1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Expr.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/Lexer.h"
26 #include "clang/Sema/SemaDiagnostic.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cstring>
34 using namespace clang;
35
36 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
37 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
38 /// but also int expressions which are produced by things like comparisons in
39 /// C.
isKnownToHaveBooleanValue() const40 bool Expr::isKnownToHaveBooleanValue() const {
41 const Expr *E = IgnoreParens();
42
43 // If this value has _Bool type, it is obvious 0/1.
44 if (E->getType()->isBooleanType()) return true;
45 // If this is a non-scalar-integer type, we don't care enough to try.
46 if (!E->getType()->isIntegralOrEnumerationType()) return false;
47
48 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
49 switch (UO->getOpcode()) {
50 case UO_Plus:
51 return UO->getSubExpr()->isKnownToHaveBooleanValue();
52 default:
53 return false;
54 }
55 }
56
57 // Only look through implicit casts. If the user writes
58 // '(int) (a && b)' treat it as an arbitrary int.
59 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
60 return CE->getSubExpr()->isKnownToHaveBooleanValue();
61
62 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
63 switch (BO->getOpcode()) {
64 default: return false;
65 case BO_LT: // Relational operators.
66 case BO_GT:
67 case BO_LE:
68 case BO_GE:
69 case BO_EQ: // Equality operators.
70 case BO_NE:
71 case BO_LAnd: // AND operator.
72 case BO_LOr: // Logical OR operator.
73 return true;
74
75 case BO_And: // Bitwise AND operator.
76 case BO_Xor: // Bitwise XOR operator.
77 case BO_Or: // Bitwise OR operator.
78 // Handle things like (x==2)|(y==12).
79 return BO->getLHS()->isKnownToHaveBooleanValue() &&
80 BO->getRHS()->isKnownToHaveBooleanValue();
81
82 case BO_Comma:
83 case BO_Assign:
84 return BO->getRHS()->isKnownToHaveBooleanValue();
85 }
86 }
87
88 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
89 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
90 CO->getFalseExpr()->isKnownToHaveBooleanValue();
91
92 return false;
93 }
94
95 // Amusing macro metaprogramming hack: check whether a class provides
96 // a more specific implementation of getExprLoc().
97 //
98 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
99 namespace {
100 /// This implementation is used when a class provides a custom
101 /// implementation of getExprLoc.
102 template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)103 SourceLocation getExprLocImpl(const Expr *expr,
104 SourceLocation (T::*v)() const) {
105 return static_cast<const E*>(expr)->getExprLoc();
106 }
107
108 /// This implementation is used when a class doesn't provide
109 /// a custom implementation of getExprLoc. Overload resolution
110 /// should pick it over the implementation above because it's
111 /// more specialized according to function template partial ordering.
112 template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)113 SourceLocation getExprLocImpl(const Expr *expr,
114 SourceLocation (Expr::*v)() const) {
115 return static_cast<const E*>(expr)->getLocStart();
116 }
117 }
118
getExprLoc() const119 SourceLocation Expr::getExprLoc() const {
120 switch (getStmtClass()) {
121 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
122 #define ABSTRACT_STMT(type)
123 #define STMT(type, base) \
124 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
125 #define EXPR(type, base) \
126 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
127 #include "clang/AST/StmtNodes.inc"
128 }
129 llvm_unreachable("unknown statement kind");
130 }
131
132 //===----------------------------------------------------------------------===//
133 // Primary Expressions.
134 //===----------------------------------------------------------------------===//
135
136 /// \brief Compute the type-, value-, and instantiation-dependence of a
137 /// declaration reference
138 /// based on the declaration being referenced.
computeDeclRefDependence(ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)139 static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
140 bool &TypeDependent,
141 bool &ValueDependent,
142 bool &InstantiationDependent) {
143 TypeDependent = false;
144 ValueDependent = false;
145 InstantiationDependent = false;
146
147 // (TD) C++ [temp.dep.expr]p3:
148 // An id-expression is type-dependent if it contains:
149 //
150 // and
151 //
152 // (VD) C++ [temp.dep.constexpr]p2:
153 // An identifier is value-dependent if it is:
154
155 // (TD) - an identifier that was declared with dependent type
156 // (VD) - a name declared with a dependent type,
157 if (T->isDependentType()) {
158 TypeDependent = true;
159 ValueDependent = true;
160 InstantiationDependent = true;
161 return;
162 } else if (T->isInstantiationDependentType()) {
163 InstantiationDependent = true;
164 }
165
166 // (TD) - a conversion-function-id that specifies a dependent type
167 if (D->getDeclName().getNameKind()
168 == DeclarationName::CXXConversionFunctionName) {
169 QualType T = D->getDeclName().getCXXNameType();
170 if (T->isDependentType()) {
171 TypeDependent = true;
172 ValueDependent = true;
173 InstantiationDependent = true;
174 return;
175 }
176
177 if (T->isInstantiationDependentType())
178 InstantiationDependent = true;
179 }
180
181 // (VD) - the name of a non-type template parameter,
182 if (isa<NonTypeTemplateParmDecl>(D)) {
183 ValueDependent = true;
184 InstantiationDependent = true;
185 return;
186 }
187
188 // (VD) - a constant with integral or enumeration type and is
189 // initialized with an expression that is value-dependent.
190 // (VD) - a constant with literal type and is initialized with an
191 // expression that is value-dependent [C++11].
192 // (VD) - FIXME: Missing from the standard:
193 // - an entity with reference type and is initialized with an
194 // expression that is value-dependent [C++11]
195 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
196 if ((Ctx.getLangOpts().CPlusPlus0x ?
197 Var->getType()->isLiteralType() :
198 Var->getType()->isIntegralOrEnumerationType()) &&
199 (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
200 Var->getType()->isReferenceType())) {
201 if (const Expr *Init = Var->getAnyInitializer())
202 if (Init->isValueDependent()) {
203 ValueDependent = true;
204 InstantiationDependent = true;
205 }
206 }
207
208 // (VD) - FIXME: Missing from the standard:
209 // - a member function or a static data member of the current
210 // instantiation
211 if (Var->isStaticDataMember() &&
212 Var->getDeclContext()->isDependentContext()) {
213 ValueDependent = true;
214 InstantiationDependent = true;
215 }
216
217 return;
218 }
219
220 // (VD) - FIXME: Missing from the standard:
221 // - a member function or a static data member of the current
222 // instantiation
223 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
224 ValueDependent = true;
225 InstantiationDependent = true;
226 }
227 }
228
computeDependence(ASTContext & Ctx)229 void DeclRefExpr::computeDependence(ASTContext &Ctx) {
230 bool TypeDependent = false;
231 bool ValueDependent = false;
232 bool InstantiationDependent = false;
233 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
234 ValueDependent, InstantiationDependent);
235
236 // (TD) C++ [temp.dep.expr]p3:
237 // An id-expression is type-dependent if it contains:
238 //
239 // and
240 //
241 // (VD) C++ [temp.dep.constexpr]p2:
242 // An identifier is value-dependent if it is:
243 if (!TypeDependent && !ValueDependent &&
244 hasExplicitTemplateArgs() &&
245 TemplateSpecializationType::anyDependentTemplateArguments(
246 getTemplateArgs(),
247 getNumTemplateArgs(),
248 InstantiationDependent)) {
249 TypeDependent = true;
250 ValueDependent = true;
251 InstantiationDependent = true;
252 }
253
254 ExprBits.TypeDependent = TypeDependent;
255 ExprBits.ValueDependent = ValueDependent;
256 ExprBits.InstantiationDependent = InstantiationDependent;
257
258 // Is the declaration a parameter pack?
259 if (getDecl()->isParameterPack())
260 ExprBits.ContainsUnexpandedParameterPack = true;
261 }
262
DeclRefExpr(ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)263 DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
264 NestedNameSpecifierLoc QualifierLoc,
265 SourceLocation TemplateKWLoc,
266 ValueDecl *D, bool RefersToEnclosingLocal,
267 const DeclarationNameInfo &NameInfo,
268 NamedDecl *FoundD,
269 const TemplateArgumentListInfo *TemplateArgs,
270 QualType T, ExprValueKind VK)
271 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
272 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
273 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
274 if (QualifierLoc)
275 getInternalQualifierLoc() = QualifierLoc;
276 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
277 if (FoundD)
278 getInternalFoundDecl() = FoundD;
279 DeclRefExprBits.HasTemplateKWAndArgsInfo
280 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
281 DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
282 if (TemplateArgs) {
283 bool Dependent = false;
284 bool InstantiationDependent = false;
285 bool ContainsUnexpandedParameterPack = false;
286 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
287 Dependent,
288 InstantiationDependent,
289 ContainsUnexpandedParameterPack);
290 if (InstantiationDependent)
291 setInstantiationDependent(true);
292 } else if (TemplateKWLoc.isValid()) {
293 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
294 }
295 DeclRefExprBits.HadMultipleCandidates = 0;
296
297 computeDependence(Ctx);
298 }
299
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)300 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
301 NestedNameSpecifierLoc QualifierLoc,
302 SourceLocation TemplateKWLoc,
303 ValueDecl *D,
304 bool RefersToEnclosingLocal,
305 SourceLocation NameLoc,
306 QualType T,
307 ExprValueKind VK,
308 NamedDecl *FoundD,
309 const TemplateArgumentListInfo *TemplateArgs) {
310 return Create(Context, QualifierLoc, TemplateKWLoc, D,
311 RefersToEnclosingLocal,
312 DeclarationNameInfo(D->getDeclName(), NameLoc),
313 T, VK, FoundD, TemplateArgs);
314 }
315
Create(ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)316 DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
317 NestedNameSpecifierLoc QualifierLoc,
318 SourceLocation TemplateKWLoc,
319 ValueDecl *D,
320 bool RefersToEnclosingLocal,
321 const DeclarationNameInfo &NameInfo,
322 QualType T,
323 ExprValueKind VK,
324 NamedDecl *FoundD,
325 const TemplateArgumentListInfo *TemplateArgs) {
326 // Filter out cases where the found Decl is the same as the value refenenced.
327 if (D == FoundD)
328 FoundD = 0;
329
330 std::size_t Size = sizeof(DeclRefExpr);
331 if (QualifierLoc != 0)
332 Size += sizeof(NestedNameSpecifierLoc);
333 if (FoundD)
334 Size += sizeof(NamedDecl *);
335 if (TemplateArgs)
336 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
337 else if (TemplateKWLoc.isValid())
338 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
339
340 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
341 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
342 RefersToEnclosingLocal,
343 NameInfo, FoundD, TemplateArgs, T, VK);
344 }
345
CreateEmpty(ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)346 DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
347 bool HasQualifier,
348 bool HasFoundDecl,
349 bool HasTemplateKWAndArgsInfo,
350 unsigned NumTemplateArgs) {
351 std::size_t Size = sizeof(DeclRefExpr);
352 if (HasQualifier)
353 Size += sizeof(NestedNameSpecifierLoc);
354 if (HasFoundDecl)
355 Size += sizeof(NamedDecl *);
356 if (HasTemplateKWAndArgsInfo)
357 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
358
359 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
360 return new (Mem) DeclRefExpr(EmptyShell());
361 }
362
getSourceRange() const363 SourceRange DeclRefExpr::getSourceRange() const {
364 SourceRange R = getNameInfo().getSourceRange();
365 if (hasQualifier())
366 R.setBegin(getQualifierLoc().getBeginLoc());
367 if (hasExplicitTemplateArgs())
368 R.setEnd(getRAngleLoc());
369 return R;
370 }
getLocStart() const371 SourceLocation DeclRefExpr::getLocStart() const {
372 if (hasQualifier())
373 return getQualifierLoc().getBeginLoc();
374 return getNameInfo().getLocStart();
375 }
getLocEnd() const376 SourceLocation DeclRefExpr::getLocEnd() const {
377 if (hasExplicitTemplateArgs())
378 return getRAngleLoc();
379 return getNameInfo().getLocEnd();
380 }
381
382 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
383 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)384 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
385 ASTContext &Context = CurrentDecl->getASTContext();
386
387 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
388 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
389 return FD->getNameAsString();
390
391 SmallString<256> Name;
392 llvm::raw_svector_ostream Out(Name);
393
394 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
395 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
396 Out << "virtual ";
397 if (MD->isStatic())
398 Out << "static ";
399 }
400
401 PrintingPolicy Policy(Context.getLangOpts());
402 std::string Proto = FD->getQualifiedNameAsString(Policy);
403 llvm::raw_string_ostream POut(Proto);
404
405 const FunctionDecl *Decl = FD;
406 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
407 Decl = Pattern;
408 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
409 const FunctionProtoType *FT = 0;
410 if (FD->hasWrittenPrototype())
411 FT = dyn_cast<FunctionProtoType>(AFT);
412
413 POut << "(";
414 if (FT) {
415 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
416 if (i) POut << ", ";
417 std::string Param;
418 Decl->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
419 POut << Param;
420 }
421
422 if (FT->isVariadic()) {
423 if (FD->getNumParams()) POut << ", ";
424 POut << "...";
425 }
426 }
427 POut << ")";
428
429 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
430 Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
431 if (ThisQuals.hasConst())
432 POut << " const";
433 if (ThisQuals.hasVolatile())
434 POut << " volatile";
435 RefQualifierKind Ref = MD->getRefQualifier();
436 if (Ref == RQ_LValue)
437 POut << " &";
438 else if (Ref == RQ_RValue)
439 POut << " &&";
440 }
441
442 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
443 SpecsTy Specs;
444 const DeclContext *Ctx = FD->getDeclContext();
445 while (Ctx && isa<NamedDecl>(Ctx)) {
446 const ClassTemplateSpecializationDecl *Spec
447 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
448 if (Spec && !Spec->isExplicitSpecialization())
449 Specs.push_back(Spec);
450 Ctx = Ctx->getParent();
451 }
452
453 std::string TemplateParams;
454 llvm::raw_string_ostream TOut(TemplateParams);
455 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
456 I != E; ++I) {
457 const TemplateParameterList *Params
458 = (*I)->getSpecializedTemplate()->getTemplateParameters();
459 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
460 assert(Params->size() == Args.size());
461 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
462 StringRef Param = Params->getParam(i)->getName();
463 if (Param.empty()) continue;
464 TOut << Param << " = ";
465 Args.get(i).print(Policy, TOut);
466 TOut << ", ";
467 }
468 }
469
470 FunctionTemplateSpecializationInfo *FSI
471 = FD->getTemplateSpecializationInfo();
472 if (FSI && !FSI->isExplicitSpecialization()) {
473 const TemplateParameterList* Params
474 = FSI->getTemplate()->getTemplateParameters();
475 const TemplateArgumentList* Args = FSI->TemplateArguments;
476 assert(Params->size() == Args->size());
477 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
478 StringRef Param = Params->getParam(i)->getName();
479 if (Param.empty()) continue;
480 TOut << Param << " = ";
481 Args->get(i).print(Policy, TOut);
482 TOut << ", ";
483 }
484 }
485
486 TOut.flush();
487 if (!TemplateParams.empty()) {
488 // remove the trailing comma and space
489 TemplateParams.resize(TemplateParams.size() - 2);
490 POut << " [" << TemplateParams << "]";
491 }
492
493 POut.flush();
494
495 if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
496 AFT->getResultType().getAsStringInternal(Proto, Policy);
497
498 Out << Proto;
499
500 Out.flush();
501 return Name.str().str();
502 }
503 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
504 SmallString<256> Name;
505 llvm::raw_svector_ostream Out(Name);
506 Out << (MD->isInstanceMethod() ? '-' : '+');
507 Out << '[';
508
509 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
510 // a null check to avoid a crash.
511 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
512 Out << *ID;
513
514 if (const ObjCCategoryImplDecl *CID =
515 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
516 Out << '(' << *CID << ')';
517
518 Out << ' ';
519 Out << MD->getSelector().getAsString();
520 Out << ']';
521
522 Out.flush();
523 return Name.str().str();
524 }
525 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
526 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
527 return "top level";
528 }
529 return "";
530 }
531
setIntValue(ASTContext & C,const llvm::APInt & Val)532 void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
533 if (hasAllocation())
534 C.Deallocate(pVal);
535
536 BitWidth = Val.getBitWidth();
537 unsigned NumWords = Val.getNumWords();
538 const uint64_t* Words = Val.getRawData();
539 if (NumWords > 1) {
540 pVal = new (C) uint64_t[NumWords];
541 std::copy(Words, Words + NumWords, pVal);
542 } else if (NumWords == 1)
543 VAL = Words[0];
544 else
545 VAL = 0;
546 }
547
548 IntegerLiteral *
Create(ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)549 IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
550 QualType type, SourceLocation l) {
551 return new (C) IntegerLiteral(C, V, type, l);
552 }
553
554 IntegerLiteral *
Create(ASTContext & C,EmptyShell Empty)555 IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
556 return new (C) IntegerLiteral(Empty);
557 }
558
559 FloatingLiteral *
Create(ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)560 FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
561 bool isexact, QualType Type, SourceLocation L) {
562 return new (C) FloatingLiteral(C, V, isexact, Type, L);
563 }
564
565 FloatingLiteral *
Create(ASTContext & C,EmptyShell Empty)566 FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
567 return new (C) FloatingLiteral(C, Empty);
568 }
569
570 /// getValueAsApproximateDouble - This returns the value as an inaccurate
571 /// double. Note that this may cause loss of precision, but is useful for
572 /// debugging dumps, etc.
getValueAsApproximateDouble() const573 double FloatingLiteral::getValueAsApproximateDouble() const {
574 llvm::APFloat V = getValue();
575 bool ignored;
576 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
577 &ignored);
578 return V.convertToDouble();
579 }
580
mapCharByteWidth(TargetInfo const & target,StringKind k)581 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
582 int CharByteWidth = 0;
583 switch(k) {
584 case Ascii:
585 case UTF8:
586 CharByteWidth = target.getCharWidth();
587 break;
588 case Wide:
589 CharByteWidth = target.getWCharWidth();
590 break;
591 case UTF16:
592 CharByteWidth = target.getChar16Width();
593 break;
594 case UTF32:
595 CharByteWidth = target.getChar32Width();
596 break;
597 }
598 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
599 CharByteWidth /= 8;
600 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
601 && "character byte widths supported are 1, 2, and 4 only");
602 return CharByteWidth;
603 }
604
Create(ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)605 StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
606 StringKind Kind, bool Pascal, QualType Ty,
607 const SourceLocation *Loc,
608 unsigned NumStrs) {
609 // Allocate enough space for the StringLiteral plus an array of locations for
610 // any concatenated string tokens.
611 void *Mem = C.Allocate(sizeof(StringLiteral)+
612 sizeof(SourceLocation)*(NumStrs-1),
613 llvm::alignOf<StringLiteral>());
614 StringLiteral *SL = new (Mem) StringLiteral(Ty);
615
616 // OPTIMIZE: could allocate this appended to the StringLiteral.
617 SL->setString(C,Str,Kind,Pascal);
618
619 SL->TokLocs[0] = Loc[0];
620 SL->NumConcatenated = NumStrs;
621
622 if (NumStrs != 1)
623 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
624 return SL;
625 }
626
CreateEmpty(ASTContext & C,unsigned NumStrs)627 StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
628 void *Mem = C.Allocate(sizeof(StringLiteral)+
629 sizeof(SourceLocation)*(NumStrs-1),
630 llvm::alignOf<StringLiteral>());
631 StringLiteral *SL = new (Mem) StringLiteral(QualType());
632 SL->CharByteWidth = 0;
633 SL->Length = 0;
634 SL->NumConcatenated = NumStrs;
635 return SL;
636 }
637
setString(ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)638 void StringLiteral::setString(ASTContext &C, StringRef Str,
639 StringKind Kind, bool IsPascal) {
640 //FIXME: we assume that the string data comes from a target that uses the same
641 // code unit size and endianess for the type of string.
642 this->Kind = Kind;
643 this->IsPascal = IsPascal;
644
645 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
646 assert((Str.size()%CharByteWidth == 0)
647 && "size of data must be multiple of CharByteWidth");
648 Length = Str.size()/CharByteWidth;
649
650 switch(CharByteWidth) {
651 case 1: {
652 char *AStrData = new (C) char[Length];
653 std::memcpy(AStrData,Str.data(),Str.size());
654 StrData.asChar = AStrData;
655 break;
656 }
657 case 2: {
658 uint16_t *AStrData = new (C) uint16_t[Length];
659 std::memcpy(AStrData,Str.data(),Str.size());
660 StrData.asUInt16 = AStrData;
661 break;
662 }
663 case 4: {
664 uint32_t *AStrData = new (C) uint32_t[Length];
665 std::memcpy(AStrData,Str.data(),Str.size());
666 StrData.asUInt32 = AStrData;
667 break;
668 }
669 default:
670 assert(false && "unsupported CharByteWidth");
671 }
672 }
673
674 /// getLocationOfByte - Return a source location that points to the specified
675 /// byte of this string literal.
676 ///
677 /// Strings are amazingly complex. They can be formed from multiple tokens and
678 /// can have escape sequences in them in addition to the usual trigraph and
679 /// escaped newline business. This routine handles this complexity.
680 ///
681 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const682 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
683 const LangOptions &Features, const TargetInfo &Target) const {
684 assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
685
686 // Loop over all of the tokens in this string until we find the one that
687 // contains the byte we're looking for.
688 unsigned TokNo = 0;
689 while (1) {
690 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
691 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
692
693 // Get the spelling of the string so that we can get the data that makes up
694 // the string literal, not the identifier for the macro it is potentially
695 // expanded through.
696 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
697
698 // Re-lex the token to get its length and original spelling.
699 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
700 bool Invalid = false;
701 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
702 if (Invalid)
703 return StrTokSpellingLoc;
704
705 const char *StrData = Buffer.data()+LocInfo.second;
706
707 // Create a langops struct and enable trigraphs. This is sufficient for
708 // relexing tokens.
709 LangOptions LangOpts;
710 LangOpts.Trigraphs = true;
711
712 // Create a lexer starting at the beginning of this token.
713 Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
714 Buffer.end());
715 Token TheTok;
716 TheLexer.LexFromRawLexer(TheTok);
717
718 // Use the StringLiteralParser to compute the length of the string in bytes.
719 StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
720 unsigned TokNumBytes = SLP.GetStringLength();
721
722 // If the byte is in this token, return the location of the byte.
723 if (ByteNo < TokNumBytes ||
724 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
725 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
726
727 // Now that we know the offset of the token in the spelling, use the
728 // preprocessor to get the offset in the original source.
729 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
730 }
731
732 // Move to the next string token.
733 ++TokNo;
734 ByteNo -= TokNumBytes;
735 }
736 }
737
738
739
740 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
741 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)742 const char *UnaryOperator::getOpcodeStr(Opcode Op) {
743 switch (Op) {
744 case UO_PostInc: return "++";
745 case UO_PostDec: return "--";
746 case UO_PreInc: return "++";
747 case UO_PreDec: return "--";
748 case UO_AddrOf: return "&";
749 case UO_Deref: return "*";
750 case UO_Plus: return "+";
751 case UO_Minus: return "-";
752 case UO_Not: return "~";
753 case UO_LNot: return "!";
754 case UO_Real: return "__real";
755 case UO_Imag: return "__imag";
756 case UO_Extension: return "__extension__";
757 }
758 llvm_unreachable("Unknown unary operator");
759 }
760
761 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)762 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
763 switch (OO) {
764 default: llvm_unreachable("No unary operator for overloaded function");
765 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
766 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
767 case OO_Amp: return UO_AddrOf;
768 case OO_Star: return UO_Deref;
769 case OO_Plus: return UO_Plus;
770 case OO_Minus: return UO_Minus;
771 case OO_Tilde: return UO_Not;
772 case OO_Exclaim: return UO_LNot;
773 }
774 }
775
getOverloadedOperator(Opcode Opc)776 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
777 switch (Opc) {
778 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
779 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
780 case UO_AddrOf: return OO_Amp;
781 case UO_Deref: return OO_Star;
782 case UO_Plus: return OO_Plus;
783 case UO_Minus: return OO_Minus;
784 case UO_Not: return OO_Tilde;
785 case UO_LNot: return OO_Exclaim;
786 default: return OO_None;
787 }
788 }
789
790
791 //===----------------------------------------------------------------------===//
792 // Postfix Operators.
793 //===----------------------------------------------------------------------===//
794
CallExpr(ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,Expr ** args,unsigned numargs,QualType t,ExprValueKind VK,SourceLocation rparenloc)795 CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
796 Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
797 SourceLocation rparenloc)
798 : Expr(SC, t, VK, OK_Ordinary,
799 fn->isTypeDependent(),
800 fn->isValueDependent(),
801 fn->isInstantiationDependent(),
802 fn->containsUnexpandedParameterPack()),
803 NumArgs(numargs) {
804
805 SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
806 SubExprs[FN] = fn;
807 for (unsigned i = 0; i != numargs; ++i) {
808 if (args[i]->isTypeDependent())
809 ExprBits.TypeDependent = true;
810 if (args[i]->isValueDependent())
811 ExprBits.ValueDependent = true;
812 if (args[i]->isInstantiationDependent())
813 ExprBits.InstantiationDependent = true;
814 if (args[i]->containsUnexpandedParameterPack())
815 ExprBits.ContainsUnexpandedParameterPack = true;
816
817 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
818 }
819
820 CallExprBits.NumPreArgs = NumPreArgs;
821 RParenLoc = rparenloc;
822 }
823
CallExpr(ASTContext & C,Expr * fn,Expr ** args,unsigned numargs,QualType t,ExprValueKind VK,SourceLocation rparenloc)824 CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
825 QualType t, ExprValueKind VK, SourceLocation rparenloc)
826 : Expr(CallExprClass, t, VK, OK_Ordinary,
827 fn->isTypeDependent(),
828 fn->isValueDependent(),
829 fn->isInstantiationDependent(),
830 fn->containsUnexpandedParameterPack()),
831 NumArgs(numargs) {
832
833 SubExprs = new (C) Stmt*[numargs+PREARGS_START];
834 SubExprs[FN] = fn;
835 for (unsigned i = 0; i != numargs; ++i) {
836 if (args[i]->isTypeDependent())
837 ExprBits.TypeDependent = true;
838 if (args[i]->isValueDependent())
839 ExprBits.ValueDependent = true;
840 if (args[i]->isInstantiationDependent())
841 ExprBits.InstantiationDependent = true;
842 if (args[i]->containsUnexpandedParameterPack())
843 ExprBits.ContainsUnexpandedParameterPack = true;
844
845 SubExprs[i+PREARGS_START] = args[i];
846 }
847
848 CallExprBits.NumPreArgs = 0;
849 RParenLoc = rparenloc;
850 }
851
CallExpr(ASTContext & C,StmtClass SC,EmptyShell Empty)852 CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
853 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
854 // FIXME: Why do we allocate this?
855 SubExprs = new (C) Stmt*[PREARGS_START];
856 CallExprBits.NumPreArgs = 0;
857 }
858
CallExpr(ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)859 CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
860 EmptyShell Empty)
861 : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
862 // FIXME: Why do we allocate this?
863 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
864 CallExprBits.NumPreArgs = NumPreArgs;
865 }
866
getCalleeDecl()867 Decl *CallExpr::getCalleeDecl() {
868 Expr *CEE = getCallee()->IgnoreParenImpCasts();
869
870 while (SubstNonTypeTemplateParmExpr *NTTP
871 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
872 CEE = NTTP->getReplacement()->IgnoreParenCasts();
873 }
874
875 // If we're calling a dereference, look at the pointer instead.
876 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
877 if (BO->isPtrMemOp())
878 CEE = BO->getRHS()->IgnoreParenCasts();
879 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
880 if (UO->getOpcode() == UO_Deref)
881 CEE = UO->getSubExpr()->IgnoreParenCasts();
882 }
883 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
884 return DRE->getDecl();
885 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
886 return ME->getMemberDecl();
887
888 return 0;
889 }
890
getDirectCallee()891 FunctionDecl *CallExpr::getDirectCallee() {
892 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
893 }
894
895 /// setNumArgs - This changes the number of arguments present in this call.
896 /// Any orphaned expressions are deleted by this, and any new operands are set
897 /// to null.
setNumArgs(ASTContext & C,unsigned NumArgs)898 void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
899 // No change, just return.
900 if (NumArgs == getNumArgs()) return;
901
902 // If shrinking # arguments, just delete the extras and forgot them.
903 if (NumArgs < getNumArgs()) {
904 this->NumArgs = NumArgs;
905 return;
906 }
907
908 // Otherwise, we are growing the # arguments. New an bigger argument array.
909 unsigned NumPreArgs = getNumPreArgs();
910 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
911 // Copy over args.
912 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
913 NewSubExprs[i] = SubExprs[i];
914 // Null out new args.
915 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
916 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
917 NewSubExprs[i] = 0;
918
919 if (SubExprs) C.Deallocate(SubExprs);
920 SubExprs = NewSubExprs;
921 this->NumArgs = NumArgs;
922 }
923
924 /// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
925 /// not, return 0.
isBuiltinCall() const926 unsigned CallExpr::isBuiltinCall() const {
927 // All simple function calls (e.g. func()) are implicitly cast to pointer to
928 // function. As a result, we try and obtain the DeclRefExpr from the
929 // ImplicitCastExpr.
930 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
931 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
932 return 0;
933
934 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
935 if (!DRE)
936 return 0;
937
938 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
939 if (!FDecl)
940 return 0;
941
942 if (!FDecl->getIdentifier())
943 return 0;
944
945 return FDecl->getBuiltinID();
946 }
947
getCallReturnType() const948 QualType CallExpr::getCallReturnType() const {
949 QualType CalleeType = getCallee()->getType();
950 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
951 CalleeType = FnTypePtr->getPointeeType();
952 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
953 CalleeType = BPT->getPointeeType();
954 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
955 // This should never be overloaded and so should never return null.
956 CalleeType = Expr::findBoundMemberType(getCallee());
957
958 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
959 return FnType->getResultType();
960 }
961
getSourceRange() const962 SourceRange CallExpr::getSourceRange() const {
963 if (isa<CXXOperatorCallExpr>(this))
964 return cast<CXXOperatorCallExpr>(this)->getSourceRange();
965
966 SourceLocation begin = getCallee()->getLocStart();
967 if (begin.isInvalid() && getNumArgs() > 0)
968 begin = getArg(0)->getLocStart();
969 SourceLocation end = getRParenLoc();
970 if (end.isInvalid() && getNumArgs() > 0)
971 end = getArg(getNumArgs() - 1)->getLocEnd();
972 return SourceRange(begin, end);
973 }
getLocStart() const974 SourceLocation CallExpr::getLocStart() const {
975 if (isa<CXXOperatorCallExpr>(this))
976 return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
977
978 SourceLocation begin = getCallee()->getLocStart();
979 if (begin.isInvalid() && getNumArgs() > 0)
980 begin = getArg(0)->getLocStart();
981 return begin;
982 }
getLocEnd() const983 SourceLocation CallExpr::getLocEnd() const {
984 if (isa<CXXOperatorCallExpr>(this))
985 return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
986
987 SourceLocation end = getRParenLoc();
988 if (end.isInvalid() && getNumArgs() > 0)
989 end = getArg(getNumArgs() - 1)->getLocEnd();
990 return end;
991 }
992
Create(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,OffsetOfNode * compsPtr,unsigned numComps,Expr ** exprsPtr,unsigned numExprs,SourceLocation RParenLoc)993 OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
994 SourceLocation OperatorLoc,
995 TypeSourceInfo *tsi,
996 OffsetOfNode* compsPtr, unsigned numComps,
997 Expr** exprsPtr, unsigned numExprs,
998 SourceLocation RParenLoc) {
999 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1000 sizeof(OffsetOfNode) * numComps +
1001 sizeof(Expr*) * numExprs);
1002
1003 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
1004 exprsPtr, numExprs, RParenLoc);
1005 }
1006
CreateEmpty(ASTContext & C,unsigned numComps,unsigned numExprs)1007 OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1008 unsigned numComps, unsigned numExprs) {
1009 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1010 sizeof(OffsetOfNode) * numComps +
1011 sizeof(Expr*) * numExprs);
1012 return new (Mem) OffsetOfExpr(numComps, numExprs);
1013 }
1014
OffsetOfExpr(ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,OffsetOfNode * compsPtr,unsigned numComps,Expr ** exprsPtr,unsigned numExprs,SourceLocation RParenLoc)1015 OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1016 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1017 OffsetOfNode* compsPtr, unsigned numComps,
1018 Expr** exprsPtr, unsigned numExprs,
1019 SourceLocation RParenLoc)
1020 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1021 /*TypeDependent=*/false,
1022 /*ValueDependent=*/tsi->getType()->isDependentType(),
1023 tsi->getType()->isInstantiationDependentType(),
1024 tsi->getType()->containsUnexpandedParameterPack()),
1025 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1026 NumComps(numComps), NumExprs(numExprs)
1027 {
1028 for(unsigned i = 0; i < numComps; ++i) {
1029 setComponent(i, compsPtr[i]);
1030 }
1031
1032 for(unsigned i = 0; i < numExprs; ++i) {
1033 if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
1034 ExprBits.ValueDependent = true;
1035 if (exprsPtr[i]->containsUnexpandedParameterPack())
1036 ExprBits.ContainsUnexpandedParameterPack = true;
1037
1038 setIndexExpr(i, exprsPtr[i]);
1039 }
1040 }
1041
getFieldName() const1042 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1043 assert(getKind() == Field || getKind() == Identifier);
1044 if (getKind() == Field)
1045 return getField()->getIdentifier();
1046
1047 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1048 }
1049
Create(ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1050 MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1051 NestedNameSpecifierLoc QualifierLoc,
1052 SourceLocation TemplateKWLoc,
1053 ValueDecl *memberdecl,
1054 DeclAccessPair founddecl,
1055 DeclarationNameInfo nameinfo,
1056 const TemplateArgumentListInfo *targs,
1057 QualType ty,
1058 ExprValueKind vk,
1059 ExprObjectKind ok) {
1060 std::size_t Size = sizeof(MemberExpr);
1061
1062 bool hasQualOrFound = (QualifierLoc ||
1063 founddecl.getDecl() != memberdecl ||
1064 founddecl.getAccess() != memberdecl->getAccess());
1065 if (hasQualOrFound)
1066 Size += sizeof(MemberNameQualifier);
1067
1068 if (targs)
1069 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1070 else if (TemplateKWLoc.isValid())
1071 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1072
1073 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1074 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1075 ty, vk, ok);
1076
1077 if (hasQualOrFound) {
1078 // FIXME: Wrong. We should be looking at the member declaration we found.
1079 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1080 E->setValueDependent(true);
1081 E->setTypeDependent(true);
1082 E->setInstantiationDependent(true);
1083 }
1084 else if (QualifierLoc &&
1085 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1086 E->setInstantiationDependent(true);
1087
1088 E->HasQualifierOrFoundDecl = true;
1089
1090 MemberNameQualifier *NQ = E->getMemberQualifier();
1091 NQ->QualifierLoc = QualifierLoc;
1092 NQ->FoundDecl = founddecl;
1093 }
1094
1095 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1096
1097 if (targs) {
1098 bool Dependent = false;
1099 bool InstantiationDependent = false;
1100 bool ContainsUnexpandedParameterPack = false;
1101 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1102 Dependent,
1103 InstantiationDependent,
1104 ContainsUnexpandedParameterPack);
1105 if (InstantiationDependent)
1106 E->setInstantiationDependent(true);
1107 } else if (TemplateKWLoc.isValid()) {
1108 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1109 }
1110
1111 return E;
1112 }
1113
getSourceRange() const1114 SourceRange MemberExpr::getSourceRange() const {
1115 return SourceRange(getLocStart(), getLocEnd());
1116 }
getLocStart() const1117 SourceLocation MemberExpr::getLocStart() const {
1118 if (isImplicitAccess()) {
1119 if (hasQualifier())
1120 return getQualifierLoc().getBeginLoc();
1121 return MemberLoc;
1122 }
1123
1124 // FIXME: We don't want this to happen. Rather, we should be able to
1125 // detect all kinds of implicit accesses more cleanly.
1126 SourceLocation BaseStartLoc = getBase()->getLocStart();
1127 if (BaseStartLoc.isValid())
1128 return BaseStartLoc;
1129 return MemberLoc;
1130 }
getLocEnd() const1131 SourceLocation MemberExpr::getLocEnd() const {
1132 if (hasExplicitTemplateArgs())
1133 return getRAngleLoc();
1134 return getMemberNameInfo().getEndLoc();
1135 }
1136
CheckCastConsistency() const1137 void CastExpr::CheckCastConsistency() const {
1138 switch (getCastKind()) {
1139 case CK_DerivedToBase:
1140 case CK_UncheckedDerivedToBase:
1141 case CK_DerivedToBaseMemberPointer:
1142 case CK_BaseToDerived:
1143 case CK_BaseToDerivedMemberPointer:
1144 assert(!path_empty() && "Cast kind should have a base path!");
1145 break;
1146
1147 case CK_CPointerToObjCPointerCast:
1148 assert(getType()->isObjCObjectPointerType());
1149 assert(getSubExpr()->getType()->isPointerType());
1150 goto CheckNoBasePath;
1151
1152 case CK_BlockPointerToObjCPointerCast:
1153 assert(getType()->isObjCObjectPointerType());
1154 assert(getSubExpr()->getType()->isBlockPointerType());
1155 goto CheckNoBasePath;
1156
1157 case CK_ReinterpretMemberPointer:
1158 assert(getType()->isMemberPointerType());
1159 assert(getSubExpr()->getType()->isMemberPointerType());
1160 goto CheckNoBasePath;
1161
1162 case CK_BitCast:
1163 // Arbitrary casts to C pointer types count as bitcasts.
1164 // Otherwise, we should only have block and ObjC pointer casts
1165 // here if they stay within the type kind.
1166 if (!getType()->isPointerType()) {
1167 assert(getType()->isObjCObjectPointerType() ==
1168 getSubExpr()->getType()->isObjCObjectPointerType());
1169 assert(getType()->isBlockPointerType() ==
1170 getSubExpr()->getType()->isBlockPointerType());
1171 }
1172 goto CheckNoBasePath;
1173
1174 case CK_AnyPointerToBlockPointerCast:
1175 assert(getType()->isBlockPointerType());
1176 assert(getSubExpr()->getType()->isAnyPointerType() &&
1177 !getSubExpr()->getType()->isBlockPointerType());
1178 goto CheckNoBasePath;
1179
1180 case CK_CopyAndAutoreleaseBlockObject:
1181 assert(getType()->isBlockPointerType());
1182 assert(getSubExpr()->getType()->isBlockPointerType());
1183 goto CheckNoBasePath;
1184
1185 // These should not have an inheritance path.
1186 case CK_Dynamic:
1187 case CK_ToUnion:
1188 case CK_ArrayToPointerDecay:
1189 case CK_FunctionToPointerDecay:
1190 case CK_NullToMemberPointer:
1191 case CK_NullToPointer:
1192 case CK_ConstructorConversion:
1193 case CK_IntegralToPointer:
1194 case CK_PointerToIntegral:
1195 case CK_ToVoid:
1196 case CK_VectorSplat:
1197 case CK_IntegralCast:
1198 case CK_IntegralToFloating:
1199 case CK_FloatingToIntegral:
1200 case CK_FloatingCast:
1201 case CK_ObjCObjectLValueCast:
1202 case CK_FloatingRealToComplex:
1203 case CK_FloatingComplexToReal:
1204 case CK_FloatingComplexCast:
1205 case CK_FloatingComplexToIntegralComplex:
1206 case CK_IntegralRealToComplex:
1207 case CK_IntegralComplexToReal:
1208 case CK_IntegralComplexCast:
1209 case CK_IntegralComplexToFloatingComplex:
1210 case CK_ARCProduceObject:
1211 case CK_ARCConsumeObject:
1212 case CK_ARCReclaimReturnedObject:
1213 case CK_ARCExtendBlockObject:
1214 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1215 goto CheckNoBasePath;
1216
1217 case CK_Dependent:
1218 case CK_LValueToRValue:
1219 case CK_NoOp:
1220 case CK_AtomicToNonAtomic:
1221 case CK_NonAtomicToAtomic:
1222 case CK_PointerToBoolean:
1223 case CK_IntegralToBoolean:
1224 case CK_FloatingToBoolean:
1225 case CK_MemberPointerToBoolean:
1226 case CK_FloatingComplexToBoolean:
1227 case CK_IntegralComplexToBoolean:
1228 case CK_LValueBitCast: // -> bool&
1229 case CK_UserDefinedConversion: // operator bool()
1230 CheckNoBasePath:
1231 assert(path_empty() && "Cast kind should not have a base path!");
1232 break;
1233 }
1234 }
1235
getCastKindName() const1236 const char *CastExpr::getCastKindName() const {
1237 switch (getCastKind()) {
1238 case CK_Dependent:
1239 return "Dependent";
1240 case CK_BitCast:
1241 return "BitCast";
1242 case CK_LValueBitCast:
1243 return "LValueBitCast";
1244 case CK_LValueToRValue:
1245 return "LValueToRValue";
1246 case CK_NoOp:
1247 return "NoOp";
1248 case CK_BaseToDerived:
1249 return "BaseToDerived";
1250 case CK_DerivedToBase:
1251 return "DerivedToBase";
1252 case CK_UncheckedDerivedToBase:
1253 return "UncheckedDerivedToBase";
1254 case CK_Dynamic:
1255 return "Dynamic";
1256 case CK_ToUnion:
1257 return "ToUnion";
1258 case CK_ArrayToPointerDecay:
1259 return "ArrayToPointerDecay";
1260 case CK_FunctionToPointerDecay:
1261 return "FunctionToPointerDecay";
1262 case CK_NullToMemberPointer:
1263 return "NullToMemberPointer";
1264 case CK_NullToPointer:
1265 return "NullToPointer";
1266 case CK_BaseToDerivedMemberPointer:
1267 return "BaseToDerivedMemberPointer";
1268 case CK_DerivedToBaseMemberPointer:
1269 return "DerivedToBaseMemberPointer";
1270 case CK_ReinterpretMemberPointer:
1271 return "ReinterpretMemberPointer";
1272 case CK_UserDefinedConversion:
1273 return "UserDefinedConversion";
1274 case CK_ConstructorConversion:
1275 return "ConstructorConversion";
1276 case CK_IntegralToPointer:
1277 return "IntegralToPointer";
1278 case CK_PointerToIntegral:
1279 return "PointerToIntegral";
1280 case CK_PointerToBoolean:
1281 return "PointerToBoolean";
1282 case CK_ToVoid:
1283 return "ToVoid";
1284 case CK_VectorSplat:
1285 return "VectorSplat";
1286 case CK_IntegralCast:
1287 return "IntegralCast";
1288 case CK_IntegralToBoolean:
1289 return "IntegralToBoolean";
1290 case CK_IntegralToFloating:
1291 return "IntegralToFloating";
1292 case CK_FloatingToIntegral:
1293 return "FloatingToIntegral";
1294 case CK_FloatingCast:
1295 return "FloatingCast";
1296 case CK_FloatingToBoolean:
1297 return "FloatingToBoolean";
1298 case CK_MemberPointerToBoolean:
1299 return "MemberPointerToBoolean";
1300 case CK_CPointerToObjCPointerCast:
1301 return "CPointerToObjCPointerCast";
1302 case CK_BlockPointerToObjCPointerCast:
1303 return "BlockPointerToObjCPointerCast";
1304 case CK_AnyPointerToBlockPointerCast:
1305 return "AnyPointerToBlockPointerCast";
1306 case CK_ObjCObjectLValueCast:
1307 return "ObjCObjectLValueCast";
1308 case CK_FloatingRealToComplex:
1309 return "FloatingRealToComplex";
1310 case CK_FloatingComplexToReal:
1311 return "FloatingComplexToReal";
1312 case CK_FloatingComplexToBoolean:
1313 return "FloatingComplexToBoolean";
1314 case CK_FloatingComplexCast:
1315 return "FloatingComplexCast";
1316 case CK_FloatingComplexToIntegralComplex:
1317 return "FloatingComplexToIntegralComplex";
1318 case CK_IntegralRealToComplex:
1319 return "IntegralRealToComplex";
1320 case CK_IntegralComplexToReal:
1321 return "IntegralComplexToReal";
1322 case CK_IntegralComplexToBoolean:
1323 return "IntegralComplexToBoolean";
1324 case CK_IntegralComplexCast:
1325 return "IntegralComplexCast";
1326 case CK_IntegralComplexToFloatingComplex:
1327 return "IntegralComplexToFloatingComplex";
1328 case CK_ARCConsumeObject:
1329 return "ARCConsumeObject";
1330 case CK_ARCProduceObject:
1331 return "ARCProduceObject";
1332 case CK_ARCReclaimReturnedObject:
1333 return "ARCReclaimReturnedObject";
1334 case CK_ARCExtendBlockObject:
1335 return "ARCCExtendBlockObject";
1336 case CK_AtomicToNonAtomic:
1337 return "AtomicToNonAtomic";
1338 case CK_NonAtomicToAtomic:
1339 return "NonAtomicToAtomic";
1340 case CK_CopyAndAutoreleaseBlockObject:
1341 return "CopyAndAutoreleaseBlockObject";
1342 }
1343
1344 llvm_unreachable("Unhandled cast kind!");
1345 }
1346
getSubExprAsWritten()1347 Expr *CastExpr::getSubExprAsWritten() {
1348 Expr *SubExpr = 0;
1349 CastExpr *E = this;
1350 do {
1351 SubExpr = E->getSubExpr();
1352
1353 // Skip through reference binding to temporary.
1354 if (MaterializeTemporaryExpr *Materialize
1355 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1356 SubExpr = Materialize->GetTemporaryExpr();
1357
1358 // Skip any temporary bindings; they're implicit.
1359 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1360 SubExpr = Binder->getSubExpr();
1361
1362 // Conversions by constructor and conversion functions have a
1363 // subexpression describing the call; strip it off.
1364 if (E->getCastKind() == CK_ConstructorConversion)
1365 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1366 else if (E->getCastKind() == CK_UserDefinedConversion)
1367 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1368
1369 // If the subexpression we're left with is an implicit cast, look
1370 // through that, too.
1371 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1372
1373 return SubExpr;
1374 }
1375
path_buffer()1376 CXXBaseSpecifier **CastExpr::path_buffer() {
1377 switch (getStmtClass()) {
1378 #define ABSTRACT_STMT(x)
1379 #define CASTEXPR(Type, Base) \
1380 case Stmt::Type##Class: \
1381 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1382 #define STMT(Type, Base)
1383 #include "clang/AST/StmtNodes.inc"
1384 default:
1385 llvm_unreachable("non-cast expressions not possible here");
1386 }
1387 }
1388
setCastPath(const CXXCastPath & Path)1389 void CastExpr::setCastPath(const CXXCastPath &Path) {
1390 assert(Path.size() == path_size());
1391 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1392 }
1393
Create(ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1394 ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1395 CastKind Kind, Expr *Operand,
1396 const CXXCastPath *BasePath,
1397 ExprValueKind VK) {
1398 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1399 void *Buffer =
1400 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1401 ImplicitCastExpr *E =
1402 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1403 if (PathSize) E->setCastPath(*BasePath);
1404 return E;
1405 }
1406
CreateEmpty(ASTContext & C,unsigned PathSize)1407 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1408 unsigned PathSize) {
1409 void *Buffer =
1410 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1411 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1412 }
1413
1414
Create(ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1415 CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1416 ExprValueKind VK, CastKind K, Expr *Op,
1417 const CXXCastPath *BasePath,
1418 TypeSourceInfo *WrittenTy,
1419 SourceLocation L, SourceLocation R) {
1420 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1421 void *Buffer =
1422 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1423 CStyleCastExpr *E =
1424 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1425 if (PathSize) E->setCastPath(*BasePath);
1426 return E;
1427 }
1428
CreateEmpty(ASTContext & C,unsigned PathSize)1429 CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1430 void *Buffer =
1431 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1432 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1433 }
1434
1435 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1436 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1437 const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1438 switch (Op) {
1439 case BO_PtrMemD: return ".*";
1440 case BO_PtrMemI: return "->*";
1441 case BO_Mul: return "*";
1442 case BO_Div: return "/";
1443 case BO_Rem: return "%";
1444 case BO_Add: return "+";
1445 case BO_Sub: return "-";
1446 case BO_Shl: return "<<";
1447 case BO_Shr: return ">>";
1448 case BO_LT: return "<";
1449 case BO_GT: return ">";
1450 case BO_LE: return "<=";
1451 case BO_GE: return ">=";
1452 case BO_EQ: return "==";
1453 case BO_NE: return "!=";
1454 case BO_And: return "&";
1455 case BO_Xor: return "^";
1456 case BO_Or: return "|";
1457 case BO_LAnd: return "&&";
1458 case BO_LOr: return "||";
1459 case BO_Assign: return "=";
1460 case BO_MulAssign: return "*=";
1461 case BO_DivAssign: return "/=";
1462 case BO_RemAssign: return "%=";
1463 case BO_AddAssign: return "+=";
1464 case BO_SubAssign: return "-=";
1465 case BO_ShlAssign: return "<<=";
1466 case BO_ShrAssign: return ">>=";
1467 case BO_AndAssign: return "&=";
1468 case BO_XorAssign: return "^=";
1469 case BO_OrAssign: return "|=";
1470 case BO_Comma: return ",";
1471 }
1472
1473 llvm_unreachable("Invalid OpCode!");
1474 }
1475
1476 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1477 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1478 switch (OO) {
1479 default: llvm_unreachable("Not an overloadable binary operator");
1480 case OO_Plus: return BO_Add;
1481 case OO_Minus: return BO_Sub;
1482 case OO_Star: return BO_Mul;
1483 case OO_Slash: return BO_Div;
1484 case OO_Percent: return BO_Rem;
1485 case OO_Caret: return BO_Xor;
1486 case OO_Amp: return BO_And;
1487 case OO_Pipe: return BO_Or;
1488 case OO_Equal: return BO_Assign;
1489 case OO_Less: return BO_LT;
1490 case OO_Greater: return BO_GT;
1491 case OO_PlusEqual: return BO_AddAssign;
1492 case OO_MinusEqual: return BO_SubAssign;
1493 case OO_StarEqual: return BO_MulAssign;
1494 case OO_SlashEqual: return BO_DivAssign;
1495 case OO_PercentEqual: return BO_RemAssign;
1496 case OO_CaretEqual: return BO_XorAssign;
1497 case OO_AmpEqual: return BO_AndAssign;
1498 case OO_PipeEqual: return BO_OrAssign;
1499 case OO_LessLess: return BO_Shl;
1500 case OO_GreaterGreater: return BO_Shr;
1501 case OO_LessLessEqual: return BO_ShlAssign;
1502 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1503 case OO_EqualEqual: return BO_EQ;
1504 case OO_ExclaimEqual: return BO_NE;
1505 case OO_LessEqual: return BO_LE;
1506 case OO_GreaterEqual: return BO_GE;
1507 case OO_AmpAmp: return BO_LAnd;
1508 case OO_PipePipe: return BO_LOr;
1509 case OO_Comma: return BO_Comma;
1510 case OO_ArrowStar: return BO_PtrMemI;
1511 }
1512 }
1513
getOverloadedOperator(Opcode Opc)1514 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1515 static const OverloadedOperatorKind OverOps[] = {
1516 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1517 OO_Star, OO_Slash, OO_Percent,
1518 OO_Plus, OO_Minus,
1519 OO_LessLess, OO_GreaterGreater,
1520 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1521 OO_EqualEqual, OO_ExclaimEqual,
1522 OO_Amp,
1523 OO_Caret,
1524 OO_Pipe,
1525 OO_AmpAmp,
1526 OO_PipePipe,
1527 OO_Equal, OO_StarEqual,
1528 OO_SlashEqual, OO_PercentEqual,
1529 OO_PlusEqual, OO_MinusEqual,
1530 OO_LessLessEqual, OO_GreaterGreaterEqual,
1531 OO_AmpEqual, OO_CaretEqual,
1532 OO_PipeEqual,
1533 OO_Comma
1534 };
1535 return OverOps[Opc];
1536 }
1537
InitListExpr(ASTContext & C,SourceLocation lbraceloc,Expr ** initExprs,unsigned numInits,SourceLocation rbraceloc)1538 InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1539 Expr **initExprs, unsigned numInits,
1540 SourceLocation rbraceloc)
1541 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1542 false, false),
1543 InitExprs(C, numInits),
1544 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1545 {
1546 sawArrayRangeDesignator(false);
1547 setInitializesStdInitializerList(false);
1548 for (unsigned I = 0; I != numInits; ++I) {
1549 if (initExprs[I]->isTypeDependent())
1550 ExprBits.TypeDependent = true;
1551 if (initExprs[I]->isValueDependent())
1552 ExprBits.ValueDependent = true;
1553 if (initExprs[I]->isInstantiationDependent())
1554 ExprBits.InstantiationDependent = true;
1555 if (initExprs[I]->containsUnexpandedParameterPack())
1556 ExprBits.ContainsUnexpandedParameterPack = true;
1557 }
1558
1559 InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1560 }
1561
reserveInits(ASTContext & C,unsigned NumInits)1562 void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1563 if (NumInits > InitExprs.size())
1564 InitExprs.reserve(C, NumInits);
1565 }
1566
resizeInits(ASTContext & C,unsigned NumInits)1567 void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1568 InitExprs.resize(C, NumInits, 0);
1569 }
1570
updateInit(ASTContext & C,unsigned Init,Expr * expr)1571 Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1572 if (Init >= InitExprs.size()) {
1573 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1574 InitExprs.back() = expr;
1575 return 0;
1576 }
1577
1578 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1579 InitExprs[Init] = expr;
1580 return Result;
1581 }
1582
setArrayFiller(Expr * filler)1583 void InitListExpr::setArrayFiller(Expr *filler) {
1584 assert(!hasArrayFiller() && "Filler already set!");
1585 ArrayFillerOrUnionFieldInit = filler;
1586 // Fill out any "holes" in the array due to designated initializers.
1587 Expr **inits = getInits();
1588 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1589 if (inits[i] == 0)
1590 inits[i] = filler;
1591 }
1592
isStringLiteralInit() const1593 bool InitListExpr::isStringLiteralInit() const {
1594 if (getNumInits() != 1)
1595 return false;
1596 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType());
1597 if (!CAT || !CAT->getElementType()->isIntegerType())
1598 return false;
1599 const Expr *Init = getInit(0)->IgnoreParenImpCasts();
1600 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1601 }
1602
getSourceRange() const1603 SourceRange InitListExpr::getSourceRange() const {
1604 if (SyntacticForm)
1605 return SyntacticForm->getSourceRange();
1606 SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1607 if (Beg.isInvalid()) {
1608 // Find the first non-null initializer.
1609 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1610 E = InitExprs.end();
1611 I != E; ++I) {
1612 if (Stmt *S = *I) {
1613 Beg = S->getLocStart();
1614 break;
1615 }
1616 }
1617 }
1618 if (End.isInvalid()) {
1619 // Find the first non-null initializer from the end.
1620 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1621 E = InitExprs.rend();
1622 I != E; ++I) {
1623 if (Stmt *S = *I) {
1624 End = S->getSourceRange().getEnd();
1625 break;
1626 }
1627 }
1628 }
1629 return SourceRange(Beg, End);
1630 }
1631
1632 /// getFunctionType - Return the underlying function type for this block.
1633 ///
getFunctionType() const1634 const FunctionProtoType *BlockExpr::getFunctionType() const {
1635 // The block pointer is never sugared, but the function type might be.
1636 return cast<BlockPointerType>(getType())
1637 ->getPointeeType()->castAs<FunctionProtoType>();
1638 }
1639
getCaretLocation() const1640 SourceLocation BlockExpr::getCaretLocation() const {
1641 return TheBlock->getCaretLocation();
1642 }
getBody() const1643 const Stmt *BlockExpr::getBody() const {
1644 return TheBlock->getBody();
1645 }
getBody()1646 Stmt *BlockExpr::getBody() {
1647 return TheBlock->getBody();
1648 }
1649
1650
1651 //===----------------------------------------------------------------------===//
1652 // Generic Expression Routines
1653 //===----------------------------------------------------------------------===//
1654
1655 /// isUnusedResultAWarning - Return true if this immediate expression should
1656 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1657 /// with location to warn on and the source range[s] to report with the
1658 /// warning.
isUnusedResultAWarning(SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1659 bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1660 SourceRange &R2, ASTContext &Ctx) const {
1661 // Don't warn if the expr is type dependent. The type could end up
1662 // instantiating to void.
1663 if (isTypeDependent())
1664 return false;
1665
1666 switch (getStmtClass()) {
1667 default:
1668 if (getType()->isVoidType())
1669 return false;
1670 Loc = getExprLoc();
1671 R1 = getSourceRange();
1672 return true;
1673 case ParenExprClass:
1674 return cast<ParenExpr>(this)->getSubExpr()->
1675 isUnusedResultAWarning(Loc, R1, R2, Ctx);
1676 case GenericSelectionExprClass:
1677 return cast<GenericSelectionExpr>(this)->getResultExpr()->
1678 isUnusedResultAWarning(Loc, R1, R2, Ctx);
1679 case UnaryOperatorClass: {
1680 const UnaryOperator *UO = cast<UnaryOperator>(this);
1681
1682 switch (UO->getOpcode()) {
1683 default: break;
1684 case UO_PostInc:
1685 case UO_PostDec:
1686 case UO_PreInc:
1687 case UO_PreDec: // ++/--
1688 return false; // Not a warning.
1689 case UO_Deref:
1690 // Dereferencing a volatile pointer is a side-effect.
1691 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1692 return false;
1693 break;
1694 case UO_Real:
1695 case UO_Imag:
1696 // accessing a piece of a volatile complex is a side-effect.
1697 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1698 .isVolatileQualified())
1699 return false;
1700 break;
1701 case UO_Extension:
1702 return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1703 }
1704 Loc = UO->getOperatorLoc();
1705 R1 = UO->getSubExpr()->getSourceRange();
1706 return true;
1707 }
1708 case BinaryOperatorClass: {
1709 const BinaryOperator *BO = cast<BinaryOperator>(this);
1710 switch (BO->getOpcode()) {
1711 default:
1712 break;
1713 // Consider the RHS of comma for side effects. LHS was checked by
1714 // Sema::CheckCommaOperands.
1715 case BO_Comma:
1716 // ((foo = <blah>), 0) is an idiom for hiding the result (and
1717 // lvalue-ness) of an assignment written in a macro.
1718 if (IntegerLiteral *IE =
1719 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1720 if (IE->getValue() == 0)
1721 return false;
1722 return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1723 // Consider '||', '&&' to have side effects if the LHS or RHS does.
1724 case BO_LAnd:
1725 case BO_LOr:
1726 if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1727 !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1728 return false;
1729 break;
1730 }
1731 if (BO->isAssignmentOp())
1732 return false;
1733 Loc = BO->getOperatorLoc();
1734 R1 = BO->getLHS()->getSourceRange();
1735 R2 = BO->getRHS()->getSourceRange();
1736 return true;
1737 }
1738 case CompoundAssignOperatorClass:
1739 case VAArgExprClass:
1740 case AtomicExprClass:
1741 return false;
1742
1743 case ConditionalOperatorClass: {
1744 // If only one of the LHS or RHS is a warning, the operator might
1745 // be being used for control flow. Only warn if both the LHS and
1746 // RHS are warnings.
1747 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1748 if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1749 return false;
1750 if (!Exp->getLHS())
1751 return true;
1752 return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1753 }
1754
1755 case MemberExprClass:
1756 // If the base pointer or element is to a volatile pointer/field, accessing
1757 // it is a side effect.
1758 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1759 return false;
1760 Loc = cast<MemberExpr>(this)->getMemberLoc();
1761 R1 = SourceRange(Loc, Loc);
1762 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1763 return true;
1764
1765 case ArraySubscriptExprClass:
1766 // If the base pointer or element is to a volatile pointer/field, accessing
1767 // it is a side effect.
1768 if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1769 return false;
1770 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1771 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1772 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1773 return true;
1774
1775 case CXXOperatorCallExprClass: {
1776 // We warn about operator== and operator!= even when user-defined operator
1777 // overloads as there is no reasonable way to define these such that they
1778 // have non-trivial, desirable side-effects. See the -Wunused-comparison
1779 // warning: these operators are commonly typo'ed, and so warning on them
1780 // provides additional value as well. If this list is updated,
1781 // DiagnoseUnusedComparison should be as well.
1782 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1783 if (Op->getOperator() == OO_EqualEqual ||
1784 Op->getOperator() == OO_ExclaimEqual) {
1785 Loc = Op->getOperatorLoc();
1786 R1 = Op->getSourceRange();
1787 return true;
1788 }
1789
1790 // Fallthrough for generic call handling.
1791 }
1792 case CallExprClass:
1793 case CXXMemberCallExprClass:
1794 case UserDefinedLiteralClass: {
1795 // If this is a direct call, get the callee.
1796 const CallExpr *CE = cast<CallExpr>(this);
1797 if (const Decl *FD = CE->getCalleeDecl()) {
1798 // If the callee has attribute pure, const, or warn_unused_result, warn
1799 // about it. void foo() { strlen("bar"); } should warn.
1800 //
1801 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1802 // updated to match for QoI.
1803 if (FD->getAttr<WarnUnusedResultAttr>() ||
1804 FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1805 Loc = CE->getCallee()->getLocStart();
1806 R1 = CE->getCallee()->getSourceRange();
1807
1808 if (unsigned NumArgs = CE->getNumArgs())
1809 R2 = SourceRange(CE->getArg(0)->getLocStart(),
1810 CE->getArg(NumArgs-1)->getLocEnd());
1811 return true;
1812 }
1813 }
1814 return false;
1815 }
1816
1817 case CXXTemporaryObjectExprClass:
1818 case CXXConstructExprClass:
1819 return false;
1820
1821 case ObjCMessageExprClass: {
1822 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1823 if (Ctx.getLangOpts().ObjCAutoRefCount &&
1824 ME->isInstanceMessage() &&
1825 !ME->getType()->isVoidType() &&
1826 ME->getSelector().getIdentifierInfoForSlot(0) &&
1827 ME->getSelector().getIdentifierInfoForSlot(0)
1828 ->getName().startswith("init")) {
1829 Loc = getExprLoc();
1830 R1 = ME->getSourceRange();
1831 return true;
1832 }
1833
1834 const ObjCMethodDecl *MD = ME->getMethodDecl();
1835 if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1836 Loc = getExprLoc();
1837 return true;
1838 }
1839 return false;
1840 }
1841
1842 case ObjCPropertyRefExprClass:
1843 Loc = getExprLoc();
1844 R1 = getSourceRange();
1845 return true;
1846
1847 case PseudoObjectExprClass: {
1848 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1849
1850 // Only complain about things that have the form of a getter.
1851 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1852 isa<BinaryOperator>(PO->getSyntacticForm()))
1853 return false;
1854
1855 Loc = getExprLoc();
1856 R1 = getSourceRange();
1857 return true;
1858 }
1859
1860 case StmtExprClass: {
1861 // Statement exprs don't logically have side effects themselves, but are
1862 // sometimes used in macros in ways that give them a type that is unused.
1863 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1864 // however, if the result of the stmt expr is dead, we don't want to emit a
1865 // warning.
1866 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1867 if (!CS->body_empty()) {
1868 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1869 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1870 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1871 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1872 return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1873 }
1874
1875 if (getType()->isVoidType())
1876 return false;
1877 Loc = cast<StmtExpr>(this)->getLParenLoc();
1878 R1 = getSourceRange();
1879 return true;
1880 }
1881 case CStyleCastExprClass:
1882 // If this is an explicit cast to void, allow it. People do this when they
1883 // think they know what they're doing :).
1884 if (getType()->isVoidType())
1885 return false;
1886 Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1887 R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1888 return true;
1889 case CXXFunctionalCastExprClass: {
1890 if (getType()->isVoidType())
1891 return false;
1892 const CastExpr *CE = cast<CastExpr>(this);
1893
1894 // If this is a cast to void or a constructor conversion, check the operand.
1895 // Otherwise, the result of the cast is unused.
1896 if (CE->getCastKind() == CK_ToVoid ||
1897 CE->getCastKind() == CK_ConstructorConversion)
1898 return (cast<CastExpr>(this)->getSubExpr()
1899 ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1900 Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1901 R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1902 return true;
1903 }
1904
1905 case ImplicitCastExprClass:
1906 // Check the operand, since implicit casts are inserted by Sema
1907 return (cast<ImplicitCastExpr>(this)
1908 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1909
1910 case CXXDefaultArgExprClass:
1911 return (cast<CXXDefaultArgExpr>(this)
1912 ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1913
1914 case CXXNewExprClass:
1915 // FIXME: In theory, there might be new expressions that don't have side
1916 // effects (e.g. a placement new with an uninitialized POD).
1917 case CXXDeleteExprClass:
1918 return false;
1919 case CXXBindTemporaryExprClass:
1920 return (cast<CXXBindTemporaryExpr>(this)
1921 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1922 case ExprWithCleanupsClass:
1923 return (cast<ExprWithCleanups>(this)
1924 ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1925 }
1926 }
1927
1928 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
1929 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const1930 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1931 const Expr *E = IgnoreParens();
1932 switch (E->getStmtClass()) {
1933 default:
1934 return false;
1935 case ObjCIvarRefExprClass:
1936 return true;
1937 case Expr::UnaryOperatorClass:
1938 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1939 case ImplicitCastExprClass:
1940 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1941 case MaterializeTemporaryExprClass:
1942 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1943 ->isOBJCGCCandidate(Ctx);
1944 case CStyleCastExprClass:
1945 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1946 case DeclRefExprClass: {
1947 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
1948
1949 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1950 if (VD->hasGlobalStorage())
1951 return true;
1952 QualType T = VD->getType();
1953 // dereferencing to a pointer is always a gc'able candidate,
1954 // unless it is __weak.
1955 return T->isPointerType() &&
1956 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1957 }
1958 return false;
1959 }
1960 case MemberExprClass: {
1961 const MemberExpr *M = cast<MemberExpr>(E);
1962 return M->getBase()->isOBJCGCCandidate(Ctx);
1963 }
1964 case ArraySubscriptExprClass:
1965 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1966 }
1967 }
1968
isBoundMemberFunction(ASTContext & Ctx) const1969 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1970 if (isTypeDependent())
1971 return false;
1972 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1973 }
1974
findBoundMemberType(const Expr * expr)1975 QualType Expr::findBoundMemberType(const Expr *expr) {
1976 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
1977
1978 // Bound member expressions are always one of these possibilities:
1979 // x->m x.m x->*y x.*y
1980 // (possibly parenthesized)
1981
1982 expr = expr->IgnoreParens();
1983 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1984 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1985 return mem->getMemberDecl()->getType();
1986 }
1987
1988 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1989 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1990 ->getPointeeType();
1991 assert(type->isFunctionType());
1992 return type;
1993 }
1994
1995 assert(isa<UnresolvedMemberExpr>(expr));
1996 return QualType();
1997 }
1998
IgnoreParens()1999 Expr* Expr::IgnoreParens() {
2000 Expr* E = this;
2001 while (true) {
2002 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2003 E = P->getSubExpr();
2004 continue;
2005 }
2006 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2007 if (P->getOpcode() == UO_Extension) {
2008 E = P->getSubExpr();
2009 continue;
2010 }
2011 }
2012 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2013 if (!P->isResultDependent()) {
2014 E = P->getResultExpr();
2015 continue;
2016 }
2017 }
2018 return E;
2019 }
2020 }
2021
2022 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2023 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2024 Expr *Expr::IgnoreParenCasts() {
2025 Expr *E = this;
2026 while (true) {
2027 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2028 E = P->getSubExpr();
2029 continue;
2030 }
2031 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2032 E = P->getSubExpr();
2033 continue;
2034 }
2035 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2036 if (P->getOpcode() == UO_Extension) {
2037 E = P->getSubExpr();
2038 continue;
2039 }
2040 }
2041 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2042 if (!P->isResultDependent()) {
2043 E = P->getResultExpr();
2044 continue;
2045 }
2046 }
2047 if (MaterializeTemporaryExpr *Materialize
2048 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2049 E = Materialize->GetTemporaryExpr();
2050 continue;
2051 }
2052 if (SubstNonTypeTemplateParmExpr *NTTP
2053 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2054 E = NTTP->getReplacement();
2055 continue;
2056 }
2057 return E;
2058 }
2059 }
2060
2061 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2062 /// casts. This is intended purely as a temporary workaround for code
2063 /// that hasn't yet been rewritten to do the right thing about those
2064 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2065 Expr *Expr::IgnoreParenLValueCasts() {
2066 Expr *E = this;
2067 while (true) {
2068 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2069 E = P->getSubExpr();
2070 continue;
2071 } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2072 if (P->getCastKind() == CK_LValueToRValue) {
2073 E = P->getSubExpr();
2074 continue;
2075 }
2076 } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2077 if (P->getOpcode() == UO_Extension) {
2078 E = P->getSubExpr();
2079 continue;
2080 }
2081 } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2082 if (!P->isResultDependent()) {
2083 E = P->getResultExpr();
2084 continue;
2085 }
2086 } else if (MaterializeTemporaryExpr *Materialize
2087 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2088 E = Materialize->GetTemporaryExpr();
2089 continue;
2090 } else if (SubstNonTypeTemplateParmExpr *NTTP
2091 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2092 E = NTTP->getReplacement();
2093 continue;
2094 }
2095 break;
2096 }
2097 return E;
2098 }
2099
IgnoreParenImpCasts()2100 Expr *Expr::IgnoreParenImpCasts() {
2101 Expr *E = this;
2102 while (true) {
2103 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2104 E = P->getSubExpr();
2105 continue;
2106 }
2107 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2108 E = P->getSubExpr();
2109 continue;
2110 }
2111 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2112 if (P->getOpcode() == UO_Extension) {
2113 E = P->getSubExpr();
2114 continue;
2115 }
2116 }
2117 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2118 if (!P->isResultDependent()) {
2119 E = P->getResultExpr();
2120 continue;
2121 }
2122 }
2123 if (MaterializeTemporaryExpr *Materialize
2124 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2125 E = Materialize->GetTemporaryExpr();
2126 continue;
2127 }
2128 if (SubstNonTypeTemplateParmExpr *NTTP
2129 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2130 E = NTTP->getReplacement();
2131 continue;
2132 }
2133 return E;
2134 }
2135 }
2136
IgnoreConversionOperator()2137 Expr *Expr::IgnoreConversionOperator() {
2138 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2139 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2140 return MCE->getImplicitObjectArgument();
2141 }
2142 return this;
2143 }
2144
2145 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2146 /// value (including ptr->int casts of the same size). Strip off any
2147 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2148 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2149 Expr *E = this;
2150 while (true) {
2151 if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2152 E = P->getSubExpr();
2153 continue;
2154 }
2155
2156 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2157 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2158 // ptr<->int casts of the same width. We also ignore all identity casts.
2159 Expr *SE = P->getSubExpr();
2160
2161 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2162 E = SE;
2163 continue;
2164 }
2165
2166 if ((E->getType()->isPointerType() ||
2167 E->getType()->isIntegralType(Ctx)) &&
2168 (SE->getType()->isPointerType() ||
2169 SE->getType()->isIntegralType(Ctx)) &&
2170 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2171 E = SE;
2172 continue;
2173 }
2174 }
2175
2176 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2177 if (P->getOpcode() == UO_Extension) {
2178 E = P->getSubExpr();
2179 continue;
2180 }
2181 }
2182
2183 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2184 if (!P->isResultDependent()) {
2185 E = P->getResultExpr();
2186 continue;
2187 }
2188 }
2189
2190 if (SubstNonTypeTemplateParmExpr *NTTP
2191 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2192 E = NTTP->getReplacement();
2193 continue;
2194 }
2195
2196 return E;
2197 }
2198 }
2199
isDefaultArgument() const2200 bool Expr::isDefaultArgument() const {
2201 const Expr *E = this;
2202 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2203 E = M->GetTemporaryExpr();
2204
2205 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2206 E = ICE->getSubExprAsWritten();
2207
2208 return isa<CXXDefaultArgExpr>(E);
2209 }
2210
2211 /// \brief Skip over any no-op casts and any temporary-binding
2212 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2213 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2214 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2215 E = M->GetTemporaryExpr();
2216
2217 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2218 if (ICE->getCastKind() == CK_NoOp)
2219 E = ICE->getSubExpr();
2220 else
2221 break;
2222 }
2223
2224 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2225 E = BE->getSubExpr();
2226
2227 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2228 if (ICE->getCastKind() == CK_NoOp)
2229 E = ICE->getSubExpr();
2230 else
2231 break;
2232 }
2233
2234 return E->IgnoreParens();
2235 }
2236
2237 /// isTemporaryObject - Determines if this expression produces a
2238 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2239 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2240 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2241 return false;
2242
2243 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2244
2245 // Temporaries are by definition pr-values of class type.
2246 if (!E->Classify(C).isPRValue()) {
2247 // In this context, property reference is a message call and is pr-value.
2248 if (!isa<ObjCPropertyRefExpr>(E))
2249 return false;
2250 }
2251
2252 // Black-list a few cases which yield pr-values of class type that don't
2253 // refer to temporaries of that type:
2254
2255 // - implicit derived-to-base conversions
2256 if (isa<ImplicitCastExpr>(E)) {
2257 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2258 case CK_DerivedToBase:
2259 case CK_UncheckedDerivedToBase:
2260 return false;
2261 default:
2262 break;
2263 }
2264 }
2265
2266 // - member expressions (all)
2267 if (isa<MemberExpr>(E))
2268 return false;
2269
2270 // - opaque values (all)
2271 if (isa<OpaqueValueExpr>(E))
2272 return false;
2273
2274 return true;
2275 }
2276
isImplicitCXXThis() const2277 bool Expr::isImplicitCXXThis() const {
2278 const Expr *E = this;
2279
2280 // Strip away parentheses and casts we don't care about.
2281 while (true) {
2282 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2283 E = Paren->getSubExpr();
2284 continue;
2285 }
2286
2287 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2288 if (ICE->getCastKind() == CK_NoOp ||
2289 ICE->getCastKind() == CK_LValueToRValue ||
2290 ICE->getCastKind() == CK_DerivedToBase ||
2291 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2292 E = ICE->getSubExpr();
2293 continue;
2294 }
2295 }
2296
2297 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2298 if (UnOp->getOpcode() == UO_Extension) {
2299 E = UnOp->getSubExpr();
2300 continue;
2301 }
2302 }
2303
2304 if (const MaterializeTemporaryExpr *M
2305 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2306 E = M->GetTemporaryExpr();
2307 continue;
2308 }
2309
2310 break;
2311 }
2312
2313 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2314 return This->isImplicit();
2315
2316 return false;
2317 }
2318
2319 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2320 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(llvm::ArrayRef<Expr * > Exprs)2321 bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2322 for (unsigned I = 0; I < Exprs.size(); ++I)
2323 if (Exprs[I]->isTypeDependent())
2324 return true;
2325
2326 return false;
2327 }
2328
isConstantInitializer(ASTContext & Ctx,bool IsForRef) const2329 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2330 // This function is attempting whether an expression is an initializer
2331 // which can be evaluated at compile-time. isEvaluatable handles most
2332 // of the cases, but it can't deal with some initializer-specific
2333 // expressions, and it can't deal with aggregates; we deal with those here,
2334 // and fall back to isEvaluatable for the other cases.
2335
2336 // If we ever capture reference-binding directly in the AST, we can
2337 // kill the second parameter.
2338
2339 if (IsForRef) {
2340 EvalResult Result;
2341 return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2342 }
2343
2344 switch (getStmtClass()) {
2345 default: break;
2346 case IntegerLiteralClass:
2347 case FloatingLiteralClass:
2348 case StringLiteralClass:
2349 case ObjCStringLiteralClass:
2350 case ObjCEncodeExprClass:
2351 return true;
2352 case CXXTemporaryObjectExprClass:
2353 case CXXConstructExprClass: {
2354 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2355
2356 // Only if it's
2357 if (CE->getConstructor()->isTrivial()) {
2358 // 1) an application of the trivial default constructor or
2359 if (!CE->getNumArgs()) return true;
2360
2361 // 2) an elidable trivial copy construction of an operand which is
2362 // itself a constant initializer. Note that we consider the
2363 // operand on its own, *not* as a reference binding.
2364 if (CE->isElidable() &&
2365 CE->getArg(0)->isConstantInitializer(Ctx, false))
2366 return true;
2367 }
2368
2369 // 3) a foldable constexpr constructor.
2370 break;
2371 }
2372 case CompoundLiteralExprClass: {
2373 // This handles gcc's extension that allows global initializers like
2374 // "struct x {int x;} x = (struct x) {};".
2375 // FIXME: This accepts other cases it shouldn't!
2376 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2377 return Exp->isConstantInitializer(Ctx, false);
2378 }
2379 case InitListExprClass: {
2380 // FIXME: This doesn't deal with fields with reference types correctly.
2381 // FIXME: This incorrectly allows pointers cast to integers to be assigned
2382 // to bitfields.
2383 const InitListExpr *Exp = cast<InitListExpr>(this);
2384 unsigned numInits = Exp->getNumInits();
2385 for (unsigned i = 0; i < numInits; i++) {
2386 if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2387 return false;
2388 }
2389 return true;
2390 }
2391 case ImplicitValueInitExprClass:
2392 return true;
2393 case ParenExprClass:
2394 return cast<ParenExpr>(this)->getSubExpr()
2395 ->isConstantInitializer(Ctx, IsForRef);
2396 case GenericSelectionExprClass:
2397 if (cast<GenericSelectionExpr>(this)->isResultDependent())
2398 return false;
2399 return cast<GenericSelectionExpr>(this)->getResultExpr()
2400 ->isConstantInitializer(Ctx, IsForRef);
2401 case ChooseExprClass:
2402 return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2403 ->isConstantInitializer(Ctx, IsForRef);
2404 case UnaryOperatorClass: {
2405 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2406 if (Exp->getOpcode() == UO_Extension)
2407 return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2408 break;
2409 }
2410 case CXXFunctionalCastExprClass:
2411 case CXXStaticCastExprClass:
2412 case ImplicitCastExprClass:
2413 case CStyleCastExprClass: {
2414 const CastExpr *CE = cast<CastExpr>(this);
2415
2416 // If we're promoting an integer to an _Atomic type then this is constant
2417 // if the integer is constant. We also need to check the converse in case
2418 // someone does something like:
2419 //
2420 // int a = (_Atomic(int))42;
2421 //
2422 // I doubt anyone would write code like this directly, but it's quite
2423 // possible as the result of macro expansions.
2424 if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2425 CE->getCastKind() == CK_AtomicToNonAtomic)
2426 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2427
2428 // Handle bitcasts of vector constants.
2429 if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2430 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2431
2432 // Handle misc casts we want to ignore.
2433 // FIXME: Is it really safe to ignore all these?
2434 if (CE->getCastKind() == CK_NoOp ||
2435 CE->getCastKind() == CK_LValueToRValue ||
2436 CE->getCastKind() == CK_ToUnion ||
2437 CE->getCastKind() == CK_ConstructorConversion)
2438 return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2439
2440 break;
2441 }
2442 case MaterializeTemporaryExprClass:
2443 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2444 ->isConstantInitializer(Ctx, false);
2445 }
2446 return isEvaluatable(Ctx);
2447 }
2448
2449 namespace {
2450 /// \brief Look for a call to a non-trivial function within an expression.
2451 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2452 {
2453 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2454
2455 bool NonTrivial;
2456
2457 public:
NonTrivialCallFinder(ASTContext & Context)2458 explicit NonTrivialCallFinder(ASTContext &Context)
2459 : Inherited(Context), NonTrivial(false) { }
2460
hasNonTrivialCall() const2461 bool hasNonTrivialCall() const { return NonTrivial; }
2462
VisitCallExpr(CallExpr * E)2463 void VisitCallExpr(CallExpr *E) {
2464 if (CXXMethodDecl *Method
2465 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2466 if (Method->isTrivial()) {
2467 // Recurse to children of the call.
2468 Inherited::VisitStmt(E);
2469 return;
2470 }
2471 }
2472
2473 NonTrivial = true;
2474 }
2475
VisitCXXConstructExpr(CXXConstructExpr * E)2476 void VisitCXXConstructExpr(CXXConstructExpr *E) {
2477 if (E->getConstructor()->isTrivial()) {
2478 // Recurse to children of the call.
2479 Inherited::VisitStmt(E);
2480 return;
2481 }
2482
2483 NonTrivial = true;
2484 }
2485
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)2486 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2487 if (E->getTemporary()->getDestructor()->isTrivial()) {
2488 Inherited::VisitStmt(E);
2489 return;
2490 }
2491
2492 NonTrivial = true;
2493 }
2494 };
2495 }
2496
hasNonTrivialCall(ASTContext & Ctx)2497 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2498 NonTrivialCallFinder Finder(Ctx);
2499 Finder.Visit(this);
2500 return Finder.hasNonTrivialCall();
2501 }
2502
2503 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2504 /// pointer constant or not, as well as the specific kind of constant detected.
2505 /// Null pointer constants can be integer constant expressions with the
2506 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
2507 /// (a GNU extension).
2508 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const2509 Expr::isNullPointerConstant(ASTContext &Ctx,
2510 NullPointerConstantValueDependence NPC) const {
2511 if (isValueDependent()) {
2512 switch (NPC) {
2513 case NPC_NeverValueDependent:
2514 llvm_unreachable("Unexpected value dependent expression!");
2515 case NPC_ValueDependentIsNull:
2516 if (isTypeDependent() || getType()->isIntegralType(Ctx))
2517 return NPCK_ZeroInteger;
2518 else
2519 return NPCK_NotNull;
2520
2521 case NPC_ValueDependentIsNotNull:
2522 return NPCK_NotNull;
2523 }
2524 }
2525
2526 // Strip off a cast to void*, if it exists. Except in C++.
2527 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2528 if (!Ctx.getLangOpts().CPlusPlus) {
2529 // Check that it is a cast to void*.
2530 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2531 QualType Pointee = PT->getPointeeType();
2532 if (!Pointee.hasQualifiers() &&
2533 Pointee->isVoidType() && // to void*
2534 CE->getSubExpr()->getType()->isIntegerType()) // from int.
2535 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2536 }
2537 }
2538 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2539 // Ignore the ImplicitCastExpr type entirely.
2540 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2541 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2542 // Accept ((void*)0) as a null pointer constant, as many other
2543 // implementations do.
2544 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2545 } else if (const GenericSelectionExpr *GE =
2546 dyn_cast<GenericSelectionExpr>(this)) {
2547 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2548 } else if (const CXXDefaultArgExpr *DefaultArg
2549 = dyn_cast<CXXDefaultArgExpr>(this)) {
2550 // See through default argument expressions
2551 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2552 } else if (isa<GNUNullExpr>(this)) {
2553 // The GNU __null extension is always a null pointer constant.
2554 return NPCK_GNUNull;
2555 } else if (const MaterializeTemporaryExpr *M
2556 = dyn_cast<MaterializeTemporaryExpr>(this)) {
2557 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2558 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2559 if (const Expr *Source = OVE->getSourceExpr())
2560 return Source->isNullPointerConstant(Ctx, NPC);
2561 }
2562
2563 // C++0x nullptr_t is always a null pointer constant.
2564 if (getType()->isNullPtrType())
2565 return NPCK_CXX0X_nullptr;
2566
2567 if (const RecordType *UT = getType()->getAsUnionType())
2568 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2569 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2570 const Expr *InitExpr = CLE->getInitializer();
2571 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2572 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2573 }
2574 // This expression must be an integer type.
2575 if (!getType()->isIntegerType() ||
2576 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2577 return NPCK_NotNull;
2578
2579 // If we have an integer constant expression, we need to *evaluate* it and
2580 // test for the value 0. Don't use the C++11 constant expression semantics
2581 // for this, for now; once the dust settles on core issue 903, we might only
2582 // allow a literal 0 here in C++11 mode.
2583 if (Ctx.getLangOpts().CPlusPlus0x) {
2584 if (!isCXX98IntegralConstantExpr(Ctx))
2585 return NPCK_NotNull;
2586 } else {
2587 if (!isIntegerConstantExpr(Ctx))
2588 return NPCK_NotNull;
2589 }
2590
2591 return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull;
2592 }
2593
2594 /// \brief If this expression is an l-value for an Objective C
2595 /// property, find the underlying property reference expression.
getObjCProperty() const2596 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2597 const Expr *E = this;
2598 while (true) {
2599 assert((E->getValueKind() == VK_LValue &&
2600 E->getObjectKind() == OK_ObjCProperty) &&
2601 "expression is not a property reference");
2602 E = E->IgnoreParenCasts();
2603 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2604 if (BO->getOpcode() == BO_Comma) {
2605 E = BO->getRHS();
2606 continue;
2607 }
2608 }
2609
2610 break;
2611 }
2612
2613 return cast<ObjCPropertyRefExpr>(E);
2614 }
2615
getBitField()2616 FieldDecl *Expr::getBitField() {
2617 Expr *E = this->IgnoreParens();
2618
2619 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2620 if (ICE->getCastKind() == CK_LValueToRValue ||
2621 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2622 E = ICE->getSubExpr()->IgnoreParens();
2623 else
2624 break;
2625 }
2626
2627 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2628 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2629 if (Field->isBitField())
2630 return Field;
2631
2632 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2633 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2634 if (Field->isBitField())
2635 return Field;
2636
2637 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2638 if (BinOp->isAssignmentOp() && BinOp->getLHS())
2639 return BinOp->getLHS()->getBitField();
2640
2641 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2642 return BinOp->getRHS()->getBitField();
2643 }
2644
2645 return 0;
2646 }
2647
refersToVectorElement() const2648 bool Expr::refersToVectorElement() const {
2649 const Expr *E = this->IgnoreParens();
2650
2651 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2652 if (ICE->getValueKind() != VK_RValue &&
2653 ICE->getCastKind() == CK_NoOp)
2654 E = ICE->getSubExpr()->IgnoreParens();
2655 else
2656 break;
2657 }
2658
2659 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2660 return ASE->getBase()->getType()->isVectorType();
2661
2662 if (isa<ExtVectorElementExpr>(E))
2663 return true;
2664
2665 return false;
2666 }
2667
2668 /// isArrow - Return true if the base expression is a pointer to vector,
2669 /// return false if the base expression is a vector.
isArrow() const2670 bool ExtVectorElementExpr::isArrow() const {
2671 return getBase()->getType()->isPointerType();
2672 }
2673
getNumElements() const2674 unsigned ExtVectorElementExpr::getNumElements() const {
2675 if (const VectorType *VT = getType()->getAs<VectorType>())
2676 return VT->getNumElements();
2677 return 1;
2678 }
2679
2680 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const2681 bool ExtVectorElementExpr::containsDuplicateElements() const {
2682 // FIXME: Refactor this code to an accessor on the AST node which returns the
2683 // "type" of component access, and share with code below and in Sema.
2684 StringRef Comp = Accessor->getName();
2685
2686 // Halving swizzles do not contain duplicate elements.
2687 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2688 return false;
2689
2690 // Advance past s-char prefix on hex swizzles.
2691 if (Comp[0] == 's' || Comp[0] == 'S')
2692 Comp = Comp.substr(1);
2693
2694 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2695 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2696 return true;
2697
2698 return false;
2699 }
2700
2701 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const2702 void ExtVectorElementExpr::getEncodedElementAccess(
2703 SmallVectorImpl<unsigned> &Elts) const {
2704 StringRef Comp = Accessor->getName();
2705 if (Comp[0] == 's' || Comp[0] == 'S')
2706 Comp = Comp.substr(1);
2707
2708 bool isHi = Comp == "hi";
2709 bool isLo = Comp == "lo";
2710 bool isEven = Comp == "even";
2711 bool isOdd = Comp == "odd";
2712
2713 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2714 uint64_t Index;
2715
2716 if (isHi)
2717 Index = e + i;
2718 else if (isLo)
2719 Index = i;
2720 else if (isEven)
2721 Index = 2 * i;
2722 else if (isOdd)
2723 Index = 2 * i + 1;
2724 else
2725 Index = ExtVectorType::getAccessorIdx(Comp[i]);
2726
2727 Elts.push_back(Index);
2728 }
2729 }
2730
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2731 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2732 ExprValueKind VK,
2733 SourceLocation LBracLoc,
2734 SourceLocation SuperLoc,
2735 bool IsInstanceSuper,
2736 QualType SuperType,
2737 Selector Sel,
2738 ArrayRef<SourceLocation> SelLocs,
2739 SelectorLocationsKind SelLocsK,
2740 ObjCMethodDecl *Method,
2741 ArrayRef<Expr *> Args,
2742 SourceLocation RBracLoc,
2743 bool isImplicit)
2744 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2745 /*TypeDependent=*/false, /*ValueDependent=*/false,
2746 /*InstantiationDependent=*/false,
2747 /*ContainsUnexpandedParameterPack=*/false),
2748 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2749 : Sel.getAsOpaquePtr())),
2750 Kind(IsInstanceSuper? SuperInstance : SuperClass),
2751 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2752 SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2753 {
2754 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2755 setReceiverPointer(SuperType.getAsOpaquePtr());
2756 }
2757
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2758 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2759 ExprValueKind VK,
2760 SourceLocation LBracLoc,
2761 TypeSourceInfo *Receiver,
2762 Selector Sel,
2763 ArrayRef<SourceLocation> SelLocs,
2764 SelectorLocationsKind SelLocsK,
2765 ObjCMethodDecl *Method,
2766 ArrayRef<Expr *> Args,
2767 SourceLocation RBracLoc,
2768 bool isImplicit)
2769 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2770 T->isDependentType(), T->isInstantiationDependentType(),
2771 T->containsUnexpandedParameterPack()),
2772 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2773 : Sel.getAsOpaquePtr())),
2774 Kind(Class),
2775 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2776 LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2777 {
2778 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2779 setReceiverPointer(Receiver);
2780 }
2781
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2782 ObjCMessageExpr::ObjCMessageExpr(QualType T,
2783 ExprValueKind VK,
2784 SourceLocation LBracLoc,
2785 Expr *Receiver,
2786 Selector Sel,
2787 ArrayRef<SourceLocation> SelLocs,
2788 SelectorLocationsKind SelLocsK,
2789 ObjCMethodDecl *Method,
2790 ArrayRef<Expr *> Args,
2791 SourceLocation RBracLoc,
2792 bool isImplicit)
2793 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2794 Receiver->isTypeDependent(),
2795 Receiver->isInstantiationDependent(),
2796 Receiver->containsUnexpandedParameterPack()),
2797 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2798 : Sel.getAsOpaquePtr())),
2799 Kind(Instance),
2800 HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2801 LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2802 {
2803 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2804 setReceiverPointer(Receiver);
2805 }
2806
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)2807 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
2808 ArrayRef<SourceLocation> SelLocs,
2809 SelectorLocationsKind SelLocsK) {
2810 setNumArgs(Args.size());
2811 Expr **MyArgs = getArgs();
2812 for (unsigned I = 0; I != Args.size(); ++I) {
2813 if (Args[I]->isTypeDependent())
2814 ExprBits.TypeDependent = true;
2815 if (Args[I]->isValueDependent())
2816 ExprBits.ValueDependent = true;
2817 if (Args[I]->isInstantiationDependent())
2818 ExprBits.InstantiationDependent = true;
2819 if (Args[I]->containsUnexpandedParameterPack())
2820 ExprBits.ContainsUnexpandedParameterPack = true;
2821
2822 MyArgs[I] = Args[I];
2823 }
2824
2825 SelLocsKind = SelLocsK;
2826 if (!isImplicit()) {
2827 if (SelLocsK == SelLoc_NonStandard)
2828 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
2829 }
2830 }
2831
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2832 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2833 ExprValueKind VK,
2834 SourceLocation LBracLoc,
2835 SourceLocation SuperLoc,
2836 bool IsInstanceSuper,
2837 QualType SuperType,
2838 Selector Sel,
2839 ArrayRef<SourceLocation> SelLocs,
2840 ObjCMethodDecl *Method,
2841 ArrayRef<Expr *> Args,
2842 SourceLocation RBracLoc,
2843 bool isImplicit) {
2844 assert((!SelLocs.empty() || isImplicit) &&
2845 "No selector locs for non-implicit message");
2846 ObjCMessageExpr *Mem;
2847 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2848 if (isImplicit)
2849 Mem = alloc(Context, Args.size(), 0);
2850 else
2851 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2852 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2853 SuperType, Sel, SelLocs, SelLocsK,
2854 Method, Args, RBracLoc, isImplicit);
2855 }
2856
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2857 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2858 ExprValueKind VK,
2859 SourceLocation LBracLoc,
2860 TypeSourceInfo *Receiver,
2861 Selector Sel,
2862 ArrayRef<SourceLocation> SelLocs,
2863 ObjCMethodDecl *Method,
2864 ArrayRef<Expr *> Args,
2865 SourceLocation RBracLoc,
2866 bool isImplicit) {
2867 assert((!SelLocs.empty() || isImplicit) &&
2868 "No selector locs for non-implicit message");
2869 ObjCMessageExpr *Mem;
2870 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2871 if (isImplicit)
2872 Mem = alloc(Context, Args.size(), 0);
2873 else
2874 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2875 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
2876 SelLocs, SelLocsK, Method, Args, RBracLoc,
2877 isImplicit);
2878 }
2879
Create(ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)2880 ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2881 ExprValueKind VK,
2882 SourceLocation LBracLoc,
2883 Expr *Receiver,
2884 Selector Sel,
2885 ArrayRef<SourceLocation> SelLocs,
2886 ObjCMethodDecl *Method,
2887 ArrayRef<Expr *> Args,
2888 SourceLocation RBracLoc,
2889 bool isImplicit) {
2890 assert((!SelLocs.empty() || isImplicit) &&
2891 "No selector locs for non-implicit message");
2892 ObjCMessageExpr *Mem;
2893 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2894 if (isImplicit)
2895 Mem = alloc(Context, Args.size(), 0);
2896 else
2897 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2898 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
2899 SelLocs, SelLocsK, Method, Args, RBracLoc,
2900 isImplicit);
2901 }
2902
CreateEmpty(ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)2903 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2904 unsigned NumArgs,
2905 unsigned NumStoredSelLocs) {
2906 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
2907 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2908 }
2909
alloc(ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)2910 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
2911 ArrayRef<Expr *> Args,
2912 SourceLocation RBraceLoc,
2913 ArrayRef<SourceLocation> SelLocs,
2914 Selector Sel,
2915 SelectorLocationsKind &SelLocsK) {
2916 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
2917 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
2918 : 0;
2919 return alloc(C, Args.size(), NumStoredSelLocs);
2920 }
2921
alloc(ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)2922 ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
2923 unsigned NumArgs,
2924 unsigned NumStoredSelLocs) {
2925 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2926 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
2927 return (ObjCMessageExpr *)C.Allocate(Size,
2928 llvm::AlignOf<ObjCMessageExpr>::Alignment);
2929 }
2930
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const2931 void ObjCMessageExpr::getSelectorLocs(
2932 SmallVectorImpl<SourceLocation> &SelLocs) const {
2933 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
2934 SelLocs.push_back(getSelectorLoc(i));
2935 }
2936
getReceiverRange() const2937 SourceRange ObjCMessageExpr::getReceiverRange() const {
2938 switch (getReceiverKind()) {
2939 case Instance:
2940 return getInstanceReceiver()->getSourceRange();
2941
2942 case Class:
2943 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2944
2945 case SuperInstance:
2946 case SuperClass:
2947 return getSuperLoc();
2948 }
2949
2950 llvm_unreachable("Invalid ReceiverKind!");
2951 }
2952
getSelector() const2953 Selector ObjCMessageExpr::getSelector() const {
2954 if (HasMethod)
2955 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2956 ->getSelector();
2957 return Selector(SelectorOrMethod);
2958 }
2959
getReceiverInterface() const2960 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2961 switch (getReceiverKind()) {
2962 case Instance:
2963 if (const ObjCObjectPointerType *Ptr
2964 = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2965 return Ptr->getInterfaceDecl();
2966 break;
2967
2968 case Class:
2969 if (const ObjCObjectType *Ty
2970 = getClassReceiver()->getAs<ObjCObjectType>())
2971 return Ty->getInterface();
2972 break;
2973
2974 case SuperInstance:
2975 if (const ObjCObjectPointerType *Ptr
2976 = getSuperType()->getAs<ObjCObjectPointerType>())
2977 return Ptr->getInterfaceDecl();
2978 break;
2979
2980 case SuperClass:
2981 if (const ObjCObjectType *Iface
2982 = getSuperType()->getAs<ObjCObjectType>())
2983 return Iface->getInterface();
2984 break;
2985 }
2986
2987 return 0;
2988 }
2989
getBridgeKindName() const2990 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
2991 switch (getBridgeKind()) {
2992 case OBC_Bridge:
2993 return "__bridge";
2994 case OBC_BridgeTransfer:
2995 return "__bridge_transfer";
2996 case OBC_BridgeRetained:
2997 return "__bridge_retained";
2998 }
2999
3000 llvm_unreachable("Invalid BridgeKind!");
3001 }
3002
isConditionTrue(const ASTContext & C) const3003 bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3004 return getCond()->EvaluateKnownConstInt(C) != 0;
3005 }
3006
ShuffleVectorExpr(ASTContext & C,Expr ** args,unsigned nexpr,QualType Type,SourceLocation BLoc,SourceLocation RP)3007 ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3008 QualType Type, SourceLocation BLoc,
3009 SourceLocation RP)
3010 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3011 Type->isDependentType(), Type->isDependentType(),
3012 Type->isInstantiationDependentType(),
3013 Type->containsUnexpandedParameterPack()),
3014 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3015 {
3016 SubExprs = new (C) Stmt*[nexpr];
3017 for (unsigned i = 0; i < nexpr; i++) {
3018 if (args[i]->isTypeDependent())
3019 ExprBits.TypeDependent = true;
3020 if (args[i]->isValueDependent())
3021 ExprBits.ValueDependent = true;
3022 if (args[i]->isInstantiationDependent())
3023 ExprBits.InstantiationDependent = true;
3024 if (args[i]->containsUnexpandedParameterPack())
3025 ExprBits.ContainsUnexpandedParameterPack = true;
3026
3027 SubExprs[i] = args[i];
3028 }
3029 }
3030
setExprs(ASTContext & C,Expr ** Exprs,unsigned NumExprs)3031 void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3032 unsigned NumExprs) {
3033 if (SubExprs) C.Deallocate(SubExprs);
3034
3035 SubExprs = new (C) Stmt* [NumExprs];
3036 this->NumExprs = NumExprs;
3037 memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3038 }
3039
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,TypeSourceInfo ** AssocTypes,Expr ** AssocExprs,unsigned NumAssocs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3040 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3041 SourceLocation GenericLoc, Expr *ControllingExpr,
3042 TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3043 unsigned NumAssocs, SourceLocation DefaultLoc,
3044 SourceLocation RParenLoc,
3045 bool ContainsUnexpandedParameterPack,
3046 unsigned ResultIndex)
3047 : Expr(GenericSelectionExprClass,
3048 AssocExprs[ResultIndex]->getType(),
3049 AssocExprs[ResultIndex]->getValueKind(),
3050 AssocExprs[ResultIndex]->getObjectKind(),
3051 AssocExprs[ResultIndex]->isTypeDependent(),
3052 AssocExprs[ResultIndex]->isValueDependent(),
3053 AssocExprs[ResultIndex]->isInstantiationDependent(),
3054 ContainsUnexpandedParameterPack),
3055 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3056 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3057 ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3058 RParenLoc(RParenLoc) {
3059 SubExprs[CONTROLLING] = ControllingExpr;
3060 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3061 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3062 }
3063
GenericSelectionExpr(ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,TypeSourceInfo ** AssocTypes,Expr ** AssocExprs,unsigned NumAssocs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3064 GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3065 SourceLocation GenericLoc, Expr *ControllingExpr,
3066 TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3067 unsigned NumAssocs, SourceLocation DefaultLoc,
3068 SourceLocation RParenLoc,
3069 bool ContainsUnexpandedParameterPack)
3070 : Expr(GenericSelectionExprClass,
3071 Context.DependentTy,
3072 VK_RValue,
3073 OK_Ordinary,
3074 /*isTypeDependent=*/true,
3075 /*isValueDependent=*/true,
3076 /*isInstantiationDependent=*/true,
3077 ContainsUnexpandedParameterPack),
3078 AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3079 SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3080 ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3081 RParenLoc(RParenLoc) {
3082 SubExprs[CONTROLLING] = ControllingExpr;
3083 std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3084 std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3085 }
3086
3087 //===----------------------------------------------------------------------===//
3088 // DesignatedInitExpr
3089 //===----------------------------------------------------------------------===//
3090
getFieldName() const3091 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3092 assert(Kind == FieldDesignator && "Only valid on a field designator");
3093 if (Field.NameOrField & 0x01)
3094 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3095 else
3096 return getField()->getIdentifier();
3097 }
3098
DesignatedInitExpr(ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,Expr ** IndexExprs,unsigned NumIndexExprs,Expr * Init)3099 DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3100 unsigned NumDesignators,
3101 const Designator *Designators,
3102 SourceLocation EqualOrColonLoc,
3103 bool GNUSyntax,
3104 Expr **IndexExprs,
3105 unsigned NumIndexExprs,
3106 Expr *Init)
3107 : Expr(DesignatedInitExprClass, Ty,
3108 Init->getValueKind(), Init->getObjectKind(),
3109 Init->isTypeDependent(), Init->isValueDependent(),
3110 Init->isInstantiationDependent(),
3111 Init->containsUnexpandedParameterPack()),
3112 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3113 NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3114 this->Designators = new (C) Designator[NumDesignators];
3115
3116 // Record the initializer itself.
3117 child_range Child = children();
3118 *Child++ = Init;
3119
3120 // Copy the designators and their subexpressions, computing
3121 // value-dependence along the way.
3122 unsigned IndexIdx = 0;
3123 for (unsigned I = 0; I != NumDesignators; ++I) {
3124 this->Designators[I] = Designators[I];
3125
3126 if (this->Designators[I].isArrayDesignator()) {
3127 // Compute type- and value-dependence.
3128 Expr *Index = IndexExprs[IndexIdx];
3129 if (Index->isTypeDependent() || Index->isValueDependent())
3130 ExprBits.ValueDependent = true;
3131 if (Index->isInstantiationDependent())
3132 ExprBits.InstantiationDependent = true;
3133 // Propagate unexpanded parameter packs.
3134 if (Index->containsUnexpandedParameterPack())
3135 ExprBits.ContainsUnexpandedParameterPack = true;
3136
3137 // Copy the index expressions into permanent storage.
3138 *Child++ = IndexExprs[IndexIdx++];
3139 } else if (this->Designators[I].isArrayRangeDesignator()) {
3140 // Compute type- and value-dependence.
3141 Expr *Start = IndexExprs[IndexIdx];
3142 Expr *End = IndexExprs[IndexIdx + 1];
3143 if (Start->isTypeDependent() || Start->isValueDependent() ||
3144 End->isTypeDependent() || End->isValueDependent()) {
3145 ExprBits.ValueDependent = true;
3146 ExprBits.InstantiationDependent = true;
3147 } else if (Start->isInstantiationDependent() ||
3148 End->isInstantiationDependent()) {
3149 ExprBits.InstantiationDependent = true;
3150 }
3151
3152 // Propagate unexpanded parameter packs.
3153 if (Start->containsUnexpandedParameterPack() ||
3154 End->containsUnexpandedParameterPack())
3155 ExprBits.ContainsUnexpandedParameterPack = true;
3156
3157 // Copy the start/end expressions into permanent storage.
3158 *Child++ = IndexExprs[IndexIdx++];
3159 *Child++ = IndexExprs[IndexIdx++];
3160 }
3161 }
3162
3163 assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3164 }
3165
3166 DesignatedInitExpr *
Create(ASTContext & C,Designator * Designators,unsigned NumDesignators,Expr ** IndexExprs,unsigned NumIndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3167 DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3168 unsigned NumDesignators,
3169 Expr **IndexExprs, unsigned NumIndexExprs,
3170 SourceLocation ColonOrEqualLoc,
3171 bool UsesColonSyntax, Expr *Init) {
3172 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3173 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3174 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3175 ColonOrEqualLoc, UsesColonSyntax,
3176 IndexExprs, NumIndexExprs, Init);
3177 }
3178
CreateEmpty(ASTContext & C,unsigned NumIndexExprs)3179 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3180 unsigned NumIndexExprs) {
3181 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3182 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3183 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3184 }
3185
setDesignators(ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3186 void DesignatedInitExpr::setDesignators(ASTContext &C,
3187 const Designator *Desigs,
3188 unsigned NumDesigs) {
3189 Designators = new (C) Designator[NumDesigs];
3190 NumDesignators = NumDesigs;
3191 for (unsigned I = 0; I != NumDesigs; ++I)
3192 Designators[I] = Desigs[I];
3193 }
3194
getDesignatorsSourceRange() const3195 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3196 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3197 if (size() == 1)
3198 return DIE->getDesignator(0)->getSourceRange();
3199 return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3200 DIE->getDesignator(size()-1)->getEndLocation());
3201 }
3202
getSourceRange() const3203 SourceRange DesignatedInitExpr::getSourceRange() const {
3204 SourceLocation StartLoc;
3205 Designator &First =
3206 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3207 if (First.isFieldDesignator()) {
3208 if (GNUSyntax)
3209 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3210 else
3211 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3212 } else
3213 StartLoc =
3214 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3215 return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3216 }
3217
getArrayIndex(const Designator & D)3218 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3219 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3220 char* Ptr = static_cast<char*>(static_cast<void *>(this));
3221 Ptr += sizeof(DesignatedInitExpr);
3222 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3223 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3224 }
3225
getArrayRangeStart(const Designator & D)3226 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3227 assert(D.Kind == Designator::ArrayRangeDesignator &&
3228 "Requires array range designator");
3229 char* Ptr = static_cast<char*>(static_cast<void *>(this));
3230 Ptr += sizeof(DesignatedInitExpr);
3231 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3232 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3233 }
3234
getArrayRangeEnd(const Designator & D)3235 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3236 assert(D.Kind == Designator::ArrayRangeDesignator &&
3237 "Requires array range designator");
3238 char* Ptr = static_cast<char*>(static_cast<void *>(this));
3239 Ptr += sizeof(DesignatedInitExpr);
3240 Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3241 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3242 }
3243
3244 /// \brief Replaces the designator at index @p Idx with the series
3245 /// of designators in [First, Last).
ExpandDesignator(ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3246 void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3247 const Designator *First,
3248 const Designator *Last) {
3249 unsigned NumNewDesignators = Last - First;
3250 if (NumNewDesignators == 0) {
3251 std::copy_backward(Designators + Idx + 1,
3252 Designators + NumDesignators,
3253 Designators + Idx);
3254 --NumNewDesignators;
3255 return;
3256 } else if (NumNewDesignators == 1) {
3257 Designators[Idx] = *First;
3258 return;
3259 }
3260
3261 Designator *NewDesignators
3262 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3263 std::copy(Designators, Designators + Idx, NewDesignators);
3264 std::copy(First, Last, NewDesignators + Idx);
3265 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3266 NewDesignators + Idx + NumNewDesignators);
3267 Designators = NewDesignators;
3268 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3269 }
3270
ParenListExpr(ASTContext & C,SourceLocation lparenloc,Expr ** exprs,unsigned nexprs,SourceLocation rparenloc)3271 ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3272 Expr **exprs, unsigned nexprs,
3273 SourceLocation rparenloc)
3274 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3275 false, false, false, false),
3276 NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3277 Exprs = new (C) Stmt*[nexprs];
3278 for (unsigned i = 0; i != nexprs; ++i) {
3279 if (exprs[i]->isTypeDependent())
3280 ExprBits.TypeDependent = true;
3281 if (exprs[i]->isValueDependent())
3282 ExprBits.ValueDependent = true;
3283 if (exprs[i]->isInstantiationDependent())
3284 ExprBits.InstantiationDependent = true;
3285 if (exprs[i]->containsUnexpandedParameterPack())
3286 ExprBits.ContainsUnexpandedParameterPack = true;
3287
3288 Exprs[i] = exprs[i];
3289 }
3290 }
3291
findInCopyConstruct(const Expr * e)3292 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3293 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3294 e = ewc->getSubExpr();
3295 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3296 e = m->GetTemporaryExpr();
3297 e = cast<CXXConstructExpr>(e)->getArg(0);
3298 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3299 e = ice->getSubExpr();
3300 return cast<OpaqueValueExpr>(e);
3301 }
3302
Create(ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3303 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3304 unsigned numSemanticExprs) {
3305 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3306 (1 + numSemanticExprs) * sizeof(Expr*),
3307 llvm::alignOf<PseudoObjectExpr>());
3308 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3309 }
3310
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3311 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3312 : Expr(PseudoObjectExprClass, shell) {
3313 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3314 }
3315
Create(ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3316 PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3317 ArrayRef<Expr*> semantics,
3318 unsigned resultIndex) {
3319 assert(syntax && "no syntactic expression!");
3320 assert(semantics.size() && "no semantic expressions!");
3321
3322 QualType type;
3323 ExprValueKind VK;
3324 if (resultIndex == NoResult) {
3325 type = C.VoidTy;
3326 VK = VK_RValue;
3327 } else {
3328 assert(resultIndex < semantics.size());
3329 type = semantics[resultIndex]->getType();
3330 VK = semantics[resultIndex]->getValueKind();
3331 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3332 }
3333
3334 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3335 (1 + semantics.size()) * sizeof(Expr*),
3336 llvm::alignOf<PseudoObjectExpr>());
3337 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3338 resultIndex);
3339 }
3340
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3341 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3342 Expr *syntax, ArrayRef<Expr*> semantics,
3343 unsigned resultIndex)
3344 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3345 /*filled in at end of ctor*/ false, false, false, false) {
3346 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3347 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3348
3349 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3350 Expr *E = (i == 0 ? syntax : semantics[i-1]);
3351 getSubExprsBuffer()[i] = E;
3352
3353 if (E->isTypeDependent())
3354 ExprBits.TypeDependent = true;
3355 if (E->isValueDependent())
3356 ExprBits.ValueDependent = true;
3357 if (E->isInstantiationDependent())
3358 ExprBits.InstantiationDependent = true;
3359 if (E->containsUnexpandedParameterPack())
3360 ExprBits.ContainsUnexpandedParameterPack = true;
3361
3362 if (isa<OpaqueValueExpr>(E))
3363 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3364 "opaque-value semantic expressions for pseudo-object "
3365 "operations must have sources");
3366 }
3367 }
3368
3369 //===----------------------------------------------------------------------===//
3370 // ExprIterator.
3371 //===----------------------------------------------------------------------===//
3372
operator [](size_t idx)3373 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const3374 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3375 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const3376 const Expr* ConstExprIterator::operator[](size_t idx) const {
3377 return cast<Expr>(I[idx]);
3378 }
operator *() const3379 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const3380 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3381
3382 //===----------------------------------------------------------------------===//
3383 // Child Iterators for iterating over subexpressions/substatements
3384 //===----------------------------------------------------------------------===//
3385
3386 // UnaryExprOrTypeTraitExpr
children()3387 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3388 // If this is of a type and the type is a VLA type (and not a typedef), the
3389 // size expression of the VLA needs to be treated as an executable expression.
3390 // Why isn't this weirdness documented better in StmtIterator?
3391 if (isArgumentType()) {
3392 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3393 getArgumentType().getTypePtr()))
3394 return child_range(child_iterator(T), child_iterator());
3395 return child_range();
3396 }
3397 return child_range(&Argument.Ex, &Argument.Ex + 1);
3398 }
3399
3400 // ObjCMessageExpr
children()3401 Stmt::child_range ObjCMessageExpr::children() {
3402 Stmt **begin;
3403 if (getReceiverKind() == Instance)
3404 begin = reinterpret_cast<Stmt **>(this + 1);
3405 else
3406 begin = reinterpret_cast<Stmt **>(getArgs());
3407 return child_range(begin,
3408 reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3409 }
3410
ObjCArrayLiteral(llvm::ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3411 ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3412 QualType T, ObjCMethodDecl *Method,
3413 SourceRange SR)
3414 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3415 false, false, false, false),
3416 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3417 {
3418 Expr **SaveElements = getElements();
3419 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3420 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3421 ExprBits.ValueDependent = true;
3422 if (Elements[I]->isInstantiationDependent())
3423 ExprBits.InstantiationDependent = true;
3424 if (Elements[I]->containsUnexpandedParameterPack())
3425 ExprBits.ContainsUnexpandedParameterPack = true;
3426
3427 SaveElements[I] = Elements[I];
3428 }
3429 }
3430
Create(ASTContext & C,llvm::ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)3431 ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3432 llvm::ArrayRef<Expr *> Elements,
3433 QualType T, ObjCMethodDecl * Method,
3434 SourceRange SR) {
3435 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3436 + Elements.size() * sizeof(Expr *));
3437 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3438 }
3439
CreateEmpty(ASTContext & C,unsigned NumElements)3440 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3441 unsigned NumElements) {
3442
3443 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3444 + NumElements * sizeof(Expr *));
3445 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3446 }
3447
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3448 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3449 ArrayRef<ObjCDictionaryElement> VK,
3450 bool HasPackExpansions,
3451 QualType T, ObjCMethodDecl *method,
3452 SourceRange SR)
3453 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3454 false, false),
3455 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3456 DictWithObjectsMethod(method)
3457 {
3458 KeyValuePair *KeyValues = getKeyValues();
3459 ExpansionData *Expansions = getExpansionData();
3460 for (unsigned I = 0; I < NumElements; I++) {
3461 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3462 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3463 ExprBits.ValueDependent = true;
3464 if (VK[I].Key->isInstantiationDependent() ||
3465 VK[I].Value->isInstantiationDependent())
3466 ExprBits.InstantiationDependent = true;
3467 if (VK[I].EllipsisLoc.isInvalid() &&
3468 (VK[I].Key->containsUnexpandedParameterPack() ||
3469 VK[I].Value->containsUnexpandedParameterPack()))
3470 ExprBits.ContainsUnexpandedParameterPack = true;
3471
3472 KeyValues[I].Key = VK[I].Key;
3473 KeyValues[I].Value = VK[I].Value;
3474 if (Expansions) {
3475 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3476 if (VK[I].NumExpansions)
3477 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3478 else
3479 Expansions[I].NumExpansionsPlusOne = 0;
3480 }
3481 }
3482 }
3483
3484 ObjCDictionaryLiteral *
Create(ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)3485 ObjCDictionaryLiteral::Create(ASTContext &C,
3486 ArrayRef<ObjCDictionaryElement> VK,
3487 bool HasPackExpansions,
3488 QualType T, ObjCMethodDecl *method,
3489 SourceRange SR) {
3490 unsigned ExpansionsSize = 0;
3491 if (HasPackExpansions)
3492 ExpansionsSize = sizeof(ExpansionData) * VK.size();
3493
3494 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3495 sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3496 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3497 }
3498
3499 ObjCDictionaryLiteral *
CreateEmpty(ASTContext & C,unsigned NumElements,bool HasPackExpansions)3500 ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3501 bool HasPackExpansions) {
3502 unsigned ExpansionsSize = 0;
3503 if (HasPackExpansions)
3504 ExpansionsSize = sizeof(ExpansionData) * NumElements;
3505 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3506 sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3507 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3508 HasPackExpansions);
3509 }
3510
Create(ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)3511 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3512 Expr *base,
3513 Expr *key, QualType T,
3514 ObjCMethodDecl *getMethod,
3515 ObjCMethodDecl *setMethod,
3516 SourceLocation RB) {
3517 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3518 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3519 OK_ObjCSubscript,
3520 getMethod, setMethod, RB);
3521 }
3522
AtomicExpr(SourceLocation BLoc,Expr ** args,unsigned nexpr,QualType t,AtomicOp op,SourceLocation RP)3523 AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3524 QualType t, AtomicOp op, SourceLocation RP)
3525 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3526 false, false, false, false),
3527 NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3528 {
3529 assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions");
3530 for (unsigned i = 0; i < nexpr; i++) {
3531 if (args[i]->isTypeDependent())
3532 ExprBits.TypeDependent = true;
3533 if (args[i]->isValueDependent())
3534 ExprBits.ValueDependent = true;
3535 if (args[i]->isInstantiationDependent())
3536 ExprBits.InstantiationDependent = true;
3537 if (args[i]->containsUnexpandedParameterPack())
3538 ExprBits.ContainsUnexpandedParameterPack = true;
3539
3540 SubExprs[i] = args[i];
3541 }
3542 }
3543
getNumSubExprs(AtomicOp Op)3544 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3545 switch (Op) {
3546 case AO__c11_atomic_init:
3547 case AO__c11_atomic_load:
3548 case AO__atomic_load_n:
3549 return 2;
3550
3551 case AO__c11_atomic_store:
3552 case AO__c11_atomic_exchange:
3553 case AO__atomic_load:
3554 case AO__atomic_store:
3555 case AO__atomic_store_n:
3556 case AO__atomic_exchange_n:
3557 case AO__c11_atomic_fetch_add:
3558 case AO__c11_atomic_fetch_sub:
3559 case AO__c11_atomic_fetch_and:
3560 case AO__c11_atomic_fetch_or:
3561 case AO__c11_atomic_fetch_xor:
3562 case AO__atomic_fetch_add:
3563 case AO__atomic_fetch_sub:
3564 case AO__atomic_fetch_and:
3565 case AO__atomic_fetch_or:
3566 case AO__atomic_fetch_xor:
3567 case AO__atomic_fetch_nand:
3568 case AO__atomic_add_fetch:
3569 case AO__atomic_sub_fetch:
3570 case AO__atomic_and_fetch:
3571 case AO__atomic_or_fetch:
3572 case AO__atomic_xor_fetch:
3573 case AO__atomic_nand_fetch:
3574 return 3;
3575
3576 case AO__atomic_exchange:
3577 return 4;
3578
3579 case AO__c11_atomic_compare_exchange_strong:
3580 case AO__c11_atomic_compare_exchange_weak:
3581 return 5;
3582
3583 case AO__atomic_compare_exchange:
3584 case AO__atomic_compare_exchange_n:
3585 return 6;
3586 }
3587 llvm_unreachable("unknown atomic op");
3588 }
3589