010   EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
1011   EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
1012   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
1013   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
1014   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
1015   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
1016   EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
1017   EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
1018   EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
1019 }
1020 
1021 // A side effect of this test is the generation a beep. Sorry.  This test also
1022 // needs to process windows messages on the current thread.
RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type)1023 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
1024   MessageLoop loop(message_loop_type);
1025 
1026   Thread worker("RecursiveSupport2_worker");
1027   Thread::Options options;
1028   options.message_loop_type = message_loop_type;
1029   ASSERT_EQ(true, worker.StartWithOptions(options));
1030   TaskList order;
1031   base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
1032   worker.message_loop()->PostTask(FROM_HERE,
1033                                   new Recursive2Tasks(MessageLoop::current(),
1034                                                       event,
1035                                                       false,
1036                                                       &order,
1037                                                       true));
1038   // Let the other thread execute.
1039   WaitForSingleObject(event, INFINITE);
1040   MessageLoop::current()->Run();
1041 
1042   ASSERT_EQ(order.size(), 18);
1043   EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
1044   EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
1045   EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
1046   // Note that this executes in the MessageBox modal loop.
1047   EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
1048   EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
1049   EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
1050   EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
1051   EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
1052   /* The order can subtly change here. The reason is that when RecursiveTask(1)
1053      is called in the main thread, if it is faster than getting to the
1054      PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
1055      change. We don't care anyway that the order isn't correct.
1056   EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
1057   EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
1058   EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
1059   EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
1060   */
1061   EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
1062   EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
1063   EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
1064   EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
1065   EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
1066   EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
1067 }
1068 
1069 #endif  // defined(OS_WIN)
1070 
1071 class TaskThatPumps : public OrderedTasks {
1072  public:
TaskThatPumps(TaskList * order,int cookie)1073   TaskThatPumps(TaskList* order, int cookie)
1074       : OrderedTasks(order, PUMPS, cookie) {
1075   }
1076 
Run()1077   virtual void Run() {
1078     RunStart();
1079     bool old_state = MessageLoop::current()->NestableTasksAllowed();
1080     MessageLoop::current()->SetNestableTasksAllowed(true);
1081     MessageLoop::current()->RunAllPending();
1082     MessageLoop::current()->SetNestableTasksAllowed(old_state);
1083     RunEnd();
1084   }
1085 };
1086 
1087 // Tests that non nestable tasks run in FIFO if there are no nested loops.
RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type)1088 void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
1089   MessageLoop loop(message_loop_type);
1090 
1091   TaskList order;
1092 
1093   Task* task = new OrderedTasks(&order, 1);
1094   MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1095   MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
1096   MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
1097   MessageLoop::current()->Run();
1098 
1099   // FIFO order.
1100   ASSERT_EQ(6U, order.size());
1101   EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
1102   EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
1103   EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
1104   EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
1105   EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
1106   EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
1107 }
1108 
1109 // Tests that non nestable tasks don't run when there's code in the call stack.
RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,bool use_delayed)1110 void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
1111                                      bool use_delayed) {
1112   MessageLoop loop(message_loop_type);
1113 
1114   TaskList order;
1115 
1116   MessageLoop::current()->PostTask(FROM_HERE,
1117                                    new TaskThatPumps(&order, 1));
1118   Task* task = new OrderedTasks(&order, 2);
1119   if (use_delayed) {
1120     MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
1121   } else {
1122     MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
1123   }
1124   MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
1125   MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
1126   MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
1127   Task* non_nestable_quit = new QuitTask(&order, 6);
1128   if (use_delayed) {
1129     MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
1130                                                        non_nestable_quit,
1131                                                        2);
1132   } else {
1133     MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
1134   }
1135 
1136   MessageLoop::current()->Run();
1137 
1138   // FIFO order.
1139   ASSERT_EQ(12U, order.size());
1140   EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
1141   EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
1142   EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
1143   EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
1144   EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
1145   EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
1146   EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
1147   EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
1148   EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
1149   EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
1150   EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
1151   EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
1152 }
1153 
1154 #if defined(OS_WIN)
1155 
1156 class DispatcherImpl : public MessageLoopForUI::Dispatcher {
1157  public:
DispatcherImpl()1158   DispatcherImpl() : dispatch_count_(0) {}
1159 
Dispatch(const MSG & msg)1160   virtual bool Dispatch(const MSG& msg) {
1161     ::TranslateMessage(&msg);
1162     ::DispatchMessage(&msg);
1163     // Do not count WM_TIMER since it is not what we post and it will cause
1164     // flakiness.
1165     if (msg.message != WM_TIMER)
1166       ++dispatch_count_;
1167     // We treat WM_LBUTTONUP as the last message.
1168     return msg.message != WM_LBUTTONUP;
1169   }
1170 
1171   int dispatch_count_;
1172 };
1173 
RunTest_Dispatcher(MessageLoop::Type message_loop_type)1174 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
1175   MessageLoop loop(message_loop_type);
1176 
1177   class MyTask : public Task {
1178   public:
1179     virtual void Run() {
1180       PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1181       PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1182     }
1183   };
1184   Task* task = new MyTask();
1185   MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1186   DispatcherImpl dispatcher;
1187   MessageLoopForUI::current()->Run(&dispatcher);
1188   ASSERT_EQ(2, dispatcher.dispatch_count_);
1189 }
1190 
MsgFilterProc(int code,WPARAM wparam,LPARAM lparam)1191 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
1192   if (code == base::MessagePumpForUI::kMessageFilterCode) {
1193     MSG* msg = reinterpret_cast<MSG*>(lparam);
1194     if (msg->message == WM_LBUTTONDOWN)
1195       return TRUE;
1196   }
1197   return FALSE;
1198 }
1199 
RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type)1200 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
1201   MessageLoop loop(message_loop_type);
1202 
1203   class MyTask : public Task {
1204   public:
1205     virtual void Run() {
1206       PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
1207       PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
1208     }
1209   };
1210   Task* task = new MyTask();
1211   MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
1212   HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
1213                                     MsgFilterProc,
1214                                     NULL,
1215                                     GetCurrentThreadId());
1216   DispatcherImpl dispatcher;
1217   MessageLoopForUI::current()->Run(&dispatcher);
1218   ASSERT_EQ(1, dispatcher.dispatch_count_);
1219   UnhookWindowsHookEx(msg_hook);
1220 }
1221 
1222 class TestIOHandler : public MessageLoopForIO::IOHandler {
1223  public:
1224   TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
1225 
1226   virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
1227                              DWORD bytes_transfered, DWORD error);
1228 
1229   void Init();
1230   void WaitForIO();
context()1231   OVERLAPPED* context() { return &context_.overlapped; }
size()1232   DWORD size() { return sizeof(buffer_); }
1233 
1234  private:
1235   char buffer_[48];
1236   MessageLoopForIO::IOContext context_;
1237   HANDLE signal_;
1238   base::win::ScopedHandle file_;
1239   bool wait_;
1240 };
1241 
TestIOHandler(const wchar_t * name,HANDLE signal,bool wait)1242 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
1243     : signal_(signal), wait_(wait) {
1244   memset(buffer_, 0, sizeof(buffer_));
1245   memset(&context_, 0, sizeof(context_));
1246   context_.handler = this;
1247 
1248   file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
1249                        FILE_FLAG_OVERLAPPED, NULL));
1250   EXPECT_TRUE(file_.IsValid());
1251 }
1252 
Init()1253 void TestIOHandler::Init() {
1254   MessageLoopForIO::current()->RegisterIOHandler(file_, this);
1255 
1256   DWORD read;
1257   EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
1258   EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
1259   if (wait_)
1260     WaitForIO();
1261 }
1262 
OnIOCompleted(MessageLoopForIO::IOContext * context,DWORD bytes_transfered,DWORD error)1263 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
1264                                   DWORD bytes_transfered, DWORD error) {
1265   ASSERT_TRUE(context == &context_);
1266   ASSERT_TRUE(SetEvent(signal_));
1267 }
1268 
WaitForIO()1269 void TestIOHandler::WaitForIO() {
1270   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
1271   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
1272 }
1273 
1274 class IOHandlerTask : public Task {
1275  public:
IOHandlerTask(TestIOHandler * handler)1276   explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
Run()1277   virtual void Run() {
1278     handler_->Init();
1279   }
1280 
1281  private:
1282   TestIOHandler* handler_;
1283 };
1284 
RunTest_IOHandler()1285 void RunTest_IOHandler() {
1286   base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
1287   ASSERT_TRUE(callback_called.IsValid());
1288 
1289   const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
1290   base::win::ScopedHandle server(
1291       CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1292   ASSERT_TRUE(server.IsValid());
1293 
1294   Thread thread("IOHandler test");
1295   Thread::Options options;
1296   options.message_loop_type = MessageLoop::TYPE_IO;
1297   ASSERT_TRUE(thread.StartWithOptions(options));
1298 
1299   MessageLoop* thread_loop = thread.message_loop();
1300   ASSERT_TRUE(NULL != thread_loop);
1301 
1302   TestIOHandler handler(kPipeName, callback_called, false);
1303   IOHandlerTask* task = new IOHandlerTask(&handler);
1304   thread_loop->PostTask(FROM_HERE, task);
1305   Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
1306 
1307   const char buffer[] = "Hello there!";
1308   DWORD written;
1309   EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
1310 
1311   DWORD result = WaitForSingleObject(callback_called, 1000);
1312   EXPECT_EQ(WAIT_OBJECT_0, result);
1313 
1314   thread.Stop();
1315 }
1316 
RunTest_WaitForIO()1317 void RunTest_WaitForIO() {
1318   base::win::ScopedHandle callback1_called(
1319       CreateEvent(NULL, TRUE, FALSE, NULL));
1320   base::win::ScopedHandle callback2_called(
1321       CreateEvent(NULL, TRUE, FALSE, NULL));
1322   ASSERT_TRUE(callback1_called.IsValid());
1323   ASSERT_TRUE(callback2_called.IsValid());
1324 
1325   const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
1326   const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
1327   base::win::ScopedHandle server1(
1328       CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1329   base::win::ScopedHandle server2(
1330       CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
1331   ASSERT_TRUE(server1.IsValid());
1332   ASSERT_TRUE(server2.IsValid());
1333 
1334   Thread thread("IOHandler test");
1335   Thread::Options options;
1336   options.message_loop_type = MessageLoop::TYPE_IO;
1337   ASSERT_TRUE(thread.StartWithOptions(options));
1338 
1339   MessageLoop* thread_loop = thread.message_loop();
1340   ASSERT_TRUE(NULL != thread_loop);
1341 
1342   TestIOHandler handler1(kPipeName1, callback1_called, false);
1343   TestIOHandler handler2(kPipeName2, callback2_called, true);
1344   IOHandlerTask* task1 = new IOHandlerTask(&handler1);
1345   IOHandlerTask* task2 = new IOHandlerTask(&handler2);
1346   thread_loop->PostTask(FROM_HERE, task1);
1347   Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
1348   thread_loop->PostTask(FROM_HERE, task2);
1349   Sleep(100);
1350 
1351   // At this time handler1 is waiting to be called, and the thread is waiting
1352   // on the Init method of handler2, filtering only handler2 callbacks.
1353 
1354   const char buffer[] = "Hello there!";
1355   DWORD written;
1356   EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
1357   Sleep(200);
1358   EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
1359       "handler1 has not been called";
1360 
1361   EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
1362 
1363   HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
1364   DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
1365   EXPECT_EQ(WAIT_OBJECT_0, result);
1366 
1367   thread.Stop();
1368 }
1369 
1370 #endif  // defined(OS_WIN)
1371 
1372 }  // namespace
1373 
1374 //-----------------------------------------------------------------------------
1375 // Each test is run against each type of MessageLoop.  That way we are sure
1376 // that message loops work properly in all configurations.  Of course, in some
1377 // cases, a unit test may only be for a particular type of loop.
1378 
TEST(MessageLoopTest,PostTask)1379 TEST(MessageLoopTest, PostTask) {
1380   RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
1381   RunTest_PostTask(MessageLoop::TYPE_UI);
1382   RunTest_PostTask(MessageLoop::TYPE_IO);
1383 }
1384 
TEST(MessageLoopTest,PostTask_SEH)1385 TEST(MessageLoopTest, PostTask_SEH) {
1386   RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
1387   RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
1388   RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
1389 }
1390 
TEST(MessageLoopTest,PostDelayedTask_Basic)1391 TEST(MessageLoopTest, PostDelayedTask_Basic) {
1392   RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
1393   RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
1394   RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
1395 }
1396 
TEST(MessageLoopTest,PostDelayedTask_InDelayOrder)1397 TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
1398   RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
1399   RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
1400   RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
1401 }
1402 
TEST(MessageLoopTest,PostDelayedTask_InPostOrder)1403 TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
1404   RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
1405   RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
1406   RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
1407 }
1408 
TEST(MessageLoopTest,PostDelayedTask_InPostOrder_2)1409 TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
1410   RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
1411   RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
1412   RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
1413 }
1414 
TEST(MessageLoopTest,PostDelayedTask_InPostOrder_3)1415 TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
1416   RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
1417   RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
1418   RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
1419 }
1420 
TEST(MessageLoopTest,PostDelayedTask_SharedTimer)1421 TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
1422   RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
1423   RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
1424   RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
1425 }
1426 
1427 #if defined(OS_WIN)
TEST(MessageLoopTest,PostDelayedTask_SharedTimer_SubPump)1428 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
1429   RunTest_PostDelayedTask_SharedTimer_SubPump();
1430 }
1431 #endif
1432 
1433 // TODO(darin): MessageLoop does not support deleting all tasks in the
1434 // destructor.
1435 // Fails, http://crbug.com/50272.
TEST(MessageLoopTest,FAILS_EnsureTaskDeletion)1436 TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
1437   RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
1438   RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
1439   RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
1440 }
1441 
1442 // TODO(darin): MessageLoop does not support deleting all tasks in the
1443 // destructor.
1444 // Fails, http://crbug.com/50272.
TEST(MessageLoopTest,FAILS_EnsureTaskDeletion_Chain)1445 TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
1446   RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
1447   RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
1448   RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
1449 }
1450 
1451 #if defined(OS_WIN)
TEST(MessageLoopTest,Crasher)1452 TEST(MessageLoopTest, Crasher) {
1453   RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
1454   RunTest_Crasher(MessageLoop::TYPE_UI);
1455   RunTest_Crasher(MessageLoop::TYPE_IO);
1456 }
1457 
TEST(MessageLoopTest,CrasherNasty)1458 TEST(MessageLoopTest, CrasherNasty) {
1459   RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
1460   RunTest_CrasherNasty(MessageLoop::TYPE_UI);
1461   RunTest_CrasherNasty(MessageLoop::TYPE_IO);
1462 }
1463 #endif  // defined(OS_WIN)
1464 
TEST(MessageLoopTest,Nesting)1465 TEST(MessageLoopTest, Nesting) {
1466   RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
1467   RunTest_Nesting(MessageLoop::TYPE_UI);
1468   RunTest_Nesting(MessageLoop::TYPE_IO);
1469 }
1470 
TEST(MessageLoopTest,RecursiveDenial1)1471 TEST(MessageLoopTest, RecursiveDenial1) {
1472   RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
1473   RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
1474   RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
1475 }
1476 
TEST(MessageLoopTest,RecursiveDenial3)1477 TEST(MessageLoopTest, RecursiveDenial3) {
1478   RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT);
1479   RunTest_RecursiveDenial3(MessageLoop::TYPE_UI);
1480   RunTest_RecursiveDenial3(MessageLoop::TYPE_IO);
1481 }
1482 
TEST(MessageLoopTest,RecursiveSupport1)1483 TEST(MessageLoopTest, RecursiveSupport1) {
1484   RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
1485   RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
1486   RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
1487 }
1488 
1489 #if defined(OS_WIN)
1490 // This test occasionally hangs http://crbug.com/44567
TEST(MessageLoopTest,DISABLED_RecursiveDenial2)1491 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
1492   RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
1493   RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
1494   RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
1495 }
1496 
TEST(MessageLoopTest,RecursiveSupport2)1497 TEST(MessageLoopTest, RecursiveSupport2) {
1498   // This test requires a UI loop
1499   RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
1500 }
1501 #endif  // defined(OS_WIN)
1502 
TEST(MessageLoopTest,NonNestableWithNoNesting)1503 TEST(MessageLoopTest, NonNestableWithNoNesting) {
1504   RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
1505   RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
1506   RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
1507 }
1508 
TEST(MessageLoopTest,NonNestableInNestedLoop)1509 TEST(MessageLoopTest, NonNestableInNestedLoop) {
1510   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
1511   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
1512   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
1513 }
1514 
TEST(MessageLoopTest,NonNestableDelayedInNestedLoop)1515 TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
1516   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
1517   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
1518   RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
1519 }
1520 
1521 class DummyTask : public Task {
1522  public:
DummyTask(int num_tasks)1523   explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}
1524 
Run()1525   virtual void Run() {
1526     if (num_tasks_ > 1) {
1527       MessageLoop::current()->PostTask(
1528           FROM_HERE,
1529           new DummyTask(num_tasks_ - 1));
1530     } else {
1531       MessageLoop::current()->Quit();
1532     }
1533   }
1534 
1535  private:
1536   const int num_tasks_;
1537 };
1538 
1539 class DummyTaskObserver : public MessageLoop::TaskObserver {
1540  public:
DummyTaskObserver(int num_tasks)1541   explicit DummyTaskObserver(int num_tasks)
1542       : num_tasks_started_(0),
1543         num_tasks_processed_(0),
1544         num_tasks_(num_tasks) {}
1545 
~DummyTaskObserver()1546   virtual ~DummyTaskObserver() {}
1547 
WillProcessTask(const Task * task)1548   virtual void WillProcessTask(const Task* task) {
1549     num_tasks_started_++;
1550     EXPECT_TRUE(task != NULL);
1551     EXPECT_LE(num_tasks_started_, num_tasks_);
1552     EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
1553   }
1554 
DidProcessTask(const Task * task)1555   virtual void DidProcessTask(const Task* task) {
1556     num_tasks_processed_++;
1557     EXPECT_TRUE(task != NULL);
1558     EXPECT_LE(num_tasks_started_, num_tasks_);
1559     EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
1560   }
1561 
num_tasks_started() const1562   int num_tasks_started() const { return num_tasks_started_; }
num_tasks_processed() const1563   int num_tasks_processed() const { return num_tasks_processed_; }
1564 
1565  private:
1566   int num_tasks_started_;
1567   int num_tasks_processed_;
1568   const int num_tasks_;
1569 
1570   DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
1571 };
1572 
TEST(MessageLoopTest,TaskObserver)1573 TEST(MessageLoopTest, TaskObserver) {
1574   const int kNumTasks = 6;
1575   DummyTaskObserver observer(kNumTasks);
1576 
1577   MessageLoop loop;
1578   loop.AddTaskObserver(&observer);
1579   loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
1580   loop.Run();
1581   loop.RemoveTaskObserver(&observer);
1582 
1583   EXPECT_EQ(kNumTasks, observer.num_tasks_started());
1584   EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
1585 }
1586 
1587 #if defined(OS_WIN)
TEST(MessageLoopTest,Dispatcher)1588 TEST(MessageLoopTest, Dispatcher) {
1589   // This test requires a UI loop
1590   RunTest_Dispatcher(MessageLoop::TYPE_UI);
1591 }
1592 
TEST(MessageLoopTest,DispatcherWithMessageHook)1593 TEST(MessageLoopTest, DispatcherWithMessageHook) {
1594   // This test requires a UI loop
1595   RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
1596 }
1597 
TEST(MessageLoopTest,IOHandler)1598 TEST(MessageLoopTest, IOHandler) {
1599   RunTest_IOHandler();
1600 }
1601 
TEST(MessageLoopTest,WaitForIO)1602 TEST(MessageLoopTest, WaitForIO) {
1603   RunTest_WaitForIO();
1604 }
1605 
TEST(MessageLoopTest,HighResolutionTimer)1606 TEST(MessageLoopTest, HighResolutionTimer) {
1607   MessageLoop loop;
1608 
1609   const int kFastTimerMs = 5;
1610   const int kSlowTimerMs = 100;
1611 
1612   EXPECT_FALSE(loop.high_resolution_timers_enabled());
1613 
1614   // Post a fast task to enable the high resolution timers.
1615   loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
1616   loop.Run();
1617   EXPECT_TRUE(loop.high_resolution_timers_enabled());
1618 
1619   // Post a slow task and verify high resolution timers
1620   // are still enabled.
1621   loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1622   loop.Run();
1623   EXPECT_TRUE(loop.high_resolution_timers_enabled());
1624 
1625   // Wait for a while so that high-resolution mode elapses.
1626   Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);
1627 
1628   // Post a slow task to disable the high resolution timers.
1629   loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
1630   loop.Run();
1631   EXPECT_FALSE(loop.high_resolution_timers_enabled());
1632 }
1633 
1634 #endif  // defined(OS_WIN)
1635 
1636 #if defined(OS_POSIX) && !defined(OS_NACL)
1637 
1638 namespace {
1639 
1640 class QuitDelegate : public base::MessagePumpLibevent::Watcher {
1641  public:
OnFileCanWriteWithoutBlocking(int fd)1642   virtual void OnFileCanWriteWithoutBlocking(int fd) {
1643     MessageLoop::current()->Quit();
1644   }
OnFileCanReadWithoutBlocking(int fd)1645   virtual void OnFileCanReadWithoutBlocking(int fd) {
1646     MessageLoop::current()->Quit();
1647   }
1648 };
1649 
TEST(MessageLoopTest,FileDescriptorWatcherOutlivesMessageLoop)1650 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
1651   // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
1652   // This could happen when people use the Singleton pattern or atexit.
1653 
1654   // Create a file descriptor.  Doesn't need to be readable or writable,
1655   // as we don't need to actually get any notifications.
1656   // pipe() is just the easiest way to do it.
1657   int pipefds[2];
1658   int err = pipe(pipefds);
1659   ASSERT_EQ(0, err);
1660   int fd = pipefds[1];
1661   {
1662     // Arrange for controller to live longer than message loop.
1663     base::MessagePumpLibevent::FileDescriptorWatcher controller;
1664     {
1665       MessageLoopForIO message_loop;
1666 
1667       QuitDelegate delegate;
1668       message_loop.WatchFileDescriptor(fd,
1669           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1670       // and don't run the message loop, just destroy it.
1671     }
1672   }
1673   if (HANDLE_EINTR(close(pipefds[0])) < 0)
1674     PLOG(ERROR) << "close";
1675   if (HANDLE_EINTR(close(pipefds[1])) < 0)
1676     PLOG(ERROR) << "close";
1677 }
1678 
TEST(MessageLoopTest,FileDescriptorWatcherDoubleStop)1679 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
1680   // Verify that it's ok to call StopWatchingFileDescriptor().
1681   // (Errors only showed up in valgrind.)
1682   int pipefds[2];
1683   int err = pipe(pipefds);
1684   ASSERT_EQ(0, err);
1685   int fd = pipefds[1];
1686   {
1687     // Arrange for message loop to live longer than controller.
1688     MessageLoopForIO message_loop;
1689     {
1690       base::MessagePumpLibevent::FileDescriptorWatcher controller;
1691 
1692       QuitDelegate delegate;
1693       message_loop.WatchFileDescriptor(fd,
1694           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
1695       controller.StopWatchingFileDescriptor();
1696     }
1697   }
1698   if (HANDLE_EINTR(close(pipefds[0])) < 0)
1699     PLOG(ERROR) << "close";
1700   if (HANDLE_EINTR(close(pipefds[1])) < 0)
1701     PLOG(ERROR) << "close";
1702 }
1703 
1704 }  // namespace
1705 
1706 #endif  // defined(OS_POSIX) && !defined(OS_NACL)
1707 
1708 namespace {
1709 class RunAtDestructionTask : public Task {
1710  public:
RunAtDestructionTask(bool * task_destroyed,bool * destruction_observer_called)1711   RunAtDestructionTask(bool* task_destroyed, bool* destruction_observer_called)
1712       : task_destroyed_(task_destroyed),
1713         destruction_observer_called_(destruction_observer_called) {
1714   }
~RunAtDestructionTask()1715   ~RunAtDestructionTask() {
1716     EXPECT_FALSE(*destruction_observer_called_);
1717     *task_destroyed_ = true;
1718   }
Run()1719   virtual void Run() {
1720     // This task should never run.
1721     ADD_FAILURE();
1722   }
1723  private:
1724   bool* task_destroyed_;
1725   bool* destruction_observer_called_;
1726 };
1727 
1728 class MLDestructionObserver : public MessageLoop::DestructionObserver {
1729  public:
MLDestructionObserver(bool * task_destroyed,bool * destruction_observer_called)1730   MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
1731       : task_destroyed_(task_destroyed),
1732         destruction_observer_called_(destruction_observer_called),
1733         task_destroyed_before_message_loop_(false) {
1734   }
WillDestroyCurrentMessageLoop()1735   virtual void WillDestroyCurrentMessageLoop() {
1736     task_destroyed_before_message_loop_ = *task_destroyed_;
1737     *destruction_observer_called_ = true;
1738   }
task_destroyed_before_message_loop() const1739   bool task_destroyed_before_message_loop() const {
1740     return task_destroyed_before_message_loop_;
1741   }
1742  private:
1743   bool* task_destroyed_;
1744   bool* destruction_observer_called_;
1745   bool task_destroyed_before_message_loop_;
1746 };
1747 
1748 }  // namespace
1749 
TEST(MessageLoopTest,DestructionObserverTest)1750 TEST(MessageLoopTest, DestructionObserverTest) {
1751   // Verify that the destruction observer gets called at the very end (after
1752   // all the pending tasks have been destroyed).
1753   MessageLoop* loop = new MessageLoop;
1754   const int kDelayMS = 100;
1755 
1756   bool task_destroyed = false;
1757   bool destruction_observer_called = false;
1758 
1759   MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
1760   loop->AddDestructionObserver(&observer);
1761   loop->PostDelayedTask(
1762       FROM_HERE,
1763       new RunAtDestructionTask(&task_destroyed, &destruction_observer_called),
1764       kDelayMS);
1765   delete loop;
1766   EXPECT_TRUE(observer.task_destroyed_before_message_loop());
1767   // The task should have been destroyed when we deleted the loop.
1768   EXPECT_TRUE(task_destroyed);
1769   EXPECT_TRUE(destruction_observer_called);
1770 }
1771