• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://www.codesourcery.com/public/cxx-abi/abi.html
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/ErrorHandling.h"
32 
33 #define MANGLE_CHECKER 0
34 
35 #if MANGLE_CHECKER
36 #include <cxxabi.h>
37 #endif
38 
39 using namespace clang;
40 
41 namespace {
42 
43 /// \brief Retrieve the declaration context that should be used when mangling
44 /// the given declaration.
getEffectiveDeclContext(const Decl * D)45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46   // The ABI assumes that lambda closure types that occur within
47   // default arguments live in the context of the function. However, due to
48   // the way in which Clang parses and creates function declarations, this is
49   // not the case: the lambda closure type ends up living in the context
50   // where the function itself resides, because the function declaration itself
51   // had not yet been created. Fix the context here.
52   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53     if (RD->isLambda())
54       if (ParmVarDecl *ContextParam
55             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56         return ContextParam->getDeclContext();
57   }
58 
59   return D->getDeclContext();
60 }
61 
getEffectiveParentContext(const DeclContext * DC)62 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63   return getEffectiveDeclContext(cast<Decl>(DC));
64 }
65 
GetLocalClassDecl(const NamedDecl * ND)66 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67   const DeclContext *DC = dyn_cast<DeclContext>(ND);
68   if (!DC)
69     DC = getEffectiveDeclContext(ND);
70   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71     const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72     if (isa<FunctionDecl>(Parent))
73       return dyn_cast<CXXRecordDecl>(DC);
74     DC = Parent;
75   }
76   return 0;
77 }
78 
getStructor(const FunctionDecl * fn)79 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81     return ftd->getTemplatedDecl();
82 
83   return fn;
84 }
85 
getStructor(const NamedDecl * decl)86 static const NamedDecl *getStructor(const NamedDecl *decl) {
87   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88   return (fn ? getStructor(fn) : decl);
89 }
90 
91 static const unsigned UnknownArity = ~0U;
92 
93 class ItaniumMangleContext : public MangleContext {
94   llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95   unsigned Discriminator;
96   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97 
98 public:
ItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)99   explicit ItaniumMangleContext(ASTContext &Context,
100                                 DiagnosticsEngine &Diags)
101     : MangleContext(Context, Diags) { }
102 
getAnonymousStructId(const TagDecl * TD)103   uint64_t getAnonymousStructId(const TagDecl *TD) {
104     std::pair<llvm::DenseMap<const TagDecl *,
105       uint64_t>::iterator, bool> Result =
106       AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107     return Result.first->second;
108   }
109 
startNewFunction()110   void startNewFunction() {
111     MangleContext::startNewFunction();
112     mangleInitDiscriminator();
113   }
114 
115   /// @name Mangler Entry Points
116   /// @{
117 
118   bool shouldMangleDeclName(const NamedDecl *D);
119   void mangleName(const NamedDecl *D, raw_ostream &);
120   void mangleThunk(const CXXMethodDecl *MD,
121                    const ThunkInfo &Thunk,
122                    raw_ostream &);
123   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124                           const ThisAdjustment &ThisAdjustment,
125                           raw_ostream &);
126   void mangleReferenceTemporary(const VarDecl *D,
127                                 raw_ostream &);
128   void mangleCXXVTable(const CXXRecordDecl *RD,
129                        raw_ostream &);
130   void mangleCXXVTT(const CXXRecordDecl *RD,
131                     raw_ostream &);
132   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133                            const CXXRecordDecl *Type,
134                            raw_ostream &);
135   void mangleCXXRTTI(QualType T, raw_ostream &);
136   void mangleCXXRTTIName(QualType T, raw_ostream &);
137   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138                      raw_ostream &);
139   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140                      raw_ostream &);
141 
142   void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143 
mangleInitDiscriminator()144   void mangleInitDiscriminator() {
145     Discriminator = 0;
146   }
147 
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)148   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149     // Lambda closure types with external linkage (indicated by a
150     // non-zero lambda mangling number) have their own numbering scheme, so
151     // they do not need a discriminator.
152     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153       if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154         return false;
155 
156     unsigned &discriminator = Uniquifier[ND];
157     if (!discriminator)
158       discriminator = ++Discriminator;
159     if (discriminator == 1)
160       return false;
161     disc = discriminator-2;
162     return true;
163   }
164   /// @}
165 };
166 
167 /// CXXNameMangler - Manage the mangling of a single name.
168 class CXXNameMangler {
169   ItaniumMangleContext &Context;
170   raw_ostream &Out;
171 
172   /// The "structor" is the top-level declaration being mangled, if
173   /// that's not a template specialization; otherwise it's the pattern
174   /// for that specialization.
175   const NamedDecl *Structor;
176   unsigned StructorType;
177 
178   /// SeqID - The next subsitution sequence number.
179   unsigned SeqID;
180 
181   class FunctionTypeDepthState {
182     unsigned Bits;
183 
184     enum { InResultTypeMask = 1 };
185 
186   public:
FunctionTypeDepthState()187     FunctionTypeDepthState() : Bits(0) {}
188 
189     /// The number of function types we're inside.
getDepth() const190     unsigned getDepth() const {
191       return Bits >> 1;
192     }
193 
194     /// True if we're in the return type of the innermost function type.
isInResultType() const195     bool isInResultType() const {
196       return Bits & InResultTypeMask;
197     }
198 
push()199     FunctionTypeDepthState push() {
200       FunctionTypeDepthState tmp = *this;
201       Bits = (Bits & ~InResultTypeMask) + 2;
202       return tmp;
203     }
204 
enterResultType()205     void enterResultType() {
206       Bits |= InResultTypeMask;
207     }
208 
leaveResultType()209     void leaveResultType() {
210       Bits &= ~InResultTypeMask;
211     }
212 
pop(FunctionTypeDepthState saved)213     void pop(FunctionTypeDepthState saved) {
214       assert(getDepth() == saved.getDepth() + 1);
215       Bits = saved.Bits;
216     }
217 
218   } FunctionTypeDepth;
219 
220   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221 
getASTContext() const222   ASTContext &getASTContext() const { return Context.getASTContext(); }
223 
224 public:
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const NamedDecl * D=0)225   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226                  const NamedDecl *D = 0)
227     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228       SeqID(0) {
229     // These can't be mangled without a ctor type or dtor type.
230     assert(!D || (!isa<CXXDestructorDecl>(D) &&
231                   !isa<CXXConstructorDecl>(D)));
232   }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)233   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234                  const CXXConstructorDecl *D, CXXCtorType Type)
235     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236       SeqID(0) { }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)237   CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238                  const CXXDestructorDecl *D, CXXDtorType Type)
239     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240       SeqID(0) { }
241 
242 #if MANGLE_CHECKER
~CXXNameMangler()243   ~CXXNameMangler() {
244     if (Out.str()[0] == '\01')
245       return;
246 
247     int status = 0;
248     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249     assert(status == 0 && "Could not demangle mangled name!");
250     free(result);
251   }
252 #endif
getStream()253   raw_ostream &getStream() { return Out; }
254 
255   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257   void mangleNumber(const llvm::APSInt &I);
258   void mangleNumber(int64_t Number);
259   void mangleFloat(const llvm::APFloat &F);
260   void mangleFunctionEncoding(const FunctionDecl *FD);
261   void mangleName(const NamedDecl *ND);
262   void mangleType(QualType T);
263   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264 
265 private:
266   bool mangleSubstitution(const NamedDecl *ND);
267   bool mangleSubstitution(QualType T);
268   bool mangleSubstitution(TemplateName Template);
269   bool mangleSubstitution(uintptr_t Ptr);
270 
271   void mangleExistingSubstitution(QualType type);
272   void mangleExistingSubstitution(TemplateName name);
273 
274   bool mangleStandardSubstitution(const NamedDecl *ND);
275 
addSubstitution(const NamedDecl * ND)276   void addSubstitution(const NamedDecl *ND) {
277     ND = cast<NamedDecl>(ND->getCanonicalDecl());
278 
279     addSubstitution(reinterpret_cast<uintptr_t>(ND));
280   }
281   void addSubstitution(QualType T);
282   void addSubstitution(TemplateName Template);
283   void addSubstitution(uintptr_t Ptr);
284 
285   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286                               NamedDecl *firstQualifierLookup,
287                               bool recursive = false);
288   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289                             NamedDecl *firstQualifierLookup,
290                             DeclarationName name,
291                             unsigned KnownArity = UnknownArity);
292 
293   void mangleName(const TemplateDecl *TD,
294                   const TemplateArgument *TemplateArgs,
295                   unsigned NumTemplateArgs);
mangleUnqualifiedName(const NamedDecl * ND)296   void mangleUnqualifiedName(const NamedDecl *ND) {
297     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298   }
299   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300                              unsigned KnownArity);
301   void mangleUnscopedName(const NamedDecl *ND);
302   void mangleUnscopedTemplateName(const TemplateDecl *ND);
303   void mangleUnscopedTemplateName(TemplateName);
304   void mangleSourceName(const IdentifierInfo *II);
305   void mangleLocalName(const NamedDecl *ND);
306   void mangleLambda(const CXXRecordDecl *Lambda);
307   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308                         bool NoFunction=false);
309   void mangleNestedName(const TemplateDecl *TD,
310                         const TemplateArgument *TemplateArgs,
311                         unsigned NumTemplateArgs);
312   void manglePrefix(NestedNameSpecifier *qualifier);
313   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314   void manglePrefix(QualType type);
315   void mangleTemplatePrefix(const TemplateDecl *ND);
316   void mangleTemplatePrefix(TemplateName Template);
317   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318   void mangleQualifiers(Qualifiers Quals);
319   void mangleRefQualifier(RefQualifierKind RefQualifier);
320 
321   void mangleObjCMethodName(const ObjCMethodDecl *MD);
322 
323   // Declare manglers for every type class.
324 #define ABSTRACT_TYPE(CLASS, PARENT)
325 #define NON_CANONICAL_TYPE(CLASS, PARENT)
326 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327 #include "clang/AST/TypeNodes.def"
328 
329   void mangleType(const TagType*);
330   void mangleType(TemplateName);
331   void mangleBareFunctionType(const FunctionType *T,
332                               bool MangleReturnType);
333   void mangleNeonVectorType(const VectorType *T);
334 
335   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336   void mangleMemberExpr(const Expr *base, bool isArrow,
337                         NestedNameSpecifier *qualifier,
338                         NamedDecl *firstQualifierLookup,
339                         DeclarationName name,
340                         unsigned knownArity);
341   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342   void mangleCXXCtorType(CXXCtorType T);
343   void mangleCXXDtorType(CXXDtorType T);
344 
345   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346   void mangleTemplateArgs(TemplateName Template,
347                           const TemplateArgument *TemplateArgs,
348                           unsigned NumTemplateArgs);
349   void mangleTemplateArgs(const TemplateParameterList &PL,
350                           const TemplateArgument *TemplateArgs,
351                           unsigned NumTemplateArgs);
352   void mangleTemplateArgs(const TemplateParameterList &PL,
353                           const TemplateArgumentList &AL);
354   void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355   void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356                                     unsigned numArgs);
357 
358   void mangleTemplateParameter(unsigned Index);
359 
360   void mangleFunctionParam(const ParmVarDecl *parm);
361 };
362 
363 }
364 
isInCLinkageSpecification(const Decl * D)365 static bool isInCLinkageSpecification(const Decl *D) {
366   D = D->getCanonicalDecl();
367   for (const DeclContext *DC = getEffectiveDeclContext(D);
368        !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369     if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370       return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371   }
372 
373   return false;
374 }
375 
shouldMangleDeclName(const NamedDecl * D)376 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377   // In C, functions with no attributes never need to be mangled. Fastpath them.
378   if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
379     return false;
380 
381   // Any decl can be declared with __asm("foo") on it, and this takes precedence
382   // over all other naming in the .o file.
383   if (D->hasAttr<AsmLabelAttr>())
384     return true;
385 
386   // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387   // (always) as does passing a C++ member function and a function
388   // whose name is not a simple identifier.
389   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390   if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391              !FD->getDeclName().isIdentifier()))
392     return true;
393 
394   // Otherwise, no mangling is done outside C++ mode.
395   if (!getASTContext().getLangOpts().CPlusPlus)
396     return false;
397 
398   // Variables at global scope with non-internal linkage are not mangled
399   if (!FD) {
400     const DeclContext *DC = getEffectiveDeclContext(D);
401     // Check for extern variable declared locally.
402     if (DC->isFunctionOrMethod() && D->hasLinkage())
403       while (!DC->isNamespace() && !DC->isTranslationUnit())
404         DC = getEffectiveParentContext(DC);
405     if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406       return false;
407   }
408 
409   // Class members are always mangled.
410   if (getEffectiveDeclContext(D)->isRecord())
411     return true;
412 
413   // C functions and "main" are not mangled.
414   if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415     return false;
416 
417   return true;
418 }
419 
mangle(const NamedDecl * D,StringRef Prefix)420 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421   // Any decl can be declared with __asm("foo") on it, and this takes precedence
422   // over all other naming in the .o file.
423   if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424     // If we have an asm name, then we use it as the mangling.
425 
426     // Adding the prefix can cause problems when one file has a "foo" and
427     // another has a "\01foo". That is known to happen on ELF with the
428     // tricks normally used for producing aliases (PR9177). Fortunately the
429     // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430     // marker.  We also avoid adding the marker if this is an alias for an
431     // LLVM intrinsic.
432     StringRef UserLabelPrefix =
433       getASTContext().getTargetInfo().getUserLabelPrefix();
434     if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435       Out << '\01';  // LLVM IR Marker for __asm("foo")
436 
437     Out << ALA->getLabel();
438     return;
439   }
440 
441   // <mangled-name> ::= _Z <encoding>
442   //            ::= <data name>
443   //            ::= <special-name>
444   Out << Prefix;
445   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446     mangleFunctionEncoding(FD);
447   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448     mangleName(VD);
449   else
450     mangleName(cast<FieldDecl>(D));
451 }
452 
mangleFunctionEncoding(const FunctionDecl * FD)453 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454   // <encoding> ::= <function name> <bare-function-type>
455   mangleName(FD);
456 
457   // Don't mangle in the type if this isn't a decl we should typically mangle.
458   if (!Context.shouldMangleDeclName(FD))
459     return;
460 
461   // Whether the mangling of a function type includes the return type depends on
462   // the context and the nature of the function. The rules for deciding whether
463   // the return type is included are:
464   //
465   //   1. Template functions (names or types) have return types encoded, with
466   //   the exceptions listed below.
467   //   2. Function types not appearing as part of a function name mangling,
468   //   e.g. parameters, pointer types, etc., have return type encoded, with the
469   //   exceptions listed below.
470   //   3. Non-template function names do not have return types encoded.
471   //
472   // The exceptions mentioned in (1) and (2) above, for which the return type is
473   // never included, are
474   //   1. Constructors.
475   //   2. Destructors.
476   //   3. Conversion operator functions, e.g. operator int.
477   bool MangleReturnType = false;
478   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480           isa<CXXConversionDecl>(FD)))
481       MangleReturnType = true;
482 
483     // Mangle the type of the primary template.
484     FD = PrimaryTemplate->getTemplatedDecl();
485   }
486 
487   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488                          MangleReturnType);
489 }
490 
IgnoreLinkageSpecDecls(const DeclContext * DC)491 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492   while (isa<LinkageSpecDecl>(DC)) {
493     DC = getEffectiveParentContext(DC);
494   }
495 
496   return DC;
497 }
498 
499 /// isStd - Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)500 static bool isStd(const NamespaceDecl *NS) {
501   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502                                 ->isTranslationUnit())
503     return false;
504 
505   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506   return II && II->isStr("std");
507 }
508 
509 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
510 // namespace.
isStdNamespace(const DeclContext * DC)511 static bool isStdNamespace(const DeclContext *DC) {
512   if (!DC->isNamespace())
513     return false;
514 
515   return isStd(cast<NamespaceDecl>(DC));
516 }
517 
518 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)519 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520   // Check if we have a function template.
521   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523       TemplateArgs = FD->getTemplateSpecializationArgs();
524       return TD;
525     }
526   }
527 
528   // Check if we have a class template.
529   if (const ClassTemplateSpecializationDecl *Spec =
530         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531     TemplateArgs = &Spec->getTemplateArgs();
532     return Spec->getSpecializedTemplate();
533   }
534 
535   return 0;
536 }
537 
isLambda(const NamedDecl * ND)538 static bool isLambda(const NamedDecl *ND) {
539   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
540   if (!Record)
541     return false;
542 
543   return Record->isLambda();
544 }
545 
mangleName(const NamedDecl * ND)546 void CXXNameMangler::mangleName(const NamedDecl *ND) {
547   //  <name> ::= <nested-name>
548   //         ::= <unscoped-name>
549   //         ::= <unscoped-template-name> <template-args>
550   //         ::= <local-name>
551   //
552   const DeclContext *DC = getEffectiveDeclContext(ND);
553 
554   // If this is an extern variable declared locally, the relevant DeclContext
555   // is that of the containing namespace, or the translation unit.
556   // FIXME: This is a hack; extern variables declared locally should have
557   // a proper semantic declaration context!
558   if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
559     while (!DC->isNamespace() && !DC->isTranslationUnit())
560       DC = getEffectiveParentContext(DC);
561   else if (GetLocalClassDecl(ND)) {
562     mangleLocalName(ND);
563     return;
564   }
565 
566   DC = IgnoreLinkageSpecDecls(DC);
567 
568   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
569     // Check if we have a template.
570     const TemplateArgumentList *TemplateArgs = 0;
571     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
572       mangleUnscopedTemplateName(TD);
573       TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
574       mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
575       return;
576     }
577 
578     mangleUnscopedName(ND);
579     return;
580   }
581 
582   if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
583     mangleLocalName(ND);
584     return;
585   }
586 
587   mangleNestedName(ND, DC);
588 }
mangleName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)589 void CXXNameMangler::mangleName(const TemplateDecl *TD,
590                                 const TemplateArgument *TemplateArgs,
591                                 unsigned NumTemplateArgs) {
592   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
593 
594   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
595     mangleUnscopedTemplateName(TD);
596     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
597     mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
598   } else {
599     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
600   }
601 }
602 
mangleUnscopedName(const NamedDecl * ND)603 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
604   //  <unscoped-name> ::= <unqualified-name>
605   //                  ::= St <unqualified-name>   # ::std::
606 
607   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
608     Out << "St";
609 
610   mangleUnqualifiedName(ND);
611 }
612 
mangleUnscopedTemplateName(const TemplateDecl * ND)613 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
614   //     <unscoped-template-name> ::= <unscoped-name>
615   //                              ::= <substitution>
616   if (mangleSubstitution(ND))
617     return;
618 
619   // <template-template-param> ::= <template-param>
620   if (const TemplateTemplateParmDecl *TTP
621                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
622     mangleTemplateParameter(TTP->getIndex());
623     return;
624   }
625 
626   mangleUnscopedName(ND->getTemplatedDecl());
627   addSubstitution(ND);
628 }
629 
mangleUnscopedTemplateName(TemplateName Template)630 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
631   //     <unscoped-template-name> ::= <unscoped-name>
632   //                              ::= <substitution>
633   if (TemplateDecl *TD = Template.getAsTemplateDecl())
634     return mangleUnscopedTemplateName(TD);
635 
636   if (mangleSubstitution(Template))
637     return;
638 
639   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
640   assert(Dependent && "Not a dependent template name?");
641   if (const IdentifierInfo *Id = Dependent->getIdentifier())
642     mangleSourceName(Id);
643   else
644     mangleOperatorName(Dependent->getOperator(), UnknownArity);
645 
646   addSubstitution(Template);
647 }
648 
mangleFloat(const llvm::APFloat & f)649 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
650   // ABI:
651   //   Floating-point literals are encoded using a fixed-length
652   //   lowercase hexadecimal string corresponding to the internal
653   //   representation (IEEE on Itanium), high-order bytes first,
654   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
655   //   on Itanium.
656   // The 'without leading zeroes' thing seems to be an editorial
657   // mistake; see the discussion on cxx-abi-dev beginning on
658   // 2012-01-16.
659 
660   // Our requirements here are just barely wierd enough to justify
661   // using a custom algorithm instead of post-processing APInt::toString().
662 
663   llvm::APInt valueBits = f.bitcastToAPInt();
664   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
665   assert(numCharacters != 0);
666 
667   // Allocate a buffer of the right number of characters.
668   llvm::SmallVector<char, 20> buffer;
669   buffer.set_size(numCharacters);
670 
671   // Fill the buffer left-to-right.
672   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
673     // The bit-index of the next hex digit.
674     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
675 
676     // Project out 4 bits starting at 'digitIndex'.
677     llvm::integerPart hexDigit
678       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
679     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
680     hexDigit &= 0xF;
681 
682     // Map that over to a lowercase hex digit.
683     static const char charForHex[16] = {
684       '0', '1', '2', '3', '4', '5', '6', '7',
685       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
686     };
687     buffer[stringIndex] = charForHex[hexDigit];
688   }
689 
690   Out.write(buffer.data(), numCharacters);
691 }
692 
mangleNumber(const llvm::APSInt & Value)693 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
694   if (Value.isSigned() && Value.isNegative()) {
695     Out << 'n';
696     Value.abs().print(Out, true);
697   } else
698     Value.print(Out, Value.isSigned());
699 }
700 
mangleNumber(int64_t Number)701 void CXXNameMangler::mangleNumber(int64_t Number) {
702   //  <number> ::= [n] <non-negative decimal integer>
703   if (Number < 0) {
704     Out << 'n';
705     Number = -Number;
706   }
707 
708   Out << Number;
709 }
710 
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)711 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
712   //  <call-offset>  ::= h <nv-offset> _
713   //                 ::= v <v-offset> _
714   //  <nv-offset>    ::= <offset number>        # non-virtual base override
715   //  <v-offset>     ::= <offset number> _ <virtual offset number>
716   //                      # virtual base override, with vcall offset
717   if (!Virtual) {
718     Out << 'h';
719     mangleNumber(NonVirtual);
720     Out << '_';
721     return;
722   }
723 
724   Out << 'v';
725   mangleNumber(NonVirtual);
726   Out << '_';
727   mangleNumber(Virtual);
728   Out << '_';
729 }
730 
manglePrefix(QualType type)731 void CXXNameMangler::manglePrefix(QualType type) {
732   if (const TemplateSpecializationType *TST =
733         type->getAs<TemplateSpecializationType>()) {
734     if (!mangleSubstitution(QualType(TST, 0))) {
735       mangleTemplatePrefix(TST->getTemplateName());
736 
737       // FIXME: GCC does not appear to mangle the template arguments when
738       // the template in question is a dependent template name. Should we
739       // emulate that badness?
740       mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
741                          TST->getNumArgs());
742       addSubstitution(QualType(TST, 0));
743     }
744   } else if (const DependentTemplateSpecializationType *DTST
745                = type->getAs<DependentTemplateSpecializationType>()) {
746     TemplateName Template
747       = getASTContext().getDependentTemplateName(DTST->getQualifier(),
748                                                  DTST->getIdentifier());
749     mangleTemplatePrefix(Template);
750 
751     // FIXME: GCC does not appear to mangle the template arguments when
752     // the template in question is a dependent template name. Should we
753     // emulate that badness?
754     mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
755   } else {
756     // We use the QualType mangle type variant here because it handles
757     // substitutions.
758     mangleType(type);
759   }
760 }
761 
762 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
763 ///
764 /// \param firstQualifierLookup - the entity found by unqualified lookup
765 ///   for the first name in the qualifier, if this is for a member expression
766 /// \param recursive - true if this is being called recursively,
767 ///   i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,bool recursive)768 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
769                                             NamedDecl *firstQualifierLookup,
770                                             bool recursive) {
771 
772   // x, ::x
773   // <unresolved-name> ::= [gs] <base-unresolved-name>
774 
775   // T::x / decltype(p)::x
776   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
777 
778   // T::N::x /decltype(p)::N::x
779   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
780   //                       <base-unresolved-name>
781 
782   // A::x, N::y, A<T>::z; "gs" means leading "::"
783   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
784   //                       <base-unresolved-name>
785 
786   switch (qualifier->getKind()) {
787   case NestedNameSpecifier::Global:
788     Out << "gs";
789 
790     // We want an 'sr' unless this is the entire NNS.
791     if (recursive)
792       Out << "sr";
793 
794     // We never want an 'E' here.
795     return;
796 
797   case NestedNameSpecifier::Namespace:
798     if (qualifier->getPrefix())
799       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
800                              /*recursive*/ true);
801     else
802       Out << "sr";
803     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
804     break;
805   case NestedNameSpecifier::NamespaceAlias:
806     if (qualifier->getPrefix())
807       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
808                              /*recursive*/ true);
809     else
810       Out << "sr";
811     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
812     break;
813 
814   case NestedNameSpecifier::TypeSpec:
815   case NestedNameSpecifier::TypeSpecWithTemplate: {
816     const Type *type = qualifier->getAsType();
817 
818     // We only want to use an unresolved-type encoding if this is one of:
819     //   - a decltype
820     //   - a template type parameter
821     //   - a template template parameter with arguments
822     // In all of these cases, we should have no prefix.
823     if (qualifier->getPrefix()) {
824       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
825                              /*recursive*/ true);
826     } else {
827       // Otherwise, all the cases want this.
828       Out << "sr";
829     }
830 
831     // Only certain other types are valid as prefixes;  enumerate them.
832     switch (type->getTypeClass()) {
833     case Type::Builtin:
834     case Type::Complex:
835     case Type::Pointer:
836     case Type::BlockPointer:
837     case Type::LValueReference:
838     case Type::RValueReference:
839     case Type::MemberPointer:
840     case Type::ConstantArray:
841     case Type::IncompleteArray:
842     case Type::VariableArray:
843     case Type::DependentSizedArray:
844     case Type::DependentSizedExtVector:
845     case Type::Vector:
846     case Type::ExtVector:
847     case Type::FunctionProto:
848     case Type::FunctionNoProto:
849     case Type::Enum:
850     case Type::Paren:
851     case Type::Elaborated:
852     case Type::Attributed:
853     case Type::Auto:
854     case Type::PackExpansion:
855     case Type::ObjCObject:
856     case Type::ObjCInterface:
857     case Type::ObjCObjectPointer:
858     case Type::Atomic:
859       llvm_unreachable("type is illegal as a nested name specifier");
860 
861     case Type::SubstTemplateTypeParmPack:
862       // FIXME: not clear how to mangle this!
863       // template <class T...> class A {
864       //   template <class U...> void foo(decltype(T::foo(U())) x...);
865       // };
866       Out << "_SUBSTPACK_";
867       break;
868 
869     // <unresolved-type> ::= <template-param>
870     //                   ::= <decltype>
871     //                   ::= <template-template-param> <template-args>
872     // (this last is not official yet)
873     case Type::TypeOfExpr:
874     case Type::TypeOf:
875     case Type::Decltype:
876     case Type::TemplateTypeParm:
877     case Type::UnaryTransform:
878     case Type::SubstTemplateTypeParm:
879     unresolvedType:
880       assert(!qualifier->getPrefix());
881 
882       // We only get here recursively if we're followed by identifiers.
883       if (recursive) Out << 'N';
884 
885       // This seems to do everything we want.  It's not really
886       // sanctioned for a substituted template parameter, though.
887       mangleType(QualType(type, 0));
888 
889       // We never want to print 'E' directly after an unresolved-type,
890       // so we return directly.
891       return;
892 
893     case Type::Typedef:
894       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
895       break;
896 
897     case Type::UnresolvedUsing:
898       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
899                          ->getIdentifier());
900       break;
901 
902     case Type::Record:
903       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
904       break;
905 
906     case Type::TemplateSpecialization: {
907       const TemplateSpecializationType *tst
908         = cast<TemplateSpecializationType>(type);
909       TemplateName name = tst->getTemplateName();
910       switch (name.getKind()) {
911       case TemplateName::Template:
912       case TemplateName::QualifiedTemplate: {
913         TemplateDecl *temp = name.getAsTemplateDecl();
914 
915         // If the base is a template template parameter, this is an
916         // unresolved type.
917         assert(temp && "no template for template specialization type");
918         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
919 
920         mangleSourceName(temp->getIdentifier());
921         break;
922       }
923 
924       case TemplateName::OverloadedTemplate:
925       case TemplateName::DependentTemplate:
926         llvm_unreachable("invalid base for a template specialization type");
927 
928       case TemplateName::SubstTemplateTemplateParm: {
929         SubstTemplateTemplateParmStorage *subst
930           = name.getAsSubstTemplateTemplateParm();
931         mangleExistingSubstitution(subst->getReplacement());
932         break;
933       }
934 
935       case TemplateName::SubstTemplateTemplateParmPack: {
936         // FIXME: not clear how to mangle this!
937         // template <template <class U> class T...> class A {
938         //   template <class U...> void foo(decltype(T<U>::foo) x...);
939         // };
940         Out << "_SUBSTPACK_";
941         break;
942       }
943       }
944 
945       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
946       break;
947     }
948 
949     case Type::InjectedClassName:
950       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
951                          ->getIdentifier());
952       break;
953 
954     case Type::DependentName:
955       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
956       break;
957 
958     case Type::DependentTemplateSpecialization: {
959       const DependentTemplateSpecializationType *tst
960         = cast<DependentTemplateSpecializationType>(type);
961       mangleSourceName(tst->getIdentifier());
962       mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
963       break;
964     }
965     }
966     break;
967   }
968 
969   case NestedNameSpecifier::Identifier:
970     // Member expressions can have these without prefixes.
971     if (qualifier->getPrefix()) {
972       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
973                              /*recursive*/ true);
974     } else if (firstQualifierLookup) {
975 
976       // Try to make a proper qualifier out of the lookup result, and
977       // then just recurse on that.
978       NestedNameSpecifier *newQualifier;
979       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
980         QualType type = getASTContext().getTypeDeclType(typeDecl);
981 
982         // Pretend we had a different nested name specifier.
983         newQualifier = NestedNameSpecifier::Create(getASTContext(),
984                                                    /*prefix*/ 0,
985                                                    /*template*/ false,
986                                                    type.getTypePtr());
987       } else if (NamespaceDecl *nspace =
988                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
989         newQualifier = NestedNameSpecifier::Create(getASTContext(),
990                                                    /*prefix*/ 0,
991                                                    nspace);
992       } else if (NamespaceAliasDecl *alias =
993                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
994         newQualifier = NestedNameSpecifier::Create(getASTContext(),
995                                                    /*prefix*/ 0,
996                                                    alias);
997       } else {
998         // No sensible mangling to do here.
999         newQualifier = 0;
1000       }
1001 
1002       if (newQualifier)
1003         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1004 
1005     } else {
1006       Out << "sr";
1007     }
1008 
1009     mangleSourceName(qualifier->getAsIdentifier());
1010     break;
1011   }
1012 
1013   // If this was the innermost part of the NNS, and we fell out to
1014   // here, append an 'E'.
1015   if (!recursive)
1016     Out << 'E';
1017 }
1018 
1019 /// Mangle an unresolved-name, which is generally used for names which
1020 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName name,unsigned knownArity)1021 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1022                                           NamedDecl *firstQualifierLookup,
1023                                           DeclarationName name,
1024                                           unsigned knownArity) {
1025   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1026   mangleUnqualifiedName(0, name, knownArity);
1027 }
1028 
FindFirstNamedDataMember(const RecordDecl * RD)1029 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1030   assert(RD->isAnonymousStructOrUnion() &&
1031          "Expected anonymous struct or union!");
1032 
1033   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1034        I != E; ++I) {
1035     const FieldDecl *FD = *I;
1036 
1037     if (FD->getIdentifier())
1038       return FD;
1039 
1040     if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
1041       if (const FieldDecl *NamedDataMember =
1042           FindFirstNamedDataMember(RT->getDecl()))
1043         return NamedDataMember;
1044     }
1045   }
1046 
1047   // We didn't find a named data member.
1048   return 0;
1049 }
1050 
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name,unsigned KnownArity)1051 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1052                                            DeclarationName Name,
1053                                            unsigned KnownArity) {
1054   //  <unqualified-name> ::= <operator-name>
1055   //                     ::= <ctor-dtor-name>
1056   //                     ::= <source-name>
1057   switch (Name.getNameKind()) {
1058   case DeclarationName::Identifier: {
1059     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1060       // We must avoid conflicts between internally- and externally-
1061       // linked variable and function declaration names in the same TU:
1062       //   void test() { extern void foo(); }
1063       //   static void foo();
1064       // This naming convention is the same as that followed by GCC,
1065       // though it shouldn't actually matter.
1066       if (ND && ND->getLinkage() == InternalLinkage &&
1067           getEffectiveDeclContext(ND)->isFileContext())
1068         Out << 'L';
1069 
1070       mangleSourceName(II);
1071       break;
1072     }
1073 
1074     // Otherwise, an anonymous entity.  We must have a declaration.
1075     assert(ND && "mangling empty name without declaration");
1076 
1077     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1078       if (NS->isAnonymousNamespace()) {
1079         // This is how gcc mangles these names.
1080         Out << "12_GLOBAL__N_1";
1081         break;
1082       }
1083     }
1084 
1085     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1086       // We must have an anonymous union or struct declaration.
1087       const RecordDecl *RD =
1088         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1089 
1090       // Itanium C++ ABI 5.1.2:
1091       //
1092       //   For the purposes of mangling, the name of an anonymous union is
1093       //   considered to be the name of the first named data member found by a
1094       //   pre-order, depth-first, declaration-order walk of the data members of
1095       //   the anonymous union. If there is no such data member (i.e., if all of
1096       //   the data members in the union are unnamed), then there is no way for
1097       //   a program to refer to the anonymous union, and there is therefore no
1098       //   need to mangle its name.
1099       const FieldDecl *FD = FindFirstNamedDataMember(RD);
1100 
1101       // It's actually possible for various reasons for us to get here
1102       // with an empty anonymous struct / union.  Fortunately, it
1103       // doesn't really matter what name we generate.
1104       if (!FD) break;
1105       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1106 
1107       mangleSourceName(FD->getIdentifier());
1108       break;
1109     }
1110 
1111     // We must have an anonymous struct.
1112     const TagDecl *TD = cast<TagDecl>(ND);
1113     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1114       assert(TD->getDeclContext() == D->getDeclContext() &&
1115              "Typedef should not be in another decl context!");
1116       assert(D->getDeclName().getAsIdentifierInfo() &&
1117              "Typedef was not named!");
1118       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1119       break;
1120     }
1121 
1122     // <unnamed-type-name> ::= <closure-type-name>
1123     //
1124     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1125     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1126     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1127       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1128         mangleLambda(Record);
1129         break;
1130       }
1131     }
1132 
1133     // Get a unique id for the anonymous struct.
1134     uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1135 
1136     // Mangle it as a source name in the form
1137     // [n] $_<id>
1138     // where n is the length of the string.
1139     SmallString<8> Str;
1140     Str += "$_";
1141     Str += llvm::utostr(AnonStructId);
1142 
1143     Out << Str.size();
1144     Out << Str.str();
1145     break;
1146   }
1147 
1148   case DeclarationName::ObjCZeroArgSelector:
1149   case DeclarationName::ObjCOneArgSelector:
1150   case DeclarationName::ObjCMultiArgSelector:
1151     llvm_unreachable("Can't mangle Objective-C selector names here!");
1152 
1153   case DeclarationName::CXXConstructorName:
1154     if (ND == Structor)
1155       // If the named decl is the C++ constructor we're mangling, use the type
1156       // we were given.
1157       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1158     else
1159       // Otherwise, use the complete constructor name. This is relevant if a
1160       // class with a constructor is declared within a constructor.
1161       mangleCXXCtorType(Ctor_Complete);
1162     break;
1163 
1164   case DeclarationName::CXXDestructorName:
1165     if (ND == Structor)
1166       // If the named decl is the C++ destructor we're mangling, use the type we
1167       // were given.
1168       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1169     else
1170       // Otherwise, use the complete destructor name. This is relevant if a
1171       // class with a destructor is declared within a destructor.
1172       mangleCXXDtorType(Dtor_Complete);
1173     break;
1174 
1175   case DeclarationName::CXXConversionFunctionName:
1176     // <operator-name> ::= cv <type>    # (cast)
1177     Out << "cv";
1178     mangleType(Name.getCXXNameType());
1179     break;
1180 
1181   case DeclarationName::CXXOperatorName: {
1182     unsigned Arity;
1183     if (ND) {
1184       Arity = cast<FunctionDecl>(ND)->getNumParams();
1185 
1186       // If we have a C++ member function, we need to include the 'this' pointer.
1187       // FIXME: This does not make sense for operators that are static, but their
1188       // names stay the same regardless of the arity (operator new for instance).
1189       if (isa<CXXMethodDecl>(ND))
1190         Arity++;
1191     } else
1192       Arity = KnownArity;
1193 
1194     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1195     break;
1196   }
1197 
1198   case DeclarationName::CXXLiteralOperatorName:
1199     // FIXME: This mangling is not yet official.
1200     Out << "li";
1201     mangleSourceName(Name.getCXXLiteralIdentifier());
1202     break;
1203 
1204   case DeclarationName::CXXUsingDirective:
1205     llvm_unreachable("Can't mangle a using directive name!");
1206   }
1207 }
1208 
mangleSourceName(const IdentifierInfo * II)1209 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1210   // <source-name> ::= <positive length number> <identifier>
1211   // <number> ::= [n] <non-negative decimal integer>
1212   // <identifier> ::= <unqualified source code identifier>
1213   Out << II->getLength() << II->getName();
1214 }
1215 
mangleNestedName(const NamedDecl * ND,const DeclContext * DC,bool NoFunction)1216 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1217                                       const DeclContext *DC,
1218                                       bool NoFunction) {
1219   // <nested-name>
1220   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1221   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1222   //       <template-args> E
1223 
1224   Out << 'N';
1225   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1226     mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1227     mangleRefQualifier(Method->getRefQualifier());
1228   }
1229 
1230   // Check if we have a template.
1231   const TemplateArgumentList *TemplateArgs = 0;
1232   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1233     mangleTemplatePrefix(TD);
1234     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1235     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1236   }
1237   else {
1238     manglePrefix(DC, NoFunction);
1239     mangleUnqualifiedName(ND);
1240   }
1241 
1242   Out << 'E';
1243 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1244 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1245                                       const TemplateArgument *TemplateArgs,
1246                                       unsigned NumTemplateArgs) {
1247   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1248 
1249   Out << 'N';
1250 
1251   mangleTemplatePrefix(TD);
1252   TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1253   mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1254 
1255   Out << 'E';
1256 }
1257 
mangleLocalName(const NamedDecl * ND)1258 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1259   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1260   //              := Z <function encoding> E s [<discriminator>]
1261   // <local-name> := Z <function encoding> E d [ <parameter number> ]
1262   //                 _ <entity name>
1263   // <discriminator> := _ <non-negative number>
1264   const DeclContext *DC = getEffectiveDeclContext(ND);
1265   if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1266     // Don't add objc method name mangling to locally declared function
1267     mangleUnqualifiedName(ND);
1268     return;
1269   }
1270 
1271   Out << 'Z';
1272 
1273   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1274    mangleObjCMethodName(MD);
1275   } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1276     mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1277     Out << 'E';
1278 
1279     // The parameter number is omitted for the last parameter, 0 for the
1280     // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1281     // <entity name> will of course contain a <closure-type-name>: Its
1282     // numbering will be local to the particular argument in which it appears
1283     // -- other default arguments do not affect its encoding.
1284     bool SkipDiscriminator = false;
1285     if (RD->isLambda()) {
1286       if (const ParmVarDecl *Parm
1287                  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1288         if (const FunctionDecl *Func
1289               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1290           Out << 'd';
1291           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1292           if (Num > 1)
1293             mangleNumber(Num - 2);
1294           Out << '_';
1295           SkipDiscriminator = true;
1296         }
1297       }
1298     }
1299 
1300     // Mangle the name relative to the closest enclosing function.
1301     if (ND == RD) // equality ok because RD derived from ND above
1302       mangleUnqualifiedName(ND);
1303     else
1304       mangleNestedName(ND, DC, true /*NoFunction*/);
1305 
1306     if (!SkipDiscriminator) {
1307       unsigned disc;
1308       if (Context.getNextDiscriminator(RD, disc)) {
1309         if (disc < 10)
1310           Out << '_' << disc;
1311         else
1312           Out << "__" << disc << '_';
1313       }
1314     }
1315 
1316     return;
1317   }
1318   else
1319     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1320 
1321   Out << 'E';
1322   mangleUnqualifiedName(ND);
1323 }
1324 
mangleLambda(const CXXRecordDecl * Lambda)1325 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1326   // If the context of a closure type is an initializer for a class member
1327   // (static or nonstatic), it is encoded in a qualified name with a final
1328   // <prefix> of the form:
1329   //
1330   //   <data-member-prefix> := <member source-name> M
1331   //
1332   // Technically, the data-member-prefix is part of the <prefix>. However,
1333   // since a closure type will always be mangled with a prefix, it's easier
1334   // to emit that last part of the prefix here.
1335   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1336     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1337         Context->getDeclContext()->isRecord()) {
1338       if (const IdentifierInfo *Name
1339             = cast<NamedDecl>(Context)->getIdentifier()) {
1340         mangleSourceName(Name);
1341         Out << 'M';
1342       }
1343     }
1344   }
1345 
1346   Out << "Ul";
1347   DeclarationName Name
1348     = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1349   const FunctionProtoType *Proto
1350     = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1351         getAs<FunctionProtoType>();
1352   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1353   Out << "E";
1354 
1355   // The number is omitted for the first closure type with a given
1356   // <lambda-sig> in a given context; it is n-2 for the nth closure type
1357   // (in lexical order) with that same <lambda-sig> and context.
1358   //
1359   // The AST keeps track of the number for us.
1360   unsigned Number = Lambda->getLambdaManglingNumber();
1361   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1362   if (Number > 1)
1363     mangleNumber(Number - 2);
1364   Out << '_';
1365 }
1366 
manglePrefix(NestedNameSpecifier * qualifier)1367 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1368   switch (qualifier->getKind()) {
1369   case NestedNameSpecifier::Global:
1370     // nothing
1371     return;
1372 
1373   case NestedNameSpecifier::Namespace:
1374     mangleName(qualifier->getAsNamespace());
1375     return;
1376 
1377   case NestedNameSpecifier::NamespaceAlias:
1378     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1379     return;
1380 
1381   case NestedNameSpecifier::TypeSpec:
1382   case NestedNameSpecifier::TypeSpecWithTemplate:
1383     manglePrefix(QualType(qualifier->getAsType(), 0));
1384     return;
1385 
1386   case NestedNameSpecifier::Identifier:
1387     // Member expressions can have these without prefixes, but that
1388     // should end up in mangleUnresolvedPrefix instead.
1389     assert(qualifier->getPrefix());
1390     manglePrefix(qualifier->getPrefix());
1391 
1392     mangleSourceName(qualifier->getAsIdentifier());
1393     return;
1394   }
1395 
1396   llvm_unreachable("unexpected nested name specifier");
1397 }
1398 
manglePrefix(const DeclContext * DC,bool NoFunction)1399 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1400   //  <prefix> ::= <prefix> <unqualified-name>
1401   //           ::= <template-prefix> <template-args>
1402   //           ::= <template-param>
1403   //           ::= # empty
1404   //           ::= <substitution>
1405 
1406   DC = IgnoreLinkageSpecDecls(DC);
1407 
1408   if (DC->isTranslationUnit())
1409     return;
1410 
1411   if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1412     manglePrefix(getEffectiveParentContext(DC), NoFunction);
1413     SmallString<64> Name;
1414     llvm::raw_svector_ostream NameStream(Name);
1415     Context.mangleBlock(Block, NameStream);
1416     NameStream.flush();
1417     Out << Name.size() << Name;
1418     return;
1419   }
1420 
1421   const NamedDecl *ND = cast<NamedDecl>(DC);
1422   if (mangleSubstitution(ND))
1423     return;
1424 
1425   // Check if we have a template.
1426   const TemplateArgumentList *TemplateArgs = 0;
1427   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1428     mangleTemplatePrefix(TD);
1429     TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1430     mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1431   }
1432   else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1433     return;
1434   else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1435     mangleObjCMethodName(Method);
1436   else {
1437     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1438     mangleUnqualifiedName(ND);
1439   }
1440 
1441   addSubstitution(ND);
1442 }
1443 
mangleTemplatePrefix(TemplateName Template)1444 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1445   // <template-prefix> ::= <prefix> <template unqualified-name>
1446   //                   ::= <template-param>
1447   //                   ::= <substitution>
1448   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1449     return mangleTemplatePrefix(TD);
1450 
1451   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1452     manglePrefix(Qualified->getQualifier());
1453 
1454   if (OverloadedTemplateStorage *Overloaded
1455                                       = Template.getAsOverloadedTemplate()) {
1456     mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1457                           UnknownArity);
1458     return;
1459   }
1460 
1461   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1462   assert(Dependent && "Unknown template name kind?");
1463   manglePrefix(Dependent->getQualifier());
1464   mangleUnscopedTemplateName(Template);
1465 }
1466 
mangleTemplatePrefix(const TemplateDecl * ND)1467 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1468   // <template-prefix> ::= <prefix> <template unqualified-name>
1469   //                   ::= <template-param>
1470   //                   ::= <substitution>
1471   // <template-template-param> ::= <template-param>
1472   //                               <substitution>
1473 
1474   if (mangleSubstitution(ND))
1475     return;
1476 
1477   // <template-template-param> ::= <template-param>
1478   if (const TemplateTemplateParmDecl *TTP
1479                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1480     mangleTemplateParameter(TTP->getIndex());
1481     return;
1482   }
1483 
1484   manglePrefix(getEffectiveDeclContext(ND));
1485   mangleUnqualifiedName(ND->getTemplatedDecl());
1486   addSubstitution(ND);
1487 }
1488 
1489 /// Mangles a template name under the production <type>.  Required for
1490 /// template template arguments.
1491 ///   <type> ::= <class-enum-type>
1492 ///          ::= <template-param>
1493 ///          ::= <substitution>
mangleType(TemplateName TN)1494 void CXXNameMangler::mangleType(TemplateName TN) {
1495   if (mangleSubstitution(TN))
1496     return;
1497 
1498   TemplateDecl *TD = 0;
1499 
1500   switch (TN.getKind()) {
1501   case TemplateName::QualifiedTemplate:
1502     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1503     goto HaveDecl;
1504 
1505   case TemplateName::Template:
1506     TD = TN.getAsTemplateDecl();
1507     goto HaveDecl;
1508 
1509   HaveDecl:
1510     if (isa<TemplateTemplateParmDecl>(TD))
1511       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1512     else
1513       mangleName(TD);
1514     break;
1515 
1516   case TemplateName::OverloadedTemplate:
1517     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1518 
1519   case TemplateName::DependentTemplate: {
1520     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1521     assert(Dependent->isIdentifier());
1522 
1523     // <class-enum-type> ::= <name>
1524     // <name> ::= <nested-name>
1525     mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1526     mangleSourceName(Dependent->getIdentifier());
1527     break;
1528   }
1529 
1530   case TemplateName::SubstTemplateTemplateParm: {
1531     // Substituted template parameters are mangled as the substituted
1532     // template.  This will check for the substitution twice, which is
1533     // fine, but we have to return early so that we don't try to *add*
1534     // the substitution twice.
1535     SubstTemplateTemplateParmStorage *subst
1536       = TN.getAsSubstTemplateTemplateParm();
1537     mangleType(subst->getReplacement());
1538     return;
1539   }
1540 
1541   case TemplateName::SubstTemplateTemplateParmPack: {
1542     // FIXME: not clear how to mangle this!
1543     // template <template <class> class T...> class A {
1544     //   template <template <class> class U...> void foo(B<T,U> x...);
1545     // };
1546     Out << "_SUBSTPACK_";
1547     break;
1548   }
1549   }
1550 
1551   addSubstitution(TN);
1552 }
1553 
1554 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)1555 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1556   switch (OO) {
1557   // <operator-name> ::= nw     # new
1558   case OO_New: Out << "nw"; break;
1559   //              ::= na        # new[]
1560   case OO_Array_New: Out << "na"; break;
1561   //              ::= dl        # delete
1562   case OO_Delete: Out << "dl"; break;
1563   //              ::= da        # delete[]
1564   case OO_Array_Delete: Out << "da"; break;
1565   //              ::= ps        # + (unary)
1566   //              ::= pl        # + (binary or unknown)
1567   case OO_Plus:
1568     Out << (Arity == 1? "ps" : "pl"); break;
1569   //              ::= ng        # - (unary)
1570   //              ::= mi        # - (binary or unknown)
1571   case OO_Minus:
1572     Out << (Arity == 1? "ng" : "mi"); break;
1573   //              ::= ad        # & (unary)
1574   //              ::= an        # & (binary or unknown)
1575   case OO_Amp:
1576     Out << (Arity == 1? "ad" : "an"); break;
1577   //              ::= de        # * (unary)
1578   //              ::= ml        # * (binary or unknown)
1579   case OO_Star:
1580     // Use binary when unknown.
1581     Out << (Arity == 1? "de" : "ml"); break;
1582   //              ::= co        # ~
1583   case OO_Tilde: Out << "co"; break;
1584   //              ::= dv        # /
1585   case OO_Slash: Out << "dv"; break;
1586   //              ::= rm        # %
1587   case OO_Percent: Out << "rm"; break;
1588   //              ::= or        # |
1589   case OO_Pipe: Out << "or"; break;
1590   //              ::= eo        # ^
1591   case OO_Caret: Out << "eo"; break;
1592   //              ::= aS        # =
1593   case OO_Equal: Out << "aS"; break;
1594   //              ::= pL        # +=
1595   case OO_PlusEqual: Out << "pL"; break;
1596   //              ::= mI        # -=
1597   case OO_MinusEqual: Out << "mI"; break;
1598   //              ::= mL        # *=
1599   case OO_StarEqual: Out << "mL"; break;
1600   //              ::= dV        # /=
1601   case OO_SlashEqual: Out << "dV"; break;
1602   //              ::= rM        # %=
1603   case OO_PercentEqual: Out << "rM"; break;
1604   //              ::= aN        # &=
1605   case OO_AmpEqual: Out << "aN"; break;
1606   //              ::= oR        # |=
1607   case OO_PipeEqual: Out << "oR"; break;
1608   //              ::= eO        # ^=
1609   case OO_CaretEqual: Out << "eO"; break;
1610   //              ::= ls        # <<
1611   case OO_LessLess: Out << "ls"; break;
1612   //              ::= rs        # >>
1613   case OO_GreaterGreater: Out << "rs"; break;
1614   //              ::= lS        # <<=
1615   case OO_LessLessEqual: Out << "lS"; break;
1616   //              ::= rS        # >>=
1617   case OO_GreaterGreaterEqual: Out << "rS"; break;
1618   //              ::= eq        # ==
1619   case OO_EqualEqual: Out << "eq"; break;
1620   //              ::= ne        # !=
1621   case OO_ExclaimEqual: Out << "ne"; break;
1622   //              ::= lt        # <
1623   case OO_Less: Out << "lt"; break;
1624   //              ::= gt        # >
1625   case OO_Greater: Out << "gt"; break;
1626   //              ::= le        # <=
1627   case OO_LessEqual: Out << "le"; break;
1628   //              ::= ge        # >=
1629   case OO_GreaterEqual: Out << "ge"; break;
1630   //              ::= nt        # !
1631   case OO_Exclaim: Out << "nt"; break;
1632   //              ::= aa        # &&
1633   case OO_AmpAmp: Out << "aa"; break;
1634   //              ::= oo        # ||
1635   case OO_PipePipe: Out << "oo"; break;
1636   //              ::= pp        # ++
1637   case OO_PlusPlus: Out << "pp"; break;
1638   //              ::= mm        # --
1639   case OO_MinusMinus: Out << "mm"; break;
1640   //              ::= cm        # ,
1641   case OO_Comma: Out << "cm"; break;
1642   //              ::= pm        # ->*
1643   case OO_ArrowStar: Out << "pm"; break;
1644   //              ::= pt        # ->
1645   case OO_Arrow: Out << "pt"; break;
1646   //              ::= cl        # ()
1647   case OO_Call: Out << "cl"; break;
1648   //              ::= ix        # []
1649   case OO_Subscript: Out << "ix"; break;
1650 
1651   //              ::= qu        # ?
1652   // The conditional operator can't be overloaded, but we still handle it when
1653   // mangling expressions.
1654   case OO_Conditional: Out << "qu"; break;
1655 
1656   case OO_None:
1657   case NUM_OVERLOADED_OPERATORS:
1658     llvm_unreachable("Not an overloaded operator");
1659   }
1660 }
1661 
mangleQualifiers(Qualifiers Quals)1662 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1663   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1664   if (Quals.hasRestrict())
1665     Out << 'r';
1666   if (Quals.hasVolatile())
1667     Out << 'V';
1668   if (Quals.hasConst())
1669     Out << 'K';
1670 
1671   if (Quals.hasAddressSpace()) {
1672     // Extension:
1673     //
1674     //   <type> ::= U <address-space-number>
1675     //
1676     // where <address-space-number> is a source name consisting of 'AS'
1677     // followed by the address space <number>.
1678     SmallString<64> ASString;
1679     ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1680     Out << 'U' << ASString.size() << ASString;
1681   }
1682 
1683   StringRef LifetimeName;
1684   switch (Quals.getObjCLifetime()) {
1685   // Objective-C ARC Extension:
1686   //
1687   //   <type> ::= U "__strong"
1688   //   <type> ::= U "__weak"
1689   //   <type> ::= U "__autoreleasing"
1690   case Qualifiers::OCL_None:
1691     break;
1692 
1693   case Qualifiers::OCL_Weak:
1694     LifetimeName = "__weak";
1695     break;
1696 
1697   case Qualifiers::OCL_Strong:
1698     LifetimeName = "__strong";
1699     break;
1700 
1701   case Qualifiers::OCL_Autoreleasing:
1702     LifetimeName = "__autoreleasing";
1703     break;
1704 
1705   case Qualifiers::OCL_ExplicitNone:
1706     // The __unsafe_unretained qualifier is *not* mangled, so that
1707     // __unsafe_unretained types in ARC produce the same manglings as the
1708     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1709     // better ABI compatibility.
1710     //
1711     // It's safe to do this because unqualified 'id' won't show up
1712     // in any type signatures that need to be mangled.
1713     break;
1714   }
1715   if (!LifetimeName.empty())
1716     Out << 'U' << LifetimeName.size() << LifetimeName;
1717 }
1718 
mangleRefQualifier(RefQualifierKind RefQualifier)1719 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1720   // <ref-qualifier> ::= R                # lvalue reference
1721   //                 ::= O                # rvalue-reference
1722   // Proposal to Itanium C++ ABI list on 1/26/11
1723   switch (RefQualifier) {
1724   case RQ_None:
1725     break;
1726 
1727   case RQ_LValue:
1728     Out << 'R';
1729     break;
1730 
1731   case RQ_RValue:
1732     Out << 'O';
1733     break;
1734   }
1735 }
1736 
mangleObjCMethodName(const ObjCMethodDecl * MD)1737 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1738   Context.mangleObjCMethodName(MD, Out);
1739 }
1740 
mangleType(QualType T)1741 void CXXNameMangler::mangleType(QualType T) {
1742   // If our type is instantiation-dependent but not dependent, we mangle
1743   // it as it was written in the source, removing any top-level sugar.
1744   // Otherwise, use the canonical type.
1745   //
1746   // FIXME: This is an approximation of the instantiation-dependent name
1747   // mangling rules, since we should really be using the type as written and
1748   // augmented via semantic analysis (i.e., with implicit conversions and
1749   // default template arguments) for any instantiation-dependent type.
1750   // Unfortunately, that requires several changes to our AST:
1751   //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1752   //     uniqued, so that we can handle substitutions properly
1753   //   - Default template arguments will need to be represented in the
1754   //     TemplateSpecializationType, since they need to be mangled even though
1755   //     they aren't written.
1756   //   - Conversions on non-type template arguments need to be expressed, since
1757   //     they can affect the mangling of sizeof/alignof.
1758   if (!T->isInstantiationDependentType() || T->isDependentType())
1759     T = T.getCanonicalType();
1760   else {
1761     // Desugar any types that are purely sugar.
1762     do {
1763       // Don't desugar through template specialization types that aren't
1764       // type aliases. We need to mangle the template arguments as written.
1765       if (const TemplateSpecializationType *TST
1766                                       = dyn_cast<TemplateSpecializationType>(T))
1767         if (!TST->isTypeAlias())
1768           break;
1769 
1770       QualType Desugared
1771         = T.getSingleStepDesugaredType(Context.getASTContext());
1772       if (Desugared == T)
1773         break;
1774 
1775       T = Desugared;
1776     } while (true);
1777   }
1778   SplitQualType split = T.split();
1779   Qualifiers quals = split.Quals;
1780   const Type *ty = split.Ty;
1781 
1782   bool isSubstitutable = quals || !isa<BuiltinType>(T);
1783   if (isSubstitutable && mangleSubstitution(T))
1784     return;
1785 
1786   // If we're mangling a qualified array type, push the qualifiers to
1787   // the element type.
1788   if (quals && isa<ArrayType>(T)) {
1789     ty = Context.getASTContext().getAsArrayType(T);
1790     quals = Qualifiers();
1791 
1792     // Note that we don't update T: we want to add the
1793     // substitution at the original type.
1794   }
1795 
1796   if (quals) {
1797     mangleQualifiers(quals);
1798     // Recurse:  even if the qualified type isn't yet substitutable,
1799     // the unqualified type might be.
1800     mangleType(QualType(ty, 0));
1801   } else {
1802     switch (ty->getTypeClass()) {
1803 #define ABSTRACT_TYPE(CLASS, PARENT)
1804 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1805     case Type::CLASS: \
1806       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1807       return;
1808 #define TYPE(CLASS, PARENT) \
1809     case Type::CLASS: \
1810       mangleType(static_cast<const CLASS##Type*>(ty)); \
1811       break;
1812 #include "clang/AST/TypeNodes.def"
1813     }
1814   }
1815 
1816   // Add the substitution.
1817   if (isSubstitutable)
1818     addSubstitution(T);
1819 }
1820 
mangleNameOrStandardSubstitution(const NamedDecl * ND)1821 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1822   if (!mangleStandardSubstitution(ND))
1823     mangleName(ND);
1824 }
1825 
mangleType(const BuiltinType * T)1826 void CXXNameMangler::mangleType(const BuiltinType *T) {
1827   //  <type>         ::= <builtin-type>
1828   //  <builtin-type> ::= v  # void
1829   //                 ::= w  # wchar_t
1830   //                 ::= b  # bool
1831   //                 ::= c  # char
1832   //                 ::= a  # signed char
1833   //                 ::= h  # unsigned char
1834   //                 ::= s  # short
1835   //                 ::= t  # unsigned short
1836   //                 ::= i  # int
1837   //                 ::= j  # unsigned int
1838   //                 ::= l  # long
1839   //                 ::= m  # unsigned long
1840   //                 ::= x  # long long, __int64
1841   //                 ::= y  # unsigned long long, __int64
1842   //                 ::= n  # __int128
1843   // UNSUPPORTED:    ::= o  # unsigned __int128
1844   //                 ::= f  # float
1845   //                 ::= d  # double
1846   //                 ::= e  # long double, __float80
1847   // UNSUPPORTED:    ::= g  # __float128
1848   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1849   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1850   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1851   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1852   //                 ::= Di # char32_t
1853   //                 ::= Ds # char16_t
1854   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1855   //                 ::= u <source-name>    # vendor extended type
1856   switch (T->getKind()) {
1857   case BuiltinType::Void: Out << 'v'; break;
1858   case BuiltinType::Bool: Out << 'b'; break;
1859   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1860   case BuiltinType::UChar: Out << 'h'; break;
1861   case BuiltinType::UShort: Out << 't'; break;
1862   case BuiltinType::UInt: Out << 'j'; break;
1863   case BuiltinType::ULong: Out << 'm'; break;
1864   case BuiltinType::ULongLong: Out << 'y'; break;
1865   case BuiltinType::UInt128: Out << 'o'; break;
1866   case BuiltinType::SChar: Out << 'a'; break;
1867   case BuiltinType::WChar_S:
1868   case BuiltinType::WChar_U: Out << 'w'; break;
1869   case BuiltinType::Char16: Out << "Ds"; break;
1870   case BuiltinType::Char32: Out << "Di"; break;
1871   case BuiltinType::Short: Out << 's'; break;
1872   case BuiltinType::Int: Out << 'i'; break;
1873   case BuiltinType::Long: Out << 'l'; break;
1874   case BuiltinType::LongLong: Out << 'x'; break;
1875   case BuiltinType::Int128: Out << 'n'; break;
1876   case BuiltinType::Half: Out << "Dh"; break;
1877   case BuiltinType::Float: Out << 'f'; break;
1878   case BuiltinType::Double: Out << 'd'; break;
1879   case BuiltinType::LongDouble: Out << 'e'; break;
1880   case BuiltinType::NullPtr: Out << "Dn"; break;
1881 
1882 #define BUILTIN_TYPE(Id, SingletonId)
1883 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1884   case BuiltinType::Id:
1885 #include "clang/AST/BuiltinTypes.def"
1886   case BuiltinType::Dependent:
1887     llvm_unreachable("mangling a placeholder type");
1888   case BuiltinType::ObjCId: Out << "11objc_object"; break;
1889   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1890   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1891   }
1892 }
1893 
1894 // <type>          ::= <function-type>
1895 // <function-type> ::= F [Y] <bare-function-type> E
mangleType(const FunctionProtoType * T)1896 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1897   Out << 'F';
1898   // FIXME: We don't have enough information in the AST to produce the 'Y'
1899   // encoding for extern "C" function types.
1900   mangleBareFunctionType(T, /*MangleReturnType=*/true);
1901   Out << 'E';
1902 }
mangleType(const FunctionNoProtoType * T)1903 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1904   llvm_unreachable("Can't mangle K&R function prototypes");
1905 }
mangleBareFunctionType(const FunctionType * T,bool MangleReturnType)1906 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1907                                             bool MangleReturnType) {
1908   // We should never be mangling something without a prototype.
1909   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1910 
1911   // Record that we're in a function type.  See mangleFunctionParam
1912   // for details on what we're trying to achieve here.
1913   FunctionTypeDepthState saved = FunctionTypeDepth.push();
1914 
1915   // <bare-function-type> ::= <signature type>+
1916   if (MangleReturnType) {
1917     FunctionTypeDepth.enterResultType();
1918     mangleType(Proto->getResultType());
1919     FunctionTypeDepth.leaveResultType();
1920   }
1921 
1922   if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1923     //   <builtin-type> ::= v   # void
1924     Out << 'v';
1925 
1926     FunctionTypeDepth.pop(saved);
1927     return;
1928   }
1929 
1930   for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1931                                          ArgEnd = Proto->arg_type_end();
1932        Arg != ArgEnd; ++Arg)
1933     mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1934 
1935   FunctionTypeDepth.pop(saved);
1936 
1937   // <builtin-type>      ::= z  # ellipsis
1938   if (Proto->isVariadic())
1939     Out << 'z';
1940 }
1941 
1942 // <type>            ::= <class-enum-type>
1943 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)1944 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1945   mangleName(T->getDecl());
1946 }
1947 
1948 // <type>            ::= <class-enum-type>
1949 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)1950 void CXXNameMangler::mangleType(const EnumType *T) {
1951   mangleType(static_cast<const TagType*>(T));
1952 }
mangleType(const RecordType * T)1953 void CXXNameMangler::mangleType(const RecordType *T) {
1954   mangleType(static_cast<const TagType*>(T));
1955 }
mangleType(const TagType * T)1956 void CXXNameMangler::mangleType(const TagType *T) {
1957   mangleName(T->getDecl());
1958 }
1959 
1960 // <type>       ::= <array-type>
1961 // <array-type> ::= A <positive dimension number> _ <element type>
1962 //              ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)1963 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1964   Out << 'A' << T->getSize() << '_';
1965   mangleType(T->getElementType());
1966 }
mangleType(const VariableArrayType * T)1967 void CXXNameMangler::mangleType(const VariableArrayType *T) {
1968   Out << 'A';
1969   // decayed vla types (size 0) will just be skipped.
1970   if (T->getSizeExpr())
1971     mangleExpression(T->getSizeExpr());
1972   Out << '_';
1973   mangleType(T->getElementType());
1974 }
mangleType(const DependentSizedArrayType * T)1975 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1976   Out << 'A';
1977   mangleExpression(T->getSizeExpr());
1978   Out << '_';
1979   mangleType(T->getElementType());
1980 }
mangleType(const IncompleteArrayType * T)1981 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1982   Out << "A_";
1983   mangleType(T->getElementType());
1984 }
1985 
1986 // <type>                   ::= <pointer-to-member-type>
1987 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)1988 void CXXNameMangler::mangleType(const MemberPointerType *T) {
1989   Out << 'M';
1990   mangleType(QualType(T->getClass(), 0));
1991   QualType PointeeType = T->getPointeeType();
1992   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1993     mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1994     mangleRefQualifier(FPT->getRefQualifier());
1995     mangleType(FPT);
1996 
1997     // Itanium C++ ABI 5.1.8:
1998     //
1999     //   The type of a non-static member function is considered to be different,
2000     //   for the purposes of substitution, from the type of a namespace-scope or
2001     //   static member function whose type appears similar. The types of two
2002     //   non-static member functions are considered to be different, for the
2003     //   purposes of substitution, if the functions are members of different
2004     //   classes. In other words, for the purposes of substitution, the class of
2005     //   which the function is a member is considered part of the type of
2006     //   function.
2007 
2008     // We increment the SeqID here to emulate adding an entry to the
2009     // substitution table. We can't actually add it because we don't want this
2010     // particular function type to be substituted.
2011     ++SeqID;
2012   } else
2013     mangleType(PointeeType);
2014 }
2015 
2016 // <type>           ::= <template-param>
mangleType(const TemplateTypeParmType * T)2017 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2018   mangleTemplateParameter(T->getIndex());
2019 }
2020 
2021 // <type>           ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)2022 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2023   // FIXME: not clear how to mangle this!
2024   // template <class T...> class A {
2025   //   template <class U...> void foo(T(*)(U) x...);
2026   // };
2027   Out << "_SUBSTPACK_";
2028 }
2029 
2030 // <type> ::= P <type>   # pointer-to
mangleType(const PointerType * T)2031 void CXXNameMangler::mangleType(const PointerType *T) {
2032   Out << 'P';
2033   mangleType(T->getPointeeType());
2034 }
mangleType(const ObjCObjectPointerType * T)2035 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2036   Out << 'P';
2037   mangleType(T->getPointeeType());
2038 }
2039 
2040 // <type> ::= R <type>   # reference-to
mangleType(const LValueReferenceType * T)2041 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2042   Out << 'R';
2043   mangleType(T->getPointeeType());
2044 }
2045 
2046 // <type> ::= O <type>   # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)2047 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2048   Out << 'O';
2049   mangleType(T->getPointeeType());
2050 }
2051 
2052 // <type> ::= C <type>   # complex pair (C 2000)
mangleType(const ComplexType * T)2053 void CXXNameMangler::mangleType(const ComplexType *T) {
2054   Out << 'C';
2055   mangleType(T->getElementType());
2056 }
2057 
2058 // ARM's ABI for Neon vector types specifies that they should be mangled as
2059 // if they are structs (to match ARM's initial implementation).  The
2060 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)2061 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2062   QualType EltType = T->getElementType();
2063   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2064   const char *EltName = 0;
2065   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2066     switch (cast<BuiltinType>(EltType)->getKind()) {
2067     case BuiltinType::SChar:     EltName = "poly8_t"; break;
2068     case BuiltinType::Short:     EltName = "poly16_t"; break;
2069     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2070     }
2071   } else {
2072     switch (cast<BuiltinType>(EltType)->getKind()) {
2073     case BuiltinType::SChar:     EltName = "int8_t"; break;
2074     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2075     case BuiltinType::Short:     EltName = "int16_t"; break;
2076     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2077     case BuiltinType::Int:       EltName = "int32_t"; break;
2078     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2079     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2080     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2081     case BuiltinType::Float:     EltName = "float32_t"; break;
2082     default: llvm_unreachable("unexpected Neon vector element type");
2083     }
2084   }
2085   const char *BaseName = 0;
2086   unsigned BitSize = (T->getNumElements() *
2087                       getASTContext().getTypeSize(EltType));
2088   if (BitSize == 64)
2089     BaseName = "__simd64_";
2090   else {
2091     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2092     BaseName = "__simd128_";
2093   }
2094   Out << strlen(BaseName) + strlen(EltName);
2095   Out << BaseName << EltName;
2096 }
2097 
2098 // GNU extension: vector types
2099 // <type>                  ::= <vector-type>
2100 // <vector-type>           ::= Dv <positive dimension number> _
2101 //                                    <extended element type>
2102 //                         ::= Dv [<dimension expression>] _ <element type>
2103 // <extended element type> ::= <element type>
2104 //                         ::= p # AltiVec vector pixel
mangleType(const VectorType * T)2105 void CXXNameMangler::mangleType(const VectorType *T) {
2106   if ((T->getVectorKind() == VectorType::NeonVector ||
2107        T->getVectorKind() == VectorType::NeonPolyVector)) {
2108     mangleNeonVectorType(T);
2109     return;
2110   }
2111   Out << "Dv" << T->getNumElements() << '_';
2112   if (T->getVectorKind() == VectorType::AltiVecPixel)
2113     Out << 'p';
2114   else if (T->getVectorKind() == VectorType::AltiVecBool)
2115     Out << 'b';
2116   else
2117     mangleType(T->getElementType());
2118 }
mangleType(const ExtVectorType * T)2119 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2120   mangleType(static_cast<const VectorType*>(T));
2121 }
mangleType(const DependentSizedExtVectorType * T)2122 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2123   Out << "Dv";
2124   mangleExpression(T->getSizeExpr());
2125   Out << '_';
2126   mangleType(T->getElementType());
2127 }
2128 
mangleType(const PackExpansionType * T)2129 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2130   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2131   Out << "Dp";
2132   mangleType(T->getPattern());
2133 }
2134 
mangleType(const ObjCInterfaceType * T)2135 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2136   mangleSourceName(T->getDecl()->getIdentifier());
2137 }
2138 
mangleType(const ObjCObjectType * T)2139 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2140   // We don't allow overloading by different protocol qualification,
2141   // so mangling them isn't necessary.
2142   mangleType(T->getBaseType());
2143 }
2144 
mangleType(const BlockPointerType * T)2145 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2146   Out << "U13block_pointer";
2147   mangleType(T->getPointeeType());
2148 }
2149 
mangleType(const InjectedClassNameType * T)2150 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2151   // Mangle injected class name types as if the user had written the
2152   // specialization out fully.  It may not actually be possible to see
2153   // this mangling, though.
2154   mangleType(T->getInjectedSpecializationType());
2155 }
2156 
mangleType(const TemplateSpecializationType * T)2157 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2158   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2159     mangleName(TD, T->getArgs(), T->getNumArgs());
2160   } else {
2161     if (mangleSubstitution(QualType(T, 0)))
2162       return;
2163 
2164     mangleTemplatePrefix(T->getTemplateName());
2165 
2166     // FIXME: GCC does not appear to mangle the template arguments when
2167     // the template in question is a dependent template name. Should we
2168     // emulate that badness?
2169     mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2170     addSubstitution(QualType(T, 0));
2171   }
2172 }
2173 
mangleType(const DependentNameType * T)2174 void CXXNameMangler::mangleType(const DependentNameType *T) {
2175   // Typename types are always nested
2176   Out << 'N';
2177   manglePrefix(T->getQualifier());
2178   mangleSourceName(T->getIdentifier());
2179   Out << 'E';
2180 }
2181 
mangleType(const DependentTemplateSpecializationType * T)2182 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2183   // Dependently-scoped template types are nested if they have a prefix.
2184   Out << 'N';
2185 
2186   // TODO: avoid making this TemplateName.
2187   TemplateName Prefix =
2188     getASTContext().getDependentTemplateName(T->getQualifier(),
2189                                              T->getIdentifier());
2190   mangleTemplatePrefix(Prefix);
2191 
2192   // FIXME: GCC does not appear to mangle the template arguments when
2193   // the template in question is a dependent template name. Should we
2194   // emulate that badness?
2195   mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2196   Out << 'E';
2197 }
2198 
mangleType(const TypeOfType * T)2199 void CXXNameMangler::mangleType(const TypeOfType *T) {
2200   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2201   // "extension with parameters" mangling.
2202   Out << "u6typeof";
2203 }
2204 
mangleType(const TypeOfExprType * T)2205 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2206   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2207   // "extension with parameters" mangling.
2208   Out << "u6typeof";
2209 }
2210 
mangleType(const DecltypeType * T)2211 void CXXNameMangler::mangleType(const DecltypeType *T) {
2212   Expr *E = T->getUnderlyingExpr();
2213 
2214   // type ::= Dt <expression> E  # decltype of an id-expression
2215   //                             #   or class member access
2216   //      ::= DT <expression> E  # decltype of an expression
2217 
2218   // This purports to be an exhaustive list of id-expressions and
2219   // class member accesses.  Note that we do not ignore parentheses;
2220   // parentheses change the semantics of decltype for these
2221   // expressions (and cause the mangler to use the other form).
2222   if (isa<DeclRefExpr>(E) ||
2223       isa<MemberExpr>(E) ||
2224       isa<UnresolvedLookupExpr>(E) ||
2225       isa<DependentScopeDeclRefExpr>(E) ||
2226       isa<CXXDependentScopeMemberExpr>(E) ||
2227       isa<UnresolvedMemberExpr>(E))
2228     Out << "Dt";
2229   else
2230     Out << "DT";
2231   mangleExpression(E);
2232   Out << 'E';
2233 }
2234 
mangleType(const UnaryTransformType * T)2235 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2236   // If this is dependent, we need to record that. If not, we simply
2237   // mangle it as the underlying type since they are equivalent.
2238   if (T->isDependentType()) {
2239     Out << 'U';
2240 
2241     switch (T->getUTTKind()) {
2242       case UnaryTransformType::EnumUnderlyingType:
2243         Out << "3eut";
2244         break;
2245     }
2246   }
2247 
2248   mangleType(T->getUnderlyingType());
2249 }
2250 
mangleType(const AutoType * T)2251 void CXXNameMangler::mangleType(const AutoType *T) {
2252   QualType D = T->getDeducedType();
2253   // <builtin-type> ::= Da  # dependent auto
2254   if (D.isNull())
2255     Out << "Da";
2256   else
2257     mangleType(D);
2258 }
2259 
mangleType(const AtomicType * T)2260 void CXXNameMangler::mangleType(const AtomicType *T) {
2261   // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2262   // (Until there's a standardized mangling...)
2263   Out << "U7_Atomic";
2264   mangleType(T->getValueType());
2265 }
2266 
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)2267 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2268                                           const llvm::APSInt &Value) {
2269   //  <expr-primary> ::= L <type> <value number> E # integer literal
2270   Out << 'L';
2271 
2272   mangleType(T);
2273   if (T->isBooleanType()) {
2274     // Boolean values are encoded as 0/1.
2275     Out << (Value.getBoolValue() ? '1' : '0');
2276   } else {
2277     mangleNumber(Value);
2278   }
2279   Out << 'E';
2280 
2281 }
2282 
2283 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,unsigned arity)2284 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2285                                       bool isArrow,
2286                                       NestedNameSpecifier *qualifier,
2287                                       NamedDecl *firstQualifierLookup,
2288                                       DeclarationName member,
2289                                       unsigned arity) {
2290   // <expression> ::= dt <expression> <unresolved-name>
2291   //              ::= pt <expression> <unresolved-name>
2292   if (base) {
2293     if (base->isImplicitCXXThis()) {
2294       // Note: GCC mangles member expressions to the implicit 'this' as
2295       // *this., whereas we represent them as this->. The Itanium C++ ABI
2296       // does not specify anything here, so we follow GCC.
2297       Out << "dtdefpT";
2298     } else {
2299       Out << (isArrow ? "pt" : "dt");
2300       mangleExpression(base);
2301     }
2302   }
2303   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2304 }
2305 
2306 /// Look at the callee of the given call expression and determine if
2307 /// it's a parenthesized id-expression which would have triggered ADL
2308 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)2309 static bool isParenthesizedADLCallee(const CallExpr *call) {
2310   const Expr *callee = call->getCallee();
2311   const Expr *fn = callee->IgnoreParens();
2312 
2313   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2314   // too, but for those to appear in the callee, it would have to be
2315   // parenthesized.
2316   if (callee == fn) return false;
2317 
2318   // Must be an unresolved lookup.
2319   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2320   if (!lookup) return false;
2321 
2322   assert(!lookup->requiresADL());
2323 
2324   // Must be an unqualified lookup.
2325   if (lookup->getQualifier()) return false;
2326 
2327   // Must not have found a class member.  Note that if one is a class
2328   // member, they're all class members.
2329   if (lookup->getNumDecls() > 0 &&
2330       (*lookup->decls_begin())->isCXXClassMember())
2331     return false;
2332 
2333   // Otherwise, ADL would have been triggered.
2334   return true;
2335 }
2336 
mangleExpression(const Expr * E,unsigned Arity)2337 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2338   // <expression> ::= <unary operator-name> <expression>
2339   //              ::= <binary operator-name> <expression> <expression>
2340   //              ::= <trinary operator-name> <expression> <expression> <expression>
2341   //              ::= cv <type> expression           # conversion with one argument
2342   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2343   //              ::= st <type>                      # sizeof (a type)
2344   //              ::= at <type>                      # alignof (a type)
2345   //              ::= <template-param>
2346   //              ::= <function-param>
2347   //              ::= sr <type> <unqualified-name>                   # dependent name
2348   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2349   //              ::= ds <expression> <expression>                   # expr.*expr
2350   //              ::= sZ <template-param>                            # size of a parameter pack
2351   //              ::= sZ <function-param>    # size of a function parameter pack
2352   //              ::= <expr-primary>
2353   // <expr-primary> ::= L <type> <value number> E    # integer literal
2354   //                ::= L <type <value float> E      # floating literal
2355   //                ::= L <mangled-name> E           # external name
2356   //                ::= fpT                          # 'this' expression
2357   QualType ImplicitlyConvertedToType;
2358 
2359 recurse:
2360   switch (E->getStmtClass()) {
2361   case Expr::NoStmtClass:
2362 #define ABSTRACT_STMT(Type)
2363 #define EXPR(Type, Base)
2364 #define STMT(Type, Base) \
2365   case Expr::Type##Class:
2366 #include "clang/AST/StmtNodes.inc"
2367     // fallthrough
2368 
2369   // These all can only appear in local or variable-initialization
2370   // contexts and so should never appear in a mangling.
2371   case Expr::AddrLabelExprClass:
2372   case Expr::DesignatedInitExprClass:
2373   case Expr::ImplicitValueInitExprClass:
2374   case Expr::ParenListExprClass:
2375   case Expr::LambdaExprClass:
2376     llvm_unreachable("unexpected statement kind");
2377 
2378   // FIXME: invent manglings for all these.
2379   case Expr::BlockExprClass:
2380   case Expr::CXXPseudoDestructorExprClass:
2381   case Expr::ChooseExprClass:
2382   case Expr::CompoundLiteralExprClass:
2383   case Expr::ExtVectorElementExprClass:
2384   case Expr::GenericSelectionExprClass:
2385   case Expr::ObjCEncodeExprClass:
2386   case Expr::ObjCIsaExprClass:
2387   case Expr::ObjCIvarRefExprClass:
2388   case Expr::ObjCMessageExprClass:
2389   case Expr::ObjCPropertyRefExprClass:
2390   case Expr::ObjCProtocolExprClass:
2391   case Expr::ObjCSelectorExprClass:
2392   case Expr::ObjCStringLiteralClass:
2393   case Expr::ObjCBoxedExprClass:
2394   case Expr::ObjCArrayLiteralClass:
2395   case Expr::ObjCDictionaryLiteralClass:
2396   case Expr::ObjCSubscriptRefExprClass:
2397   case Expr::ObjCIndirectCopyRestoreExprClass:
2398   case Expr::OffsetOfExprClass:
2399   case Expr::PredefinedExprClass:
2400   case Expr::ShuffleVectorExprClass:
2401   case Expr::StmtExprClass:
2402   case Expr::UnaryTypeTraitExprClass:
2403   case Expr::BinaryTypeTraitExprClass:
2404   case Expr::TypeTraitExprClass:
2405   case Expr::ArrayTypeTraitExprClass:
2406   case Expr::ExpressionTraitExprClass:
2407   case Expr::VAArgExprClass:
2408   case Expr::CXXUuidofExprClass:
2409   case Expr::CXXNoexceptExprClass:
2410   case Expr::CUDAKernelCallExprClass:
2411   case Expr::AsTypeExprClass:
2412   case Expr::PseudoObjectExprClass:
2413   case Expr::AtomicExprClass:
2414   {
2415     // As bad as this diagnostic is, it's better than crashing.
2416     DiagnosticsEngine &Diags = Context.getDiags();
2417     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2418                                      "cannot yet mangle expression type %0");
2419     Diags.Report(E->getExprLoc(), DiagID)
2420       << E->getStmtClassName() << E->getSourceRange();
2421     break;
2422   }
2423 
2424   // Even gcc-4.5 doesn't mangle this.
2425   case Expr::BinaryConditionalOperatorClass: {
2426     DiagnosticsEngine &Diags = Context.getDiags();
2427     unsigned DiagID =
2428       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2429                 "?: operator with omitted middle operand cannot be mangled");
2430     Diags.Report(E->getExprLoc(), DiagID)
2431       << E->getStmtClassName() << E->getSourceRange();
2432     break;
2433   }
2434 
2435   // These are used for internal purposes and cannot be meaningfully mangled.
2436   case Expr::OpaqueValueExprClass:
2437     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2438 
2439   case Expr::InitListExprClass: {
2440     // Proposal by Jason Merrill, 2012-01-03
2441     Out << "il";
2442     const InitListExpr *InitList = cast<InitListExpr>(E);
2443     for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2444       mangleExpression(InitList->getInit(i));
2445     Out << "E";
2446     break;
2447   }
2448 
2449   case Expr::CXXDefaultArgExprClass:
2450     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2451     break;
2452 
2453   case Expr::SubstNonTypeTemplateParmExprClass:
2454     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2455                      Arity);
2456     break;
2457 
2458   case Expr::UserDefinedLiteralClass:
2459     // We follow g++'s approach of mangling a UDL as a call to the literal
2460     // operator.
2461   case Expr::CXXMemberCallExprClass: // fallthrough
2462   case Expr::CallExprClass: {
2463     const CallExpr *CE = cast<CallExpr>(E);
2464 
2465     // <expression> ::= cp <simple-id> <expression>* E
2466     // We use this mangling only when the call would use ADL except
2467     // for being parenthesized.  Per discussion with David
2468     // Vandervoorde, 2011.04.25.
2469     if (isParenthesizedADLCallee(CE)) {
2470       Out << "cp";
2471       // The callee here is a parenthesized UnresolvedLookupExpr with
2472       // no qualifier and should always get mangled as a <simple-id>
2473       // anyway.
2474 
2475     // <expression> ::= cl <expression>* E
2476     } else {
2477       Out << "cl";
2478     }
2479 
2480     mangleExpression(CE->getCallee(), CE->getNumArgs());
2481     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2482       mangleExpression(CE->getArg(I));
2483     Out << 'E';
2484     break;
2485   }
2486 
2487   case Expr::CXXNewExprClass: {
2488     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2489     if (New->isGlobalNew()) Out << "gs";
2490     Out << (New->isArray() ? "na" : "nw");
2491     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2492            E = New->placement_arg_end(); I != E; ++I)
2493       mangleExpression(*I);
2494     Out << '_';
2495     mangleType(New->getAllocatedType());
2496     if (New->hasInitializer()) {
2497       // Proposal by Jason Merrill, 2012-01-03
2498       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2499         Out << "il";
2500       else
2501         Out << "pi";
2502       const Expr *Init = New->getInitializer();
2503       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2504         // Directly inline the initializers.
2505         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2506                                                   E = CCE->arg_end();
2507              I != E; ++I)
2508           mangleExpression(*I);
2509       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2510         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2511           mangleExpression(PLE->getExpr(i));
2512       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2513                  isa<InitListExpr>(Init)) {
2514         // Only take InitListExprs apart for list-initialization.
2515         const InitListExpr *InitList = cast<InitListExpr>(Init);
2516         for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2517           mangleExpression(InitList->getInit(i));
2518       } else
2519         mangleExpression(Init);
2520     }
2521     Out << 'E';
2522     break;
2523   }
2524 
2525   case Expr::MemberExprClass: {
2526     const MemberExpr *ME = cast<MemberExpr>(E);
2527     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2528                      ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2529                      Arity);
2530     break;
2531   }
2532 
2533   case Expr::UnresolvedMemberExprClass: {
2534     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2535     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2536                      ME->getQualifier(), 0, ME->getMemberName(),
2537                      Arity);
2538     if (ME->hasExplicitTemplateArgs())
2539       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2540     break;
2541   }
2542 
2543   case Expr::CXXDependentScopeMemberExprClass: {
2544     const CXXDependentScopeMemberExpr *ME
2545       = cast<CXXDependentScopeMemberExpr>(E);
2546     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2547                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2548                      ME->getMember(), Arity);
2549     if (ME->hasExplicitTemplateArgs())
2550       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2551     break;
2552   }
2553 
2554   case Expr::UnresolvedLookupExprClass: {
2555     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2556     mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2557 
2558     // All the <unresolved-name> productions end in a
2559     // base-unresolved-name, where <template-args> are just tacked
2560     // onto the end.
2561     if (ULE->hasExplicitTemplateArgs())
2562       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2563     break;
2564   }
2565 
2566   case Expr::CXXUnresolvedConstructExprClass: {
2567     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2568     unsigned N = CE->arg_size();
2569 
2570     Out << "cv";
2571     mangleType(CE->getType());
2572     if (N != 1) Out << '_';
2573     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2574     if (N != 1) Out << 'E';
2575     break;
2576   }
2577 
2578   case Expr::CXXTemporaryObjectExprClass:
2579   case Expr::CXXConstructExprClass: {
2580     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2581     unsigned N = CE->getNumArgs();
2582 
2583     // Proposal by Jason Merrill, 2012-01-03
2584     if (CE->isListInitialization())
2585       Out << "tl";
2586     else
2587       Out << "cv";
2588     mangleType(CE->getType());
2589     if (N != 1) Out << '_';
2590     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2591     if (N != 1) Out << 'E';
2592     break;
2593   }
2594 
2595   case Expr::CXXScalarValueInitExprClass:
2596     Out <<"cv";
2597     mangleType(E->getType());
2598     Out <<"_E";
2599     break;
2600 
2601   case Expr::UnaryExprOrTypeTraitExprClass: {
2602     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2603 
2604     if (!SAE->isInstantiationDependent()) {
2605       // Itanium C++ ABI:
2606       //   If the operand of a sizeof or alignof operator is not
2607       //   instantiation-dependent it is encoded as an integer literal
2608       //   reflecting the result of the operator.
2609       //
2610       //   If the result of the operator is implicitly converted to a known
2611       //   integer type, that type is used for the literal; otherwise, the type
2612       //   of std::size_t or std::ptrdiff_t is used.
2613       QualType T = (ImplicitlyConvertedToType.isNull() ||
2614                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2615                                                     : ImplicitlyConvertedToType;
2616       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2617       mangleIntegerLiteral(T, V);
2618       break;
2619     }
2620 
2621     switch(SAE->getKind()) {
2622     case UETT_SizeOf:
2623       Out << 's';
2624       break;
2625     case UETT_AlignOf:
2626       Out << 'a';
2627       break;
2628     case UETT_VecStep:
2629       DiagnosticsEngine &Diags = Context.getDiags();
2630       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2631                                      "cannot yet mangle vec_step expression");
2632       Diags.Report(DiagID);
2633       return;
2634     }
2635     if (SAE->isArgumentType()) {
2636       Out << 't';
2637       mangleType(SAE->getArgumentType());
2638     } else {
2639       Out << 'z';
2640       mangleExpression(SAE->getArgumentExpr());
2641     }
2642     break;
2643   }
2644 
2645   case Expr::CXXThrowExprClass: {
2646     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2647 
2648     // Proposal from David Vandervoorde, 2010.06.30
2649     if (TE->getSubExpr()) {
2650       Out << "tw";
2651       mangleExpression(TE->getSubExpr());
2652     } else {
2653       Out << "tr";
2654     }
2655     break;
2656   }
2657 
2658   case Expr::CXXTypeidExprClass: {
2659     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2660 
2661     // Proposal from David Vandervoorde, 2010.06.30
2662     if (TIE->isTypeOperand()) {
2663       Out << "ti";
2664       mangleType(TIE->getTypeOperand());
2665     } else {
2666       Out << "te";
2667       mangleExpression(TIE->getExprOperand());
2668     }
2669     break;
2670   }
2671 
2672   case Expr::CXXDeleteExprClass: {
2673     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2674 
2675     // Proposal from David Vandervoorde, 2010.06.30
2676     if (DE->isGlobalDelete()) Out << "gs";
2677     Out << (DE->isArrayForm() ? "da" : "dl");
2678     mangleExpression(DE->getArgument());
2679     break;
2680   }
2681 
2682   case Expr::UnaryOperatorClass: {
2683     const UnaryOperator *UO = cast<UnaryOperator>(E);
2684     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2685                        /*Arity=*/1);
2686     mangleExpression(UO->getSubExpr());
2687     break;
2688   }
2689 
2690   case Expr::ArraySubscriptExprClass: {
2691     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2692 
2693     // Array subscript is treated as a syntactically weird form of
2694     // binary operator.
2695     Out << "ix";
2696     mangleExpression(AE->getLHS());
2697     mangleExpression(AE->getRHS());
2698     break;
2699   }
2700 
2701   case Expr::CompoundAssignOperatorClass: // fallthrough
2702   case Expr::BinaryOperatorClass: {
2703     const BinaryOperator *BO = cast<BinaryOperator>(E);
2704     if (BO->getOpcode() == BO_PtrMemD)
2705       Out << "ds";
2706     else
2707       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2708                          /*Arity=*/2);
2709     mangleExpression(BO->getLHS());
2710     mangleExpression(BO->getRHS());
2711     break;
2712   }
2713 
2714   case Expr::ConditionalOperatorClass: {
2715     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2716     mangleOperatorName(OO_Conditional, /*Arity=*/3);
2717     mangleExpression(CO->getCond());
2718     mangleExpression(CO->getLHS(), Arity);
2719     mangleExpression(CO->getRHS(), Arity);
2720     break;
2721   }
2722 
2723   case Expr::ImplicitCastExprClass: {
2724     ImplicitlyConvertedToType = E->getType();
2725     E = cast<ImplicitCastExpr>(E)->getSubExpr();
2726     goto recurse;
2727   }
2728 
2729   case Expr::ObjCBridgedCastExprClass: {
2730     // Mangle ownership casts as a vendor extended operator __bridge,
2731     // __bridge_transfer, or __bridge_retain.
2732     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2733     Out << "v1U" << Kind.size() << Kind;
2734   }
2735   // Fall through to mangle the cast itself.
2736 
2737   case Expr::CStyleCastExprClass:
2738   case Expr::CXXStaticCastExprClass:
2739   case Expr::CXXDynamicCastExprClass:
2740   case Expr::CXXReinterpretCastExprClass:
2741   case Expr::CXXConstCastExprClass:
2742   case Expr::CXXFunctionalCastExprClass: {
2743     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2744     Out << "cv";
2745     mangleType(ECE->getType());
2746     mangleExpression(ECE->getSubExpr());
2747     break;
2748   }
2749 
2750   case Expr::CXXOperatorCallExprClass: {
2751     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2752     unsigned NumArgs = CE->getNumArgs();
2753     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2754     // Mangle the arguments.
2755     for (unsigned i = 0; i != NumArgs; ++i)
2756       mangleExpression(CE->getArg(i));
2757     break;
2758   }
2759 
2760   case Expr::ParenExprClass:
2761     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2762     break;
2763 
2764   case Expr::DeclRefExprClass: {
2765     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2766 
2767     switch (D->getKind()) {
2768     default:
2769       //  <expr-primary> ::= L <mangled-name> E # external name
2770       Out << 'L';
2771       mangle(D, "_Z");
2772       Out << 'E';
2773       break;
2774 
2775     case Decl::ParmVar:
2776       mangleFunctionParam(cast<ParmVarDecl>(D));
2777       break;
2778 
2779     case Decl::EnumConstant: {
2780       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2781       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2782       break;
2783     }
2784 
2785     case Decl::NonTypeTemplateParm: {
2786       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2787       mangleTemplateParameter(PD->getIndex());
2788       break;
2789     }
2790 
2791     }
2792 
2793     break;
2794   }
2795 
2796   case Expr::SubstNonTypeTemplateParmPackExprClass:
2797     // FIXME: not clear how to mangle this!
2798     // template <unsigned N...> class A {
2799     //   template <class U...> void foo(U (&x)[N]...);
2800     // };
2801     Out << "_SUBSTPACK_";
2802     break;
2803 
2804   case Expr::DependentScopeDeclRefExprClass: {
2805     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2806     mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2807 
2808     // All the <unresolved-name> productions end in a
2809     // base-unresolved-name, where <template-args> are just tacked
2810     // onto the end.
2811     if (DRE->hasExplicitTemplateArgs())
2812       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2813     break;
2814   }
2815 
2816   case Expr::CXXBindTemporaryExprClass:
2817     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2818     break;
2819 
2820   case Expr::ExprWithCleanupsClass:
2821     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2822     break;
2823 
2824   case Expr::FloatingLiteralClass: {
2825     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2826     Out << 'L';
2827     mangleType(FL->getType());
2828     mangleFloat(FL->getValue());
2829     Out << 'E';
2830     break;
2831   }
2832 
2833   case Expr::CharacterLiteralClass:
2834     Out << 'L';
2835     mangleType(E->getType());
2836     Out << cast<CharacterLiteral>(E)->getValue();
2837     Out << 'E';
2838     break;
2839 
2840   // FIXME. __objc_yes/__objc_no are mangled same as true/false
2841   case Expr::ObjCBoolLiteralExprClass:
2842     Out << "Lb";
2843     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2844     Out << 'E';
2845     break;
2846 
2847   case Expr::CXXBoolLiteralExprClass:
2848     Out << "Lb";
2849     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2850     Out << 'E';
2851     break;
2852 
2853   case Expr::IntegerLiteralClass: {
2854     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2855     if (E->getType()->isSignedIntegerType())
2856       Value.setIsSigned(true);
2857     mangleIntegerLiteral(E->getType(), Value);
2858     break;
2859   }
2860 
2861   case Expr::ImaginaryLiteralClass: {
2862     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2863     // Mangle as if a complex literal.
2864     // Proposal from David Vandevoorde, 2010.06.30.
2865     Out << 'L';
2866     mangleType(E->getType());
2867     if (const FloatingLiteral *Imag =
2868           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2869       // Mangle a floating-point zero of the appropriate type.
2870       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2871       Out << '_';
2872       mangleFloat(Imag->getValue());
2873     } else {
2874       Out << "0_";
2875       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2876       if (IE->getSubExpr()->getType()->isSignedIntegerType())
2877         Value.setIsSigned(true);
2878       mangleNumber(Value);
2879     }
2880     Out << 'E';
2881     break;
2882   }
2883 
2884   case Expr::StringLiteralClass: {
2885     // Revised proposal from David Vandervoorde, 2010.07.15.
2886     Out << 'L';
2887     assert(isa<ConstantArrayType>(E->getType()));
2888     mangleType(E->getType());
2889     Out << 'E';
2890     break;
2891   }
2892 
2893   case Expr::GNUNullExprClass:
2894     // FIXME: should this really be mangled the same as nullptr?
2895     // fallthrough
2896 
2897   case Expr::CXXNullPtrLiteralExprClass: {
2898     // Proposal from David Vandervoorde, 2010.06.30, as
2899     // modified by ABI list discussion.
2900     Out << "LDnE";
2901     break;
2902   }
2903 
2904   case Expr::PackExpansionExprClass:
2905     Out << "sp";
2906     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2907     break;
2908 
2909   case Expr::SizeOfPackExprClass: {
2910     Out << "sZ";
2911     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2912     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2913       mangleTemplateParameter(TTP->getIndex());
2914     else if (const NonTypeTemplateParmDecl *NTTP
2915                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2916       mangleTemplateParameter(NTTP->getIndex());
2917     else if (const TemplateTemplateParmDecl *TempTP
2918                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
2919       mangleTemplateParameter(TempTP->getIndex());
2920     else
2921       mangleFunctionParam(cast<ParmVarDecl>(Pack));
2922     break;
2923   }
2924 
2925   case Expr::MaterializeTemporaryExprClass: {
2926     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2927     break;
2928   }
2929 
2930   case Expr::CXXThisExprClass:
2931     Out << "fpT";
2932     break;
2933   }
2934 }
2935 
2936 /// Mangle an expression which refers to a parameter variable.
2937 ///
2938 /// <expression>     ::= <function-param>
2939 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2940 /// <function-param> ::= fp <top-level CV-qualifiers>
2941 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2942 /// <function-param> ::= fL <L-1 non-negative number>
2943 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2944 /// <function-param> ::= fL <L-1 non-negative number>
2945 ///                      p <top-level CV-qualifiers>
2946 ///                      <I-1 non-negative number> _         # L > 0, I > 0
2947 ///
2948 /// L is the nesting depth of the parameter, defined as 1 if the
2949 /// parameter comes from the innermost function prototype scope
2950 /// enclosing the current context, 2 if from the next enclosing
2951 /// function prototype scope, and so on, with one special case: if
2952 /// we've processed the full parameter clause for the innermost
2953 /// function type, then L is one less.  This definition conveniently
2954 /// makes it irrelevant whether a function's result type was written
2955 /// trailing or leading, but is otherwise overly complicated; the
2956 /// numbering was first designed without considering references to
2957 /// parameter in locations other than return types, and then the
2958 /// mangling had to be generalized without changing the existing
2959 /// manglings.
2960 ///
2961 /// I is the zero-based index of the parameter within its parameter
2962 /// declaration clause.  Note that the original ABI document describes
2963 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)2964 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2965   unsigned parmDepth = parm->getFunctionScopeDepth();
2966   unsigned parmIndex = parm->getFunctionScopeIndex();
2967 
2968   // Compute 'L'.
2969   // parmDepth does not include the declaring function prototype.
2970   // FunctionTypeDepth does account for that.
2971   assert(parmDepth < FunctionTypeDepth.getDepth());
2972   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2973   if (FunctionTypeDepth.isInResultType())
2974     nestingDepth--;
2975 
2976   if (nestingDepth == 0) {
2977     Out << "fp";
2978   } else {
2979     Out << "fL" << (nestingDepth - 1) << 'p';
2980   }
2981 
2982   // Top-level qualifiers.  We don't have to worry about arrays here,
2983   // because parameters declared as arrays should already have been
2984   // tranformed to have pointer type. FIXME: apparently these don't
2985   // get mangled if used as an rvalue of a known non-class type?
2986   assert(!parm->getType()->isArrayType()
2987          && "parameter's type is still an array type?");
2988   mangleQualifiers(parm->getType().getQualifiers());
2989 
2990   // Parameter index.
2991   if (parmIndex != 0) {
2992     Out << (parmIndex - 1);
2993   }
2994   Out << '_';
2995 }
2996 
mangleCXXCtorType(CXXCtorType T)2997 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2998   // <ctor-dtor-name> ::= C1  # complete object constructor
2999   //                  ::= C2  # base object constructor
3000   //                  ::= C3  # complete object allocating constructor
3001   //
3002   switch (T) {
3003   case Ctor_Complete:
3004     Out << "C1";
3005     break;
3006   case Ctor_Base:
3007     Out << "C2";
3008     break;
3009   case Ctor_CompleteAllocating:
3010     Out << "C3";
3011     break;
3012   }
3013 }
3014 
mangleCXXDtorType(CXXDtorType T)3015 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3016   // <ctor-dtor-name> ::= D0  # deleting destructor
3017   //                  ::= D1  # complete object destructor
3018   //                  ::= D2  # base object destructor
3019   //
3020   switch (T) {
3021   case Dtor_Deleting:
3022     Out << "D0";
3023     break;
3024   case Dtor_Complete:
3025     Out << "D1";
3026     break;
3027   case Dtor_Base:
3028     Out << "D2";
3029     break;
3030   }
3031 }
3032 
mangleTemplateArgs(const ASTTemplateArgumentListInfo & TemplateArgs)3033 void CXXNameMangler::mangleTemplateArgs(
3034                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3035   // <template-args> ::= I <template-arg>+ E
3036   Out << 'I';
3037   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3038     mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
3039   Out << 'E';
3040 }
3041 
mangleTemplateArgs(TemplateName Template,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3042 void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
3043                                         const TemplateArgument *TemplateArgs,
3044                                         unsigned NumTemplateArgs) {
3045   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3046     return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
3047                               NumTemplateArgs);
3048 
3049   mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
3050 }
3051 
mangleUnresolvedTemplateArgs(const TemplateArgument * args,unsigned numArgs)3052 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
3053                                                   unsigned numArgs) {
3054   // <template-args> ::= I <template-arg>+ E
3055   Out << 'I';
3056   for (unsigned i = 0; i != numArgs; ++i)
3057     mangleTemplateArg(0, args[i]);
3058   Out << 'E';
3059 }
3060 
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgumentList & AL)3061 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3062                                         const TemplateArgumentList &AL) {
3063   // <template-args> ::= I <template-arg>+ E
3064   Out << 'I';
3065   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3066     mangleTemplateArg(PL.getParam(i), AL[i]);
3067   Out << 'E';
3068 }
3069 
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3070 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3071                                         const TemplateArgument *TemplateArgs,
3072                                         unsigned NumTemplateArgs) {
3073   // <template-args> ::= I <template-arg>+ E
3074   Out << 'I';
3075   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3076     mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3077   Out << 'E';
3078 }
3079 
mangleTemplateArg(const NamedDecl * P,TemplateArgument A)3080 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3081                                        TemplateArgument A) {
3082   // <template-arg> ::= <type>              # type or template
3083   //                ::= X <expression> E    # expression
3084   //                ::= <expr-primary>      # simple expressions
3085   //                ::= J <template-arg>* E # argument pack
3086   //                ::= sp <expression>     # pack expansion of (C++0x)
3087   if (!A.isInstantiationDependent() || A.isDependent())
3088     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3089 
3090   switch (A.getKind()) {
3091   case TemplateArgument::Null:
3092     llvm_unreachable("Cannot mangle NULL template argument");
3093 
3094   case TemplateArgument::Type:
3095     mangleType(A.getAsType());
3096     break;
3097   case TemplateArgument::Template:
3098     // This is mangled as <type>.
3099     mangleType(A.getAsTemplate());
3100     break;
3101   case TemplateArgument::TemplateExpansion:
3102     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3103     Out << "Dp";
3104     mangleType(A.getAsTemplateOrTemplatePattern());
3105     break;
3106   case TemplateArgument::Expression: {
3107     // It's possible to end up with a DeclRefExpr here in certain
3108     // dependent cases, in which case we should mangle as a
3109     // declaration.
3110     const Expr *E = A.getAsExpr()->IgnoreParens();
3111     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3112       const ValueDecl *D = DRE->getDecl();
3113       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3114         Out << "L";
3115         mangle(D, "_Z");
3116         Out << 'E';
3117         break;
3118       }
3119     }
3120 
3121     Out << 'X';
3122     mangleExpression(E);
3123     Out << 'E';
3124     break;
3125   }
3126   case TemplateArgument::Integral:
3127     mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
3128     break;
3129   case TemplateArgument::Declaration: {
3130     assert(P && "Missing template parameter for declaration argument");
3131     //  <expr-primary> ::= L <mangled-name> E # external name
3132     //  <expr-primary> ::= L <type> 0 E
3133     // Clang produces AST's where pointer-to-member-function expressions
3134     // and pointer-to-function expressions are represented as a declaration not
3135     // an expression. We compensate for it here to produce the correct mangling.
3136     const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3137 
3138     // Handle NULL pointer arguments.
3139     if (!A.getAsDecl()) {
3140       Out << "L";
3141       mangleType(Parameter->getType());
3142       Out << "0E";
3143       break;
3144     }
3145 
3146 
3147     NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3148     bool compensateMangling = !Parameter->getType()->isReferenceType();
3149     if (compensateMangling) {
3150       Out << 'X';
3151       mangleOperatorName(OO_Amp, 1);
3152     }
3153 
3154     Out << 'L';
3155     // References to external entities use the mangled name; if the name would
3156     // not normally be manged then mangle it as unqualified.
3157     //
3158     // FIXME: The ABI specifies that external names here should have _Z, but
3159     // gcc leaves this off.
3160     if (compensateMangling)
3161       mangle(D, "_Z");
3162     else
3163       mangle(D, "Z");
3164     Out << 'E';
3165 
3166     if (compensateMangling)
3167       Out << 'E';
3168 
3169     break;
3170   }
3171 
3172   case TemplateArgument::Pack: {
3173     // Note: proposal by Mike Herrick on 12/20/10
3174     Out << 'J';
3175     for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3176                                       PAEnd = A.pack_end();
3177          PA != PAEnd; ++PA)
3178       mangleTemplateArg(P, *PA);
3179     Out << 'E';
3180   }
3181   }
3182 }
3183 
mangleTemplateParameter(unsigned Index)3184 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3185   // <template-param> ::= T_    # first template parameter
3186   //                  ::= T <parameter-2 non-negative number> _
3187   if (Index == 0)
3188     Out << "T_";
3189   else
3190     Out << 'T' << (Index - 1) << '_';
3191 }
3192 
mangleExistingSubstitution(QualType type)3193 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3194   bool result = mangleSubstitution(type);
3195   assert(result && "no existing substitution for type");
3196   (void) result;
3197 }
3198 
mangleExistingSubstitution(TemplateName tname)3199 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3200   bool result = mangleSubstitution(tname);
3201   assert(result && "no existing substitution for template name");
3202   (void) result;
3203 }
3204 
3205 // <substitution> ::= S <seq-id> _
3206 //                ::= S_
mangleSubstitution(const NamedDecl * ND)3207 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3208   // Try one of the standard substitutions first.
3209   if (mangleStandardSubstitution(ND))
3210     return true;
3211 
3212   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3213   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3214 }
3215 
3216 /// \brief Determine whether the given type has any qualifiers that are
3217 /// relevant for substitutions.
hasMangledSubstitutionQualifiers(QualType T)3218 static bool hasMangledSubstitutionQualifiers(QualType T) {
3219   Qualifiers Qs = T.getQualifiers();
3220   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3221 }
3222 
mangleSubstitution(QualType T)3223 bool CXXNameMangler::mangleSubstitution(QualType T) {
3224   if (!hasMangledSubstitutionQualifiers(T)) {
3225     if (const RecordType *RT = T->getAs<RecordType>())
3226       return mangleSubstitution(RT->getDecl());
3227   }
3228 
3229   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3230 
3231   return mangleSubstitution(TypePtr);
3232 }
3233 
mangleSubstitution(TemplateName Template)3234 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3235   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3236     return mangleSubstitution(TD);
3237 
3238   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3239   return mangleSubstitution(
3240                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3241 }
3242 
mangleSubstitution(uintptr_t Ptr)3243 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3244   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3245   if (I == Substitutions.end())
3246     return false;
3247 
3248   unsigned SeqID = I->second;
3249   if (SeqID == 0)
3250     Out << "S_";
3251   else {
3252     SeqID--;
3253 
3254     // <seq-id> is encoded in base-36, using digits and upper case letters.
3255     char Buffer[10];
3256     char *BufferPtr = llvm::array_endof(Buffer);
3257 
3258     if (SeqID == 0) *--BufferPtr = '0';
3259 
3260     while (SeqID) {
3261       assert(BufferPtr > Buffer && "Buffer overflow!");
3262 
3263       char c = static_cast<char>(SeqID % 36);
3264 
3265       *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3266       SeqID /= 36;
3267     }
3268 
3269     Out << 'S'
3270         << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3271         << '_';
3272   }
3273 
3274   return true;
3275 }
3276 
isCharType(QualType T)3277 static bool isCharType(QualType T) {
3278   if (T.isNull())
3279     return false;
3280 
3281   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3282     T->isSpecificBuiltinType(BuiltinType::Char_U);
3283 }
3284 
3285 /// isCharSpecialization - Returns whether a given type is a template
3286 /// specialization of a given name with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)3287 static bool isCharSpecialization(QualType T, const char *Name) {
3288   if (T.isNull())
3289     return false;
3290 
3291   const RecordType *RT = T->getAs<RecordType>();
3292   if (!RT)
3293     return false;
3294 
3295   const ClassTemplateSpecializationDecl *SD =
3296     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3297   if (!SD)
3298     return false;
3299 
3300   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3301     return false;
3302 
3303   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3304   if (TemplateArgs.size() != 1)
3305     return false;
3306 
3307   if (!isCharType(TemplateArgs[0].getAsType()))
3308     return false;
3309 
3310   return SD->getIdentifier()->getName() == Name;
3311 }
3312 
3313 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])3314 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3315                                        const char (&Str)[StrLen]) {
3316   if (!SD->getIdentifier()->isStr(Str))
3317     return false;
3318 
3319   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3320   if (TemplateArgs.size() != 2)
3321     return false;
3322 
3323   if (!isCharType(TemplateArgs[0].getAsType()))
3324     return false;
3325 
3326   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3327     return false;
3328 
3329   return true;
3330 }
3331 
mangleStandardSubstitution(const NamedDecl * ND)3332 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3333   // <substitution> ::= St # ::std::
3334   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3335     if (isStd(NS)) {
3336       Out << "St";
3337       return true;
3338     }
3339   }
3340 
3341   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3342     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3343       return false;
3344 
3345     // <substitution> ::= Sa # ::std::allocator
3346     if (TD->getIdentifier()->isStr("allocator")) {
3347       Out << "Sa";
3348       return true;
3349     }
3350 
3351     // <<substitution> ::= Sb # ::std::basic_string
3352     if (TD->getIdentifier()->isStr("basic_string")) {
3353       Out << "Sb";
3354       return true;
3355     }
3356   }
3357 
3358   if (const ClassTemplateSpecializationDecl *SD =
3359         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3360     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3361       return false;
3362 
3363     //    <substitution> ::= Ss # ::std::basic_string<char,
3364     //                            ::std::char_traits<char>,
3365     //                            ::std::allocator<char> >
3366     if (SD->getIdentifier()->isStr("basic_string")) {
3367       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3368 
3369       if (TemplateArgs.size() != 3)
3370         return false;
3371 
3372       if (!isCharType(TemplateArgs[0].getAsType()))
3373         return false;
3374 
3375       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3376         return false;
3377 
3378       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3379         return false;
3380 
3381       Out << "Ss";
3382       return true;
3383     }
3384 
3385     //    <substitution> ::= Si # ::std::basic_istream<char,
3386     //                            ::std::char_traits<char> >
3387     if (isStreamCharSpecialization(SD, "basic_istream")) {
3388       Out << "Si";
3389       return true;
3390     }
3391 
3392     //    <substitution> ::= So # ::std::basic_ostream<char,
3393     //                            ::std::char_traits<char> >
3394     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3395       Out << "So";
3396       return true;
3397     }
3398 
3399     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3400     //                            ::std::char_traits<char> >
3401     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3402       Out << "Sd";
3403       return true;
3404     }
3405   }
3406   return false;
3407 }
3408 
addSubstitution(QualType T)3409 void CXXNameMangler::addSubstitution(QualType T) {
3410   if (!hasMangledSubstitutionQualifiers(T)) {
3411     if (const RecordType *RT = T->getAs<RecordType>()) {
3412       addSubstitution(RT->getDecl());
3413       return;
3414     }
3415   }
3416 
3417   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3418   addSubstitution(TypePtr);
3419 }
3420 
addSubstitution(TemplateName Template)3421 void CXXNameMangler::addSubstitution(TemplateName Template) {
3422   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3423     return addSubstitution(TD);
3424 
3425   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3426   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3427 }
3428 
addSubstitution(uintptr_t Ptr)3429 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3430   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3431   Substitutions[Ptr] = SeqID++;
3432 }
3433 
3434 //
3435 
3436 /// \brief Mangles the name of the declaration D and emits that name to the
3437 /// given output stream.
3438 ///
3439 /// If the declaration D requires a mangled name, this routine will emit that
3440 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3441 /// and this routine will return false. In this case, the caller should just
3442 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3443 /// name.
mangleName(const NamedDecl * D,raw_ostream & Out)3444 void ItaniumMangleContext::mangleName(const NamedDecl *D,
3445                                       raw_ostream &Out) {
3446   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3447           "Invalid mangleName() call, argument is not a variable or function!");
3448   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3449          "Invalid mangleName() call on 'structor decl!");
3450 
3451   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3452                                  getASTContext().getSourceManager(),
3453                                  "Mangling declaration");
3454 
3455   CXXNameMangler Mangler(*this, Out, D);
3456   return Mangler.mangle(D);
3457 }
3458 
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)3459 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3460                                          CXXCtorType Type,
3461                                          raw_ostream &Out) {
3462   CXXNameMangler Mangler(*this, Out, D, Type);
3463   Mangler.mangle(D);
3464 }
3465 
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)3466 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3467                                          CXXDtorType Type,
3468                                          raw_ostream &Out) {
3469   CXXNameMangler Mangler(*this, Out, D, Type);
3470   Mangler.mangle(D);
3471 }
3472 
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3473 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3474                                        const ThunkInfo &Thunk,
3475                                        raw_ostream &Out) {
3476   //  <special-name> ::= T <call-offset> <base encoding>
3477   //                      # base is the nominal target function of thunk
3478   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3479   //                      # base is the nominal target function of thunk
3480   //                      # first call-offset is 'this' adjustment
3481   //                      # second call-offset is result adjustment
3482 
3483   assert(!isa<CXXDestructorDecl>(MD) &&
3484          "Use mangleCXXDtor for destructor decls!");
3485   CXXNameMangler Mangler(*this, Out);
3486   Mangler.getStream() << "_ZT";
3487   if (!Thunk.Return.isEmpty())
3488     Mangler.getStream() << 'c';
3489 
3490   // Mangle the 'this' pointer adjustment.
3491   Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3492 
3493   // Mangle the return pointer adjustment if there is one.
3494   if (!Thunk.Return.isEmpty())
3495     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3496                              Thunk.Return.VBaseOffsetOffset);
3497 
3498   Mangler.mangleFunctionEncoding(MD);
3499 }
3500 
3501 void
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)3502 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3503                                          CXXDtorType Type,
3504                                          const ThisAdjustment &ThisAdjustment,
3505                                          raw_ostream &Out) {
3506   //  <special-name> ::= T <call-offset> <base encoding>
3507   //                      # base is the nominal target function of thunk
3508   CXXNameMangler Mangler(*this, Out, DD, Type);
3509   Mangler.getStream() << "_ZT";
3510 
3511   // Mangle the 'this' pointer adjustment.
3512   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3513                            ThisAdjustment.VCallOffsetOffset);
3514 
3515   Mangler.mangleFunctionEncoding(DD);
3516 }
3517 
3518 /// mangleGuardVariable - Returns the mangled name for a guard variable
3519 /// for the passed in VarDecl.
mangleItaniumGuardVariable(const VarDecl * D,raw_ostream & Out)3520 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3521                                                       raw_ostream &Out) {
3522   //  <special-name> ::= GV <object name>       # Guard variable for one-time
3523   //                                            # initialization
3524   CXXNameMangler Mangler(*this, Out);
3525   Mangler.getStream() << "_ZGV";
3526   Mangler.mangleName(D);
3527 }
3528 
mangleReferenceTemporary(const VarDecl * D,raw_ostream & Out)3529 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3530                                                     raw_ostream &Out) {
3531   // We match the GCC mangling here.
3532   //  <special-name> ::= GR <object name>
3533   CXXNameMangler Mangler(*this, Out);
3534   Mangler.getStream() << "_ZGR";
3535   Mangler.mangleName(D);
3536 }
3537 
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)3538 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3539                                            raw_ostream &Out) {
3540   // <special-name> ::= TV <type>  # virtual table
3541   CXXNameMangler Mangler(*this, Out);
3542   Mangler.getStream() << "_ZTV";
3543   Mangler.mangleNameOrStandardSubstitution(RD);
3544 }
3545 
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)3546 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3547                                         raw_ostream &Out) {
3548   // <special-name> ::= TT <type>  # VTT structure
3549   CXXNameMangler Mangler(*this, Out);
3550   Mangler.getStream() << "_ZTT";
3551   Mangler.mangleNameOrStandardSubstitution(RD);
3552 }
3553 
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)3554 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3555                                                int64_t Offset,
3556                                                const CXXRecordDecl *Type,
3557                                                raw_ostream &Out) {
3558   // <special-name> ::= TC <type> <offset number> _ <base type>
3559   CXXNameMangler Mangler(*this, Out);
3560   Mangler.getStream() << "_ZTC";
3561   Mangler.mangleNameOrStandardSubstitution(RD);
3562   Mangler.getStream() << Offset;
3563   Mangler.getStream() << '_';
3564   Mangler.mangleNameOrStandardSubstitution(Type);
3565 }
3566 
mangleCXXRTTI(QualType Ty,raw_ostream & Out)3567 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3568                                          raw_ostream &Out) {
3569   // <special-name> ::= TI <type>  # typeinfo structure
3570   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3571   CXXNameMangler Mangler(*this, Out);
3572   Mangler.getStream() << "_ZTI";
3573   Mangler.mangleType(Ty);
3574 }
3575 
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)3576 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3577                                              raw_ostream &Out) {
3578   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3579   CXXNameMangler Mangler(*this, Out);
3580   Mangler.getStream() << "_ZTS";
3581   Mangler.mangleType(Ty);
3582 }
3583 
createItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)3584 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3585                                                  DiagnosticsEngine &Diags) {
3586   return new ItaniumMangleContext(Context, Diags);
3587 }
3588