• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/Lexer.h"
26 #include "clang/Sema/SemaDiagnostic.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cstring>
34 using namespace clang;
35 
36 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
37 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
38 /// but also int expressions which are produced by things like comparisons in
39 /// C.
isKnownToHaveBooleanValue() const40 bool Expr::isKnownToHaveBooleanValue() const {
41   const Expr *E = IgnoreParens();
42 
43   // If this value has _Bool type, it is obvious 0/1.
44   if (E->getType()->isBooleanType()) return true;
45   // If this is a non-scalar-integer type, we don't care enough to try.
46   if (!E->getType()->isIntegralOrEnumerationType()) return false;
47 
48   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
49     switch (UO->getOpcode()) {
50     case UO_Plus:
51       return UO->getSubExpr()->isKnownToHaveBooleanValue();
52     default:
53       return false;
54     }
55   }
56 
57   // Only look through implicit casts.  If the user writes
58   // '(int) (a && b)' treat it as an arbitrary int.
59   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
60     return CE->getSubExpr()->isKnownToHaveBooleanValue();
61 
62   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
63     switch (BO->getOpcode()) {
64     default: return false;
65     case BO_LT:   // Relational operators.
66     case BO_GT:
67     case BO_LE:
68     case BO_GE:
69     case BO_EQ:   // Equality operators.
70     case BO_NE:
71     case BO_LAnd: // AND operator.
72     case BO_LOr:  // Logical OR operator.
73       return true;
74 
75     case BO_And:  // Bitwise AND operator.
76     case BO_Xor:  // Bitwise XOR operator.
77     case BO_Or:   // Bitwise OR operator.
78       // Handle things like (x==2)|(y==12).
79       return BO->getLHS()->isKnownToHaveBooleanValue() &&
80              BO->getRHS()->isKnownToHaveBooleanValue();
81 
82     case BO_Comma:
83     case BO_Assign:
84       return BO->getRHS()->isKnownToHaveBooleanValue();
85     }
86   }
87 
88   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
89     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
90            CO->getFalseExpr()->isKnownToHaveBooleanValue();
91 
92   return false;
93 }
94 
95 // Amusing macro metaprogramming hack: check whether a class provides
96 // a more specific implementation of getExprLoc().
97 //
98 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
99 namespace {
100   /// This implementation is used when a class provides a custom
101   /// implementation of getExprLoc.
102   template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)103   SourceLocation getExprLocImpl(const Expr *expr,
104                                 SourceLocation (T::*v)() const) {
105     return static_cast<const E*>(expr)->getExprLoc();
106   }
107 
108   /// This implementation is used when a class doesn't provide
109   /// a custom implementation of getExprLoc.  Overload resolution
110   /// should pick it over the implementation above because it's
111   /// more specialized according to function template partial ordering.
112   template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)113   SourceLocation getExprLocImpl(const Expr *expr,
114                                 SourceLocation (Expr::*v)() const) {
115     return static_cast<const E*>(expr)->getLocStart();
116   }
117 }
118 
getExprLoc() const119 SourceLocation Expr::getExprLoc() const {
120   switch (getStmtClass()) {
121   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
122 #define ABSTRACT_STMT(type)
123 #define STMT(type, base) \
124   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
125 #define EXPR(type, base) \
126   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
127 #include "clang/AST/StmtNodes.inc"
128   }
129   llvm_unreachable("unknown statement kind");
130 }
131 
132 //===----------------------------------------------------------------------===//
133 // Primary Expressions.
134 //===----------------------------------------------------------------------===//
135 
136 /// \brief Compute the type-, value-, and instantiation-dependence of a
137 /// declaration reference
138 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)139 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
140                                      bool &TypeDependent,
141                                      bool &ValueDependent,
142                                      bool &InstantiationDependent) {
143   TypeDependent = false;
144   ValueDependent = false;
145   InstantiationDependent = false;
146 
147   // (TD) C++ [temp.dep.expr]p3:
148   //   An id-expression is type-dependent if it contains:
149   //
150   // and
151   //
152   // (VD) C++ [temp.dep.constexpr]p2:
153   //  An identifier is value-dependent if it is:
154 
155   //  (TD)  - an identifier that was declared with dependent type
156   //  (VD)  - a name declared with a dependent type,
157   if (T->isDependentType()) {
158     TypeDependent = true;
159     ValueDependent = true;
160     InstantiationDependent = true;
161     return;
162   } else if (T->isInstantiationDependentType()) {
163     InstantiationDependent = true;
164   }
165 
166   //  (TD)  - a conversion-function-id that specifies a dependent type
167   if (D->getDeclName().getNameKind()
168                                 == DeclarationName::CXXConversionFunctionName) {
169     QualType T = D->getDeclName().getCXXNameType();
170     if (T->isDependentType()) {
171       TypeDependent = true;
172       ValueDependent = true;
173       InstantiationDependent = true;
174       return;
175     }
176 
177     if (T->isInstantiationDependentType())
178       InstantiationDependent = true;
179   }
180 
181   //  (VD)  - the name of a non-type template parameter,
182   if (isa<NonTypeTemplateParmDecl>(D)) {
183     ValueDependent = true;
184     InstantiationDependent = true;
185     return;
186   }
187 
188   //  (VD) - a constant with integral or enumeration type and is
189   //         initialized with an expression that is value-dependent.
190   //  (VD) - a constant with literal type and is initialized with an
191   //         expression that is value-dependent [C++11].
192   //  (VD) - FIXME: Missing from the standard:
193   //       -  an entity with reference type and is initialized with an
194   //          expression that is value-dependent [C++11]
195   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
196     if ((Ctx.getLangOpts().CPlusPlus0x ?
197            Var->getType()->isLiteralType() :
198            Var->getType()->isIntegralOrEnumerationType()) &&
199         (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
200          Var->getType()->isReferenceType())) {
201       if (const Expr *Init = Var->getAnyInitializer())
202         if (Init->isValueDependent()) {
203           ValueDependent = true;
204           InstantiationDependent = true;
205         }
206     }
207 
208     // (VD) - FIXME: Missing from the standard:
209     //      -  a member function or a static data member of the current
210     //         instantiation
211     if (Var->isStaticDataMember() &&
212         Var->getDeclContext()->isDependentContext()) {
213       ValueDependent = true;
214       InstantiationDependent = true;
215     }
216 
217     return;
218   }
219 
220   // (VD) - FIXME: Missing from the standard:
221   //      -  a member function or a static data member of the current
222   //         instantiation
223   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
224     ValueDependent = true;
225     InstantiationDependent = true;
226   }
227 }
228 
computeDependence(ASTContext & Ctx)229 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
230   bool TypeDependent = false;
231   bool ValueDependent = false;
232   bool InstantiationDependent = false;
233   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
234                            ValueDependent, InstantiationDependent);
235 
236   // (TD) C++ [temp.dep.expr]p3:
237   //   An id-expression is type-dependent if it contains:
238   //
239   // and
240   //
241   // (VD) C++ [temp.dep.constexpr]p2:
242   //  An identifier is value-dependent if it is:
243   if (!TypeDependent && !ValueDependent &&
244       hasExplicitTemplateArgs() &&
245       TemplateSpecializationType::anyDependentTemplateArguments(
246                                                             getTemplateArgs(),
247                                                        getNumTemplateArgs(),
248                                                       InstantiationDependent)) {
249     TypeDependent = true;
250     ValueDependent = true;
251     InstantiationDependent = true;
252   }
253 
254   ExprBits.TypeDependent = TypeDependent;
255   ExprBits.ValueDependent = ValueDependent;
256   ExprBits.InstantiationDependent = InstantiationDependent;
257 
258   // Is the declaration a parameter pack?
259   if (getDecl()->isParameterPack())
260     ExprBits.ContainsUnexpandedParameterPack = true;
261 }
262 
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)263 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
264                          NestedNameSpecifierLoc QualifierLoc,
265                          SourceLocation TemplateKWLoc,
266                          ValueDecl *D, bool RefersToEnclosingLocal,
267                          const DeclarationNameInfo &NameInfo,
268                          NamedDecl *FoundD,
269                          const TemplateArgumentListInfo *TemplateArgs,
270                          QualType T, ExprValueKind VK)
271   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
272     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
273   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
274   if (QualifierLoc)
275     getInternalQualifierLoc() = QualifierLoc;
276   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
277   if (FoundD)
278     getInternalFoundDecl() = FoundD;
279   DeclRefExprBits.HasTemplateKWAndArgsInfo
280     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
281   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
282   if (TemplateArgs) {
283     bool Dependent = false;
284     bool InstantiationDependent = false;
285     bool ContainsUnexpandedParameterPack = false;
286     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
287                                                Dependent,
288                                                InstantiationDependent,
289                                                ContainsUnexpandedParameterPack);
290     if (InstantiationDependent)
291       setInstantiationDependent(true);
292   } else if (TemplateKWLoc.isValid()) {
293     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
294   }
295   DeclRefExprBits.HadMultipleCandidates = 0;
296 
297   computeDependence(Ctx);
298 }
299 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)300 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
301                                  NestedNameSpecifierLoc QualifierLoc,
302                                  SourceLocation TemplateKWLoc,
303                                  ValueDecl *D,
304                                  bool RefersToEnclosingLocal,
305                                  SourceLocation NameLoc,
306                                  QualType T,
307                                  ExprValueKind VK,
308                                  NamedDecl *FoundD,
309                                  const TemplateArgumentListInfo *TemplateArgs) {
310   return Create(Context, QualifierLoc, TemplateKWLoc, D,
311                 RefersToEnclosingLocal,
312                 DeclarationNameInfo(D->getDeclName(), NameLoc),
313                 T, VK, FoundD, TemplateArgs);
314 }
315 
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)316 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
317                                  NestedNameSpecifierLoc QualifierLoc,
318                                  SourceLocation TemplateKWLoc,
319                                  ValueDecl *D,
320                                  bool RefersToEnclosingLocal,
321                                  const DeclarationNameInfo &NameInfo,
322                                  QualType T,
323                                  ExprValueKind VK,
324                                  NamedDecl *FoundD,
325                                  const TemplateArgumentListInfo *TemplateArgs) {
326   // Filter out cases where the found Decl is the same as the value refenenced.
327   if (D == FoundD)
328     FoundD = 0;
329 
330   std::size_t Size = sizeof(DeclRefExpr);
331   if (QualifierLoc != 0)
332     Size += sizeof(NestedNameSpecifierLoc);
333   if (FoundD)
334     Size += sizeof(NamedDecl *);
335   if (TemplateArgs)
336     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
337   else if (TemplateKWLoc.isValid())
338     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
339 
340   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
341   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
342                                RefersToEnclosingLocal,
343                                NameInfo, FoundD, TemplateArgs, T, VK);
344 }
345 
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)346 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
347                                       bool HasQualifier,
348                                       bool HasFoundDecl,
349                                       bool HasTemplateKWAndArgsInfo,
350                                       unsigned NumTemplateArgs) {
351   std::size_t Size = sizeof(DeclRefExpr);
352   if (HasQualifier)
353     Size += sizeof(NestedNameSpecifierLoc);
354   if (HasFoundDecl)
355     Size += sizeof(NamedDecl *);
356   if (HasTemplateKWAndArgsInfo)
357     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
358 
359   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
360   return new (Mem) DeclRefExpr(EmptyShell());
361 }
362 
getSourceRange() const363 SourceRange DeclRefExpr::getSourceRange() const {
364   SourceRange R = getNameInfo().getSourceRange();
365   if (hasQualifier())
366     R.setBegin(getQualifierLoc().getBeginLoc());
367   if (hasExplicitTemplateArgs())
368     R.setEnd(getRAngleLoc());
369   return R;
370 }
getLocStart() const371 SourceLocation DeclRefExpr::getLocStart() const {
372   if (hasQualifier())
373     return getQualifierLoc().getBeginLoc();
374   return getNameInfo().getLocStart();
375 }
getLocEnd() const376 SourceLocation DeclRefExpr::getLocEnd() const {
377   if (hasExplicitTemplateArgs())
378     return getRAngleLoc();
379   return getNameInfo().getLocEnd();
380 }
381 
382 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
383 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)384 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
385   ASTContext &Context = CurrentDecl->getASTContext();
386 
387   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
388     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
389       return FD->getNameAsString();
390 
391     SmallString<256> Name;
392     llvm::raw_svector_ostream Out(Name);
393 
394     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
395       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
396         Out << "virtual ";
397       if (MD->isStatic())
398         Out << "static ";
399     }
400 
401     PrintingPolicy Policy(Context.getLangOpts());
402     std::string Proto = FD->getQualifiedNameAsString(Policy);
403     llvm::raw_string_ostream POut(Proto);
404 
405     const FunctionDecl *Decl = FD;
406     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
407       Decl = Pattern;
408     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
409     const FunctionProtoType *FT = 0;
410     if (FD->hasWrittenPrototype())
411       FT = dyn_cast<FunctionProtoType>(AFT);
412 
413     POut << "(";
414     if (FT) {
415       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
416         if (i) POut << ", ";
417         std::string Param;
418         Decl->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
419         POut << Param;
420       }
421 
422       if (FT->isVariadic()) {
423         if (FD->getNumParams()) POut << ", ";
424         POut << "...";
425       }
426     }
427     POut << ")";
428 
429     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
430       Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
431       if (ThisQuals.hasConst())
432         POut << " const";
433       if (ThisQuals.hasVolatile())
434         POut << " volatile";
435       RefQualifierKind Ref = MD->getRefQualifier();
436       if (Ref == RQ_LValue)
437         POut << " &";
438       else if (Ref == RQ_RValue)
439         POut << " &&";
440     }
441 
442     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
443     SpecsTy Specs;
444     const DeclContext *Ctx = FD->getDeclContext();
445     while (Ctx && isa<NamedDecl>(Ctx)) {
446       const ClassTemplateSpecializationDecl *Spec
447                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
448       if (Spec && !Spec->isExplicitSpecialization())
449         Specs.push_back(Spec);
450       Ctx = Ctx->getParent();
451     }
452 
453     std::string TemplateParams;
454     llvm::raw_string_ostream TOut(TemplateParams);
455     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
456          I != E; ++I) {
457       const TemplateParameterList *Params
458                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
459       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
460       assert(Params->size() == Args.size());
461       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
462         StringRef Param = Params->getParam(i)->getName();
463         if (Param.empty()) continue;
464         TOut << Param << " = ";
465         Args.get(i).print(Policy, TOut);
466         TOut << ", ";
467       }
468     }
469 
470     FunctionTemplateSpecializationInfo *FSI
471                                           = FD->getTemplateSpecializationInfo();
472     if (FSI && !FSI->isExplicitSpecialization()) {
473       const TemplateParameterList* Params
474                                   = FSI->getTemplate()->getTemplateParameters();
475       const TemplateArgumentList* Args = FSI->TemplateArguments;
476       assert(Params->size() == Args->size());
477       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
478         StringRef Param = Params->getParam(i)->getName();
479         if (Param.empty()) continue;
480         TOut << Param << " = ";
481         Args->get(i).print(Policy, TOut);
482         TOut << ", ";
483       }
484     }
485 
486     TOut.flush();
487     if (!TemplateParams.empty()) {
488       // remove the trailing comma and space
489       TemplateParams.resize(TemplateParams.size() - 2);
490       POut << " [" << TemplateParams << "]";
491     }
492 
493     POut.flush();
494 
495     if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
496       AFT->getResultType().getAsStringInternal(Proto, Policy);
497 
498     Out << Proto;
499 
500     Out.flush();
501     return Name.str().str();
502   }
503   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
504     SmallString<256> Name;
505     llvm::raw_svector_ostream Out(Name);
506     Out << (MD->isInstanceMethod() ? '-' : '+');
507     Out << '[';
508 
509     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
510     // a null check to avoid a crash.
511     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
512       Out << *ID;
513 
514     if (const ObjCCategoryImplDecl *CID =
515         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
516       Out << '(' << *CID << ')';
517 
518     Out <<  ' ';
519     Out << MD->getSelector().getAsString();
520     Out <<  ']';
521 
522     Out.flush();
523     return Name.str().str();
524   }
525   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
526     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
527     return "top level";
528   }
529   return "";
530 }
531 
setIntValue(ASTContext & C,const llvm::APInt & Val)532 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
533   if (hasAllocation())
534     C.Deallocate(pVal);
535 
536   BitWidth = Val.getBitWidth();
537   unsigned NumWords = Val.getNumWords();
538   const uint64_t* Words = Val.getRawData();
539   if (NumWords > 1) {
540     pVal = new (C) uint64_t[NumWords];
541     std::copy(Words, Words + NumWords, pVal);
542   } else if (NumWords == 1)
543     VAL = Words[0];
544   else
545     VAL = 0;
546 }
547 
548 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)549 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
550                        QualType type, SourceLocation l) {
551   return new (C) IntegerLiteral(C, V, type, l);
552 }
553 
554 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)555 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
556   return new (C) IntegerLiteral(Empty);
557 }
558 
559 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)560 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
561                         bool isexact, QualType Type, SourceLocation L) {
562   return new (C) FloatingLiteral(C, V, isexact, Type, L);
563 }
564 
565 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)566 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
567   return new (C) FloatingLiteral(C, Empty);
568 }
569 
570 /// getValueAsApproximateDouble - This returns the value as an inaccurate
571 /// double.  Note that this may cause loss of precision, but is useful for
572 /// debugging dumps, etc.
getValueAsApproximateDouble() const573 double FloatingLiteral::getValueAsApproximateDouble() const {
574   llvm::APFloat V = getValue();
575   bool ignored;
576   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
577             &ignored);
578   return V.convertToDouble();
579 }
580 
mapCharByteWidth(TargetInfo const & target,StringKind k)581 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
582   int CharByteWidth = 0;
583   switch(k) {
584     case Ascii:
585     case UTF8:
586       CharByteWidth = target.getCharWidth();
587       break;
588     case Wide:
589       CharByteWidth = target.getWCharWidth();
590       break;
591     case UTF16:
592       CharByteWidth = target.getChar16Width();
593       break;
594     case UTF32:
595       CharByteWidth = target.getChar32Width();
596       break;
597   }
598   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
599   CharByteWidth /= 8;
600   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
601          && "character byte widths supported are 1, 2, and 4 only");
602   return CharByteWidth;
603 }
604 
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)605 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
606                                      StringKind Kind, bool Pascal, QualType Ty,
607                                      const SourceLocation *Loc,
608                                      unsigned NumStrs) {
609   // Allocate enough space for the StringLiteral plus an array of locations for
610   // any concatenated string tokens.
611   void *Mem = C.Allocate(sizeof(StringLiteral)+
612                          sizeof(SourceLocation)*(NumStrs-1),
613                          llvm::alignOf<StringLiteral>());
614   StringLiteral *SL = new (Mem) StringLiteral(Ty);
615 
616   // OPTIMIZE: could allocate this appended to the StringLiteral.
617   SL->setString(C,Str,Kind,Pascal);
618 
619   SL->TokLocs[0] = Loc[0];
620   SL->NumConcatenated = NumStrs;
621 
622   if (NumStrs != 1)
623     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
624   return SL;
625 }
626 
CreateEmpty(ASTContext & C,unsigned NumStrs)627 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
628   void *Mem = C.Allocate(sizeof(StringLiteral)+
629                          sizeof(SourceLocation)*(NumStrs-1),
630                          llvm::alignOf<StringLiteral>());
631   StringLiteral *SL = new (Mem) StringLiteral(QualType());
632   SL->CharByteWidth = 0;
633   SL->Length = 0;
634   SL->NumConcatenated = NumStrs;
635   return SL;
636 }
637 
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)638 void StringLiteral::setString(ASTContext &C, StringRef Str,
639                               StringKind Kind, bool IsPascal) {
640   //FIXME: we assume that the string data comes from a target that uses the same
641   // code unit size and endianess for the type of string.
642   this->Kind = Kind;
643   this->IsPascal = IsPascal;
644 
645   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
646   assert((Str.size()%CharByteWidth == 0)
647          && "size of data must be multiple of CharByteWidth");
648   Length = Str.size()/CharByteWidth;
649 
650   switch(CharByteWidth) {
651     case 1: {
652       char *AStrData = new (C) char[Length];
653       std::memcpy(AStrData,Str.data(),Str.size());
654       StrData.asChar = AStrData;
655       break;
656     }
657     case 2: {
658       uint16_t *AStrData = new (C) uint16_t[Length];
659       std::memcpy(AStrData,Str.data(),Str.size());
660       StrData.asUInt16 = AStrData;
661       break;
662     }
663     case 4: {
664       uint32_t *AStrData = new (C) uint32_t[Length];
665       std::memcpy(AStrData,Str.data(),Str.size());
666       StrData.asUInt32 = AStrData;
667       break;
668     }
669     default:
670       assert(false && "unsupported CharByteWidth");
671   }
672 }
673 
674 /// getLocationOfByte - Return a source location that points to the specified
675 /// byte of this string literal.
676 ///
677 /// Strings are amazingly complex.  They can be formed from multiple tokens and
678 /// can have escape sequences in them in addition to the usual trigraph and
679 /// escaped newline business.  This routine handles this complexity.
680 ///
681 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const682 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
683                   const LangOptions &Features, const TargetInfo &Target) const {
684   assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
685 
686   // Loop over all of the tokens in this string until we find the one that
687   // contains the byte we're looking for.
688   unsigned TokNo = 0;
689   while (1) {
690     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
691     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
692 
693     // Get the spelling of the string so that we can get the data that makes up
694     // the string literal, not the identifier for the macro it is potentially
695     // expanded through.
696     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
697 
698     // Re-lex the token to get its length and original spelling.
699     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
700     bool Invalid = false;
701     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
702     if (Invalid)
703       return StrTokSpellingLoc;
704 
705     const char *StrData = Buffer.data()+LocInfo.second;
706 
707     // Create a langops struct and enable trigraphs.  This is sufficient for
708     // relexing tokens.
709     LangOptions LangOpts;
710     LangOpts.Trigraphs = true;
711 
712     // Create a lexer starting at the beginning of this token.
713     Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
714                    Buffer.end());
715     Token TheTok;
716     TheLexer.LexFromRawLexer(TheTok);
717 
718     // Use the StringLiteralParser to compute the length of the string in bytes.
719     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
720     unsigned TokNumBytes = SLP.GetStringLength();
721 
722     // If the byte is in this token, return the location of the byte.
723     if (ByteNo < TokNumBytes ||
724         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
725       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
726 
727       // Now that we know the offset of the token in the spelling, use the
728       // preprocessor to get the offset in the original source.
729       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
730     }
731 
732     // Move to the next string token.
733     ++TokNo;
734     ByteNo -= TokNumBytes;
735   }
736 }
737 
738 
739 
740 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
741 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)742 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
743   switch (Op) {
744   case UO_PostInc: return "++";
745   case UO_PostDec: return "--";
746   case UO_PreInc:  return "++";
747   case UO_PreDec:  return "--";
748   case UO_AddrOf:  return "&";
749   case UO_Deref:   return "*";
750   case UO_Plus:    return "+";
751   case UO_Minus:   return "-";
752   case UO_Not:     return "~";
753   case UO_LNot:    return "!";
754   case UO_Real:    return "__real";
755   case UO_Imag:    return "__imag";
756   case UO_Extension: return "__extension__";
757   }
758   llvm_unreachable("Unknown unary operator");
759 }
760 
761 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)762 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
763   switch (OO) {
764   default: llvm_unreachable("No unary operator for overloaded function");
765   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
766   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
767   case OO_Amp:        return UO_AddrOf;
768   case OO_Star:       return UO_Deref;
769   case OO_Plus:       return UO_Plus;
770   case OO_Minus:      return UO_Minus;
771   case OO_Tilde:      return UO_Not;
772   case OO_Exclaim:    return UO_LNot;
773   }
774 }
775 
getOverloadedOperator(Opcode Opc)776 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
777   switch (Opc) {
778   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
779   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
780   case UO_AddrOf: return OO_Amp;
781   case UO_Deref: return OO_Star;
782   case UO_Plus: return OO_Plus;
783   case UO_Minus: return OO_Minus;
784   case UO_Not: return OO_Tilde;
785   case UO_LNot: return OO_Exclaim;
786   default: return OO_None;
787   }
788 }
789 
790 
791 //===----------------------------------------------------------------------===//
792 // Postfix Operators.
793 //===----------------------------------------------------------------------===//
794 
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,Expr ** args,unsigned numargs,QualType t,ExprValueKind VK,SourceLocation rparenloc)795 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
796                    Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
797                    SourceLocation rparenloc)
798   : Expr(SC, t, VK, OK_Ordinary,
799          fn->isTypeDependent(),
800          fn->isValueDependent(),
801          fn->isInstantiationDependent(),
802          fn->containsUnexpandedParameterPack()),
803     NumArgs(numargs) {
804 
805   SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
806   SubExprs[FN] = fn;
807   for (unsigned i = 0; i != numargs; ++i) {
808     if (args[i]->isTypeDependent())
809       ExprBits.TypeDependent = true;
810     if (args[i]->isValueDependent())
811       ExprBits.ValueDependent = true;
812     if (args[i]->isInstantiationDependent())
813       ExprBits.InstantiationDependent = true;
814     if (args[i]->containsUnexpandedParameterPack())
815       ExprBits.ContainsUnexpandedParameterPack = true;
816 
817     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
818   }
819 
820   CallExprBits.NumPreArgs = NumPreArgs;
821   RParenLoc = rparenloc;
822 }
823 
CallExpr(ASTContext & C,Expr * fn,Expr ** args,unsigned numargs,QualType t,ExprValueKind VK,SourceLocation rparenloc)824 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
825                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
826   : Expr(CallExprClass, t, VK, OK_Ordinary,
827          fn->isTypeDependent(),
828          fn->isValueDependent(),
829          fn->isInstantiationDependent(),
830          fn->containsUnexpandedParameterPack()),
831     NumArgs(numargs) {
832 
833   SubExprs = new (C) Stmt*[numargs+PREARGS_START];
834   SubExprs[FN] = fn;
835   for (unsigned i = 0; i != numargs; ++i) {
836     if (args[i]->isTypeDependent())
837       ExprBits.TypeDependent = true;
838     if (args[i]->isValueDependent())
839       ExprBits.ValueDependent = true;
840     if (args[i]->isInstantiationDependent())
841       ExprBits.InstantiationDependent = true;
842     if (args[i]->containsUnexpandedParameterPack())
843       ExprBits.ContainsUnexpandedParameterPack = true;
844 
845     SubExprs[i+PREARGS_START] = args[i];
846   }
847 
848   CallExprBits.NumPreArgs = 0;
849   RParenLoc = rparenloc;
850 }
851 
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)852 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
853   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
854   // FIXME: Why do we allocate this?
855   SubExprs = new (C) Stmt*[PREARGS_START];
856   CallExprBits.NumPreArgs = 0;
857 }
858 
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)859 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
860                    EmptyShell Empty)
861   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
862   // FIXME: Why do we allocate this?
863   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
864   CallExprBits.NumPreArgs = NumPreArgs;
865 }
866 
getCalleeDecl()867 Decl *CallExpr::getCalleeDecl() {
868   Expr *CEE = getCallee()->IgnoreParenImpCasts();
869 
870   while (SubstNonTypeTemplateParmExpr *NTTP
871                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
872     CEE = NTTP->getReplacement()->IgnoreParenCasts();
873   }
874 
875   // If we're calling a dereference, look at the pointer instead.
876   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
877     if (BO->isPtrMemOp())
878       CEE = BO->getRHS()->IgnoreParenCasts();
879   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
880     if (UO->getOpcode() == UO_Deref)
881       CEE = UO->getSubExpr()->IgnoreParenCasts();
882   }
883   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
884     return DRE->getDecl();
885   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
886     return ME->getMemberDecl();
887 
888   return 0;
889 }
890 
getDirectCallee()891 FunctionDecl *CallExpr::getDirectCallee() {
892   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
893 }
894 
895 /// setNumArgs - This changes the number of arguments present in this call.
896 /// Any orphaned expressions are deleted by this, and any new operands are set
897 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)898 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
899   // No change, just return.
900   if (NumArgs == getNumArgs()) return;
901 
902   // If shrinking # arguments, just delete the extras and forgot them.
903   if (NumArgs < getNumArgs()) {
904     this->NumArgs = NumArgs;
905     return;
906   }
907 
908   // Otherwise, we are growing the # arguments.  New an bigger argument array.
909   unsigned NumPreArgs = getNumPreArgs();
910   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
911   // Copy over args.
912   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
913     NewSubExprs[i] = SubExprs[i];
914   // Null out new args.
915   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
916        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
917     NewSubExprs[i] = 0;
918 
919   if (SubExprs) C.Deallocate(SubExprs);
920   SubExprs = NewSubExprs;
921   this->NumArgs = NumArgs;
922 }
923 
924 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
925 /// not, return 0.
isBuiltinCall() const926 unsigned CallExpr::isBuiltinCall() const {
927   // All simple function calls (e.g. func()) are implicitly cast to pointer to
928   // function. As a result, we try and obtain the DeclRefExpr from the
929   // ImplicitCastExpr.
930   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
931   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
932     return 0;
933 
934   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
935   if (!DRE)
936     return 0;
937 
938   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
939   if (!FDecl)
940     return 0;
941 
942   if (!FDecl->getIdentifier())
943     return 0;
944 
945   return FDecl->getBuiltinID();
946 }
947 
getCallReturnType() const948 QualType CallExpr::getCallReturnType() const {
949   QualType CalleeType = getCallee()->getType();
950   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
951     CalleeType = FnTypePtr->getPointeeType();
952   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
953     CalleeType = BPT->getPointeeType();
954   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
955     // This should never be overloaded and so should never return null.
956     CalleeType = Expr::findBoundMemberType(getCallee());
957 
958   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
959   return FnType->getResultType();
960 }
961 
getSourceRange() const962 SourceRange CallExpr::getSourceRange() const {
963   if (isa<CXXOperatorCallExpr>(this))
964     return cast<CXXOperatorCallExpr>(this)->getSourceRange();
965 
966   SourceLocation begin = getCallee()->getLocStart();
967   if (begin.isInvalid() && getNumArgs() > 0)
968     begin = getArg(0)->getLocStart();
969   SourceLocation end = getRParenLoc();
970   if (end.isInvalid() && getNumArgs() > 0)
971     end = getArg(getNumArgs() - 1)->getLocEnd();
972   return SourceRange(begin, end);
973 }
getLocStart() const974 SourceLocation CallExpr::getLocStart() const {
975   if (isa<CXXOperatorCallExpr>(this))
976     return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
977 
978   SourceLocation begin = getCallee()->getLocStart();
979   if (begin.isInvalid() && getNumArgs() > 0)
980     begin = getArg(0)->getLocStart();
981   return begin;
982 }
getLocEnd() const983 SourceLocation CallExpr::getLocEnd() const {
984   if (isa<CXXOperatorCallExpr>(this))
985     return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
986 
987   SourceLocation end = getRParenLoc();
988   if (end.isInvalid() && getNumArgs() > 0)
989     end = getArg(getNumArgs() - 1)->getLocEnd();
990   return end;
991 }
992 
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,OffsetOfNode * compsPtr,unsigned numComps,Expr ** exprsPtr,unsigned numExprs,SourceLocation RParenLoc)993 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
994                                    SourceLocation OperatorLoc,
995                                    TypeSourceInfo *tsi,
996                                    OffsetOfNode* compsPtr, unsigned numComps,
997                                    Expr** exprsPtr, unsigned numExprs,
998                                    SourceLocation RParenLoc) {
999   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1000                          sizeof(OffsetOfNode) * numComps +
1001                          sizeof(Expr*) * numExprs);
1002 
1003   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
1004                                 exprsPtr, numExprs, RParenLoc);
1005 }
1006 
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1007 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1008                                         unsigned numComps, unsigned numExprs) {
1009   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1010                          sizeof(OffsetOfNode) * numComps +
1011                          sizeof(Expr*) * numExprs);
1012   return new (Mem) OffsetOfExpr(numComps, numExprs);
1013 }
1014 
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,OffsetOfNode * compsPtr,unsigned numComps,Expr ** exprsPtr,unsigned numExprs,SourceLocation RParenLoc)1015 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1016                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1017                            OffsetOfNode* compsPtr, unsigned numComps,
1018                            Expr** exprsPtr, unsigned numExprs,
1019                            SourceLocation RParenLoc)
1020   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1021          /*TypeDependent=*/false,
1022          /*ValueDependent=*/tsi->getType()->isDependentType(),
1023          tsi->getType()->isInstantiationDependentType(),
1024          tsi->getType()->containsUnexpandedParameterPack()),
1025     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1026     NumComps(numComps), NumExprs(numExprs)
1027 {
1028   for(unsigned i = 0; i < numComps; ++i) {
1029     setComponent(i, compsPtr[i]);
1030   }
1031 
1032   for(unsigned i = 0; i < numExprs; ++i) {
1033     if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
1034       ExprBits.ValueDependent = true;
1035     if (exprsPtr[i]->containsUnexpandedParameterPack())
1036       ExprBits.ContainsUnexpandedParameterPack = true;
1037 
1038     setIndexExpr(i, exprsPtr[i]);
1039   }
1040 }
1041 
getFieldName() const1042 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1043   assert(getKind() == Field || getKind() == Identifier);
1044   if (getKind() == Field)
1045     return getField()->getIdentifier();
1046 
1047   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1048 }
1049 
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1050 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1051                                NestedNameSpecifierLoc QualifierLoc,
1052                                SourceLocation TemplateKWLoc,
1053                                ValueDecl *memberdecl,
1054                                DeclAccessPair founddecl,
1055                                DeclarationNameInfo nameinfo,
1056                                const TemplateArgumentListInfo *targs,
1057                                QualType ty,
1058                                ExprValueKind vk,
1059                                ExprObjectKind ok) {
1060   std::size_t Size = sizeof(MemberExpr);
1061 
1062   bool hasQualOrFound = (QualifierLoc ||
1063                          founddecl.getDecl() != memberdecl ||
1064                          founddecl.getAccess() != memberdecl->getAccess());
1065   if (hasQualOrFound)
1066     Size += sizeof(MemberNameQualifier);
1067 
1068   if (targs)
1069     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1070   else if (TemplateKWLoc.isValid())
1071     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1072 
1073   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1074   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1075                                        ty, vk, ok);
1076 
1077   if (hasQualOrFound) {
1078     // FIXME: Wrong. We should be looking at the member declaration we found.
1079     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1080       E->setValueDependent(true);
1081       E->setTypeDependent(true);
1082       E->setInstantiationDependent(true);
1083     }
1084     else if (QualifierLoc &&
1085              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1086       E->setInstantiationDependent(true);
1087 
1088     E->HasQualifierOrFoundDecl = true;
1089 
1090     MemberNameQualifier *NQ = E->getMemberQualifier();
1091     NQ->QualifierLoc = QualifierLoc;
1092     NQ->FoundDecl = founddecl;
1093   }
1094 
1095   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1096 
1097   if (targs) {
1098     bool Dependent = false;
1099     bool InstantiationDependent = false;
1100     bool ContainsUnexpandedParameterPack = false;
1101     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1102                                                   Dependent,
1103                                                   InstantiationDependent,
1104                                              ContainsUnexpandedParameterPack);
1105     if (InstantiationDependent)
1106       E->setInstantiationDependent(true);
1107   } else if (TemplateKWLoc.isValid()) {
1108     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1109   }
1110 
1111   return E;
1112 }
1113 
getSourceRange() const1114 SourceRange MemberExpr::getSourceRange() const {
1115   return SourceRange(getLocStart(), getLocEnd());
1116 }
getLocStart() const1117 SourceLocation MemberExpr::getLocStart() const {
1118   if (isImplicitAccess()) {
1119     if (hasQualifier())
1120       return getQualifierLoc().getBeginLoc();
1121     return MemberLoc;
1122   }
1123 
1124   // FIXME: We don't want this to happen. Rather, we should be able to
1125   // detect all kinds of implicit accesses more cleanly.
1126   SourceLocation BaseStartLoc = getBase()->getLocStart();
1127   if (BaseStartLoc.isValid())
1128     return BaseStartLoc;
1129   return MemberLoc;
1130 }
getLocEnd() const1131 SourceLocation MemberExpr::getLocEnd() const {
1132   if (hasExplicitTemplateArgs())
1133     return getRAngleLoc();
1134   return getMemberNameInfo().getEndLoc();
1135 }
1136 
CheckCastConsistency() const1137 void CastExpr::CheckCastConsistency() const {
1138   switch (getCastKind()) {
1139   case CK_DerivedToBase:
1140   case CK_UncheckedDerivedToBase:
1141   case CK_DerivedToBaseMemberPointer:
1142   case CK_BaseToDerived:
1143   case CK_BaseToDerivedMemberPointer:
1144     assert(!path_empty() && "Cast kind should have a base path!");
1145     break;
1146 
1147   case CK_CPointerToObjCPointerCast:
1148     assert(getType()->isObjCObjectPointerType());
1149     assert(getSubExpr()->getType()->isPointerType());
1150     goto CheckNoBasePath;
1151 
1152   case CK_BlockPointerToObjCPointerCast:
1153     assert(getType()->isObjCObjectPointerType());
1154     assert(getSubExpr()->getType()->isBlockPointerType());
1155     goto CheckNoBasePath;
1156 
1157   case CK_ReinterpretMemberPointer:
1158     assert(getType()->isMemberPointerType());
1159     assert(getSubExpr()->getType()->isMemberPointerType());
1160     goto CheckNoBasePath;
1161 
1162   case CK_BitCast:
1163     // Arbitrary casts to C pointer types count as bitcasts.
1164     // Otherwise, we should only have block and ObjC pointer casts
1165     // here if they stay within the type kind.
1166     if (!getType()->isPointerType()) {
1167       assert(getType()->isObjCObjectPointerType() ==
1168              getSubExpr()->getType()->isObjCObjectPointerType());
1169       assert(getType()->isBlockPointerType() ==
1170              getSubExpr()->getType()->isBlockPointerType());
1171     }
1172     goto CheckNoBasePath;
1173 
1174   case CK_AnyPointerToBlockPointerCast:
1175     assert(getType()->isBlockPointerType());
1176     assert(getSubExpr()->getType()->isAnyPointerType() &&
1177            !getSubExpr()->getType()->isBlockPointerType());
1178     goto CheckNoBasePath;
1179 
1180   case CK_CopyAndAutoreleaseBlockObject:
1181     assert(getType()->isBlockPointerType());
1182     assert(getSubExpr()->getType()->isBlockPointerType());
1183     goto CheckNoBasePath;
1184 
1185   // These should not have an inheritance path.
1186   case CK_Dynamic:
1187   case CK_ToUnion:
1188   case CK_ArrayToPointerDecay:
1189   case CK_FunctionToPointerDecay:
1190   case CK_NullToMemberPointer:
1191   case CK_NullToPointer:
1192   case CK_ConstructorConversion:
1193   case CK_IntegralToPointer:
1194   case CK_PointerToIntegral:
1195   case CK_ToVoid:
1196   case CK_VectorSplat:
1197   case CK_IntegralCast:
1198   case CK_IntegralToFloating:
1199   case CK_FloatingToIntegral:
1200   case CK_FloatingCast:
1201   case CK_ObjCObjectLValueCast:
1202   case CK_FloatingRealToComplex:
1203   case CK_FloatingComplexToReal:
1204   case CK_FloatingComplexCast:
1205   case CK_FloatingComplexToIntegralComplex:
1206   case CK_IntegralRealToComplex:
1207   case CK_IntegralComplexToReal:
1208   case CK_IntegralComplexCast:
1209   case CK_IntegralComplexToFloatingComplex:
1210   case CK_ARCProduceObject:
1211   case CK_ARCConsumeObject:
1212   case CK_ARCReclaimReturnedObject:
1213   case CK_ARCExtendBlockObject:
1214     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1215     goto CheckNoBasePath;
1216 
1217   case CK_Dependent:
1218   case CK_LValueToRValue:
1219   case CK_NoOp:
1220   case CK_AtomicToNonAtomic:
1221   case CK_NonAtomicToAtomic:
1222   case CK_PointerToBoolean:
1223   case CK_IntegralToBoolean:
1224   case CK_FloatingToBoolean:
1225   case CK_MemberPointerToBoolean:
1226   case CK_FloatingComplexToBoolean:
1227   case CK_IntegralComplexToBoolean:
1228   case CK_LValueBitCast:            // -> bool&
1229   case CK_UserDefinedConversion:    // operator bool()
1230   CheckNoBasePath:
1231     assert(path_empty() && "Cast kind should not have a base path!");
1232     break;
1233   }
1234 }
1235 
getCastKindName() const1236 const char *CastExpr::getCastKindName() const {
1237   switch (getCastKind()) {
1238   case CK_Dependent:
1239     return "Dependent";
1240   case CK_BitCast:
1241     return "BitCast";
1242   case CK_LValueBitCast:
1243     return "LValueBitCast";
1244   case CK_LValueToRValue:
1245     return "LValueToRValue";
1246   case CK_NoOp:
1247     return "NoOp";
1248   case CK_BaseToDerived:
1249     return "BaseToDerived";
1250   case CK_DerivedToBase:
1251     return "DerivedToBase";
1252   case CK_UncheckedDerivedToBase:
1253     return "UncheckedDerivedToBase";
1254   case CK_Dynamic:
1255     return "Dynamic";
1256   case CK_ToUnion:
1257     return "ToUnion";
1258   case CK_ArrayToPointerDecay:
1259     return "ArrayToPointerDecay";
1260   case CK_FunctionToPointerDecay:
1261     return "FunctionToPointerDecay";
1262   case CK_NullToMemberPointer:
1263     return "NullToMemberPointer";
1264   case CK_NullToPointer:
1265     return "NullToPointer";
1266   case CK_BaseToDerivedMemberPointer:
1267     return "BaseToDerivedMemberPointer";
1268   case CK_DerivedToBaseMemberPointer:
1269     return "DerivedToBaseMemberPointer";
1270   case CK_ReinterpretMemberPointer:
1271     return "ReinterpretMemberPointer";
1272   case CK_UserDefinedConversion:
1273     return "UserDefinedConversion";
1274   case CK_ConstructorConversion:
1275     return "ConstructorConversion";
1276   case CK_IntegralToPointer:
1277     return "IntegralToPointer";
1278   case CK_PointerToIntegral:
1279     return "PointerToIntegral";
1280   case CK_PointerToBoolean:
1281     return "PointerToBoolean";
1282   case CK_ToVoid:
1283     return "ToVoid";
1284   case CK_VectorSplat:
1285     return "VectorSplat";
1286   case CK_IntegralCast:
1287     return "IntegralCast";
1288   case CK_IntegralToBoolean:
1289     return "IntegralToBoolean";
1290   case CK_IntegralToFloating:
1291     return "IntegralToFloating";
1292   case CK_FloatingToIntegral:
1293     return "FloatingToIntegral";
1294   case CK_FloatingCast:
1295     return "FloatingCast";
1296   case CK_FloatingToBoolean:
1297     return "FloatingToBoolean";
1298   case CK_MemberPointerToBoolean:
1299     return "MemberPointerToBoolean";
1300   case CK_CPointerToObjCPointerCast:
1301     return "CPointerToObjCPointerCast";
1302   case CK_BlockPointerToObjCPointerCast:
1303     return "BlockPointerToObjCPointerCast";
1304   case CK_AnyPointerToBlockPointerCast:
1305     return "AnyPointerToBlockPointerCast";
1306   case CK_ObjCObjectLValueCast:
1307     return "ObjCObjectLValueCast";
1308   case CK_FloatingRealToComplex:
1309     return "FloatingRealToComplex";
1310   case CK_FloatingComplexToReal:
1311     return "FloatingComplexToReal";
1312   case CK_FloatingComplexToBoolean:
1313     return "FloatingComplexToBoolean";
1314   case CK_FloatingComplexCast:
1315     return "FloatingComplexCast";
1316   case CK_FloatingComplexToIntegralComplex:
1317     return "FloatingComplexToIntegralComplex";
1318   case CK_IntegralRealToComplex:
1319     return "IntegralRealToComplex";
1320   case CK_IntegralComplexToReal:
1321     return "IntegralComplexToReal";
1322   case CK_IntegralComplexToBoolean:
1323     return "IntegralComplexToBoolean";
1324   case CK_IntegralComplexCast:
1325     return "IntegralComplexCast";
1326   case CK_IntegralComplexToFloatingComplex:
1327     return "IntegralComplexToFloatingComplex";
1328   case CK_ARCConsumeObject:
1329     return "ARCConsumeObject";
1330   case CK_ARCProduceObject:
1331     return "ARCProduceObject";
1332   case CK_ARCReclaimReturnedObject:
1333     return "ARCReclaimReturnedObject";
1334   case CK_ARCExtendBlockObject:
1335     return "ARCCExtendBlockObject";
1336   case CK_AtomicToNonAtomic:
1337     return "AtomicToNonAtomic";
1338   case CK_NonAtomicToAtomic:
1339     return "NonAtomicToAtomic";
1340   case CK_CopyAndAutoreleaseBlockObject:
1341     return "CopyAndAutoreleaseBlockObject";
1342   }
1343 
1344   llvm_unreachable("Unhandled cast kind!");
1345 }
1346 
getSubExprAsWritten()1347 Expr *CastExpr::getSubExprAsWritten() {
1348   Expr *SubExpr = 0;
1349   CastExpr *E = this;
1350   do {
1351     SubExpr = E->getSubExpr();
1352 
1353     // Skip through reference binding to temporary.
1354     if (MaterializeTemporaryExpr *Materialize
1355                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1356       SubExpr = Materialize->GetTemporaryExpr();
1357 
1358     // Skip any temporary bindings; they're implicit.
1359     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1360       SubExpr = Binder->getSubExpr();
1361 
1362     // Conversions by constructor and conversion functions have a
1363     // subexpression describing the call; strip it off.
1364     if (E->getCastKind() == CK_ConstructorConversion)
1365       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1366     else if (E->getCastKind() == CK_UserDefinedConversion)
1367       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1368 
1369     // If the subexpression we're left with is an implicit cast, look
1370     // through that, too.
1371   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1372 
1373   return SubExpr;
1374 }
1375 
path_buffer()1376 CXXBaseSpecifier **CastExpr::path_buffer() {
1377   switch (getStmtClass()) {
1378 #define ABSTRACT_STMT(x)
1379 #define CASTEXPR(Type, Base) \
1380   case Stmt::Type##Class: \
1381     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1382 #define STMT(Type, Base)
1383 #include "clang/AST/StmtNodes.inc"
1384   default:
1385     llvm_unreachable("non-cast expressions not possible here");
1386   }
1387 }
1388 
setCastPath(const CXXCastPath & Path)1389 void CastExpr::setCastPath(const CXXCastPath &Path) {
1390   assert(Path.size() == path_size());
1391   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1392 }
1393 
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1394 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1395                                            CastKind Kind, Expr *Operand,
1396                                            const CXXCastPath *BasePath,
1397                                            ExprValueKind VK) {
1398   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1399   void *Buffer =
1400     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1401   ImplicitCastExpr *E =
1402     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1403   if (PathSize) E->setCastPath(*BasePath);
1404   return E;
1405 }
1406 
CreateEmpty(ASTContext & C,unsigned PathSize)1407 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1408                                                 unsigned PathSize) {
1409   void *Buffer =
1410     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1411   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1412 }
1413 
1414 
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1415 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1416                                        ExprValueKind VK, CastKind K, Expr *Op,
1417                                        const CXXCastPath *BasePath,
1418                                        TypeSourceInfo *WrittenTy,
1419                                        SourceLocation L, SourceLocation R) {
1420   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1421   void *Buffer =
1422     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1423   CStyleCastExpr *E =
1424     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1425   if (PathSize) E->setCastPath(*BasePath);
1426   return E;
1427 }
1428 
CreateEmpty(ASTContext & C,unsigned PathSize)1429 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1430   void *Buffer =
1431     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1432   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1433 }
1434 
1435 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1436 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1437 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1438   switch (Op) {
1439   case BO_PtrMemD:   return ".*";
1440   case BO_PtrMemI:   return "->*";
1441   case BO_Mul:       return "*";
1442   case BO_Div:       return "/";
1443   case BO_Rem:       return "%";
1444   case BO_Add:       return "+";
1445   case BO_Sub:       return "-";
1446   case BO_Shl:       return "<<";
1447   case BO_Shr:       return ">>";
1448   case BO_LT:        return "<";
1449   case BO_GT:        return ">";
1450   case BO_LE:        return "<=";
1451   case BO_GE:        return ">=";
1452   case BO_EQ:        return "==";
1453   case BO_NE:        return "!=";
1454   case BO_And:       return "&";
1455   case BO_Xor:       return "^";
1456   case BO_Or:        return "|";
1457   case BO_LAnd:      return "&&";
1458   case BO_LOr:       return "||";
1459   case BO_Assign:    return "=";
1460   case BO_MulAssign: return "*=";
1461   case BO_DivAssign: return "/=";
1462   case BO_RemAssign: return "%=";
1463   case BO_AddAssign: return "+=";
1464   case BO_SubAssign: return "-=";
1465   case BO_ShlAssign: return "<<=";
1466   case BO_ShrAssign: return ">>=";
1467   case BO_AndAssign: return "&=";
1468   case BO_XorAssign: return "^=";
1469   case BO_OrAssign:  return "|=";
1470   case BO_Comma:     return ",";
1471   }
1472 
1473   llvm_unreachable("Invalid OpCode!");
1474 }
1475 
1476 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1477 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1478   switch (OO) {
1479   default: llvm_unreachable("Not an overloadable binary operator");
1480   case OO_Plus: return BO_Add;
1481   case OO_Minus: return BO_Sub;
1482   case OO_Star: return BO_Mul;
1483   case OO_Slash: return BO_Div;
1484   case OO_Percent: return BO_Rem;
1485   case OO_Caret: return BO_Xor;
1486   case OO_Amp: return BO_And;
1487   case OO_Pipe: return BO_Or;
1488   case OO_Equal: return BO_Assign;
1489   case OO_Less: return BO_LT;
1490   case OO_Greater: return BO_GT;
1491   case OO_PlusEqual: return BO_AddAssign;
1492   case OO_MinusEqual: return BO_SubAssign;
1493   case OO_StarEqual: return BO_MulAssign;
1494   case OO_SlashEqual: return BO_DivAssign;
1495   case OO_PercentEqual: return BO_RemAssign;
1496   case OO_CaretEqual: return BO_XorAssign;
1497   case OO_AmpEqual: return BO_AndAssign;
1498   case OO_PipeEqual: return BO_OrAssign;
1499   case OO_LessLess: return BO_Shl;
1500   case OO_GreaterGreater: return BO_Shr;
1501   case OO_LessLessEqual: return BO_ShlAssign;
1502   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1503   case OO_EqualEqual: return BO_EQ;
1504   case OO_ExclaimEqual: return BO_NE;
1505   case OO_LessEqual: return BO_LE;
1506   case OO_GreaterEqual: return BO_GE;
1507   case OO_AmpAmp: return BO_LAnd;
1508   case OO_PipePipe: return BO_LOr;
1509   case OO_Comma: return BO_Comma;
1510   case OO_ArrowStar: return BO_PtrMemI;
1511   }
1512 }
1513 
getOverloadedOperator(Opcode Opc)1514 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1515   static const OverloadedOperatorKind OverOps[] = {
1516     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1517     OO_Star, OO_Slash, OO_Percent,
1518     OO_Plus, OO_Minus,
1519     OO_LessLess, OO_GreaterGreater,
1520     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1521     OO_EqualEqual, OO_ExclaimEqual,
1522     OO_Amp,
1523     OO_Caret,
1524     OO_Pipe,
1525     OO_AmpAmp,
1526     OO_PipePipe,
1527     OO_Equal, OO_StarEqual,
1528     OO_SlashEqual, OO_PercentEqual,
1529     OO_PlusEqual, OO_MinusEqual,
1530     OO_LessLessEqual, OO_GreaterGreaterEqual,
1531     OO_AmpEqual, OO_CaretEqual,
1532     OO_PipeEqual,
1533     OO_Comma
1534   };
1535   return OverOps[Opc];
1536 }
1537 
InitListExpr(ASTContext & C,SourceLocation lbraceloc,Expr ** initExprs,unsigned numInits,SourceLocation rbraceloc)1538 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1539                            Expr **initExprs, unsigned numInits,
1540                            SourceLocation rbraceloc)
1541   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1542          false, false),
1543     InitExprs(C, numInits),
1544     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1545 {
1546   sawArrayRangeDesignator(false);
1547   setInitializesStdInitializerList(false);
1548   for (unsigned I = 0; I != numInits; ++I) {
1549     if (initExprs[I]->isTypeDependent())
1550       ExprBits.TypeDependent = true;
1551     if (initExprs[I]->isValueDependent())
1552       ExprBits.ValueDependent = true;
1553     if (initExprs[I]->isInstantiationDependent())
1554       ExprBits.InstantiationDependent = true;
1555     if (initExprs[I]->containsUnexpandedParameterPack())
1556       ExprBits.ContainsUnexpandedParameterPack = true;
1557   }
1558 
1559   InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1560 }
1561 
reserveInits(ASTContext & C,unsigned NumInits)1562 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1563   if (NumInits > InitExprs.size())
1564     InitExprs.reserve(C, NumInits);
1565 }
1566 
resizeInits(ASTContext & C,unsigned NumInits)1567 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1568   InitExprs.resize(C, NumInits, 0);
1569 }
1570 
updateInit(ASTContext & C,unsigned Init,Expr * expr)1571 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1572   if (Init >= InitExprs.size()) {
1573     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1574     InitExprs.back() = expr;
1575     return 0;
1576   }
1577 
1578   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1579   InitExprs[Init] = expr;
1580   return Result;
1581 }
1582 
setArrayFiller(Expr * filler)1583 void InitListExpr::setArrayFiller(Expr *filler) {
1584   assert(!hasArrayFiller() && "Filler already set!");
1585   ArrayFillerOrUnionFieldInit = filler;
1586   // Fill out any "holes" in the array due to designated initializers.
1587   Expr **inits = getInits();
1588   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1589     if (inits[i] == 0)
1590       inits[i] = filler;
1591 }
1592 
isStringLiteralInit() const1593 bool InitListExpr::isStringLiteralInit() const {
1594   if (getNumInits() != 1)
1595     return false;
1596   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType());
1597   if (!CAT || !CAT->getElementType()->isIntegerType())
1598     return false;
1599   const Expr *Init = getInit(0)->IgnoreParenImpCasts();
1600   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1601 }
1602 
getSourceRange() const1603 SourceRange InitListExpr::getSourceRange() const {
1604   if (SyntacticForm)
1605     return SyntacticForm->getSourceRange();
1606   SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1607   if (Beg.isInvalid()) {
1608     // Find the first non-null initializer.
1609     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1610                                      E = InitExprs.end();
1611       I != E; ++I) {
1612       if (Stmt *S = *I) {
1613         Beg = S->getLocStart();
1614         break;
1615       }
1616     }
1617   }
1618   if (End.isInvalid()) {
1619     // Find the first non-null initializer from the end.
1620     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1621                                              E = InitExprs.rend();
1622       I != E; ++I) {
1623       if (Stmt *S = *I) {
1624         End = S->getSourceRange().getEnd();
1625         break;
1626       }
1627     }
1628   }
1629   return SourceRange(Beg, End);
1630 }
1631 
1632 /// getFunctionType - Return the underlying function type for this block.
1633 ///
getFunctionType() const1634 const FunctionProtoType *BlockExpr::getFunctionType() const {
1635   // The block pointer is never sugared, but the function type might be.
1636   return cast<BlockPointerType>(getType())
1637            ->getPointeeType()->castAs<FunctionProtoType>();
1638 }
1639 
getCaretLocation() const1640 SourceLocation BlockExpr::getCaretLocation() const {
1641   return TheBlock->getCaretLocation();
1642 }
getBody() const1643 const Stmt *BlockExpr::getBody() const {
1644   return TheBlock->getBody();
1645 }
getBody()1646 Stmt *BlockExpr::getBody() {
1647   return TheBlock->getBody();
1648 }
1649 
1650 
1651 //===----------------------------------------------------------------------===//
1652 // Generic Expression Routines
1653 //===----------------------------------------------------------------------===//
1654 
1655 /// isUnusedResultAWarning - Return true if this immediate expression should
1656 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1657 /// with location to warn on and the source range[s] to report with the
1658 /// warning.
isUnusedResultAWarning(SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1659 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1660                                   SourceRange &R2, ASTContext &Ctx) const {
1661   // Don't warn if the expr is type dependent. The type could end up
1662   // instantiating to void.
1663   if (isTypeDependent())
1664     return false;
1665 
1666   switch (getStmtClass()) {
1667   default:
1668     if (getType()->isVoidType())
1669       return false;
1670     Loc = getExprLoc();
1671     R1 = getSourceRange();
1672     return true;
1673   case ParenExprClass:
1674     return cast<ParenExpr>(this)->getSubExpr()->
1675       isUnusedResultAWarning(Loc, R1, R2, Ctx);
1676   case GenericSelectionExprClass:
1677     return cast<GenericSelectionExpr>(this)->getResultExpr()->
1678       isUnusedResultAWarning(Loc, R1, R2, Ctx);
1679   case UnaryOperatorClass: {
1680     const UnaryOperator *UO = cast<UnaryOperator>(this);
1681 
1682     switch (UO->getOpcode()) {
1683     default: break;
1684     case UO_PostInc:
1685     case UO_PostDec:
1686     case UO_PreInc:
1687     case UO_PreDec:                 // ++/--
1688       return false;  // Not a warning.
1689     case UO_Deref:
1690       // Dereferencing a volatile pointer is a side-effect.
1691       if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1692         return false;
1693       break;
1694     case UO_Real:
1695     case UO_Imag:
1696       // accessing a piece of a volatile complex is a side-effect.
1697       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1698           .isVolatileQualified())
1699         return false;
1700       break;
1701     case UO_Extension:
1702       return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1703     }
1704     Loc = UO->getOperatorLoc();
1705     R1 = UO->getSubExpr()->getSourceRange();
1706     return true;
1707   }
1708   case BinaryOperatorClass: {
1709     const BinaryOperator *BO = cast<BinaryOperator>(this);
1710     switch (BO->getOpcode()) {
1711       default:
1712         break;
1713       // Consider the RHS of comma for side effects. LHS was checked by
1714       // Sema::CheckCommaOperands.
1715       case BO_Comma:
1716         // ((foo = <blah>), 0) is an idiom for hiding the result (and
1717         // lvalue-ness) of an assignment written in a macro.
1718         if (IntegerLiteral *IE =
1719               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1720           if (IE->getValue() == 0)
1721             return false;
1722         return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1723       // Consider '||', '&&' to have side effects if the LHS or RHS does.
1724       case BO_LAnd:
1725       case BO_LOr:
1726         if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1727             !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1728           return false;
1729         break;
1730     }
1731     if (BO->isAssignmentOp())
1732       return false;
1733     Loc = BO->getOperatorLoc();
1734     R1 = BO->getLHS()->getSourceRange();
1735     R2 = BO->getRHS()->getSourceRange();
1736     return true;
1737   }
1738   case CompoundAssignOperatorClass:
1739   case VAArgExprClass:
1740   case AtomicExprClass:
1741     return false;
1742 
1743   case ConditionalOperatorClass: {
1744     // If only one of the LHS or RHS is a warning, the operator might
1745     // be being used for control flow. Only warn if both the LHS and
1746     // RHS are warnings.
1747     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1748     if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1749       return false;
1750     if (!Exp->getLHS())
1751       return true;
1752     return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1753   }
1754 
1755   case MemberExprClass:
1756     // If the base pointer or element is to a volatile pointer/field, accessing
1757     // it is a side effect.
1758     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1759       return false;
1760     Loc = cast<MemberExpr>(this)->getMemberLoc();
1761     R1 = SourceRange(Loc, Loc);
1762     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1763     return true;
1764 
1765   case ArraySubscriptExprClass:
1766     // If the base pointer or element is to a volatile pointer/field, accessing
1767     // it is a side effect.
1768     if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1769       return false;
1770     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1771     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1772     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1773     return true;
1774 
1775   case CXXOperatorCallExprClass: {
1776     // We warn about operator== and operator!= even when user-defined operator
1777     // overloads as there is no reasonable way to define these such that they
1778     // have non-trivial, desirable side-effects. See the -Wunused-comparison
1779     // warning: these operators are commonly typo'ed, and so warning on them
1780     // provides additional value as well. If this list is updated,
1781     // DiagnoseUnusedComparison should be as well.
1782     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1783     if (Op->getOperator() == OO_EqualEqual ||
1784         Op->getOperator() == OO_ExclaimEqual) {
1785       Loc = Op->getOperatorLoc();
1786       R1 = Op->getSourceRange();
1787       return true;
1788     }
1789 
1790     // Fallthrough for generic call handling.
1791   }
1792   case CallExprClass:
1793   case CXXMemberCallExprClass:
1794   case UserDefinedLiteralClass: {
1795     // If this is a direct call, get the callee.
1796     const CallExpr *CE = cast<CallExpr>(this);
1797     if (const Decl *FD = CE->getCalleeDecl()) {
1798       // If the callee has attribute pure, const, or warn_unused_result, warn
1799       // about it. void foo() { strlen("bar"); } should warn.
1800       //
1801       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1802       // updated to match for QoI.
1803       if (FD->getAttr<WarnUnusedResultAttr>() ||
1804           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1805         Loc = CE->getCallee()->getLocStart();
1806         R1 = CE->getCallee()->getSourceRange();
1807 
1808         if (unsigned NumArgs = CE->getNumArgs())
1809           R2 = SourceRange(CE->getArg(0)->getLocStart(),
1810                            CE->getArg(NumArgs-1)->getLocEnd());
1811         return true;
1812       }
1813     }
1814     return false;
1815   }
1816 
1817   case CXXTemporaryObjectExprClass:
1818   case CXXConstructExprClass:
1819     return false;
1820 
1821   case ObjCMessageExprClass: {
1822     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1823     if (Ctx.getLangOpts().ObjCAutoRefCount &&
1824         ME->isInstanceMessage() &&
1825         !ME->getType()->isVoidType() &&
1826         ME->getSelector().getIdentifierInfoForSlot(0) &&
1827         ME->getSelector().getIdentifierInfoForSlot(0)
1828                                                ->getName().startswith("init")) {
1829       Loc = getExprLoc();
1830       R1 = ME->getSourceRange();
1831       return true;
1832     }
1833 
1834     const ObjCMethodDecl *MD = ME->getMethodDecl();
1835     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1836       Loc = getExprLoc();
1837       return true;
1838     }
1839     return false;
1840   }
1841 
1842   case ObjCPropertyRefExprClass:
1843     Loc = getExprLoc();
1844     R1 = getSourceRange();
1845     return true;
1846 
1847   case PseudoObjectExprClass: {
1848     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1849 
1850     // Only complain about things that have the form of a getter.
1851     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1852         isa<BinaryOperator>(PO->getSyntacticForm()))
1853       return false;
1854 
1855     Loc = getExprLoc();
1856     R1 = getSourceRange();
1857     return true;
1858   }
1859 
1860   case StmtExprClass: {
1861     // Statement exprs don't logically have side effects themselves, but are
1862     // sometimes used in macros in ways that give them a type that is unused.
1863     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1864     // however, if the result of the stmt expr is dead, we don't want to emit a
1865     // warning.
1866     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1867     if (!CS->body_empty()) {
1868       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1869         return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1870       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1871         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1872           return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1873     }
1874 
1875     if (getType()->isVoidType())
1876       return false;
1877     Loc = cast<StmtExpr>(this)->getLParenLoc();
1878     R1 = getSourceRange();
1879     return true;
1880   }
1881   case CStyleCastExprClass:
1882     // If this is an explicit cast to void, allow it.  People do this when they
1883     // think they know what they're doing :).
1884     if (getType()->isVoidType())
1885       return false;
1886     Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1887     R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1888     return true;
1889   case CXXFunctionalCastExprClass: {
1890     if (getType()->isVoidType())
1891       return false;
1892     const CastExpr *CE = cast<CastExpr>(this);
1893 
1894     // If this is a cast to void or a constructor conversion, check the operand.
1895     // Otherwise, the result of the cast is unused.
1896     if (CE->getCastKind() == CK_ToVoid ||
1897         CE->getCastKind() == CK_ConstructorConversion)
1898       return (cast<CastExpr>(this)->getSubExpr()
1899               ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1900     Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1901     R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1902     return true;
1903   }
1904 
1905   case ImplicitCastExprClass:
1906     // Check the operand, since implicit casts are inserted by Sema
1907     return (cast<ImplicitCastExpr>(this)
1908             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1909 
1910   case CXXDefaultArgExprClass:
1911     return (cast<CXXDefaultArgExpr>(this)
1912             ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1913 
1914   case CXXNewExprClass:
1915     // FIXME: In theory, there might be new expressions that don't have side
1916     // effects (e.g. a placement new with an uninitialized POD).
1917   case CXXDeleteExprClass:
1918     return false;
1919   case CXXBindTemporaryExprClass:
1920     return (cast<CXXBindTemporaryExpr>(this)
1921             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1922   case ExprWithCleanupsClass:
1923     return (cast<ExprWithCleanups>(this)
1924             ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1925   }
1926 }
1927 
1928 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
1929 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const1930 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1931   const Expr *E = IgnoreParens();
1932   switch (E->getStmtClass()) {
1933   default:
1934     return false;
1935   case ObjCIvarRefExprClass:
1936     return true;
1937   case Expr::UnaryOperatorClass:
1938     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1939   case ImplicitCastExprClass:
1940     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1941   case MaterializeTemporaryExprClass:
1942     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1943                                                       ->isOBJCGCCandidate(Ctx);
1944   case CStyleCastExprClass:
1945     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1946   case DeclRefExprClass: {
1947     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
1948 
1949     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1950       if (VD->hasGlobalStorage())
1951         return true;
1952       QualType T = VD->getType();
1953       // dereferencing to a  pointer is always a gc'able candidate,
1954       // unless it is __weak.
1955       return T->isPointerType() &&
1956              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1957     }
1958     return false;
1959   }
1960   case MemberExprClass: {
1961     const MemberExpr *M = cast<MemberExpr>(E);
1962     return M->getBase()->isOBJCGCCandidate(Ctx);
1963   }
1964   case ArraySubscriptExprClass:
1965     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1966   }
1967 }
1968 
isBoundMemberFunction(ASTContext & Ctx) const1969 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1970   if (isTypeDependent())
1971     return false;
1972   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1973 }
1974 
findBoundMemberType(const Expr * expr)1975 QualType Expr::findBoundMemberType(const Expr *expr) {
1976   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
1977 
1978   // Bound member expressions are always one of these possibilities:
1979   //   x->m      x.m      x->*y      x.*y
1980   // (possibly parenthesized)
1981 
1982   expr = expr->IgnoreParens();
1983   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1984     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1985     return mem->getMemberDecl()->getType();
1986   }
1987 
1988   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1989     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1990                       ->getPointeeType();
1991     assert(type->isFunctionType());
1992     return type;
1993   }
1994 
1995   assert(isa<UnresolvedMemberExpr>(expr));
1996   return QualType();
1997 }
1998 
IgnoreParens()1999 Expr* Expr::IgnoreParens() {
2000   Expr* E = this;
2001   while (true) {
2002     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2003       E = P->getSubExpr();
2004       continue;
2005     }
2006     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2007       if (P->getOpcode() == UO_Extension) {
2008         E = P->getSubExpr();
2009         continue;
2010       }
2011     }
2012     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2013       if (!P->isResultDependent()) {
2014         E = P->getResultExpr();
2015         continue;
2016       }
2017     }
2018     return E;
2019   }
2020 }
2021 
2022 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2023 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2024 Expr *Expr::IgnoreParenCasts() {
2025   Expr *E = this;
2026   while (true) {
2027     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2028       E = P->getSubExpr();
2029       continue;
2030     }
2031     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2032       E = P->getSubExpr();
2033       continue;
2034     }
2035     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2036       if (P->getOpcode() == UO_Extension) {
2037         E = P->getSubExpr();
2038         continue;
2039       }
2040     }
2041     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2042       if (!P->isResultDependent()) {
2043         E = P->getResultExpr();
2044         continue;
2045       }
2046     }
2047     if (MaterializeTemporaryExpr *Materialize
2048                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2049       E = Materialize->GetTemporaryExpr();
2050       continue;
2051     }
2052     if (SubstNonTypeTemplateParmExpr *NTTP
2053                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2054       E = NTTP->getReplacement();
2055       continue;
2056     }
2057     return E;
2058   }
2059 }
2060 
2061 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2062 /// casts.  This is intended purely as a temporary workaround for code
2063 /// that hasn't yet been rewritten to do the right thing about those
2064 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2065 Expr *Expr::IgnoreParenLValueCasts() {
2066   Expr *E = this;
2067   while (true) {
2068     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2069       E = P->getSubExpr();
2070       continue;
2071     } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2072       if (P->getCastKind() == CK_LValueToRValue) {
2073         E = P->getSubExpr();
2074         continue;
2075       }
2076     } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2077       if (P->getOpcode() == UO_Extension) {
2078         E = P->getSubExpr();
2079         continue;
2080       }
2081     } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2082       if (!P->isResultDependent()) {
2083         E = P->getResultExpr();
2084         continue;
2085       }
2086     } else if (MaterializeTemporaryExpr *Materialize
2087                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2088       E = Materialize->GetTemporaryExpr();
2089       continue;
2090     } else if (SubstNonTypeTemplateParmExpr *NTTP
2091                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2092       E = NTTP->getReplacement();
2093       continue;
2094     }
2095     break;
2096   }
2097   return E;
2098 }
2099 
IgnoreParenImpCasts()2100 Expr *Expr::IgnoreParenImpCasts() {
2101   Expr *E = this;
2102   while (true) {
2103     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2104       E = P->getSubExpr();
2105       continue;
2106     }
2107     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2108       E = P->getSubExpr();
2109       continue;
2110     }
2111     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2112       if (P->getOpcode() == UO_Extension) {
2113         E = P->getSubExpr();
2114         continue;
2115       }
2116     }
2117     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2118       if (!P->isResultDependent()) {
2119         E = P->getResultExpr();
2120         continue;
2121       }
2122     }
2123     if (MaterializeTemporaryExpr *Materialize
2124                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2125       E = Materialize->GetTemporaryExpr();
2126       continue;
2127     }
2128     if (SubstNonTypeTemplateParmExpr *NTTP
2129                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2130       E = NTTP->getReplacement();
2131       continue;
2132     }
2133     return E;
2134   }
2135 }
2136 
IgnoreConversionOperator()2137 Expr *Expr::IgnoreConversionOperator() {
2138   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2139     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2140       return MCE->getImplicitObjectArgument();
2141   }
2142   return this;
2143 }
2144 
2145 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2146 /// value (including ptr->int casts of the same size).  Strip off any
2147 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2148 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2149   Expr *E = this;
2150   while (true) {
2151     if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2152       E = P->getSubExpr();
2153       continue;
2154     }
2155 
2156     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2157       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2158       // ptr<->int casts of the same width.  We also ignore all identity casts.
2159       Expr *SE = P->getSubExpr();
2160 
2161       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2162         E = SE;
2163         continue;
2164       }
2165 
2166       if ((E->getType()->isPointerType() ||
2167            E->getType()->isIntegralType(Ctx)) &&
2168           (SE->getType()->isPointerType() ||
2169            SE->getType()->isIntegralType(Ctx)) &&
2170           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2171         E = SE;
2172         continue;
2173       }
2174     }
2175 
2176     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2177       if (P->getOpcode() == UO_Extension) {
2178         E = P->getSubExpr();
2179         continue;
2180       }
2181     }
2182 
2183     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2184       if (!P->isResultDependent()) {
2185         E = P->getResultExpr();
2186         continue;
2187       }
2188     }
2189 
2190     if (SubstNonTypeTemplateParmExpr *NTTP
2191                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2192       E = NTTP->getReplacement();
2193       continue;
2194     }
2195 
2196     return E;
2197   }
2198 }
2199 
isDefaultArgument() const2200 bool Expr::isDefaultArgument() const {
2201   const Expr *E = this;
2202   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2203     E = M->GetTemporaryExpr();
2204 
2205   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2206     E = ICE->getSubExprAsWritten();
2207 
2208   return isa<CXXDefaultArgExpr>(E);
2209 }
2210 
2211 /// \brief Skip over any no-op casts and any temporary-binding
2212 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2213 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2214   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2215     E = M->GetTemporaryExpr();
2216 
2217   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2218     if (ICE->getCastKind() == CK_NoOp)
2219       E = ICE->getSubExpr();
2220     else
2221       break;
2222   }
2223 
2224   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2225     E = BE->getSubExpr();
2226 
2227   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2228     if (ICE->getCastKind() == CK_NoOp)
2229       E = ICE->getSubExpr();
2230     else
2231       break;
2232   }
2233 
2234   return E->IgnoreParens();
2235 }
2236 
2237 /// isTemporaryObject - Determines if this expression produces a
2238 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2239 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2240   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2241     return false;
2242 
2243   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2244 
2245   // Temporaries are by definition pr-values of class type.
2246   if (!E->Classify(C).isPRValue()) {
2247     // In this context, property reference is a message call and is pr-value.
2248     if (!isa<ObjCPropertyRefExpr>(E))
2249       return false;
2250   }
2251 
2252   // Black-list a few cases which yield pr-values of class type that don't
2253   // refer to temporaries of that type:
2254 
2255   // - implicit derived-to-base conversions
2256   if (isa<ImplicitCastExpr>(E)) {
2257     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2258     case CK_DerivedToBase:
2259     case CK_UncheckedDerivedToBase:
2260       return false;
2261     default:
2262       break;
2263     }
2264   }
2265 
2266   // - member expressions (all)
2267   if (isa<MemberExpr>(E))
2268     return false;
2269 
2270   // - opaque values (all)
2271   if (isa<OpaqueValueExpr>(E))
2272     return false;
2273 
2274   return true;
2275 }
2276 
isImplicitCXXThis() const2277 bool Expr::isImplicitCXXThis() const {
2278   const Expr *E = this;
2279 
2280   // Strip away parentheses and casts we don't care about.
2281   while (true) {
2282     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2283       E = Paren->getSubExpr();
2284       continue;
2285     }
2286 
2287     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2288       if (ICE->getCastKind() == CK_NoOp ||
2289           ICE->getCastKind() == CK_LValueToRValue ||
2290           ICE->getCastKind() == CK_DerivedToBase ||
2291           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2292         E = ICE->getSubExpr();
2293         continue;
2294       }
2295     }
2296 
2297     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2298       if (UnOp->getOpcode() == UO_Extension) {
2299         E = UnOp->getSubExpr();
2300         continue;
2301       }
2302     }
2303 
2304     if (const MaterializeTemporaryExpr *M
2305                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2306       E = M->GetTemporaryExpr();
2307       continue;
2308     }
2309 
2310     break;
2311   }
2312 
2313   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2314     return This->isImplicit();
2315 
2316   return false;
2317 }
2318 
2319 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2320 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(llvm::ArrayRef<Expr * > Exprs)2321 bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2322   for (unsigned I = 0; I < Exprs.size(); ++I)
2323     if (Exprs[I]->isTypeDependent())
2324       return true;
2325 
2326   return false;
2327 }
2328 
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2329 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2330   // This function is attempting whether an expression is an initializer
2331   // which can be evaluated at compile-time.  isEvaluatable handles most
2332   // of the cases, but it can't deal with some initializer-specific
2333   // expressions, and it can't deal with aggregates; we deal with those here,
2334   // and fall back to isEvaluatable for the other cases.
2335 
2336   // If we ever capture reference-binding directly in the AST, we can
2337   // kill the second parameter.
2338 
2339   if (IsForRef) {
2340     EvalResult Result;
2341     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2342   }
2343 
2344   switch (getStmtClass()) {
2345   default: break;
2346   case IntegerLiteralClass:
2347   case FloatingLiteralClass:
2348   case StringLiteralClass:
2349   case ObjCStringLiteralClass:
2350   case ObjCEncodeExprClass:
2351     return true;
2352   case CXXTemporaryObjectExprClass:
2353   case CXXConstructExprClass: {
2354     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2355 
2356     // Only if it's
2357     if (CE->getConstructor()->isTrivial()) {
2358       // 1) an application of the trivial default constructor or
2359       if (!CE->getNumArgs()) return true;
2360 
2361       // 2) an elidable trivial copy construction of an operand which is
2362       //    itself a constant initializer.  Note that we consider the
2363       //    operand on its own, *not* as a reference binding.
2364       if (CE->isElidable() &&
2365           CE->getArg(0)->isConstantInitializer(Ctx, false))
2366         return true;
2367     }
2368 
2369     // 3) a foldable constexpr constructor.
2370     break;
2371   }
2372   case CompoundLiteralExprClass: {
2373     // This handles gcc's extension that allows global initializers like
2374     // "struct x {int x;} x = (struct x) {};".
2375     // FIXME: This accepts other cases it shouldn't!
2376     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2377     return Exp->isConstantInitializer(Ctx, false);
2378   }
2379   case InitListExprClass: {
2380     // FIXME: This doesn't deal with fields with reference types correctly.
2381     // FIXME: This incorrectly allows pointers cast to integers to be assigned
2382     // to bitfields.
2383     const InitListExpr *Exp = cast<InitListExpr>(this);
2384     unsigned numInits = Exp->getNumInits();
2385     for (unsigned i = 0; i < numInits; i++) {
2386       if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2387         return false;
2388     }
2389     return true;
2390   }
2391   case ImplicitValueInitExprClass:
2392     return true;
2393   case ParenExprClass:
2394     return cast<ParenExpr>(this)->getSubExpr()
2395       ->isConstantInitializer(Ctx, IsForRef);
2396   case GenericSelectionExprClass:
2397     if (cast<GenericSelectionExpr>(this)->isResultDependent())
2398       return false;
2399     return cast<GenericSelectionExpr>(this)->getResultExpr()
2400       ->isConstantInitializer(Ctx, IsForRef);
2401   case ChooseExprClass:
2402     return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2403       ->isConstantInitializer(Ctx, IsForRef);
2404   case UnaryOperatorClass: {
2405     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2406     if (Exp->getOpcode() == UO_Extension)
2407       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2408     break;
2409   }
2410   case CXXFunctionalCastExprClass:
2411   case CXXStaticCastExprClass:
2412   case ImplicitCastExprClass:
2413   case CStyleCastExprClass: {
2414     const CastExpr *CE = cast<CastExpr>(this);
2415 
2416     // If we're promoting an integer to an _Atomic type then this is constant
2417     // if the integer is constant.  We also need to check the converse in case
2418     // someone does something like:
2419     //
2420     // int a = (_Atomic(int))42;
2421     //
2422     // I doubt anyone would write code like this directly, but it's quite
2423     // possible as the result of macro expansions.
2424     if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2425         CE->getCastKind() == CK_AtomicToNonAtomic)
2426       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2427 
2428     // Handle bitcasts of vector constants.
2429     if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2430       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2431 
2432     // Handle misc casts we want to ignore.
2433     // FIXME: Is it really safe to ignore all these?
2434     if (CE->getCastKind() == CK_NoOp ||
2435         CE->getCastKind() == CK_LValueToRValue ||
2436         CE->getCastKind() == CK_ToUnion ||
2437         CE->getCastKind() == CK_ConstructorConversion)
2438       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2439 
2440     break;
2441   }
2442   case MaterializeTemporaryExprClass:
2443     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2444                                             ->isConstantInitializer(Ctx, false);
2445   }
2446   return isEvaluatable(Ctx);
2447 }
2448 
2449 namespace {
2450   /// \brief Look for a call to a non-trivial function within an expression.
2451   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2452   {
2453     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2454 
2455     bool NonTrivial;
2456 
2457   public:
NonTrivialCallFinder(ASTContext & Context)2458     explicit NonTrivialCallFinder(ASTContext &Context)
2459       : Inherited(Context), NonTrivial(false) { }
2460 
hasNonTrivialCall() const2461     bool hasNonTrivialCall() const { return NonTrivial; }
2462 
VisitCallExpr(CallExpr * E)2463     void VisitCallExpr(CallExpr *E) {
2464       if (CXXMethodDecl *Method
2465           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2466         if (Method->isTrivial()) {
2467           // Recurse to children of the call.
2468           Inherited::VisitStmt(E);
2469           return;
2470         }
2471       }
2472 
2473       NonTrivial = true;
2474     }
2475 
VisitCXXConstructExpr(CXXConstructExpr * E)2476     void VisitCXXConstructExpr(CXXConstructExpr *E) {
2477       if (E->getConstructor()->isTrivial()) {
2478         // Recurse to children of the call.
2479         Inherited::VisitStmt(E);
2480         return;
2481       }
2482 
2483       NonTrivial = true;
2484     }
2485 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2486     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2487       if (E->getTemporary()->getDestructor()->isTrivial()) {
2488         Inherited::VisitStmt(E);
2489         return;
2490       }
2491 
2492       NonTrivial = true;
2493     }
2494   };
2495 }
2496 
hasNonTrivialCall(ASTContext & Ctx)2497 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2498   NonTrivialCallFinder Finder(Ctx);
2499   Finder.Visit(this);
2500   return Finder.hasNonTrivialCall();
2501 }
2502 
2503 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2504 /// pointer constant or not, as well as the specific kind of constant detected.
2505 /// Null pointer constants can be integer constant expressions with the
2506 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
2507 /// (a GNU extension).
2508 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const2509 Expr::isNullPointerConstant(ASTContext &Ctx,
2510                             NullPointerConstantValueDependence NPC) const {
2511   if (isValueDependent()) {
2512     switch (NPC) {
2513     case NPC_NeverValueDependent:
2514       llvm_unreachable("Unexpected value dependent expression!");
2515     case NPC_ValueDependentIsNull:
2516       if (isTypeDependent() || getType()->isIntegralType(Ctx))
2517         return NPCK_ZeroInteger;
2518       else
2519         return NPCK_NotNull;
2520 
2521     case NPC_ValueDependentIsNotNull:
2522       return NPCK_NotNull;
2523     }
2524   }
2525 
2526   // Strip off a cast to void*, if it exists. Except in C++.
2527   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2528     if (!Ctx.getLangOpts().CPlusPlus) {
2529       // Check that it is a cast to void*.
2530       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2531         QualType Pointee = PT->getPointeeType();
2532         if (!Pointee.hasQualifiers() &&
2533             Pointee->isVoidType() &&                              // to void*
2534             CE->getSubExpr()->getType()->isIntegerType())         // from int.
2535           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2536       }
2537     }
2538   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2539     // Ignore the ImplicitCastExpr type entirely.
2540     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2541   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2542     // Accept ((void*)0) as a null pointer constant, as many other
2543     // implementations do.
2544     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2545   } else if (const GenericSelectionExpr *GE =
2546                dyn_cast<GenericSelectionExpr>(this)) {
2547     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2548   } else if (const CXXDefaultArgExpr *DefaultArg
2549                = dyn_cast<CXXDefaultArgExpr>(this)) {
2550     // See through default argument expressions
2551     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2552   } else if (isa<GNUNullExpr>(this)) {
2553     // The GNU __null extension is always a null pointer constant.
2554     return NPCK_GNUNull;
2555   } else if (const MaterializeTemporaryExpr *M
2556                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
2557     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2558   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2559     if (const Expr *Source = OVE->getSourceExpr())
2560       return Source->isNullPointerConstant(Ctx, NPC);
2561   }
2562 
2563   // C++0x nullptr_t is always a null pointer constant.
2564   if (getType()->isNullPtrType())
2565     return NPCK_CXX0X_nullptr;
2566 
2567   if (const RecordType *UT = getType()->getAsUnionType())
2568     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2569       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2570         const Expr *InitExpr = CLE->getInitializer();
2571         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2572           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2573       }
2574   // This expression must be an integer type.
2575   if (!getType()->isIntegerType() ||
2576       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2577     return NPCK_NotNull;
2578 
2579   // If we have an integer constant expression, we need to *evaluate* it and
2580   // test for the value 0. Don't use the C++11 constant expression semantics
2581   // for this, for now; once the dust settles on core issue 903, we might only
2582   // allow a literal 0 here in C++11 mode.
2583   if (Ctx.getLangOpts().CPlusPlus0x) {
2584     if (!isCXX98IntegralConstantExpr(Ctx))
2585       return NPCK_NotNull;
2586   } else {
2587     if (!isIntegerConstantExpr(Ctx))
2588       return NPCK_NotNull;
2589   }
2590 
2591   return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull;
2592 }
2593 
2594 /// \brief If this expression is an l-value for an Objective C
2595 /// property, find the underlying property reference expression.
getObjCProperty() const2596 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2597   const Expr *E = this;
2598   while (true) {
2599     assert((E->getValueKind() == VK_LValue &&
2600             E->getObjectKind() == OK_ObjCProperty) &&
2601            "expression is not a property reference");
2602     E = E->IgnoreParenCasts();
2603     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2604       if (BO->getOpcode() == BO_Comma) {
2605         E = BO->getRHS();
2606         continue;
2607       }
2608     }
2609 
2610     break;
2611   }
2612 
2613   return cast<ObjCPropertyRefExpr>(E);
2614 }
2615 
getBitField()2616 FieldDecl *Expr::getBitField() {
2617   Expr *E = this->IgnoreParens();
2618 
2619   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2620     if (ICE->getCastKind() == CK_LValueToRValue ||
2621         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2622       E = ICE->getSubExpr()->IgnoreParens();
2623     else
2624       break;
2625   }
2626 
2627   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2628     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2629       if (Field->isBitField())
2630         return Field;
2631 
2632   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2633     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2634       if (Field->isBitField())
2635         return Field;
2636 
2637   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2638     if (BinOp->isAssignmentOp() && BinOp->getLHS())
2639       return BinOp->getLHS()->getBitField();
2640 
2641     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2642       return BinOp->getRHS()->getBitField();
2643   }
2644 
2645   return 0;
2646 }
2647 
refersToVectorElement() const2648 bool Expr::refersToVectorElement() const {
2649   const Expr *E = this->IgnoreParens();
2650 
2651   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2652     if (ICE->getValueKind() != VK_RValue &&
2653         ICE->getCastKind() == CK_NoOp)
2654       E = ICE->getSubExpr()->IgnoreParens();
2655     else
2656       break;
2657   }
2658 
2659   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2660     return ASE->getBase()->getType()->isVectorType();
2661 
2662   if (isa<ExtVectorElementExpr>(E))
2663     return true;
2664 
2665   return false;
2666 }
2667 
2668 /// isArrow - Return true if the base expression is a pointer to vector,
2669 /// return false if the base expression is a vector.
isArrow() const2670 bool ExtVectorElementExpr::isArrow() const {
2671   return getBase()->getType()->isPointerType();
2672 }
2673 
getNumElements() const2674 unsigned ExtVectorElementExpr::getNumElements() const {
2675   if (const VectorType *VT = getType()->getAs<VectorType>())
2676     return VT->getNumElements();
2677   return 1;
2678 }
2679 
2680 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const2681 bool ExtVectorElementExpr::containsDuplicateElements() const {
2682   // FIXME: Refactor this code to an accessor on the AST node which returns the
2683   // "type" of component access, and share with code below and in Sema.
2684   StringRef Comp = Accessor->getName();
2685 
2686   // Halving swizzles do not contain duplicate elements.
2687   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2688     return false;
2689 
2690   // Advance past s-char prefix on hex swizzles.
2691   if (Comp[0] == 's' || Comp[0] == 'S')
2692     Comp = Comp.substr(1);
2693 
2694   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2695     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2696         return true;
2697 
2698   return false;
2699 }
2700 
2701 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const2702 void ExtVectorElementExpr::getEncodedElementAccess(
2703                                   SmallVectorImpl<unsigned> &Elts) const {
2704   StringRef Comp = Accessor->getName();
2705   if (Comp[0] == 's' || Comp[0] == 'S')
2706     Comp = Comp.substr(1);
2707 
2708   bool isHi =   Comp == "hi";
2709   bool isLo =   Comp == "lo";
2710   bool isEven = Comp == "even";
2711   bool isOdd  = Comp == "odd";
2712 
2713   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2714     uint64_t Index;
2715 
2716     if (isHi)
2717       Index = e + i;
2718     else if (isLo)
2719       Index = i;
2720     else if (isEven)
2721       Index = 2 * i;
2722     else if (isOdd)
2723       Index = 2 * i + 1;
2724     else
2725       Index = ExtVectorType::getAccessorIdx(Comp[i]);
2726 
2727     Elts.push_back(Index);
2728   }
2729 }
2730 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2731 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2732                                  ExprValueKind VK,
2733                                  SourceLocation LBracLoc,
2734                                  SourceLocation SuperLoc,
2735                                  bool IsInstanceSuper,
2736                                  QualType SuperType,
2737                                  Selector Sel,
2738                                  ArrayRef<SourceLocation> SelLocs,
2739                                  SelectorLocationsKind SelLocsK,
2740                                  ObjCMethodDecl *Method,
2741                                  ArrayRef<Expr *> Args,
2742                                  SourceLocation RBracLoc,
2743                                  bool isImplicit)
2744   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2745          /*TypeDependent=*/false, /*ValueDependent=*/false,
2746          /*InstantiationDependent=*/false,
2747          /*ContainsUnexpandedParameterPack=*/false),
2748     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2749                                                        : Sel.getAsOpaquePtr())),
2750     Kind(IsInstanceSuper? SuperInstance : SuperClass),
2751     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2752     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2753 {
2754   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2755   setReceiverPointer(SuperType.getAsOpaquePtr());
2756 }
2757 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2758 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2759                                  ExprValueKind VK,
2760                                  SourceLocation LBracLoc,
2761                                  TypeSourceInfo *Receiver,
2762                                  Selector Sel,
2763                                  ArrayRef<SourceLocation> SelLocs,
2764                                  SelectorLocationsKind SelLocsK,
2765                                  ObjCMethodDecl *Method,
2766                                  ArrayRef<Expr *> Args,
2767                                  SourceLocation RBracLoc,
2768                                  bool isImplicit)
2769   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2770          T->isDependentType(), T->isInstantiationDependentType(),
2771          T->containsUnexpandedParameterPack()),
2772     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2773                                                        : Sel.getAsOpaquePtr())),
2774     Kind(Class),
2775     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2776     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2777 {
2778   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2779   setReceiverPointer(Receiver);
2780 }
2781 
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2782 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2783                                  ExprValueKind VK,
2784                                  SourceLocation LBracLoc,
2785                                  Expr *Receiver,
2786                                  Selector Sel,
2787                                  ArrayRef<SourceLocation> SelLocs,
2788                                  SelectorLocationsKind SelLocsK,
2789                                  ObjCMethodDecl *Method,
2790                                  ArrayRef<Expr *> Args,
2791                                  SourceLocation RBracLoc,
2792                                  bool isImplicit)
2793   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2794          Receiver->isTypeDependent(),
2795          Receiver->isInstantiationDependent(),
2796          Receiver->containsUnexpandedParameterPack()),
2797     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2798                                                        : Sel.getAsOpaquePtr())),
2799     Kind(Instance),
2800     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2801     LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2802 {
2803   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2804   setReceiverPointer(Receiver);
2805 }
2806 
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)2807 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
2808                                          ArrayRef<SourceLocation> SelLocs,
2809                                          SelectorLocationsKind SelLocsK) {
2810   setNumArgs(Args.size());
2811   Expr **MyArgs = getArgs();
2812   for (unsigned I = 0; I != Args.size(); ++I) {
2813     if (Args[I]->isTypeDependent())
2814       ExprBits.TypeDependent = true;
2815     if (Args[I]->isValueDependent())
2816       ExprBits.ValueDependent = true;
2817     if (Args[I]->isInstantiationDependent())
2818       ExprBits.InstantiationDependent = true;
2819     if (Args[I]->containsUnexpandedParameterPack())
2820       ExprBits.ContainsUnexpandedParameterPack = true;
2821 
2822     MyArgs[I] = Args[I];
2823   }
2824 
2825   SelLocsKind = SelLocsK;
2826   if (!isImplicit()) {
2827     if (SelLocsK == SelLoc_NonStandard)
2828       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
2829   }
2830 }
2831 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2832 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2833                                          ExprValueKind VK,
2834                                          SourceLocation LBracLoc,
2835                                          SourceLocation SuperLoc,
2836                                          bool IsInstanceSuper,
2837                                          QualType SuperType,
2838                                          Selector Sel,
2839                                          ArrayRef<SourceLocation> SelLocs,
2840                                          ObjCMethodDecl *Method,
2841                                          ArrayRef<Expr *> Args,
2842                                          SourceLocation RBracLoc,
2843                                          bool isImplicit) {
2844   assert((!SelLocs.empty() || isImplicit) &&
2845          "No selector locs for non-implicit message");
2846   ObjCMessageExpr *Mem;
2847   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2848   if (isImplicit)
2849     Mem = alloc(Context, Args.size(), 0);
2850   else
2851     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2852   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2853                                    SuperType, Sel, SelLocs, SelLocsK,
2854                                    Method, Args, RBracLoc, isImplicit);
2855 }
2856 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2857 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2858                                          ExprValueKind VK,
2859                                          SourceLocation LBracLoc,
2860                                          TypeSourceInfo *Receiver,
2861                                          Selector Sel,
2862                                          ArrayRef<SourceLocation> SelLocs,
2863                                          ObjCMethodDecl *Method,
2864                                          ArrayRef<Expr *> Args,
2865                                          SourceLocation RBracLoc,
2866                                          bool isImplicit) {
2867   assert((!SelLocs.empty() || isImplicit) &&
2868          "No selector locs for non-implicit message");
2869   ObjCMessageExpr *Mem;
2870   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2871   if (isImplicit)
2872     Mem = alloc(Context, Args.size(), 0);
2873   else
2874     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2875   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
2876                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
2877                                    isImplicit);
2878 }
2879 
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2880 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2881                                          ExprValueKind VK,
2882                                          SourceLocation LBracLoc,
2883                                          Expr *Receiver,
2884                                          Selector Sel,
2885                                          ArrayRef<SourceLocation> SelLocs,
2886                                          ObjCMethodDecl *Method,
2887                                          ArrayRef<Expr *> Args,
2888                                          SourceLocation RBracLoc,
2889                                          bool isImplicit) {
2890   assert((!SelLocs.empty() || isImplicit) &&
2891          "No selector locs for non-implicit message");
2892   ObjCMessageExpr *Mem;
2893   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2894   if (isImplicit)
2895     Mem = alloc(Context, Args.size(), 0);
2896   else
2897     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2898   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
2899                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
2900                                    isImplicit);
2901 }
2902 
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)2903 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2904                                               unsigned NumArgs,
2905                                               unsigned NumStoredSelLocs) {
2906   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
2907   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2908 }
2909 
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)2910 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
2911                                         ArrayRef<Expr *> Args,
2912                                         SourceLocation RBraceLoc,
2913                                         ArrayRef<SourceLocation> SelLocs,
2914                                         Selector Sel,
2915                                         SelectorLocationsKind &SelLocsK) {
2916   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
2917   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
2918                                                                : 0;
2919   return alloc(C, Args.size(), NumStoredSelLocs);
2920 }
2921 
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)2922 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
2923                                         unsigned NumArgs,
2924                                         unsigned NumStoredSelLocs) {
2925   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2926     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
2927   return (ObjCMessageExpr *)C.Allocate(Size,
2928                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
2929 }
2930 
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const2931 void ObjCMessageExpr::getSelectorLocs(
2932                                SmallVectorImpl<SourceLocation> &SelLocs) const {
2933   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
2934     SelLocs.push_back(getSelectorLoc(i));
2935 }
2936 
getReceiverRange() const2937 SourceRange ObjCMessageExpr::getReceiverRange() const {
2938   switch (getReceiverKind()) {
2939   case Instance:
2940     return getInstanceReceiver()->getSourceRange();
2941 
2942   case Class:
2943     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2944 
2945   case SuperInstance:
2946   case SuperClass:
2947     return getSuperLoc();
2948   }
2949 
2950   llvm_unreachable("Invalid ReceiverKind!");
2951 }
2952 
getSelector() const2953 Selector ObjCMessageExpr::getSelector() const {
2954   if (HasMethod)
2955     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2956                                                                ->getSelector();
2957   return Selector(SelectorOrMethod);
2958 }
2959 
getReceiverInterface() const2960 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2961   switch (getReceiverKind()) {
2962   case Instance:
2963     if (const ObjCObjectPointerType *Ptr
2964           = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2965       return Ptr->getInterfaceDecl();
2966     break;
2967 
2968   case Class:
2969     if (const ObjCObjectType *Ty
2970           = getClassReceiver()->getAs<ObjCObjectType>())
2971       return Ty->getInterface();
2972     break;
2973 
2974   case SuperInstance:
2975     if (const ObjCObjectPointerType *Ptr
2976           = getSuperType()->getAs<ObjCObjectPointerType>())
2977       return Ptr->getInterfaceDecl();
2978     break;
2979 
2980   case SuperClass:
2981     if (const ObjCObjectType *Iface
2982           = getSuperType()->getAs<ObjCObjectType>())
2983       return Iface->getInterface();
2984     break;
2985   }
2986 
2987   return 0;
2988 }
2989 
getBridgeKindName() const2990 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
2991   switch (getBridgeKind()) {
2992   case OBC_Bridge:
2993     return "__bridge";
2994   case OBC_BridgeTransfer:
2995     return "__bridge_transfer";
2996   case OBC_BridgeRetained:
2997     return "__bridge_retained";
2998   }
2999 
3000   llvm_unreachable("Invalid BridgeKind!");
3001 }
3002 
isConditionTrue(const ASTContext & C) const3003 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3004   return getCond()->EvaluateKnownConstInt(C) != 0;
3005 }
3006 
ShuffleVectorExpr(ASTContext & C,Expr ** args,unsigned nexpr,QualType Type,SourceLocation BLoc,SourceLocation RP)3007 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3008                                      QualType Type, SourceLocation BLoc,
3009                                      SourceLocation RP)
3010    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3011           Type->isDependentType(), Type->isDependentType(),
3012           Type->isInstantiationDependentType(),
3013           Type->containsUnexpandedParameterPack()),
3014      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3015 {
3016   SubExprs = new (C) Stmt*[nexpr];
3017   for (unsigned i = 0; i < nexpr; i++) {
3018     if (args[i]->isTypeDependent())
3019       ExprBits.TypeDependent = true;
3020     if (args[i]->isValueDependent())
3021       ExprBits.ValueDependent = true;
3022     if (args[i]->isInstantiationDependent())
3023       ExprBits.InstantiationDependent = true;
3024     if (args[i]->containsUnexpandedParameterPack())
3025       ExprBits.ContainsUnexpandedParameterPack = true;
3026 
3027     SubExprs[i] = args[i];
3028   }
3029 }
3030 
setExprs(ASTContext & C,Expr ** Exprs,unsigned NumExprs)3031 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3032                                  unsigned NumExprs) {
3033   if (SubExprs) C.Deallocate(SubExprs);
3034 
3035   SubExprs = new (C) Stmt* [NumExprs];
3036   this->NumExprs = NumExprs;
3037   memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3038 }
3039 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,TypeSourceInfo ** AssocTypes,Expr ** AssocExprs,unsigned NumAssocs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3040 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3041                                SourceLocation GenericLoc, Expr *ControllingExpr,
3042                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3043                                unsigned NumAssocs, SourceLocation DefaultLoc,
3044                                SourceLocation RParenLoc,
3045                                bool ContainsUnexpandedParameterPack,
3046                                unsigned ResultIndex)
3047   : Expr(GenericSelectionExprClass,
3048          AssocExprs[ResultIndex]->getType(),
3049          AssocExprs[ResultIndex]->getValueKind(),
3050          AssocExprs[ResultIndex]->getObjectKind(),
3051          AssocExprs[ResultIndex]->isTypeDependent(),
3052          AssocExprs[ResultIndex]->isValueDependent(),
3053          AssocExprs[ResultIndex]->isInstantiationDependent(),
3054          ContainsUnexpandedParameterPack),
3055     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3056     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3057     ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3058     RParenLoc(RParenLoc) {
3059   SubExprs[CONTROLLING] = ControllingExpr;
3060   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3061   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3062 }
3063 
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,TypeSourceInfo ** AssocTypes,Expr ** AssocExprs,unsigned NumAssocs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3064 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3065                                SourceLocation GenericLoc, Expr *ControllingExpr,
3066                                TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3067                                unsigned NumAssocs, SourceLocation DefaultLoc,
3068                                SourceLocation RParenLoc,
3069                                bool ContainsUnexpandedParameterPack)
3070   : Expr(GenericSelectionExprClass,
3071          Context.DependentTy,
3072          VK_RValue,
3073          OK_Ordinary,
3074          /*isTypeDependent=*/true,
3075          /*isValueDependent=*/true,
3076          /*isInstantiationDependent=*/true,
3077          ContainsUnexpandedParameterPack),
3078     AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3079     SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3080     ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3081     RParenLoc(RParenLoc) {
3082   SubExprs[CONTROLLING] = ControllingExpr;
3083   std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3084   std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3085 }
3086 
3087 //===----------------------------------------------------------------------===//
3088 //  DesignatedInitExpr
3089 //===----------------------------------------------------------------------===//
3090 
getFieldName() const3091 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3092   assert(Kind == FieldDesignator && "Only valid on a field designator");
3093   if (Field.NameOrField & 0x01)
3094     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3095   else
3096     return getField()->getIdentifier();
3097 }
3098 
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr ** IndexExprs,unsigned NumIndexExprs,Expr * Init)3099 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3100                                        unsigned NumDesignators,
3101                                        const Designator *Designators,
3102                                        SourceLocation EqualOrColonLoc,
3103                                        bool GNUSyntax,
3104                                        Expr **IndexExprs,
3105                                        unsigned NumIndexExprs,
3106                                        Expr *Init)
3107   : Expr(DesignatedInitExprClass, Ty,
3108          Init->getValueKind(), Init->getObjectKind(),
3109          Init->isTypeDependent(), Init->isValueDependent(),
3110          Init->isInstantiationDependent(),
3111          Init->containsUnexpandedParameterPack()),
3112     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3113     NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3114   this->Designators = new (C) Designator[NumDesignators];
3115 
3116   // Record the initializer itself.
3117   child_range Child = children();
3118   *Child++ = Init;
3119 
3120   // Copy the designators and their subexpressions, computing
3121   // value-dependence along the way.
3122   unsigned IndexIdx = 0;
3123   for (unsigned I = 0; I != NumDesignators; ++I) {
3124     this->Designators[I] = Designators[I];
3125 
3126     if (this->Designators[I].isArrayDesignator()) {
3127       // Compute type- and value-dependence.
3128       Expr *Index = IndexExprs[IndexIdx];
3129       if (Index->isTypeDependent() || Index->isValueDependent())
3130         ExprBits.ValueDependent = true;
3131       if (Index->isInstantiationDependent())
3132         ExprBits.InstantiationDependent = true;
3133       // Propagate unexpanded parameter packs.
3134       if (Index->containsUnexpandedParameterPack())
3135         ExprBits.ContainsUnexpandedParameterPack = true;
3136 
3137       // Copy the index expressions into permanent storage.
3138       *Child++ = IndexExprs[IndexIdx++];
3139     } else if (this->Designators[I].isArrayRangeDesignator()) {
3140       // Compute type- and value-dependence.
3141       Expr *Start = IndexExprs[IndexIdx];
3142       Expr *End = IndexExprs[IndexIdx + 1];
3143       if (Start->isTypeDependent() || Start->isValueDependent() ||
3144           End->isTypeDependent() || End->isValueDependent()) {
3145         ExprBits.ValueDependent = true;
3146         ExprBits.InstantiationDependent = true;
3147       } else if (Start->isInstantiationDependent() ||
3148                  End->isInstantiationDependent()) {
3149         ExprBits.InstantiationDependent = true;
3150       }
3151 
3152       // Propagate unexpanded parameter packs.
3153       if (Start->containsUnexpandedParameterPack() ||
3154           End->containsUnexpandedParameterPack())
3155         ExprBits.ContainsUnexpandedParameterPack = true;
3156 
3157       // Copy the start/end expressions into permanent storage.
3158       *Child++ = IndexExprs[IndexIdx++];
3159       *Child++ = IndexExprs[IndexIdx++];
3160     }
3161   }
3162 
3163   assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3164 }
3165 
3166 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,Expr ** IndexExprs,unsigned NumIndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3167 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3168                            unsigned NumDesignators,
3169                            Expr **IndexExprs, unsigned NumIndexExprs,
3170                            SourceLocation ColonOrEqualLoc,
3171                            bool UsesColonSyntax, Expr *Init) {
3172   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3173                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3174   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3175                                       ColonOrEqualLoc, UsesColonSyntax,
3176                                       IndexExprs, NumIndexExprs, Init);
3177 }
3178 
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3179 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3180                                                     unsigned NumIndexExprs) {
3181   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3182                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3183   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3184 }
3185 
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3186 void DesignatedInitExpr::setDesignators(ASTContext &C,
3187                                         const Designator *Desigs,
3188                                         unsigned NumDesigs) {
3189   Designators = new (C) Designator[NumDesigs];
3190   NumDesignators = NumDesigs;
3191   for (unsigned I = 0; I != NumDesigs; ++I)
3192     Designators[I] = Desigs[I];
3193 }
3194 
getDesignatorsSourceRange() const3195 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3196   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3197   if (size() == 1)
3198     return DIE->getDesignator(0)->getSourceRange();
3199   return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3200                      DIE->getDesignator(size()-1)->getEndLocation());
3201 }
3202 
getSourceRange() const3203 SourceRange DesignatedInitExpr::getSourceRange() const {
3204   SourceLocation StartLoc;
3205   Designator &First =
3206     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3207   if (First.isFieldDesignator()) {
3208     if (GNUSyntax)
3209       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3210     else
3211       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3212   } else
3213     StartLoc =
3214       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3215   return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3216 }
3217 
getArrayIndex(const Designator & D)3218 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3219   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3220   char* Ptr = static_cast<char*>(static_cast<void *>(this));
3221   Ptr += sizeof(DesignatedInitExpr);
3222   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3223   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3224 }
3225 
getArrayRangeStart(const Designator & D)3226 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3227   assert(D.Kind == Designator::ArrayRangeDesignator &&
3228          "Requires array range designator");
3229   char* Ptr = static_cast<char*>(static_cast<void *>(this));
3230   Ptr += sizeof(DesignatedInitExpr);
3231   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3232   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3233 }
3234 
getArrayRangeEnd(const Designator & D)3235 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3236   assert(D.Kind == Designator::ArrayRangeDesignator &&
3237          "Requires array range designator");
3238   char* Ptr = static_cast<char*>(static_cast<void *>(this));
3239   Ptr += sizeof(DesignatedInitExpr);
3240   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3241   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3242 }
3243 
3244 /// \brief Replaces the designator at index @p Idx with the series
3245 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3246 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3247                                           const Designator *First,
3248                                           const Designator *Last) {
3249   unsigned NumNewDesignators = Last - First;
3250   if (NumNewDesignators == 0) {
3251     std::copy_backward(Designators + Idx + 1,
3252                        Designators + NumDesignators,
3253                        Designators + Idx);
3254     --NumNewDesignators;
3255     return;
3256   } else if (NumNewDesignators == 1) {
3257     Designators[Idx] = *First;
3258     return;
3259   }
3260 
3261   Designator *NewDesignators
3262     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3263   std::copy(Designators, Designators + Idx, NewDesignators);
3264   std::copy(First, Last, NewDesignators + Idx);
3265   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3266             NewDesignators + Idx + NumNewDesignators);
3267   Designators = NewDesignators;
3268   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3269 }
3270 
ParenListExpr(ASTContext & C,SourceLocation lparenloc,Expr ** exprs,unsigned nexprs,SourceLocation rparenloc)3271 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3272                              Expr **exprs, unsigned nexprs,
3273                              SourceLocation rparenloc)
3274   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3275          false, false, false, false),
3276     NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3277   Exprs = new (C) Stmt*[nexprs];
3278   for (unsigned i = 0; i != nexprs; ++i) {
3279     if (exprs[i]->isTypeDependent())
3280       ExprBits.TypeDependent = true;
3281     if (exprs[i]->isValueDependent())
3282       ExprBits.ValueDependent = true;
3283     if (exprs[i]->isInstantiationDependent())
3284       ExprBits.InstantiationDependent = true;
3285     if (exprs[i]->containsUnexpandedParameterPack())
3286       ExprBits.ContainsUnexpandedParameterPack = true;
3287 
3288     Exprs[i] = exprs[i];
3289   }
3290 }
3291 
findInCopyConstruct(const Expr * e)3292 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3293   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3294     e = ewc->getSubExpr();
3295   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3296     e = m->GetTemporaryExpr();
3297   e = cast<CXXConstructExpr>(e)->getArg(0);
3298   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3299     e = ice->getSubExpr();
3300   return cast<OpaqueValueExpr>(e);
3301 }
3302 
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3303 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3304                                            unsigned numSemanticExprs) {
3305   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3306                                     (1 + numSemanticExprs) * sizeof(Expr*),
3307                                   llvm::alignOf<PseudoObjectExpr>());
3308   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3309 }
3310 
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3311 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3312   : Expr(PseudoObjectExprClass, shell) {
3313   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3314 }
3315 
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3316 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3317                                            ArrayRef<Expr*> semantics,
3318                                            unsigned resultIndex) {
3319   assert(syntax && "no syntactic expression!");
3320   assert(semantics.size() && "no semantic expressions!");
3321 
3322   QualType type;
3323   ExprValueKind VK;
3324   if (resultIndex == NoResult) {
3325     type = C.VoidTy;
3326     VK = VK_RValue;
3327   } else {
3328     assert(resultIndex < semantics.size());
3329     type = semantics[resultIndex]->getType();
3330     VK = semantics[resultIndex]->getValueKind();
3331     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3332   }
3333 
3334   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3335                               (1 + semantics.size()) * sizeof(Expr*),
3336                             llvm::alignOf<PseudoObjectExpr>());
3337   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3338                                       resultIndex);
3339 }
3340 
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3341 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3342                                    Expr *syntax, ArrayRef<Expr*> semantics,
3343                                    unsigned resultIndex)
3344   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3345          /*filled in at end of ctor*/ false, false, false, false) {
3346   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3347   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3348 
3349   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3350     Expr *E = (i == 0 ? syntax : semantics[i-1]);
3351     getSubExprsBuffer()[i] = E;
3352 
3353     if (E->isTypeDependent())
3354       ExprBits.TypeDependent = true;
3355     if (E->isValueDependent())
3356       ExprBits.ValueDependent = true;
3357     if (E->isInstantiationDependent())
3358       ExprBits.InstantiationDependent = true;
3359     if (E->containsUnexpandedParameterPack())
3360       ExprBits.ContainsUnexpandedParameterPack = true;
3361 
3362     if (isa<OpaqueValueExpr>(E))
3363       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3364              "opaque-value semantic expressions for pseudo-object "
3365              "operations must have sources");
3366   }
3367 }
3368 
3369 //===----------------------------------------------------------------------===//
3370 //  ExprIterator.
3371 //===----------------------------------------------------------------------===//
3372 
operator [](size_t idx)3373 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3374 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3375 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3376 const Expr* ConstExprIterator::operator[](size_t idx) const {
3377   return cast<Expr>(I[idx]);
3378 }
operator *() const3379 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3380 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3381 
3382 //===----------------------------------------------------------------------===//
3383 //  Child Iterators for iterating over subexpressions/substatements
3384 //===----------------------------------------------------------------------===//
3385 
3386 // UnaryExprOrTypeTraitExpr
children()3387 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3388   // If this is of a type and the type is a VLA type (and not a typedef), the
3389   // size expression of the VLA needs to be treated as an executable expression.
3390   // Why isn't this weirdness documented better in StmtIterator?
3391   if (isArgumentType()) {
3392     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3393                                    getArgumentType().getTypePtr()))
3394       return child_range(child_iterator(T), child_iterator());
3395     return child_range();
3396   }
3397   return child_range(&Argument.Ex, &Argument.Ex + 1);
3398 }
3399 
3400 // ObjCMessageExpr
children()3401 Stmt::child_range ObjCMessageExpr::children() {
3402   Stmt **begin;
3403   if (getReceiverKind() == Instance)
3404     begin = reinterpret_cast<Stmt **>(this + 1);
3405   else
3406     begin = reinterpret_cast<Stmt **>(getArgs());
3407   return child_range(begin,
3408                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3409 }
3410 
ObjCArrayLiteral(llvm::ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3411 ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3412                                    QualType T, ObjCMethodDecl *Method,
3413                                    SourceRange SR)
3414   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3415          false, false, false, false),
3416     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3417 {
3418   Expr **SaveElements = getElements();
3419   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3420     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3421       ExprBits.ValueDependent = true;
3422     if (Elements[I]->isInstantiationDependent())
3423       ExprBits.InstantiationDependent = true;
3424     if (Elements[I]->containsUnexpandedParameterPack())
3425       ExprBits.ContainsUnexpandedParameterPack = true;
3426 
3427     SaveElements[I] = Elements[I];
3428   }
3429 }
3430 
Create(ASTContext & C,llvm::ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3431 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3432                                            llvm::ArrayRef<Expr *> Elements,
3433                                            QualType T, ObjCMethodDecl * Method,
3434                                            SourceRange SR) {
3435   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3436                          + Elements.size() * sizeof(Expr *));
3437   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3438 }
3439 
CreateEmpty(ASTContext & C,unsigned NumElements)3440 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3441                                                 unsigned NumElements) {
3442 
3443   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3444                          + NumElements * sizeof(Expr *));
3445   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3446 }
3447 
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3448 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3449                                              ArrayRef<ObjCDictionaryElement> VK,
3450                                              bool HasPackExpansions,
3451                                              QualType T, ObjCMethodDecl *method,
3452                                              SourceRange SR)
3453   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3454          false, false),
3455     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3456     DictWithObjectsMethod(method)
3457 {
3458   KeyValuePair *KeyValues = getKeyValues();
3459   ExpansionData *Expansions = getExpansionData();
3460   for (unsigned I = 0; I < NumElements; I++) {
3461     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3462         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3463       ExprBits.ValueDependent = true;
3464     if (VK[I].Key->isInstantiationDependent() ||
3465         VK[I].Value->isInstantiationDependent())
3466       ExprBits.InstantiationDependent = true;
3467     if (VK[I].EllipsisLoc.isInvalid() &&
3468         (VK[I].Key->containsUnexpandedParameterPack() ||
3469          VK[I].Value->containsUnexpandedParameterPack()))
3470       ExprBits.ContainsUnexpandedParameterPack = true;
3471 
3472     KeyValues[I].Key = VK[I].Key;
3473     KeyValues[I].Value = VK[I].Value;
3474     if (Expansions) {
3475       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3476       if (VK[I].NumExpansions)
3477         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3478       else
3479         Expansions[I].NumExpansionsPlusOne = 0;
3480     }
3481   }
3482 }
3483 
3484 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3485 ObjCDictionaryLiteral::Create(ASTContext &C,
3486                               ArrayRef<ObjCDictionaryElement> VK,
3487                               bool HasPackExpansions,
3488                               QualType T, ObjCMethodDecl *method,
3489                               SourceRange SR) {
3490   unsigned ExpansionsSize = 0;
3491   if (HasPackExpansions)
3492     ExpansionsSize = sizeof(ExpansionData) * VK.size();
3493 
3494   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3495                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3496   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3497 }
3498 
3499 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)3500 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3501                                    bool HasPackExpansions) {
3502   unsigned ExpansionsSize = 0;
3503   if (HasPackExpansions)
3504     ExpansionsSize = sizeof(ExpansionData) * NumElements;
3505   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3506                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3507   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3508                                          HasPackExpansions);
3509 }
3510 
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)3511 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3512                                                    Expr *base,
3513                                                    Expr *key, QualType T,
3514                                                    ObjCMethodDecl *getMethod,
3515                                                    ObjCMethodDecl *setMethod,
3516                                                    SourceLocation RB) {
3517   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3518   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3519                                         OK_ObjCSubscript,
3520                                         getMethod, setMethod, RB);
3521 }
3522 
AtomicExpr(SourceLocation BLoc,Expr ** args,unsigned nexpr,QualType t,AtomicOp op,SourceLocation RP)3523 AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3524                        QualType t, AtomicOp op, SourceLocation RP)
3525   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3526          false, false, false, false),
3527     NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3528 {
3529   assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions");
3530   for (unsigned i = 0; i < nexpr; i++) {
3531     if (args[i]->isTypeDependent())
3532       ExprBits.TypeDependent = true;
3533     if (args[i]->isValueDependent())
3534       ExprBits.ValueDependent = true;
3535     if (args[i]->isInstantiationDependent())
3536       ExprBits.InstantiationDependent = true;
3537     if (args[i]->containsUnexpandedParameterPack())
3538       ExprBits.ContainsUnexpandedParameterPack = true;
3539 
3540     SubExprs[i] = args[i];
3541   }
3542 }
3543 
getNumSubExprs(AtomicOp Op)3544 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3545   switch (Op) {
3546   case AO__c11_atomic_init:
3547   case AO__c11_atomic_load:
3548   case AO__atomic_load_n:
3549     return 2;
3550 
3551   case AO__c11_atomic_store:
3552   case AO__c11_atomic_exchange:
3553   case AO__atomic_load:
3554   case AO__atomic_store:
3555   case AO__atomic_store_n:
3556   case AO__atomic_exchange_n:
3557   case AO__c11_atomic_fetch_add:
3558   case AO__c11_atomic_fetch_sub:
3559   case AO__c11_atomic_fetch_and:
3560   case AO__c11_atomic_fetch_or:
3561   case AO__c11_atomic_fetch_xor:
3562   case AO__atomic_fetch_add:
3563   case AO__atomic_fetch_sub:
3564   case AO__atomic_fetch_and:
3565   case AO__atomic_fetch_or:
3566   case AO__atomic_fetch_xor:
3567   case AO__atomic_fetch_nand:
3568   case AO__atomic_add_fetch:
3569   case AO__atomic_sub_fetch:
3570   case AO__atomic_and_fetch:
3571   case AO__atomic_or_fetch:
3572   case AO__atomic_xor_fetch:
3573   case AO__atomic_nand_fetch:
3574     return 3;
3575 
3576   case AO__atomic_exchange:
3577     return 4;
3578 
3579   case AO__c11_atomic_compare_exchange_strong:
3580   case AO__c11_atomic_compare_exchange_weak:
3581     return 5;
3582 
3583   case AO__atomic_compare_exchange:
3584   case AO__atomic_compare_exchange_n:
3585     return 6;
3586   }
3587   llvm_unreachable("unknown atomic op");
3588 }
3589