1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 // http://www.codesourcery.com/public/cxx-abi/abi.html
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/ErrorHandling.h"
32
33 #define MANGLE_CHECKER 0
34
35 #if MANGLE_CHECKER
36 #include <cxxabi.h>
37 #endif
38
39 using namespace clang;
40
41 namespace {
42
43 /// \brief Retrieve the declaration context that should be used when mangling
44 /// the given declaration.
getEffectiveDeclContext(const Decl * D)45 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46 // The ABI assumes that lambda closure types that occur within
47 // default arguments live in the context of the function. However, due to
48 // the way in which Clang parses and creates function declarations, this is
49 // not the case: the lambda closure type ends up living in the context
50 // where the function itself resides, because the function declaration itself
51 // had not yet been created. Fix the context here.
52 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53 if (RD->isLambda())
54 if (ParmVarDecl *ContextParam
55 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56 return ContextParam->getDeclContext();
57 }
58
59 return D->getDeclContext();
60 }
61
getEffectiveParentContext(const DeclContext * DC)62 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63 return getEffectiveDeclContext(cast<Decl>(DC));
64 }
65
GetLocalClassDecl(const NamedDecl * ND)66 static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67 const DeclContext *DC = dyn_cast<DeclContext>(ND);
68 if (!DC)
69 DC = getEffectiveDeclContext(ND);
70 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71 const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72 if (isa<FunctionDecl>(Parent))
73 return dyn_cast<CXXRecordDecl>(DC);
74 DC = Parent;
75 }
76 return 0;
77 }
78
getStructor(const FunctionDecl * fn)79 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81 return ftd->getTemplatedDecl();
82
83 return fn;
84 }
85
getStructor(const NamedDecl * decl)86 static const NamedDecl *getStructor(const NamedDecl *decl) {
87 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88 return (fn ? getStructor(fn) : decl);
89 }
90
91 static const unsigned UnknownArity = ~0U;
92
93 class ItaniumMangleContext : public MangleContext {
94 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95 unsigned Discriminator;
96 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97
98 public:
ItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)99 explicit ItaniumMangleContext(ASTContext &Context,
100 DiagnosticsEngine &Diags)
101 : MangleContext(Context, Diags) { }
102
getAnonymousStructId(const TagDecl * TD)103 uint64_t getAnonymousStructId(const TagDecl *TD) {
104 std::pair<llvm::DenseMap<const TagDecl *,
105 uint64_t>::iterator, bool> Result =
106 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107 return Result.first->second;
108 }
109
startNewFunction()110 void startNewFunction() {
111 MangleContext::startNewFunction();
112 mangleInitDiscriminator();
113 }
114
115 /// @name Mangler Entry Points
116 /// @{
117
118 bool shouldMangleDeclName(const NamedDecl *D);
119 void mangleName(const NamedDecl *D, raw_ostream &);
120 void mangleThunk(const CXXMethodDecl *MD,
121 const ThunkInfo &Thunk,
122 raw_ostream &);
123 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124 const ThisAdjustment &ThisAdjustment,
125 raw_ostream &);
126 void mangleReferenceTemporary(const VarDecl *D,
127 raw_ostream &);
128 void mangleCXXVTable(const CXXRecordDecl *RD,
129 raw_ostream &);
130 void mangleCXXVTT(const CXXRecordDecl *RD,
131 raw_ostream &);
132 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133 const CXXRecordDecl *Type,
134 raw_ostream &);
135 void mangleCXXRTTI(QualType T, raw_ostream &);
136 void mangleCXXRTTIName(QualType T, raw_ostream &);
137 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138 raw_ostream &);
139 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140 raw_ostream &);
141
142 void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143
mangleInitDiscriminator()144 void mangleInitDiscriminator() {
145 Discriminator = 0;
146 }
147
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)148 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149 // Lambda closure types with external linkage (indicated by a
150 // non-zero lambda mangling number) have their own numbering scheme, so
151 // they do not need a discriminator.
152 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153 if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154 return false;
155
156 unsigned &discriminator = Uniquifier[ND];
157 if (!discriminator)
158 discriminator = ++Discriminator;
159 if (discriminator == 1)
160 return false;
161 disc = discriminator-2;
162 return true;
163 }
164 /// @}
165 };
166
167 /// CXXNameMangler - Manage the mangling of a single name.
168 class CXXNameMangler {
169 ItaniumMangleContext &Context;
170 raw_ostream &Out;
171
172 /// The "structor" is the top-level declaration being mangled, if
173 /// that's not a template specialization; otherwise it's the pattern
174 /// for that specialization.
175 const NamedDecl *Structor;
176 unsigned StructorType;
177
178 /// SeqID - The next subsitution sequence number.
179 unsigned SeqID;
180
181 class FunctionTypeDepthState {
182 unsigned Bits;
183
184 enum { InResultTypeMask = 1 };
185
186 public:
FunctionTypeDepthState()187 FunctionTypeDepthState() : Bits(0) {}
188
189 /// The number of function types we're inside.
getDepth() const190 unsigned getDepth() const {
191 return Bits >> 1;
192 }
193
194 /// True if we're in the return type of the innermost function type.
isInResultType() const195 bool isInResultType() const {
196 return Bits & InResultTypeMask;
197 }
198
push()199 FunctionTypeDepthState push() {
200 FunctionTypeDepthState tmp = *this;
201 Bits = (Bits & ~InResultTypeMask) + 2;
202 return tmp;
203 }
204
enterResultType()205 void enterResultType() {
206 Bits |= InResultTypeMask;
207 }
208
leaveResultType()209 void leaveResultType() {
210 Bits &= ~InResultTypeMask;
211 }
212
pop(FunctionTypeDepthState saved)213 void pop(FunctionTypeDepthState saved) {
214 assert(getDepth() == saved.getDepth() + 1);
215 Bits = saved.Bits;
216 }
217
218 } FunctionTypeDepth;
219
220 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221
getASTContext() const222 ASTContext &getASTContext() const { return Context.getASTContext(); }
223
224 public:
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const NamedDecl * D=0)225 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226 const NamedDecl *D = 0)
227 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228 SeqID(0) {
229 // These can't be mangled without a ctor type or dtor type.
230 assert(!D || (!isa<CXXDestructorDecl>(D) &&
231 !isa<CXXConstructorDecl>(D)));
232 }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)233 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234 const CXXConstructorDecl *D, CXXCtorType Type)
235 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236 SeqID(0) { }
CXXNameMangler(ItaniumMangleContext & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)237 CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238 const CXXDestructorDecl *D, CXXDtorType Type)
239 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240 SeqID(0) { }
241
242 #if MANGLE_CHECKER
~CXXNameMangler()243 ~CXXNameMangler() {
244 if (Out.str()[0] == '\01')
245 return;
246
247 int status = 0;
248 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249 assert(status == 0 && "Could not demangle mangled name!");
250 free(result);
251 }
252 #endif
getStream()253 raw_ostream &getStream() { return Out; }
254
255 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257 void mangleNumber(const llvm::APSInt &I);
258 void mangleNumber(int64_t Number);
259 void mangleFloat(const llvm::APFloat &F);
260 void mangleFunctionEncoding(const FunctionDecl *FD);
261 void mangleName(const NamedDecl *ND);
262 void mangleType(QualType T);
263 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264
265 private:
266 bool mangleSubstitution(const NamedDecl *ND);
267 bool mangleSubstitution(QualType T);
268 bool mangleSubstitution(TemplateName Template);
269 bool mangleSubstitution(uintptr_t Ptr);
270
271 void mangleExistingSubstitution(QualType type);
272 void mangleExistingSubstitution(TemplateName name);
273
274 bool mangleStandardSubstitution(const NamedDecl *ND);
275
addSubstitution(const NamedDecl * ND)276 void addSubstitution(const NamedDecl *ND) {
277 ND = cast<NamedDecl>(ND->getCanonicalDecl());
278
279 addSubstitution(reinterpret_cast<uintptr_t>(ND));
280 }
281 void addSubstitution(QualType T);
282 void addSubstitution(TemplateName Template);
283 void addSubstitution(uintptr_t Ptr);
284
285 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286 NamedDecl *firstQualifierLookup,
287 bool recursive = false);
288 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289 NamedDecl *firstQualifierLookup,
290 DeclarationName name,
291 unsigned KnownArity = UnknownArity);
292
293 void mangleName(const TemplateDecl *TD,
294 const TemplateArgument *TemplateArgs,
295 unsigned NumTemplateArgs);
mangleUnqualifiedName(const NamedDecl * ND)296 void mangleUnqualifiedName(const NamedDecl *ND) {
297 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298 }
299 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300 unsigned KnownArity);
301 void mangleUnscopedName(const NamedDecl *ND);
302 void mangleUnscopedTemplateName(const TemplateDecl *ND);
303 void mangleUnscopedTemplateName(TemplateName);
304 void mangleSourceName(const IdentifierInfo *II);
305 void mangleLocalName(const NamedDecl *ND);
306 void mangleLambda(const CXXRecordDecl *Lambda);
307 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308 bool NoFunction=false);
309 void mangleNestedName(const TemplateDecl *TD,
310 const TemplateArgument *TemplateArgs,
311 unsigned NumTemplateArgs);
312 void manglePrefix(NestedNameSpecifier *qualifier);
313 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314 void manglePrefix(QualType type);
315 void mangleTemplatePrefix(const TemplateDecl *ND);
316 void mangleTemplatePrefix(TemplateName Template);
317 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318 void mangleQualifiers(Qualifiers Quals);
319 void mangleRefQualifier(RefQualifierKind RefQualifier);
320
321 void mangleObjCMethodName(const ObjCMethodDecl *MD);
322
323 // Declare manglers for every type class.
324 #define ABSTRACT_TYPE(CLASS, PARENT)
325 #define NON_CANONICAL_TYPE(CLASS, PARENT)
326 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327 #include "clang/AST/TypeNodes.def"
328
329 void mangleType(const TagType*);
330 void mangleType(TemplateName);
331 void mangleBareFunctionType(const FunctionType *T,
332 bool MangleReturnType);
333 void mangleNeonVectorType(const VectorType *T);
334
335 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336 void mangleMemberExpr(const Expr *base, bool isArrow,
337 NestedNameSpecifier *qualifier,
338 NamedDecl *firstQualifierLookup,
339 DeclarationName name,
340 unsigned knownArity);
341 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342 void mangleCXXCtorType(CXXCtorType T);
343 void mangleCXXDtorType(CXXDtorType T);
344
345 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346 void mangleTemplateArgs(TemplateName Template,
347 const TemplateArgument *TemplateArgs,
348 unsigned NumTemplateArgs);
349 void mangleTemplateArgs(const TemplateParameterList &PL,
350 const TemplateArgument *TemplateArgs,
351 unsigned NumTemplateArgs);
352 void mangleTemplateArgs(const TemplateParameterList &PL,
353 const TemplateArgumentList &AL);
354 void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355 void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356 unsigned numArgs);
357
358 void mangleTemplateParameter(unsigned Index);
359
360 void mangleFunctionParam(const ParmVarDecl *parm);
361 };
362
363 }
364
isInCLinkageSpecification(const Decl * D)365 static bool isInCLinkageSpecification(const Decl *D) {
366 D = D->getCanonicalDecl();
367 for (const DeclContext *DC = getEffectiveDeclContext(D);
368 !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369 if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370 return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371 }
372
373 return false;
374 }
375
shouldMangleDeclName(const NamedDecl * D)376 bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377 // In C, functions with no attributes never need to be mangled. Fastpath them.
378 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
379 return false;
380
381 // Any decl can be declared with __asm("foo") on it, and this takes precedence
382 // over all other naming in the .o file.
383 if (D->hasAttr<AsmLabelAttr>())
384 return true;
385
386 // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387 // (always) as does passing a C++ member function and a function
388 // whose name is not a simple identifier.
389 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390 if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391 !FD->getDeclName().isIdentifier()))
392 return true;
393
394 // Otherwise, no mangling is done outside C++ mode.
395 if (!getASTContext().getLangOpts().CPlusPlus)
396 return false;
397
398 // Variables at global scope with non-internal linkage are not mangled
399 if (!FD) {
400 const DeclContext *DC = getEffectiveDeclContext(D);
401 // Check for extern variable declared locally.
402 if (DC->isFunctionOrMethod() && D->hasLinkage())
403 while (!DC->isNamespace() && !DC->isTranslationUnit())
404 DC = getEffectiveParentContext(DC);
405 if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406 return false;
407 }
408
409 // Class members are always mangled.
410 if (getEffectiveDeclContext(D)->isRecord())
411 return true;
412
413 // C functions and "main" are not mangled.
414 if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415 return false;
416
417 return true;
418 }
419
mangle(const NamedDecl * D,StringRef Prefix)420 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421 // Any decl can be declared with __asm("foo") on it, and this takes precedence
422 // over all other naming in the .o file.
423 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424 // If we have an asm name, then we use it as the mangling.
425
426 // Adding the prefix can cause problems when one file has a "foo" and
427 // another has a "\01foo". That is known to happen on ELF with the
428 // tricks normally used for producing aliases (PR9177). Fortunately the
429 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430 // marker. We also avoid adding the marker if this is an alias for an
431 // LLVM intrinsic.
432 StringRef UserLabelPrefix =
433 getASTContext().getTargetInfo().getUserLabelPrefix();
434 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435 Out << '\01'; // LLVM IR Marker for __asm("foo")
436
437 Out << ALA->getLabel();
438 return;
439 }
440
441 // <mangled-name> ::= _Z <encoding>
442 // ::= <data name>
443 // ::= <special-name>
444 Out << Prefix;
445 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446 mangleFunctionEncoding(FD);
447 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448 mangleName(VD);
449 else
450 mangleName(cast<FieldDecl>(D));
451 }
452
mangleFunctionEncoding(const FunctionDecl * FD)453 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454 // <encoding> ::= <function name> <bare-function-type>
455 mangleName(FD);
456
457 // Don't mangle in the type if this isn't a decl we should typically mangle.
458 if (!Context.shouldMangleDeclName(FD))
459 return;
460
461 // Whether the mangling of a function type includes the return type depends on
462 // the context and the nature of the function. The rules for deciding whether
463 // the return type is included are:
464 //
465 // 1. Template functions (names or types) have return types encoded, with
466 // the exceptions listed below.
467 // 2. Function types not appearing as part of a function name mangling,
468 // e.g. parameters, pointer types, etc., have return type encoded, with the
469 // exceptions listed below.
470 // 3. Non-template function names do not have return types encoded.
471 //
472 // The exceptions mentioned in (1) and (2) above, for which the return type is
473 // never included, are
474 // 1. Constructors.
475 // 2. Destructors.
476 // 3. Conversion operator functions, e.g. operator int.
477 bool MangleReturnType = false;
478 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480 isa<CXXConversionDecl>(FD)))
481 MangleReturnType = true;
482
483 // Mangle the type of the primary template.
484 FD = PrimaryTemplate->getTemplatedDecl();
485 }
486
487 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488 MangleReturnType);
489 }
490
IgnoreLinkageSpecDecls(const DeclContext * DC)491 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492 while (isa<LinkageSpecDecl>(DC)) {
493 DC = getEffectiveParentContext(DC);
494 }
495
496 return DC;
497 }
498
499 /// isStd - Return whether a given namespace is the 'std' namespace.
isStd(const NamespaceDecl * NS)500 static bool isStd(const NamespaceDecl *NS) {
501 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502 ->isTranslationUnit())
503 return false;
504
505 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506 return II && II->isStr("std");
507 }
508
509 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
510 // namespace.
isStdNamespace(const DeclContext * DC)511 static bool isStdNamespace(const DeclContext *DC) {
512 if (!DC->isNamespace())
513 return false;
514
515 return isStd(cast<NamespaceDecl>(DC));
516 }
517
518 static const TemplateDecl *
isTemplate(const NamedDecl * ND,const TemplateArgumentList * & TemplateArgs)519 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520 // Check if we have a function template.
521 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523 TemplateArgs = FD->getTemplateSpecializationArgs();
524 return TD;
525 }
526 }
527
528 // Check if we have a class template.
529 if (const ClassTemplateSpecializationDecl *Spec =
530 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531 TemplateArgs = &Spec->getTemplateArgs();
532 return Spec->getSpecializedTemplate();
533 }
534
535 return 0;
536 }
537
isLambda(const NamedDecl * ND)538 static bool isLambda(const NamedDecl *ND) {
539 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
540 if (!Record)
541 return false;
542
543 return Record->isLambda();
544 }
545
mangleName(const NamedDecl * ND)546 void CXXNameMangler::mangleName(const NamedDecl *ND) {
547 // <name> ::= <nested-name>
548 // ::= <unscoped-name>
549 // ::= <unscoped-template-name> <template-args>
550 // ::= <local-name>
551 //
552 const DeclContext *DC = getEffectiveDeclContext(ND);
553
554 // If this is an extern variable declared locally, the relevant DeclContext
555 // is that of the containing namespace, or the translation unit.
556 // FIXME: This is a hack; extern variables declared locally should have
557 // a proper semantic declaration context!
558 if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
559 while (!DC->isNamespace() && !DC->isTranslationUnit())
560 DC = getEffectiveParentContext(DC);
561 else if (GetLocalClassDecl(ND)) {
562 mangleLocalName(ND);
563 return;
564 }
565
566 DC = IgnoreLinkageSpecDecls(DC);
567
568 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
569 // Check if we have a template.
570 const TemplateArgumentList *TemplateArgs = 0;
571 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
572 mangleUnscopedTemplateName(TD);
573 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
574 mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
575 return;
576 }
577
578 mangleUnscopedName(ND);
579 return;
580 }
581
582 if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
583 mangleLocalName(ND);
584 return;
585 }
586
587 mangleNestedName(ND, DC);
588 }
mangleName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)589 void CXXNameMangler::mangleName(const TemplateDecl *TD,
590 const TemplateArgument *TemplateArgs,
591 unsigned NumTemplateArgs) {
592 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
593
594 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
595 mangleUnscopedTemplateName(TD);
596 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
597 mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
598 } else {
599 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
600 }
601 }
602
mangleUnscopedName(const NamedDecl * ND)603 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
604 // <unscoped-name> ::= <unqualified-name>
605 // ::= St <unqualified-name> # ::std::
606
607 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
608 Out << "St";
609
610 mangleUnqualifiedName(ND);
611 }
612
mangleUnscopedTemplateName(const TemplateDecl * ND)613 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
614 // <unscoped-template-name> ::= <unscoped-name>
615 // ::= <substitution>
616 if (mangleSubstitution(ND))
617 return;
618
619 // <template-template-param> ::= <template-param>
620 if (const TemplateTemplateParmDecl *TTP
621 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
622 mangleTemplateParameter(TTP->getIndex());
623 return;
624 }
625
626 mangleUnscopedName(ND->getTemplatedDecl());
627 addSubstitution(ND);
628 }
629
mangleUnscopedTemplateName(TemplateName Template)630 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
631 // <unscoped-template-name> ::= <unscoped-name>
632 // ::= <substitution>
633 if (TemplateDecl *TD = Template.getAsTemplateDecl())
634 return mangleUnscopedTemplateName(TD);
635
636 if (mangleSubstitution(Template))
637 return;
638
639 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
640 assert(Dependent && "Not a dependent template name?");
641 if (const IdentifierInfo *Id = Dependent->getIdentifier())
642 mangleSourceName(Id);
643 else
644 mangleOperatorName(Dependent->getOperator(), UnknownArity);
645
646 addSubstitution(Template);
647 }
648
mangleFloat(const llvm::APFloat & f)649 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
650 // ABI:
651 // Floating-point literals are encoded using a fixed-length
652 // lowercase hexadecimal string corresponding to the internal
653 // representation (IEEE on Itanium), high-order bytes first,
654 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
655 // on Itanium.
656 // The 'without leading zeroes' thing seems to be an editorial
657 // mistake; see the discussion on cxx-abi-dev beginning on
658 // 2012-01-16.
659
660 // Our requirements here are just barely wierd enough to justify
661 // using a custom algorithm instead of post-processing APInt::toString().
662
663 llvm::APInt valueBits = f.bitcastToAPInt();
664 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
665 assert(numCharacters != 0);
666
667 // Allocate a buffer of the right number of characters.
668 llvm::SmallVector<char, 20> buffer;
669 buffer.set_size(numCharacters);
670
671 // Fill the buffer left-to-right.
672 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
673 // The bit-index of the next hex digit.
674 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
675
676 // Project out 4 bits starting at 'digitIndex'.
677 llvm::integerPart hexDigit
678 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
679 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
680 hexDigit &= 0xF;
681
682 // Map that over to a lowercase hex digit.
683 static const char charForHex[16] = {
684 '0', '1', '2', '3', '4', '5', '6', '7',
685 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
686 };
687 buffer[stringIndex] = charForHex[hexDigit];
688 }
689
690 Out.write(buffer.data(), numCharacters);
691 }
692
mangleNumber(const llvm::APSInt & Value)693 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
694 if (Value.isSigned() && Value.isNegative()) {
695 Out << 'n';
696 Value.abs().print(Out, true);
697 } else
698 Value.print(Out, Value.isSigned());
699 }
700
mangleNumber(int64_t Number)701 void CXXNameMangler::mangleNumber(int64_t Number) {
702 // <number> ::= [n] <non-negative decimal integer>
703 if (Number < 0) {
704 Out << 'n';
705 Number = -Number;
706 }
707
708 Out << Number;
709 }
710
mangleCallOffset(int64_t NonVirtual,int64_t Virtual)711 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
712 // <call-offset> ::= h <nv-offset> _
713 // ::= v <v-offset> _
714 // <nv-offset> ::= <offset number> # non-virtual base override
715 // <v-offset> ::= <offset number> _ <virtual offset number>
716 // # virtual base override, with vcall offset
717 if (!Virtual) {
718 Out << 'h';
719 mangleNumber(NonVirtual);
720 Out << '_';
721 return;
722 }
723
724 Out << 'v';
725 mangleNumber(NonVirtual);
726 Out << '_';
727 mangleNumber(Virtual);
728 Out << '_';
729 }
730
manglePrefix(QualType type)731 void CXXNameMangler::manglePrefix(QualType type) {
732 if (const TemplateSpecializationType *TST =
733 type->getAs<TemplateSpecializationType>()) {
734 if (!mangleSubstitution(QualType(TST, 0))) {
735 mangleTemplatePrefix(TST->getTemplateName());
736
737 // FIXME: GCC does not appear to mangle the template arguments when
738 // the template in question is a dependent template name. Should we
739 // emulate that badness?
740 mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
741 TST->getNumArgs());
742 addSubstitution(QualType(TST, 0));
743 }
744 } else if (const DependentTemplateSpecializationType *DTST
745 = type->getAs<DependentTemplateSpecializationType>()) {
746 TemplateName Template
747 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
748 DTST->getIdentifier());
749 mangleTemplatePrefix(Template);
750
751 // FIXME: GCC does not appear to mangle the template arguments when
752 // the template in question is a dependent template name. Should we
753 // emulate that badness?
754 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
755 } else {
756 // We use the QualType mangle type variant here because it handles
757 // substitutions.
758 mangleType(type);
759 }
760 }
761
762 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
763 ///
764 /// \param firstQualifierLookup - the entity found by unqualified lookup
765 /// for the first name in the qualifier, if this is for a member expression
766 /// \param recursive - true if this is being called recursively,
767 /// i.e. if there is more prefix "to the right".
mangleUnresolvedPrefix(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,bool recursive)768 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
769 NamedDecl *firstQualifierLookup,
770 bool recursive) {
771
772 // x, ::x
773 // <unresolved-name> ::= [gs] <base-unresolved-name>
774
775 // T::x / decltype(p)::x
776 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
777
778 // T::N::x /decltype(p)::N::x
779 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
780 // <base-unresolved-name>
781
782 // A::x, N::y, A<T>::z; "gs" means leading "::"
783 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
784 // <base-unresolved-name>
785
786 switch (qualifier->getKind()) {
787 case NestedNameSpecifier::Global:
788 Out << "gs";
789
790 // We want an 'sr' unless this is the entire NNS.
791 if (recursive)
792 Out << "sr";
793
794 // We never want an 'E' here.
795 return;
796
797 case NestedNameSpecifier::Namespace:
798 if (qualifier->getPrefix())
799 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
800 /*recursive*/ true);
801 else
802 Out << "sr";
803 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
804 break;
805 case NestedNameSpecifier::NamespaceAlias:
806 if (qualifier->getPrefix())
807 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
808 /*recursive*/ true);
809 else
810 Out << "sr";
811 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
812 break;
813
814 case NestedNameSpecifier::TypeSpec:
815 case NestedNameSpecifier::TypeSpecWithTemplate: {
816 const Type *type = qualifier->getAsType();
817
818 // We only want to use an unresolved-type encoding if this is one of:
819 // - a decltype
820 // - a template type parameter
821 // - a template template parameter with arguments
822 // In all of these cases, we should have no prefix.
823 if (qualifier->getPrefix()) {
824 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
825 /*recursive*/ true);
826 } else {
827 // Otherwise, all the cases want this.
828 Out << "sr";
829 }
830
831 // Only certain other types are valid as prefixes; enumerate them.
832 switch (type->getTypeClass()) {
833 case Type::Builtin:
834 case Type::Complex:
835 case Type::Pointer:
836 case Type::BlockPointer:
837 case Type::LValueReference:
838 case Type::RValueReference:
839 case Type::MemberPointer:
840 case Type::ConstantArray:
841 case Type::IncompleteArray:
842 case Type::VariableArray:
843 case Type::DependentSizedArray:
844 case Type::DependentSizedExtVector:
845 case Type::Vector:
846 case Type::ExtVector:
847 case Type::FunctionProto:
848 case Type::FunctionNoProto:
849 case Type::Enum:
850 case Type::Paren:
851 case Type::Elaborated:
852 case Type::Attributed:
853 case Type::Auto:
854 case Type::PackExpansion:
855 case Type::ObjCObject:
856 case Type::ObjCInterface:
857 case Type::ObjCObjectPointer:
858 case Type::Atomic:
859 llvm_unreachable("type is illegal as a nested name specifier");
860
861 case Type::SubstTemplateTypeParmPack:
862 // FIXME: not clear how to mangle this!
863 // template <class T...> class A {
864 // template <class U...> void foo(decltype(T::foo(U())) x...);
865 // };
866 Out << "_SUBSTPACK_";
867 break;
868
869 // <unresolved-type> ::= <template-param>
870 // ::= <decltype>
871 // ::= <template-template-param> <template-args>
872 // (this last is not official yet)
873 case Type::TypeOfExpr:
874 case Type::TypeOf:
875 case Type::Decltype:
876 case Type::TemplateTypeParm:
877 case Type::UnaryTransform:
878 case Type::SubstTemplateTypeParm:
879 unresolvedType:
880 assert(!qualifier->getPrefix());
881
882 // We only get here recursively if we're followed by identifiers.
883 if (recursive) Out << 'N';
884
885 // This seems to do everything we want. It's not really
886 // sanctioned for a substituted template parameter, though.
887 mangleType(QualType(type, 0));
888
889 // We never want to print 'E' directly after an unresolved-type,
890 // so we return directly.
891 return;
892
893 case Type::Typedef:
894 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
895 break;
896
897 case Type::UnresolvedUsing:
898 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
899 ->getIdentifier());
900 break;
901
902 case Type::Record:
903 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
904 break;
905
906 case Type::TemplateSpecialization: {
907 const TemplateSpecializationType *tst
908 = cast<TemplateSpecializationType>(type);
909 TemplateName name = tst->getTemplateName();
910 switch (name.getKind()) {
911 case TemplateName::Template:
912 case TemplateName::QualifiedTemplate: {
913 TemplateDecl *temp = name.getAsTemplateDecl();
914
915 // If the base is a template template parameter, this is an
916 // unresolved type.
917 assert(temp && "no template for template specialization type");
918 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
919
920 mangleSourceName(temp->getIdentifier());
921 break;
922 }
923
924 case TemplateName::OverloadedTemplate:
925 case TemplateName::DependentTemplate:
926 llvm_unreachable("invalid base for a template specialization type");
927
928 case TemplateName::SubstTemplateTemplateParm: {
929 SubstTemplateTemplateParmStorage *subst
930 = name.getAsSubstTemplateTemplateParm();
931 mangleExistingSubstitution(subst->getReplacement());
932 break;
933 }
934
935 case TemplateName::SubstTemplateTemplateParmPack: {
936 // FIXME: not clear how to mangle this!
937 // template <template <class U> class T...> class A {
938 // template <class U...> void foo(decltype(T<U>::foo) x...);
939 // };
940 Out << "_SUBSTPACK_";
941 break;
942 }
943 }
944
945 mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
946 break;
947 }
948
949 case Type::InjectedClassName:
950 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
951 ->getIdentifier());
952 break;
953
954 case Type::DependentName:
955 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
956 break;
957
958 case Type::DependentTemplateSpecialization: {
959 const DependentTemplateSpecializationType *tst
960 = cast<DependentTemplateSpecializationType>(type);
961 mangleSourceName(tst->getIdentifier());
962 mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
963 break;
964 }
965 }
966 break;
967 }
968
969 case NestedNameSpecifier::Identifier:
970 // Member expressions can have these without prefixes.
971 if (qualifier->getPrefix()) {
972 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
973 /*recursive*/ true);
974 } else if (firstQualifierLookup) {
975
976 // Try to make a proper qualifier out of the lookup result, and
977 // then just recurse on that.
978 NestedNameSpecifier *newQualifier;
979 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
980 QualType type = getASTContext().getTypeDeclType(typeDecl);
981
982 // Pretend we had a different nested name specifier.
983 newQualifier = NestedNameSpecifier::Create(getASTContext(),
984 /*prefix*/ 0,
985 /*template*/ false,
986 type.getTypePtr());
987 } else if (NamespaceDecl *nspace =
988 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
989 newQualifier = NestedNameSpecifier::Create(getASTContext(),
990 /*prefix*/ 0,
991 nspace);
992 } else if (NamespaceAliasDecl *alias =
993 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
994 newQualifier = NestedNameSpecifier::Create(getASTContext(),
995 /*prefix*/ 0,
996 alias);
997 } else {
998 // No sensible mangling to do here.
999 newQualifier = 0;
1000 }
1001
1002 if (newQualifier)
1003 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1004
1005 } else {
1006 Out << "sr";
1007 }
1008
1009 mangleSourceName(qualifier->getAsIdentifier());
1010 break;
1011 }
1012
1013 // If this was the innermost part of the NNS, and we fell out to
1014 // here, append an 'E'.
1015 if (!recursive)
1016 Out << 'E';
1017 }
1018
1019 /// Mangle an unresolved-name, which is generally used for names which
1020 /// weren't resolved to specific entities.
mangleUnresolvedName(NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName name,unsigned knownArity)1021 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1022 NamedDecl *firstQualifierLookup,
1023 DeclarationName name,
1024 unsigned knownArity) {
1025 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1026 mangleUnqualifiedName(0, name, knownArity);
1027 }
1028
FindFirstNamedDataMember(const RecordDecl * RD)1029 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1030 assert(RD->isAnonymousStructOrUnion() &&
1031 "Expected anonymous struct or union!");
1032
1033 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1034 I != E; ++I) {
1035 const FieldDecl *FD = *I;
1036
1037 if (FD->getIdentifier())
1038 return FD;
1039
1040 if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
1041 if (const FieldDecl *NamedDataMember =
1042 FindFirstNamedDataMember(RT->getDecl()))
1043 return NamedDataMember;
1044 }
1045 }
1046
1047 // We didn't find a named data member.
1048 return 0;
1049 }
1050
mangleUnqualifiedName(const NamedDecl * ND,DeclarationName Name,unsigned KnownArity)1051 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1052 DeclarationName Name,
1053 unsigned KnownArity) {
1054 // <unqualified-name> ::= <operator-name>
1055 // ::= <ctor-dtor-name>
1056 // ::= <source-name>
1057 switch (Name.getNameKind()) {
1058 case DeclarationName::Identifier: {
1059 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1060 // We must avoid conflicts between internally- and externally-
1061 // linked variable and function declaration names in the same TU:
1062 // void test() { extern void foo(); }
1063 // static void foo();
1064 // This naming convention is the same as that followed by GCC,
1065 // though it shouldn't actually matter.
1066 if (ND && ND->getLinkage() == InternalLinkage &&
1067 getEffectiveDeclContext(ND)->isFileContext())
1068 Out << 'L';
1069
1070 mangleSourceName(II);
1071 break;
1072 }
1073
1074 // Otherwise, an anonymous entity. We must have a declaration.
1075 assert(ND && "mangling empty name without declaration");
1076
1077 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1078 if (NS->isAnonymousNamespace()) {
1079 // This is how gcc mangles these names.
1080 Out << "12_GLOBAL__N_1";
1081 break;
1082 }
1083 }
1084
1085 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1086 // We must have an anonymous union or struct declaration.
1087 const RecordDecl *RD =
1088 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1089
1090 // Itanium C++ ABI 5.1.2:
1091 //
1092 // For the purposes of mangling, the name of an anonymous union is
1093 // considered to be the name of the first named data member found by a
1094 // pre-order, depth-first, declaration-order walk of the data members of
1095 // the anonymous union. If there is no such data member (i.e., if all of
1096 // the data members in the union are unnamed), then there is no way for
1097 // a program to refer to the anonymous union, and there is therefore no
1098 // need to mangle its name.
1099 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1100
1101 // It's actually possible for various reasons for us to get here
1102 // with an empty anonymous struct / union. Fortunately, it
1103 // doesn't really matter what name we generate.
1104 if (!FD) break;
1105 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1106
1107 mangleSourceName(FD->getIdentifier());
1108 break;
1109 }
1110
1111 // We must have an anonymous struct.
1112 const TagDecl *TD = cast<TagDecl>(ND);
1113 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1114 assert(TD->getDeclContext() == D->getDeclContext() &&
1115 "Typedef should not be in another decl context!");
1116 assert(D->getDeclName().getAsIdentifierInfo() &&
1117 "Typedef was not named!");
1118 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1119 break;
1120 }
1121
1122 // <unnamed-type-name> ::= <closure-type-name>
1123 //
1124 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1125 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1126 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1127 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1128 mangleLambda(Record);
1129 break;
1130 }
1131 }
1132
1133 // Get a unique id for the anonymous struct.
1134 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1135
1136 // Mangle it as a source name in the form
1137 // [n] $_<id>
1138 // where n is the length of the string.
1139 SmallString<8> Str;
1140 Str += "$_";
1141 Str += llvm::utostr(AnonStructId);
1142
1143 Out << Str.size();
1144 Out << Str.str();
1145 break;
1146 }
1147
1148 case DeclarationName::ObjCZeroArgSelector:
1149 case DeclarationName::ObjCOneArgSelector:
1150 case DeclarationName::ObjCMultiArgSelector:
1151 llvm_unreachable("Can't mangle Objective-C selector names here!");
1152
1153 case DeclarationName::CXXConstructorName:
1154 if (ND == Structor)
1155 // If the named decl is the C++ constructor we're mangling, use the type
1156 // we were given.
1157 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1158 else
1159 // Otherwise, use the complete constructor name. This is relevant if a
1160 // class with a constructor is declared within a constructor.
1161 mangleCXXCtorType(Ctor_Complete);
1162 break;
1163
1164 case DeclarationName::CXXDestructorName:
1165 if (ND == Structor)
1166 // If the named decl is the C++ destructor we're mangling, use the type we
1167 // were given.
1168 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1169 else
1170 // Otherwise, use the complete destructor name. This is relevant if a
1171 // class with a destructor is declared within a destructor.
1172 mangleCXXDtorType(Dtor_Complete);
1173 break;
1174
1175 case DeclarationName::CXXConversionFunctionName:
1176 // <operator-name> ::= cv <type> # (cast)
1177 Out << "cv";
1178 mangleType(Name.getCXXNameType());
1179 break;
1180
1181 case DeclarationName::CXXOperatorName: {
1182 unsigned Arity;
1183 if (ND) {
1184 Arity = cast<FunctionDecl>(ND)->getNumParams();
1185
1186 // If we have a C++ member function, we need to include the 'this' pointer.
1187 // FIXME: This does not make sense for operators that are static, but their
1188 // names stay the same regardless of the arity (operator new for instance).
1189 if (isa<CXXMethodDecl>(ND))
1190 Arity++;
1191 } else
1192 Arity = KnownArity;
1193
1194 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1195 break;
1196 }
1197
1198 case DeclarationName::CXXLiteralOperatorName:
1199 // FIXME: This mangling is not yet official.
1200 Out << "li";
1201 mangleSourceName(Name.getCXXLiteralIdentifier());
1202 break;
1203
1204 case DeclarationName::CXXUsingDirective:
1205 llvm_unreachable("Can't mangle a using directive name!");
1206 }
1207 }
1208
mangleSourceName(const IdentifierInfo * II)1209 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1210 // <source-name> ::= <positive length number> <identifier>
1211 // <number> ::= [n] <non-negative decimal integer>
1212 // <identifier> ::= <unqualified source code identifier>
1213 Out << II->getLength() << II->getName();
1214 }
1215
mangleNestedName(const NamedDecl * ND,const DeclContext * DC,bool NoFunction)1216 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1217 const DeclContext *DC,
1218 bool NoFunction) {
1219 // <nested-name>
1220 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1221 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1222 // <template-args> E
1223
1224 Out << 'N';
1225 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1226 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1227 mangleRefQualifier(Method->getRefQualifier());
1228 }
1229
1230 // Check if we have a template.
1231 const TemplateArgumentList *TemplateArgs = 0;
1232 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1233 mangleTemplatePrefix(TD);
1234 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1235 mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1236 }
1237 else {
1238 manglePrefix(DC, NoFunction);
1239 mangleUnqualifiedName(ND);
1240 }
1241
1242 Out << 'E';
1243 }
mangleNestedName(const TemplateDecl * TD,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)1244 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1245 const TemplateArgument *TemplateArgs,
1246 unsigned NumTemplateArgs) {
1247 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1248
1249 Out << 'N';
1250
1251 mangleTemplatePrefix(TD);
1252 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1253 mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1254
1255 Out << 'E';
1256 }
1257
mangleLocalName(const NamedDecl * ND)1258 void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1259 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1260 // := Z <function encoding> E s [<discriminator>]
1261 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1262 // _ <entity name>
1263 // <discriminator> := _ <non-negative number>
1264 const DeclContext *DC = getEffectiveDeclContext(ND);
1265 if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1266 // Don't add objc method name mangling to locally declared function
1267 mangleUnqualifiedName(ND);
1268 return;
1269 }
1270
1271 Out << 'Z';
1272
1273 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1274 mangleObjCMethodName(MD);
1275 } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1276 mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1277 Out << 'E';
1278
1279 // The parameter number is omitted for the last parameter, 0 for the
1280 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1281 // <entity name> will of course contain a <closure-type-name>: Its
1282 // numbering will be local to the particular argument in which it appears
1283 // -- other default arguments do not affect its encoding.
1284 bool SkipDiscriminator = false;
1285 if (RD->isLambda()) {
1286 if (const ParmVarDecl *Parm
1287 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1288 if (const FunctionDecl *Func
1289 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1290 Out << 'd';
1291 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1292 if (Num > 1)
1293 mangleNumber(Num - 2);
1294 Out << '_';
1295 SkipDiscriminator = true;
1296 }
1297 }
1298 }
1299
1300 // Mangle the name relative to the closest enclosing function.
1301 if (ND == RD) // equality ok because RD derived from ND above
1302 mangleUnqualifiedName(ND);
1303 else
1304 mangleNestedName(ND, DC, true /*NoFunction*/);
1305
1306 if (!SkipDiscriminator) {
1307 unsigned disc;
1308 if (Context.getNextDiscriminator(RD, disc)) {
1309 if (disc < 10)
1310 Out << '_' << disc;
1311 else
1312 Out << "__" << disc << '_';
1313 }
1314 }
1315
1316 return;
1317 }
1318 else
1319 mangleFunctionEncoding(cast<FunctionDecl>(DC));
1320
1321 Out << 'E';
1322 mangleUnqualifiedName(ND);
1323 }
1324
mangleLambda(const CXXRecordDecl * Lambda)1325 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1326 // If the context of a closure type is an initializer for a class member
1327 // (static or nonstatic), it is encoded in a qualified name with a final
1328 // <prefix> of the form:
1329 //
1330 // <data-member-prefix> := <member source-name> M
1331 //
1332 // Technically, the data-member-prefix is part of the <prefix>. However,
1333 // since a closure type will always be mangled with a prefix, it's easier
1334 // to emit that last part of the prefix here.
1335 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1336 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1337 Context->getDeclContext()->isRecord()) {
1338 if (const IdentifierInfo *Name
1339 = cast<NamedDecl>(Context)->getIdentifier()) {
1340 mangleSourceName(Name);
1341 Out << 'M';
1342 }
1343 }
1344 }
1345
1346 Out << "Ul";
1347 DeclarationName Name
1348 = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1349 const FunctionProtoType *Proto
1350 = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1351 getAs<FunctionProtoType>();
1352 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1353 Out << "E";
1354
1355 // The number is omitted for the first closure type with a given
1356 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1357 // (in lexical order) with that same <lambda-sig> and context.
1358 //
1359 // The AST keeps track of the number for us.
1360 unsigned Number = Lambda->getLambdaManglingNumber();
1361 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1362 if (Number > 1)
1363 mangleNumber(Number - 2);
1364 Out << '_';
1365 }
1366
manglePrefix(NestedNameSpecifier * qualifier)1367 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1368 switch (qualifier->getKind()) {
1369 case NestedNameSpecifier::Global:
1370 // nothing
1371 return;
1372
1373 case NestedNameSpecifier::Namespace:
1374 mangleName(qualifier->getAsNamespace());
1375 return;
1376
1377 case NestedNameSpecifier::NamespaceAlias:
1378 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1379 return;
1380
1381 case NestedNameSpecifier::TypeSpec:
1382 case NestedNameSpecifier::TypeSpecWithTemplate:
1383 manglePrefix(QualType(qualifier->getAsType(), 0));
1384 return;
1385
1386 case NestedNameSpecifier::Identifier:
1387 // Member expressions can have these without prefixes, but that
1388 // should end up in mangleUnresolvedPrefix instead.
1389 assert(qualifier->getPrefix());
1390 manglePrefix(qualifier->getPrefix());
1391
1392 mangleSourceName(qualifier->getAsIdentifier());
1393 return;
1394 }
1395
1396 llvm_unreachable("unexpected nested name specifier");
1397 }
1398
manglePrefix(const DeclContext * DC,bool NoFunction)1399 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1400 // <prefix> ::= <prefix> <unqualified-name>
1401 // ::= <template-prefix> <template-args>
1402 // ::= <template-param>
1403 // ::= # empty
1404 // ::= <substitution>
1405
1406 DC = IgnoreLinkageSpecDecls(DC);
1407
1408 if (DC->isTranslationUnit())
1409 return;
1410
1411 if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1412 manglePrefix(getEffectiveParentContext(DC), NoFunction);
1413 SmallString<64> Name;
1414 llvm::raw_svector_ostream NameStream(Name);
1415 Context.mangleBlock(Block, NameStream);
1416 NameStream.flush();
1417 Out << Name.size() << Name;
1418 return;
1419 }
1420
1421 const NamedDecl *ND = cast<NamedDecl>(DC);
1422 if (mangleSubstitution(ND))
1423 return;
1424
1425 // Check if we have a template.
1426 const TemplateArgumentList *TemplateArgs = 0;
1427 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1428 mangleTemplatePrefix(TD);
1429 TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1430 mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1431 }
1432 else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1433 return;
1434 else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1435 mangleObjCMethodName(Method);
1436 else {
1437 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1438 mangleUnqualifiedName(ND);
1439 }
1440
1441 addSubstitution(ND);
1442 }
1443
mangleTemplatePrefix(TemplateName Template)1444 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1445 // <template-prefix> ::= <prefix> <template unqualified-name>
1446 // ::= <template-param>
1447 // ::= <substitution>
1448 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1449 return mangleTemplatePrefix(TD);
1450
1451 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1452 manglePrefix(Qualified->getQualifier());
1453
1454 if (OverloadedTemplateStorage *Overloaded
1455 = Template.getAsOverloadedTemplate()) {
1456 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1457 UnknownArity);
1458 return;
1459 }
1460
1461 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1462 assert(Dependent && "Unknown template name kind?");
1463 manglePrefix(Dependent->getQualifier());
1464 mangleUnscopedTemplateName(Template);
1465 }
1466
mangleTemplatePrefix(const TemplateDecl * ND)1467 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1468 // <template-prefix> ::= <prefix> <template unqualified-name>
1469 // ::= <template-param>
1470 // ::= <substitution>
1471 // <template-template-param> ::= <template-param>
1472 // <substitution>
1473
1474 if (mangleSubstitution(ND))
1475 return;
1476
1477 // <template-template-param> ::= <template-param>
1478 if (const TemplateTemplateParmDecl *TTP
1479 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1480 mangleTemplateParameter(TTP->getIndex());
1481 return;
1482 }
1483
1484 manglePrefix(getEffectiveDeclContext(ND));
1485 mangleUnqualifiedName(ND->getTemplatedDecl());
1486 addSubstitution(ND);
1487 }
1488
1489 /// Mangles a template name under the production <type>. Required for
1490 /// template template arguments.
1491 /// <type> ::= <class-enum-type>
1492 /// ::= <template-param>
1493 /// ::= <substitution>
mangleType(TemplateName TN)1494 void CXXNameMangler::mangleType(TemplateName TN) {
1495 if (mangleSubstitution(TN))
1496 return;
1497
1498 TemplateDecl *TD = 0;
1499
1500 switch (TN.getKind()) {
1501 case TemplateName::QualifiedTemplate:
1502 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1503 goto HaveDecl;
1504
1505 case TemplateName::Template:
1506 TD = TN.getAsTemplateDecl();
1507 goto HaveDecl;
1508
1509 HaveDecl:
1510 if (isa<TemplateTemplateParmDecl>(TD))
1511 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1512 else
1513 mangleName(TD);
1514 break;
1515
1516 case TemplateName::OverloadedTemplate:
1517 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1518
1519 case TemplateName::DependentTemplate: {
1520 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1521 assert(Dependent->isIdentifier());
1522
1523 // <class-enum-type> ::= <name>
1524 // <name> ::= <nested-name>
1525 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1526 mangleSourceName(Dependent->getIdentifier());
1527 break;
1528 }
1529
1530 case TemplateName::SubstTemplateTemplateParm: {
1531 // Substituted template parameters are mangled as the substituted
1532 // template. This will check for the substitution twice, which is
1533 // fine, but we have to return early so that we don't try to *add*
1534 // the substitution twice.
1535 SubstTemplateTemplateParmStorage *subst
1536 = TN.getAsSubstTemplateTemplateParm();
1537 mangleType(subst->getReplacement());
1538 return;
1539 }
1540
1541 case TemplateName::SubstTemplateTemplateParmPack: {
1542 // FIXME: not clear how to mangle this!
1543 // template <template <class> class T...> class A {
1544 // template <template <class> class U...> void foo(B<T,U> x...);
1545 // };
1546 Out << "_SUBSTPACK_";
1547 break;
1548 }
1549 }
1550
1551 addSubstitution(TN);
1552 }
1553
1554 void
mangleOperatorName(OverloadedOperatorKind OO,unsigned Arity)1555 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1556 switch (OO) {
1557 // <operator-name> ::= nw # new
1558 case OO_New: Out << "nw"; break;
1559 // ::= na # new[]
1560 case OO_Array_New: Out << "na"; break;
1561 // ::= dl # delete
1562 case OO_Delete: Out << "dl"; break;
1563 // ::= da # delete[]
1564 case OO_Array_Delete: Out << "da"; break;
1565 // ::= ps # + (unary)
1566 // ::= pl # + (binary or unknown)
1567 case OO_Plus:
1568 Out << (Arity == 1? "ps" : "pl"); break;
1569 // ::= ng # - (unary)
1570 // ::= mi # - (binary or unknown)
1571 case OO_Minus:
1572 Out << (Arity == 1? "ng" : "mi"); break;
1573 // ::= ad # & (unary)
1574 // ::= an # & (binary or unknown)
1575 case OO_Amp:
1576 Out << (Arity == 1? "ad" : "an"); break;
1577 // ::= de # * (unary)
1578 // ::= ml # * (binary or unknown)
1579 case OO_Star:
1580 // Use binary when unknown.
1581 Out << (Arity == 1? "de" : "ml"); break;
1582 // ::= co # ~
1583 case OO_Tilde: Out << "co"; break;
1584 // ::= dv # /
1585 case OO_Slash: Out << "dv"; break;
1586 // ::= rm # %
1587 case OO_Percent: Out << "rm"; break;
1588 // ::= or # |
1589 case OO_Pipe: Out << "or"; break;
1590 // ::= eo # ^
1591 case OO_Caret: Out << "eo"; break;
1592 // ::= aS # =
1593 case OO_Equal: Out << "aS"; break;
1594 // ::= pL # +=
1595 case OO_PlusEqual: Out << "pL"; break;
1596 // ::= mI # -=
1597 case OO_MinusEqual: Out << "mI"; break;
1598 // ::= mL # *=
1599 case OO_StarEqual: Out << "mL"; break;
1600 // ::= dV # /=
1601 case OO_SlashEqual: Out << "dV"; break;
1602 // ::= rM # %=
1603 case OO_PercentEqual: Out << "rM"; break;
1604 // ::= aN # &=
1605 case OO_AmpEqual: Out << "aN"; break;
1606 // ::= oR # |=
1607 case OO_PipeEqual: Out << "oR"; break;
1608 // ::= eO # ^=
1609 case OO_CaretEqual: Out << "eO"; break;
1610 // ::= ls # <<
1611 case OO_LessLess: Out << "ls"; break;
1612 // ::= rs # >>
1613 case OO_GreaterGreater: Out << "rs"; break;
1614 // ::= lS # <<=
1615 case OO_LessLessEqual: Out << "lS"; break;
1616 // ::= rS # >>=
1617 case OO_GreaterGreaterEqual: Out << "rS"; break;
1618 // ::= eq # ==
1619 case OO_EqualEqual: Out << "eq"; break;
1620 // ::= ne # !=
1621 case OO_ExclaimEqual: Out << "ne"; break;
1622 // ::= lt # <
1623 case OO_Less: Out << "lt"; break;
1624 // ::= gt # >
1625 case OO_Greater: Out << "gt"; break;
1626 // ::= le # <=
1627 case OO_LessEqual: Out << "le"; break;
1628 // ::= ge # >=
1629 case OO_GreaterEqual: Out << "ge"; break;
1630 // ::= nt # !
1631 case OO_Exclaim: Out << "nt"; break;
1632 // ::= aa # &&
1633 case OO_AmpAmp: Out << "aa"; break;
1634 // ::= oo # ||
1635 case OO_PipePipe: Out << "oo"; break;
1636 // ::= pp # ++
1637 case OO_PlusPlus: Out << "pp"; break;
1638 // ::= mm # --
1639 case OO_MinusMinus: Out << "mm"; break;
1640 // ::= cm # ,
1641 case OO_Comma: Out << "cm"; break;
1642 // ::= pm # ->*
1643 case OO_ArrowStar: Out << "pm"; break;
1644 // ::= pt # ->
1645 case OO_Arrow: Out << "pt"; break;
1646 // ::= cl # ()
1647 case OO_Call: Out << "cl"; break;
1648 // ::= ix # []
1649 case OO_Subscript: Out << "ix"; break;
1650
1651 // ::= qu # ?
1652 // The conditional operator can't be overloaded, but we still handle it when
1653 // mangling expressions.
1654 case OO_Conditional: Out << "qu"; break;
1655
1656 case OO_None:
1657 case NUM_OVERLOADED_OPERATORS:
1658 llvm_unreachable("Not an overloaded operator");
1659 }
1660 }
1661
mangleQualifiers(Qualifiers Quals)1662 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1663 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1664 if (Quals.hasRestrict())
1665 Out << 'r';
1666 if (Quals.hasVolatile())
1667 Out << 'V';
1668 if (Quals.hasConst())
1669 Out << 'K';
1670
1671 if (Quals.hasAddressSpace()) {
1672 // Extension:
1673 //
1674 // <type> ::= U <address-space-number>
1675 //
1676 // where <address-space-number> is a source name consisting of 'AS'
1677 // followed by the address space <number>.
1678 SmallString<64> ASString;
1679 ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1680 Out << 'U' << ASString.size() << ASString;
1681 }
1682
1683 StringRef LifetimeName;
1684 switch (Quals.getObjCLifetime()) {
1685 // Objective-C ARC Extension:
1686 //
1687 // <type> ::= U "__strong"
1688 // <type> ::= U "__weak"
1689 // <type> ::= U "__autoreleasing"
1690 case Qualifiers::OCL_None:
1691 break;
1692
1693 case Qualifiers::OCL_Weak:
1694 LifetimeName = "__weak";
1695 break;
1696
1697 case Qualifiers::OCL_Strong:
1698 LifetimeName = "__strong";
1699 break;
1700
1701 case Qualifiers::OCL_Autoreleasing:
1702 LifetimeName = "__autoreleasing";
1703 break;
1704
1705 case Qualifiers::OCL_ExplicitNone:
1706 // The __unsafe_unretained qualifier is *not* mangled, so that
1707 // __unsafe_unretained types in ARC produce the same manglings as the
1708 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1709 // better ABI compatibility.
1710 //
1711 // It's safe to do this because unqualified 'id' won't show up
1712 // in any type signatures that need to be mangled.
1713 break;
1714 }
1715 if (!LifetimeName.empty())
1716 Out << 'U' << LifetimeName.size() << LifetimeName;
1717 }
1718
mangleRefQualifier(RefQualifierKind RefQualifier)1719 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1720 // <ref-qualifier> ::= R # lvalue reference
1721 // ::= O # rvalue-reference
1722 // Proposal to Itanium C++ ABI list on 1/26/11
1723 switch (RefQualifier) {
1724 case RQ_None:
1725 break;
1726
1727 case RQ_LValue:
1728 Out << 'R';
1729 break;
1730
1731 case RQ_RValue:
1732 Out << 'O';
1733 break;
1734 }
1735 }
1736
mangleObjCMethodName(const ObjCMethodDecl * MD)1737 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1738 Context.mangleObjCMethodName(MD, Out);
1739 }
1740
mangleType(QualType T)1741 void CXXNameMangler::mangleType(QualType T) {
1742 // If our type is instantiation-dependent but not dependent, we mangle
1743 // it as it was written in the source, removing any top-level sugar.
1744 // Otherwise, use the canonical type.
1745 //
1746 // FIXME: This is an approximation of the instantiation-dependent name
1747 // mangling rules, since we should really be using the type as written and
1748 // augmented via semantic analysis (i.e., with implicit conversions and
1749 // default template arguments) for any instantiation-dependent type.
1750 // Unfortunately, that requires several changes to our AST:
1751 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1752 // uniqued, so that we can handle substitutions properly
1753 // - Default template arguments will need to be represented in the
1754 // TemplateSpecializationType, since they need to be mangled even though
1755 // they aren't written.
1756 // - Conversions on non-type template arguments need to be expressed, since
1757 // they can affect the mangling of sizeof/alignof.
1758 if (!T->isInstantiationDependentType() || T->isDependentType())
1759 T = T.getCanonicalType();
1760 else {
1761 // Desugar any types that are purely sugar.
1762 do {
1763 // Don't desugar through template specialization types that aren't
1764 // type aliases. We need to mangle the template arguments as written.
1765 if (const TemplateSpecializationType *TST
1766 = dyn_cast<TemplateSpecializationType>(T))
1767 if (!TST->isTypeAlias())
1768 break;
1769
1770 QualType Desugared
1771 = T.getSingleStepDesugaredType(Context.getASTContext());
1772 if (Desugared == T)
1773 break;
1774
1775 T = Desugared;
1776 } while (true);
1777 }
1778 SplitQualType split = T.split();
1779 Qualifiers quals = split.Quals;
1780 const Type *ty = split.Ty;
1781
1782 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1783 if (isSubstitutable && mangleSubstitution(T))
1784 return;
1785
1786 // If we're mangling a qualified array type, push the qualifiers to
1787 // the element type.
1788 if (quals && isa<ArrayType>(T)) {
1789 ty = Context.getASTContext().getAsArrayType(T);
1790 quals = Qualifiers();
1791
1792 // Note that we don't update T: we want to add the
1793 // substitution at the original type.
1794 }
1795
1796 if (quals) {
1797 mangleQualifiers(quals);
1798 // Recurse: even if the qualified type isn't yet substitutable,
1799 // the unqualified type might be.
1800 mangleType(QualType(ty, 0));
1801 } else {
1802 switch (ty->getTypeClass()) {
1803 #define ABSTRACT_TYPE(CLASS, PARENT)
1804 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1805 case Type::CLASS: \
1806 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1807 return;
1808 #define TYPE(CLASS, PARENT) \
1809 case Type::CLASS: \
1810 mangleType(static_cast<const CLASS##Type*>(ty)); \
1811 break;
1812 #include "clang/AST/TypeNodes.def"
1813 }
1814 }
1815
1816 // Add the substitution.
1817 if (isSubstitutable)
1818 addSubstitution(T);
1819 }
1820
mangleNameOrStandardSubstitution(const NamedDecl * ND)1821 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1822 if (!mangleStandardSubstitution(ND))
1823 mangleName(ND);
1824 }
1825
mangleType(const BuiltinType * T)1826 void CXXNameMangler::mangleType(const BuiltinType *T) {
1827 // <type> ::= <builtin-type>
1828 // <builtin-type> ::= v # void
1829 // ::= w # wchar_t
1830 // ::= b # bool
1831 // ::= c # char
1832 // ::= a # signed char
1833 // ::= h # unsigned char
1834 // ::= s # short
1835 // ::= t # unsigned short
1836 // ::= i # int
1837 // ::= j # unsigned int
1838 // ::= l # long
1839 // ::= m # unsigned long
1840 // ::= x # long long, __int64
1841 // ::= y # unsigned long long, __int64
1842 // ::= n # __int128
1843 // UNSUPPORTED: ::= o # unsigned __int128
1844 // ::= f # float
1845 // ::= d # double
1846 // ::= e # long double, __float80
1847 // UNSUPPORTED: ::= g # __float128
1848 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1849 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1850 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1851 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1852 // ::= Di # char32_t
1853 // ::= Ds # char16_t
1854 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1855 // ::= u <source-name> # vendor extended type
1856 switch (T->getKind()) {
1857 case BuiltinType::Void: Out << 'v'; break;
1858 case BuiltinType::Bool: Out << 'b'; break;
1859 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1860 case BuiltinType::UChar: Out << 'h'; break;
1861 case BuiltinType::UShort: Out << 't'; break;
1862 case BuiltinType::UInt: Out << 'j'; break;
1863 case BuiltinType::ULong: Out << 'm'; break;
1864 case BuiltinType::ULongLong: Out << 'y'; break;
1865 case BuiltinType::UInt128: Out << 'o'; break;
1866 case BuiltinType::SChar: Out << 'a'; break;
1867 case BuiltinType::WChar_S:
1868 case BuiltinType::WChar_U: Out << 'w'; break;
1869 case BuiltinType::Char16: Out << "Ds"; break;
1870 case BuiltinType::Char32: Out << "Di"; break;
1871 case BuiltinType::Short: Out << 's'; break;
1872 case BuiltinType::Int: Out << 'i'; break;
1873 case BuiltinType::Long: Out << 'l'; break;
1874 case BuiltinType::LongLong: Out << 'x'; break;
1875 case BuiltinType::Int128: Out << 'n'; break;
1876 case BuiltinType::Half: Out << "Dh"; break;
1877 case BuiltinType::Float: Out << 'f'; break;
1878 case BuiltinType::Double: Out << 'd'; break;
1879 case BuiltinType::LongDouble: Out << 'e'; break;
1880 case BuiltinType::NullPtr: Out << "Dn"; break;
1881
1882 #define BUILTIN_TYPE(Id, SingletonId)
1883 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1884 case BuiltinType::Id:
1885 #include "clang/AST/BuiltinTypes.def"
1886 case BuiltinType::Dependent:
1887 llvm_unreachable("mangling a placeholder type");
1888 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1889 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1890 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1891 }
1892 }
1893
1894 // <type> ::= <function-type>
1895 // <function-type> ::= F [Y] <bare-function-type> E
mangleType(const FunctionProtoType * T)1896 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1897 Out << 'F';
1898 // FIXME: We don't have enough information in the AST to produce the 'Y'
1899 // encoding for extern "C" function types.
1900 mangleBareFunctionType(T, /*MangleReturnType=*/true);
1901 Out << 'E';
1902 }
mangleType(const FunctionNoProtoType * T)1903 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1904 llvm_unreachable("Can't mangle K&R function prototypes");
1905 }
mangleBareFunctionType(const FunctionType * T,bool MangleReturnType)1906 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1907 bool MangleReturnType) {
1908 // We should never be mangling something without a prototype.
1909 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1910
1911 // Record that we're in a function type. See mangleFunctionParam
1912 // for details on what we're trying to achieve here.
1913 FunctionTypeDepthState saved = FunctionTypeDepth.push();
1914
1915 // <bare-function-type> ::= <signature type>+
1916 if (MangleReturnType) {
1917 FunctionTypeDepth.enterResultType();
1918 mangleType(Proto->getResultType());
1919 FunctionTypeDepth.leaveResultType();
1920 }
1921
1922 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1923 // <builtin-type> ::= v # void
1924 Out << 'v';
1925
1926 FunctionTypeDepth.pop(saved);
1927 return;
1928 }
1929
1930 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1931 ArgEnd = Proto->arg_type_end();
1932 Arg != ArgEnd; ++Arg)
1933 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1934
1935 FunctionTypeDepth.pop(saved);
1936
1937 // <builtin-type> ::= z # ellipsis
1938 if (Proto->isVariadic())
1939 Out << 'z';
1940 }
1941
1942 // <type> ::= <class-enum-type>
1943 // <class-enum-type> ::= <name>
mangleType(const UnresolvedUsingType * T)1944 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1945 mangleName(T->getDecl());
1946 }
1947
1948 // <type> ::= <class-enum-type>
1949 // <class-enum-type> ::= <name>
mangleType(const EnumType * T)1950 void CXXNameMangler::mangleType(const EnumType *T) {
1951 mangleType(static_cast<const TagType*>(T));
1952 }
mangleType(const RecordType * T)1953 void CXXNameMangler::mangleType(const RecordType *T) {
1954 mangleType(static_cast<const TagType*>(T));
1955 }
mangleType(const TagType * T)1956 void CXXNameMangler::mangleType(const TagType *T) {
1957 mangleName(T->getDecl());
1958 }
1959
1960 // <type> ::= <array-type>
1961 // <array-type> ::= A <positive dimension number> _ <element type>
1962 // ::= A [<dimension expression>] _ <element type>
mangleType(const ConstantArrayType * T)1963 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1964 Out << 'A' << T->getSize() << '_';
1965 mangleType(T->getElementType());
1966 }
mangleType(const VariableArrayType * T)1967 void CXXNameMangler::mangleType(const VariableArrayType *T) {
1968 Out << 'A';
1969 // decayed vla types (size 0) will just be skipped.
1970 if (T->getSizeExpr())
1971 mangleExpression(T->getSizeExpr());
1972 Out << '_';
1973 mangleType(T->getElementType());
1974 }
mangleType(const DependentSizedArrayType * T)1975 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1976 Out << 'A';
1977 mangleExpression(T->getSizeExpr());
1978 Out << '_';
1979 mangleType(T->getElementType());
1980 }
mangleType(const IncompleteArrayType * T)1981 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1982 Out << "A_";
1983 mangleType(T->getElementType());
1984 }
1985
1986 // <type> ::= <pointer-to-member-type>
1987 // <pointer-to-member-type> ::= M <class type> <member type>
mangleType(const MemberPointerType * T)1988 void CXXNameMangler::mangleType(const MemberPointerType *T) {
1989 Out << 'M';
1990 mangleType(QualType(T->getClass(), 0));
1991 QualType PointeeType = T->getPointeeType();
1992 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1993 mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1994 mangleRefQualifier(FPT->getRefQualifier());
1995 mangleType(FPT);
1996
1997 // Itanium C++ ABI 5.1.8:
1998 //
1999 // The type of a non-static member function is considered to be different,
2000 // for the purposes of substitution, from the type of a namespace-scope or
2001 // static member function whose type appears similar. The types of two
2002 // non-static member functions are considered to be different, for the
2003 // purposes of substitution, if the functions are members of different
2004 // classes. In other words, for the purposes of substitution, the class of
2005 // which the function is a member is considered part of the type of
2006 // function.
2007
2008 // We increment the SeqID here to emulate adding an entry to the
2009 // substitution table. We can't actually add it because we don't want this
2010 // particular function type to be substituted.
2011 ++SeqID;
2012 } else
2013 mangleType(PointeeType);
2014 }
2015
2016 // <type> ::= <template-param>
mangleType(const TemplateTypeParmType * T)2017 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2018 mangleTemplateParameter(T->getIndex());
2019 }
2020
2021 // <type> ::= <template-param>
mangleType(const SubstTemplateTypeParmPackType * T)2022 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2023 // FIXME: not clear how to mangle this!
2024 // template <class T...> class A {
2025 // template <class U...> void foo(T(*)(U) x...);
2026 // };
2027 Out << "_SUBSTPACK_";
2028 }
2029
2030 // <type> ::= P <type> # pointer-to
mangleType(const PointerType * T)2031 void CXXNameMangler::mangleType(const PointerType *T) {
2032 Out << 'P';
2033 mangleType(T->getPointeeType());
2034 }
mangleType(const ObjCObjectPointerType * T)2035 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2036 Out << 'P';
2037 mangleType(T->getPointeeType());
2038 }
2039
2040 // <type> ::= R <type> # reference-to
mangleType(const LValueReferenceType * T)2041 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2042 Out << 'R';
2043 mangleType(T->getPointeeType());
2044 }
2045
2046 // <type> ::= O <type> # rvalue reference-to (C++0x)
mangleType(const RValueReferenceType * T)2047 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2048 Out << 'O';
2049 mangleType(T->getPointeeType());
2050 }
2051
2052 // <type> ::= C <type> # complex pair (C 2000)
mangleType(const ComplexType * T)2053 void CXXNameMangler::mangleType(const ComplexType *T) {
2054 Out << 'C';
2055 mangleType(T->getElementType());
2056 }
2057
2058 // ARM's ABI for Neon vector types specifies that they should be mangled as
2059 // if they are structs (to match ARM's initial implementation). The
2060 // vector type must be one of the special types predefined by ARM.
mangleNeonVectorType(const VectorType * T)2061 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2062 QualType EltType = T->getElementType();
2063 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2064 const char *EltName = 0;
2065 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2066 switch (cast<BuiltinType>(EltType)->getKind()) {
2067 case BuiltinType::SChar: EltName = "poly8_t"; break;
2068 case BuiltinType::Short: EltName = "poly16_t"; break;
2069 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2070 }
2071 } else {
2072 switch (cast<BuiltinType>(EltType)->getKind()) {
2073 case BuiltinType::SChar: EltName = "int8_t"; break;
2074 case BuiltinType::UChar: EltName = "uint8_t"; break;
2075 case BuiltinType::Short: EltName = "int16_t"; break;
2076 case BuiltinType::UShort: EltName = "uint16_t"; break;
2077 case BuiltinType::Int: EltName = "int32_t"; break;
2078 case BuiltinType::UInt: EltName = "uint32_t"; break;
2079 case BuiltinType::LongLong: EltName = "int64_t"; break;
2080 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2081 case BuiltinType::Float: EltName = "float32_t"; break;
2082 default: llvm_unreachable("unexpected Neon vector element type");
2083 }
2084 }
2085 const char *BaseName = 0;
2086 unsigned BitSize = (T->getNumElements() *
2087 getASTContext().getTypeSize(EltType));
2088 if (BitSize == 64)
2089 BaseName = "__simd64_";
2090 else {
2091 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2092 BaseName = "__simd128_";
2093 }
2094 Out << strlen(BaseName) + strlen(EltName);
2095 Out << BaseName << EltName;
2096 }
2097
2098 // GNU extension: vector types
2099 // <type> ::= <vector-type>
2100 // <vector-type> ::= Dv <positive dimension number> _
2101 // <extended element type>
2102 // ::= Dv [<dimension expression>] _ <element type>
2103 // <extended element type> ::= <element type>
2104 // ::= p # AltiVec vector pixel
mangleType(const VectorType * T)2105 void CXXNameMangler::mangleType(const VectorType *T) {
2106 if ((T->getVectorKind() == VectorType::NeonVector ||
2107 T->getVectorKind() == VectorType::NeonPolyVector)) {
2108 mangleNeonVectorType(T);
2109 return;
2110 }
2111 Out << "Dv" << T->getNumElements() << '_';
2112 if (T->getVectorKind() == VectorType::AltiVecPixel)
2113 Out << 'p';
2114 else if (T->getVectorKind() == VectorType::AltiVecBool)
2115 Out << 'b';
2116 else
2117 mangleType(T->getElementType());
2118 }
mangleType(const ExtVectorType * T)2119 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2120 mangleType(static_cast<const VectorType*>(T));
2121 }
mangleType(const DependentSizedExtVectorType * T)2122 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2123 Out << "Dv";
2124 mangleExpression(T->getSizeExpr());
2125 Out << '_';
2126 mangleType(T->getElementType());
2127 }
2128
mangleType(const PackExpansionType * T)2129 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2130 // <type> ::= Dp <type> # pack expansion (C++0x)
2131 Out << "Dp";
2132 mangleType(T->getPattern());
2133 }
2134
mangleType(const ObjCInterfaceType * T)2135 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2136 mangleSourceName(T->getDecl()->getIdentifier());
2137 }
2138
mangleType(const ObjCObjectType * T)2139 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2140 // We don't allow overloading by different protocol qualification,
2141 // so mangling them isn't necessary.
2142 mangleType(T->getBaseType());
2143 }
2144
mangleType(const BlockPointerType * T)2145 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2146 Out << "U13block_pointer";
2147 mangleType(T->getPointeeType());
2148 }
2149
mangleType(const InjectedClassNameType * T)2150 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2151 // Mangle injected class name types as if the user had written the
2152 // specialization out fully. It may not actually be possible to see
2153 // this mangling, though.
2154 mangleType(T->getInjectedSpecializationType());
2155 }
2156
mangleType(const TemplateSpecializationType * T)2157 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2158 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2159 mangleName(TD, T->getArgs(), T->getNumArgs());
2160 } else {
2161 if (mangleSubstitution(QualType(T, 0)))
2162 return;
2163
2164 mangleTemplatePrefix(T->getTemplateName());
2165
2166 // FIXME: GCC does not appear to mangle the template arguments when
2167 // the template in question is a dependent template name. Should we
2168 // emulate that badness?
2169 mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2170 addSubstitution(QualType(T, 0));
2171 }
2172 }
2173
mangleType(const DependentNameType * T)2174 void CXXNameMangler::mangleType(const DependentNameType *T) {
2175 // Typename types are always nested
2176 Out << 'N';
2177 manglePrefix(T->getQualifier());
2178 mangleSourceName(T->getIdentifier());
2179 Out << 'E';
2180 }
2181
mangleType(const DependentTemplateSpecializationType * T)2182 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2183 // Dependently-scoped template types are nested if they have a prefix.
2184 Out << 'N';
2185
2186 // TODO: avoid making this TemplateName.
2187 TemplateName Prefix =
2188 getASTContext().getDependentTemplateName(T->getQualifier(),
2189 T->getIdentifier());
2190 mangleTemplatePrefix(Prefix);
2191
2192 // FIXME: GCC does not appear to mangle the template arguments when
2193 // the template in question is a dependent template name. Should we
2194 // emulate that badness?
2195 mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2196 Out << 'E';
2197 }
2198
mangleType(const TypeOfType * T)2199 void CXXNameMangler::mangleType(const TypeOfType *T) {
2200 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2201 // "extension with parameters" mangling.
2202 Out << "u6typeof";
2203 }
2204
mangleType(const TypeOfExprType * T)2205 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2206 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2207 // "extension with parameters" mangling.
2208 Out << "u6typeof";
2209 }
2210
mangleType(const DecltypeType * T)2211 void CXXNameMangler::mangleType(const DecltypeType *T) {
2212 Expr *E = T->getUnderlyingExpr();
2213
2214 // type ::= Dt <expression> E # decltype of an id-expression
2215 // # or class member access
2216 // ::= DT <expression> E # decltype of an expression
2217
2218 // This purports to be an exhaustive list of id-expressions and
2219 // class member accesses. Note that we do not ignore parentheses;
2220 // parentheses change the semantics of decltype for these
2221 // expressions (and cause the mangler to use the other form).
2222 if (isa<DeclRefExpr>(E) ||
2223 isa<MemberExpr>(E) ||
2224 isa<UnresolvedLookupExpr>(E) ||
2225 isa<DependentScopeDeclRefExpr>(E) ||
2226 isa<CXXDependentScopeMemberExpr>(E) ||
2227 isa<UnresolvedMemberExpr>(E))
2228 Out << "Dt";
2229 else
2230 Out << "DT";
2231 mangleExpression(E);
2232 Out << 'E';
2233 }
2234
mangleType(const UnaryTransformType * T)2235 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2236 // If this is dependent, we need to record that. If not, we simply
2237 // mangle it as the underlying type since they are equivalent.
2238 if (T->isDependentType()) {
2239 Out << 'U';
2240
2241 switch (T->getUTTKind()) {
2242 case UnaryTransformType::EnumUnderlyingType:
2243 Out << "3eut";
2244 break;
2245 }
2246 }
2247
2248 mangleType(T->getUnderlyingType());
2249 }
2250
mangleType(const AutoType * T)2251 void CXXNameMangler::mangleType(const AutoType *T) {
2252 QualType D = T->getDeducedType();
2253 // <builtin-type> ::= Da # dependent auto
2254 if (D.isNull())
2255 Out << "Da";
2256 else
2257 mangleType(D);
2258 }
2259
mangleType(const AtomicType * T)2260 void CXXNameMangler::mangleType(const AtomicType *T) {
2261 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2262 // (Until there's a standardized mangling...)
2263 Out << "U7_Atomic";
2264 mangleType(T->getValueType());
2265 }
2266
mangleIntegerLiteral(QualType T,const llvm::APSInt & Value)2267 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2268 const llvm::APSInt &Value) {
2269 // <expr-primary> ::= L <type> <value number> E # integer literal
2270 Out << 'L';
2271
2272 mangleType(T);
2273 if (T->isBooleanType()) {
2274 // Boolean values are encoded as 0/1.
2275 Out << (Value.getBoolValue() ? '1' : '0');
2276 } else {
2277 mangleNumber(Value);
2278 }
2279 Out << 'E';
2280
2281 }
2282
2283 /// Mangles a member expression.
mangleMemberExpr(const Expr * base,bool isArrow,NestedNameSpecifier * qualifier,NamedDecl * firstQualifierLookup,DeclarationName member,unsigned arity)2284 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2285 bool isArrow,
2286 NestedNameSpecifier *qualifier,
2287 NamedDecl *firstQualifierLookup,
2288 DeclarationName member,
2289 unsigned arity) {
2290 // <expression> ::= dt <expression> <unresolved-name>
2291 // ::= pt <expression> <unresolved-name>
2292 if (base) {
2293 if (base->isImplicitCXXThis()) {
2294 // Note: GCC mangles member expressions to the implicit 'this' as
2295 // *this., whereas we represent them as this->. The Itanium C++ ABI
2296 // does not specify anything here, so we follow GCC.
2297 Out << "dtdefpT";
2298 } else {
2299 Out << (isArrow ? "pt" : "dt");
2300 mangleExpression(base);
2301 }
2302 }
2303 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2304 }
2305
2306 /// Look at the callee of the given call expression and determine if
2307 /// it's a parenthesized id-expression which would have triggered ADL
2308 /// otherwise.
isParenthesizedADLCallee(const CallExpr * call)2309 static bool isParenthesizedADLCallee(const CallExpr *call) {
2310 const Expr *callee = call->getCallee();
2311 const Expr *fn = callee->IgnoreParens();
2312
2313 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2314 // too, but for those to appear in the callee, it would have to be
2315 // parenthesized.
2316 if (callee == fn) return false;
2317
2318 // Must be an unresolved lookup.
2319 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2320 if (!lookup) return false;
2321
2322 assert(!lookup->requiresADL());
2323
2324 // Must be an unqualified lookup.
2325 if (lookup->getQualifier()) return false;
2326
2327 // Must not have found a class member. Note that if one is a class
2328 // member, they're all class members.
2329 if (lookup->getNumDecls() > 0 &&
2330 (*lookup->decls_begin())->isCXXClassMember())
2331 return false;
2332
2333 // Otherwise, ADL would have been triggered.
2334 return true;
2335 }
2336
mangleExpression(const Expr * E,unsigned Arity)2337 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2338 // <expression> ::= <unary operator-name> <expression>
2339 // ::= <binary operator-name> <expression> <expression>
2340 // ::= <trinary operator-name> <expression> <expression> <expression>
2341 // ::= cv <type> expression # conversion with one argument
2342 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2343 // ::= st <type> # sizeof (a type)
2344 // ::= at <type> # alignof (a type)
2345 // ::= <template-param>
2346 // ::= <function-param>
2347 // ::= sr <type> <unqualified-name> # dependent name
2348 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2349 // ::= ds <expression> <expression> # expr.*expr
2350 // ::= sZ <template-param> # size of a parameter pack
2351 // ::= sZ <function-param> # size of a function parameter pack
2352 // ::= <expr-primary>
2353 // <expr-primary> ::= L <type> <value number> E # integer literal
2354 // ::= L <type <value float> E # floating literal
2355 // ::= L <mangled-name> E # external name
2356 // ::= fpT # 'this' expression
2357 QualType ImplicitlyConvertedToType;
2358
2359 recurse:
2360 switch (E->getStmtClass()) {
2361 case Expr::NoStmtClass:
2362 #define ABSTRACT_STMT(Type)
2363 #define EXPR(Type, Base)
2364 #define STMT(Type, Base) \
2365 case Expr::Type##Class:
2366 #include "clang/AST/StmtNodes.inc"
2367 // fallthrough
2368
2369 // These all can only appear in local or variable-initialization
2370 // contexts and so should never appear in a mangling.
2371 case Expr::AddrLabelExprClass:
2372 case Expr::DesignatedInitExprClass:
2373 case Expr::ImplicitValueInitExprClass:
2374 case Expr::ParenListExprClass:
2375 case Expr::LambdaExprClass:
2376 llvm_unreachable("unexpected statement kind");
2377
2378 // FIXME: invent manglings for all these.
2379 case Expr::BlockExprClass:
2380 case Expr::CXXPseudoDestructorExprClass:
2381 case Expr::ChooseExprClass:
2382 case Expr::CompoundLiteralExprClass:
2383 case Expr::ExtVectorElementExprClass:
2384 case Expr::GenericSelectionExprClass:
2385 case Expr::ObjCEncodeExprClass:
2386 case Expr::ObjCIsaExprClass:
2387 case Expr::ObjCIvarRefExprClass:
2388 case Expr::ObjCMessageExprClass:
2389 case Expr::ObjCPropertyRefExprClass:
2390 case Expr::ObjCProtocolExprClass:
2391 case Expr::ObjCSelectorExprClass:
2392 case Expr::ObjCStringLiteralClass:
2393 case Expr::ObjCBoxedExprClass:
2394 case Expr::ObjCArrayLiteralClass:
2395 case Expr::ObjCDictionaryLiteralClass:
2396 case Expr::ObjCSubscriptRefExprClass:
2397 case Expr::ObjCIndirectCopyRestoreExprClass:
2398 case Expr::OffsetOfExprClass:
2399 case Expr::PredefinedExprClass:
2400 case Expr::ShuffleVectorExprClass:
2401 case Expr::StmtExprClass:
2402 case Expr::UnaryTypeTraitExprClass:
2403 case Expr::BinaryTypeTraitExprClass:
2404 case Expr::TypeTraitExprClass:
2405 case Expr::ArrayTypeTraitExprClass:
2406 case Expr::ExpressionTraitExprClass:
2407 case Expr::VAArgExprClass:
2408 case Expr::CXXUuidofExprClass:
2409 case Expr::CXXNoexceptExprClass:
2410 case Expr::CUDAKernelCallExprClass:
2411 case Expr::AsTypeExprClass:
2412 case Expr::PseudoObjectExprClass:
2413 case Expr::AtomicExprClass:
2414 {
2415 // As bad as this diagnostic is, it's better than crashing.
2416 DiagnosticsEngine &Diags = Context.getDiags();
2417 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2418 "cannot yet mangle expression type %0");
2419 Diags.Report(E->getExprLoc(), DiagID)
2420 << E->getStmtClassName() << E->getSourceRange();
2421 break;
2422 }
2423
2424 // Even gcc-4.5 doesn't mangle this.
2425 case Expr::BinaryConditionalOperatorClass: {
2426 DiagnosticsEngine &Diags = Context.getDiags();
2427 unsigned DiagID =
2428 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2429 "?: operator with omitted middle operand cannot be mangled");
2430 Diags.Report(E->getExprLoc(), DiagID)
2431 << E->getStmtClassName() << E->getSourceRange();
2432 break;
2433 }
2434
2435 // These are used for internal purposes and cannot be meaningfully mangled.
2436 case Expr::OpaqueValueExprClass:
2437 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2438
2439 case Expr::InitListExprClass: {
2440 // Proposal by Jason Merrill, 2012-01-03
2441 Out << "il";
2442 const InitListExpr *InitList = cast<InitListExpr>(E);
2443 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2444 mangleExpression(InitList->getInit(i));
2445 Out << "E";
2446 break;
2447 }
2448
2449 case Expr::CXXDefaultArgExprClass:
2450 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2451 break;
2452
2453 case Expr::SubstNonTypeTemplateParmExprClass:
2454 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2455 Arity);
2456 break;
2457
2458 case Expr::UserDefinedLiteralClass:
2459 // We follow g++'s approach of mangling a UDL as a call to the literal
2460 // operator.
2461 case Expr::CXXMemberCallExprClass: // fallthrough
2462 case Expr::CallExprClass: {
2463 const CallExpr *CE = cast<CallExpr>(E);
2464
2465 // <expression> ::= cp <simple-id> <expression>* E
2466 // We use this mangling only when the call would use ADL except
2467 // for being parenthesized. Per discussion with David
2468 // Vandervoorde, 2011.04.25.
2469 if (isParenthesizedADLCallee(CE)) {
2470 Out << "cp";
2471 // The callee here is a parenthesized UnresolvedLookupExpr with
2472 // no qualifier and should always get mangled as a <simple-id>
2473 // anyway.
2474
2475 // <expression> ::= cl <expression>* E
2476 } else {
2477 Out << "cl";
2478 }
2479
2480 mangleExpression(CE->getCallee(), CE->getNumArgs());
2481 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2482 mangleExpression(CE->getArg(I));
2483 Out << 'E';
2484 break;
2485 }
2486
2487 case Expr::CXXNewExprClass: {
2488 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2489 if (New->isGlobalNew()) Out << "gs";
2490 Out << (New->isArray() ? "na" : "nw");
2491 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2492 E = New->placement_arg_end(); I != E; ++I)
2493 mangleExpression(*I);
2494 Out << '_';
2495 mangleType(New->getAllocatedType());
2496 if (New->hasInitializer()) {
2497 // Proposal by Jason Merrill, 2012-01-03
2498 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2499 Out << "il";
2500 else
2501 Out << "pi";
2502 const Expr *Init = New->getInitializer();
2503 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2504 // Directly inline the initializers.
2505 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2506 E = CCE->arg_end();
2507 I != E; ++I)
2508 mangleExpression(*I);
2509 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2510 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2511 mangleExpression(PLE->getExpr(i));
2512 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2513 isa<InitListExpr>(Init)) {
2514 // Only take InitListExprs apart for list-initialization.
2515 const InitListExpr *InitList = cast<InitListExpr>(Init);
2516 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2517 mangleExpression(InitList->getInit(i));
2518 } else
2519 mangleExpression(Init);
2520 }
2521 Out << 'E';
2522 break;
2523 }
2524
2525 case Expr::MemberExprClass: {
2526 const MemberExpr *ME = cast<MemberExpr>(E);
2527 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2528 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2529 Arity);
2530 break;
2531 }
2532
2533 case Expr::UnresolvedMemberExprClass: {
2534 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2535 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2536 ME->getQualifier(), 0, ME->getMemberName(),
2537 Arity);
2538 if (ME->hasExplicitTemplateArgs())
2539 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2540 break;
2541 }
2542
2543 case Expr::CXXDependentScopeMemberExprClass: {
2544 const CXXDependentScopeMemberExpr *ME
2545 = cast<CXXDependentScopeMemberExpr>(E);
2546 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2547 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2548 ME->getMember(), Arity);
2549 if (ME->hasExplicitTemplateArgs())
2550 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2551 break;
2552 }
2553
2554 case Expr::UnresolvedLookupExprClass: {
2555 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2556 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2557
2558 // All the <unresolved-name> productions end in a
2559 // base-unresolved-name, where <template-args> are just tacked
2560 // onto the end.
2561 if (ULE->hasExplicitTemplateArgs())
2562 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2563 break;
2564 }
2565
2566 case Expr::CXXUnresolvedConstructExprClass: {
2567 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2568 unsigned N = CE->arg_size();
2569
2570 Out << "cv";
2571 mangleType(CE->getType());
2572 if (N != 1) Out << '_';
2573 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2574 if (N != 1) Out << 'E';
2575 break;
2576 }
2577
2578 case Expr::CXXTemporaryObjectExprClass:
2579 case Expr::CXXConstructExprClass: {
2580 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2581 unsigned N = CE->getNumArgs();
2582
2583 // Proposal by Jason Merrill, 2012-01-03
2584 if (CE->isListInitialization())
2585 Out << "tl";
2586 else
2587 Out << "cv";
2588 mangleType(CE->getType());
2589 if (N != 1) Out << '_';
2590 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2591 if (N != 1) Out << 'E';
2592 break;
2593 }
2594
2595 case Expr::CXXScalarValueInitExprClass:
2596 Out <<"cv";
2597 mangleType(E->getType());
2598 Out <<"_E";
2599 break;
2600
2601 case Expr::UnaryExprOrTypeTraitExprClass: {
2602 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2603
2604 if (!SAE->isInstantiationDependent()) {
2605 // Itanium C++ ABI:
2606 // If the operand of a sizeof or alignof operator is not
2607 // instantiation-dependent it is encoded as an integer literal
2608 // reflecting the result of the operator.
2609 //
2610 // If the result of the operator is implicitly converted to a known
2611 // integer type, that type is used for the literal; otherwise, the type
2612 // of std::size_t or std::ptrdiff_t is used.
2613 QualType T = (ImplicitlyConvertedToType.isNull() ||
2614 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2615 : ImplicitlyConvertedToType;
2616 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2617 mangleIntegerLiteral(T, V);
2618 break;
2619 }
2620
2621 switch(SAE->getKind()) {
2622 case UETT_SizeOf:
2623 Out << 's';
2624 break;
2625 case UETT_AlignOf:
2626 Out << 'a';
2627 break;
2628 case UETT_VecStep:
2629 DiagnosticsEngine &Diags = Context.getDiags();
2630 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2631 "cannot yet mangle vec_step expression");
2632 Diags.Report(DiagID);
2633 return;
2634 }
2635 if (SAE->isArgumentType()) {
2636 Out << 't';
2637 mangleType(SAE->getArgumentType());
2638 } else {
2639 Out << 'z';
2640 mangleExpression(SAE->getArgumentExpr());
2641 }
2642 break;
2643 }
2644
2645 case Expr::CXXThrowExprClass: {
2646 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2647
2648 // Proposal from David Vandervoorde, 2010.06.30
2649 if (TE->getSubExpr()) {
2650 Out << "tw";
2651 mangleExpression(TE->getSubExpr());
2652 } else {
2653 Out << "tr";
2654 }
2655 break;
2656 }
2657
2658 case Expr::CXXTypeidExprClass: {
2659 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2660
2661 // Proposal from David Vandervoorde, 2010.06.30
2662 if (TIE->isTypeOperand()) {
2663 Out << "ti";
2664 mangleType(TIE->getTypeOperand());
2665 } else {
2666 Out << "te";
2667 mangleExpression(TIE->getExprOperand());
2668 }
2669 break;
2670 }
2671
2672 case Expr::CXXDeleteExprClass: {
2673 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2674
2675 // Proposal from David Vandervoorde, 2010.06.30
2676 if (DE->isGlobalDelete()) Out << "gs";
2677 Out << (DE->isArrayForm() ? "da" : "dl");
2678 mangleExpression(DE->getArgument());
2679 break;
2680 }
2681
2682 case Expr::UnaryOperatorClass: {
2683 const UnaryOperator *UO = cast<UnaryOperator>(E);
2684 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2685 /*Arity=*/1);
2686 mangleExpression(UO->getSubExpr());
2687 break;
2688 }
2689
2690 case Expr::ArraySubscriptExprClass: {
2691 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2692
2693 // Array subscript is treated as a syntactically weird form of
2694 // binary operator.
2695 Out << "ix";
2696 mangleExpression(AE->getLHS());
2697 mangleExpression(AE->getRHS());
2698 break;
2699 }
2700
2701 case Expr::CompoundAssignOperatorClass: // fallthrough
2702 case Expr::BinaryOperatorClass: {
2703 const BinaryOperator *BO = cast<BinaryOperator>(E);
2704 if (BO->getOpcode() == BO_PtrMemD)
2705 Out << "ds";
2706 else
2707 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2708 /*Arity=*/2);
2709 mangleExpression(BO->getLHS());
2710 mangleExpression(BO->getRHS());
2711 break;
2712 }
2713
2714 case Expr::ConditionalOperatorClass: {
2715 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2716 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2717 mangleExpression(CO->getCond());
2718 mangleExpression(CO->getLHS(), Arity);
2719 mangleExpression(CO->getRHS(), Arity);
2720 break;
2721 }
2722
2723 case Expr::ImplicitCastExprClass: {
2724 ImplicitlyConvertedToType = E->getType();
2725 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2726 goto recurse;
2727 }
2728
2729 case Expr::ObjCBridgedCastExprClass: {
2730 // Mangle ownership casts as a vendor extended operator __bridge,
2731 // __bridge_transfer, or __bridge_retain.
2732 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2733 Out << "v1U" << Kind.size() << Kind;
2734 }
2735 // Fall through to mangle the cast itself.
2736
2737 case Expr::CStyleCastExprClass:
2738 case Expr::CXXStaticCastExprClass:
2739 case Expr::CXXDynamicCastExprClass:
2740 case Expr::CXXReinterpretCastExprClass:
2741 case Expr::CXXConstCastExprClass:
2742 case Expr::CXXFunctionalCastExprClass: {
2743 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2744 Out << "cv";
2745 mangleType(ECE->getType());
2746 mangleExpression(ECE->getSubExpr());
2747 break;
2748 }
2749
2750 case Expr::CXXOperatorCallExprClass: {
2751 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2752 unsigned NumArgs = CE->getNumArgs();
2753 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2754 // Mangle the arguments.
2755 for (unsigned i = 0; i != NumArgs; ++i)
2756 mangleExpression(CE->getArg(i));
2757 break;
2758 }
2759
2760 case Expr::ParenExprClass:
2761 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2762 break;
2763
2764 case Expr::DeclRefExprClass: {
2765 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2766
2767 switch (D->getKind()) {
2768 default:
2769 // <expr-primary> ::= L <mangled-name> E # external name
2770 Out << 'L';
2771 mangle(D, "_Z");
2772 Out << 'E';
2773 break;
2774
2775 case Decl::ParmVar:
2776 mangleFunctionParam(cast<ParmVarDecl>(D));
2777 break;
2778
2779 case Decl::EnumConstant: {
2780 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2781 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2782 break;
2783 }
2784
2785 case Decl::NonTypeTemplateParm: {
2786 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2787 mangleTemplateParameter(PD->getIndex());
2788 break;
2789 }
2790
2791 }
2792
2793 break;
2794 }
2795
2796 case Expr::SubstNonTypeTemplateParmPackExprClass:
2797 // FIXME: not clear how to mangle this!
2798 // template <unsigned N...> class A {
2799 // template <class U...> void foo(U (&x)[N]...);
2800 // };
2801 Out << "_SUBSTPACK_";
2802 break;
2803
2804 case Expr::DependentScopeDeclRefExprClass: {
2805 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2806 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2807
2808 // All the <unresolved-name> productions end in a
2809 // base-unresolved-name, where <template-args> are just tacked
2810 // onto the end.
2811 if (DRE->hasExplicitTemplateArgs())
2812 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2813 break;
2814 }
2815
2816 case Expr::CXXBindTemporaryExprClass:
2817 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2818 break;
2819
2820 case Expr::ExprWithCleanupsClass:
2821 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2822 break;
2823
2824 case Expr::FloatingLiteralClass: {
2825 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2826 Out << 'L';
2827 mangleType(FL->getType());
2828 mangleFloat(FL->getValue());
2829 Out << 'E';
2830 break;
2831 }
2832
2833 case Expr::CharacterLiteralClass:
2834 Out << 'L';
2835 mangleType(E->getType());
2836 Out << cast<CharacterLiteral>(E)->getValue();
2837 Out << 'E';
2838 break;
2839
2840 // FIXME. __objc_yes/__objc_no are mangled same as true/false
2841 case Expr::ObjCBoolLiteralExprClass:
2842 Out << "Lb";
2843 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2844 Out << 'E';
2845 break;
2846
2847 case Expr::CXXBoolLiteralExprClass:
2848 Out << "Lb";
2849 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2850 Out << 'E';
2851 break;
2852
2853 case Expr::IntegerLiteralClass: {
2854 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2855 if (E->getType()->isSignedIntegerType())
2856 Value.setIsSigned(true);
2857 mangleIntegerLiteral(E->getType(), Value);
2858 break;
2859 }
2860
2861 case Expr::ImaginaryLiteralClass: {
2862 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2863 // Mangle as if a complex literal.
2864 // Proposal from David Vandevoorde, 2010.06.30.
2865 Out << 'L';
2866 mangleType(E->getType());
2867 if (const FloatingLiteral *Imag =
2868 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2869 // Mangle a floating-point zero of the appropriate type.
2870 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2871 Out << '_';
2872 mangleFloat(Imag->getValue());
2873 } else {
2874 Out << "0_";
2875 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2876 if (IE->getSubExpr()->getType()->isSignedIntegerType())
2877 Value.setIsSigned(true);
2878 mangleNumber(Value);
2879 }
2880 Out << 'E';
2881 break;
2882 }
2883
2884 case Expr::StringLiteralClass: {
2885 // Revised proposal from David Vandervoorde, 2010.07.15.
2886 Out << 'L';
2887 assert(isa<ConstantArrayType>(E->getType()));
2888 mangleType(E->getType());
2889 Out << 'E';
2890 break;
2891 }
2892
2893 case Expr::GNUNullExprClass:
2894 // FIXME: should this really be mangled the same as nullptr?
2895 // fallthrough
2896
2897 case Expr::CXXNullPtrLiteralExprClass: {
2898 // Proposal from David Vandervoorde, 2010.06.30, as
2899 // modified by ABI list discussion.
2900 Out << "LDnE";
2901 break;
2902 }
2903
2904 case Expr::PackExpansionExprClass:
2905 Out << "sp";
2906 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2907 break;
2908
2909 case Expr::SizeOfPackExprClass: {
2910 Out << "sZ";
2911 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2912 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2913 mangleTemplateParameter(TTP->getIndex());
2914 else if (const NonTypeTemplateParmDecl *NTTP
2915 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2916 mangleTemplateParameter(NTTP->getIndex());
2917 else if (const TemplateTemplateParmDecl *TempTP
2918 = dyn_cast<TemplateTemplateParmDecl>(Pack))
2919 mangleTemplateParameter(TempTP->getIndex());
2920 else
2921 mangleFunctionParam(cast<ParmVarDecl>(Pack));
2922 break;
2923 }
2924
2925 case Expr::MaterializeTemporaryExprClass: {
2926 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2927 break;
2928 }
2929
2930 case Expr::CXXThisExprClass:
2931 Out << "fpT";
2932 break;
2933 }
2934 }
2935
2936 /// Mangle an expression which refers to a parameter variable.
2937 ///
2938 /// <expression> ::= <function-param>
2939 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
2940 /// <function-param> ::= fp <top-level CV-qualifiers>
2941 /// <parameter-2 non-negative number> _ # L == 0, I > 0
2942 /// <function-param> ::= fL <L-1 non-negative number>
2943 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
2944 /// <function-param> ::= fL <L-1 non-negative number>
2945 /// p <top-level CV-qualifiers>
2946 /// <I-1 non-negative number> _ # L > 0, I > 0
2947 ///
2948 /// L is the nesting depth of the parameter, defined as 1 if the
2949 /// parameter comes from the innermost function prototype scope
2950 /// enclosing the current context, 2 if from the next enclosing
2951 /// function prototype scope, and so on, with one special case: if
2952 /// we've processed the full parameter clause for the innermost
2953 /// function type, then L is one less. This definition conveniently
2954 /// makes it irrelevant whether a function's result type was written
2955 /// trailing or leading, but is otherwise overly complicated; the
2956 /// numbering was first designed without considering references to
2957 /// parameter in locations other than return types, and then the
2958 /// mangling had to be generalized without changing the existing
2959 /// manglings.
2960 ///
2961 /// I is the zero-based index of the parameter within its parameter
2962 /// declaration clause. Note that the original ABI document describes
2963 /// this using 1-based ordinals.
mangleFunctionParam(const ParmVarDecl * parm)2964 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2965 unsigned parmDepth = parm->getFunctionScopeDepth();
2966 unsigned parmIndex = parm->getFunctionScopeIndex();
2967
2968 // Compute 'L'.
2969 // parmDepth does not include the declaring function prototype.
2970 // FunctionTypeDepth does account for that.
2971 assert(parmDepth < FunctionTypeDepth.getDepth());
2972 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2973 if (FunctionTypeDepth.isInResultType())
2974 nestingDepth--;
2975
2976 if (nestingDepth == 0) {
2977 Out << "fp";
2978 } else {
2979 Out << "fL" << (nestingDepth - 1) << 'p';
2980 }
2981
2982 // Top-level qualifiers. We don't have to worry about arrays here,
2983 // because parameters declared as arrays should already have been
2984 // tranformed to have pointer type. FIXME: apparently these don't
2985 // get mangled if used as an rvalue of a known non-class type?
2986 assert(!parm->getType()->isArrayType()
2987 && "parameter's type is still an array type?");
2988 mangleQualifiers(parm->getType().getQualifiers());
2989
2990 // Parameter index.
2991 if (parmIndex != 0) {
2992 Out << (parmIndex - 1);
2993 }
2994 Out << '_';
2995 }
2996
mangleCXXCtorType(CXXCtorType T)2997 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2998 // <ctor-dtor-name> ::= C1 # complete object constructor
2999 // ::= C2 # base object constructor
3000 // ::= C3 # complete object allocating constructor
3001 //
3002 switch (T) {
3003 case Ctor_Complete:
3004 Out << "C1";
3005 break;
3006 case Ctor_Base:
3007 Out << "C2";
3008 break;
3009 case Ctor_CompleteAllocating:
3010 Out << "C3";
3011 break;
3012 }
3013 }
3014
mangleCXXDtorType(CXXDtorType T)3015 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3016 // <ctor-dtor-name> ::= D0 # deleting destructor
3017 // ::= D1 # complete object destructor
3018 // ::= D2 # base object destructor
3019 //
3020 switch (T) {
3021 case Dtor_Deleting:
3022 Out << "D0";
3023 break;
3024 case Dtor_Complete:
3025 Out << "D1";
3026 break;
3027 case Dtor_Base:
3028 Out << "D2";
3029 break;
3030 }
3031 }
3032
mangleTemplateArgs(const ASTTemplateArgumentListInfo & TemplateArgs)3033 void CXXNameMangler::mangleTemplateArgs(
3034 const ASTTemplateArgumentListInfo &TemplateArgs) {
3035 // <template-args> ::= I <template-arg>+ E
3036 Out << 'I';
3037 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3038 mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
3039 Out << 'E';
3040 }
3041
mangleTemplateArgs(TemplateName Template,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3042 void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
3043 const TemplateArgument *TemplateArgs,
3044 unsigned NumTemplateArgs) {
3045 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3046 return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
3047 NumTemplateArgs);
3048
3049 mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
3050 }
3051
mangleUnresolvedTemplateArgs(const TemplateArgument * args,unsigned numArgs)3052 void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
3053 unsigned numArgs) {
3054 // <template-args> ::= I <template-arg>+ E
3055 Out << 'I';
3056 for (unsigned i = 0; i != numArgs; ++i)
3057 mangleTemplateArg(0, args[i]);
3058 Out << 'E';
3059 }
3060
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgumentList & AL)3061 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3062 const TemplateArgumentList &AL) {
3063 // <template-args> ::= I <template-arg>+ E
3064 Out << 'I';
3065 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3066 mangleTemplateArg(PL.getParam(i), AL[i]);
3067 Out << 'E';
3068 }
3069
mangleTemplateArgs(const TemplateParameterList & PL,const TemplateArgument * TemplateArgs,unsigned NumTemplateArgs)3070 void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3071 const TemplateArgument *TemplateArgs,
3072 unsigned NumTemplateArgs) {
3073 // <template-args> ::= I <template-arg>+ E
3074 Out << 'I';
3075 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3076 mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3077 Out << 'E';
3078 }
3079
mangleTemplateArg(const NamedDecl * P,TemplateArgument A)3080 void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3081 TemplateArgument A) {
3082 // <template-arg> ::= <type> # type or template
3083 // ::= X <expression> E # expression
3084 // ::= <expr-primary> # simple expressions
3085 // ::= J <template-arg>* E # argument pack
3086 // ::= sp <expression> # pack expansion of (C++0x)
3087 if (!A.isInstantiationDependent() || A.isDependent())
3088 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3089
3090 switch (A.getKind()) {
3091 case TemplateArgument::Null:
3092 llvm_unreachable("Cannot mangle NULL template argument");
3093
3094 case TemplateArgument::Type:
3095 mangleType(A.getAsType());
3096 break;
3097 case TemplateArgument::Template:
3098 // This is mangled as <type>.
3099 mangleType(A.getAsTemplate());
3100 break;
3101 case TemplateArgument::TemplateExpansion:
3102 // <type> ::= Dp <type> # pack expansion (C++0x)
3103 Out << "Dp";
3104 mangleType(A.getAsTemplateOrTemplatePattern());
3105 break;
3106 case TemplateArgument::Expression: {
3107 // It's possible to end up with a DeclRefExpr here in certain
3108 // dependent cases, in which case we should mangle as a
3109 // declaration.
3110 const Expr *E = A.getAsExpr()->IgnoreParens();
3111 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3112 const ValueDecl *D = DRE->getDecl();
3113 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3114 Out << "L";
3115 mangle(D, "_Z");
3116 Out << 'E';
3117 break;
3118 }
3119 }
3120
3121 Out << 'X';
3122 mangleExpression(E);
3123 Out << 'E';
3124 break;
3125 }
3126 case TemplateArgument::Integral:
3127 mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
3128 break;
3129 case TemplateArgument::Declaration: {
3130 assert(P && "Missing template parameter for declaration argument");
3131 // <expr-primary> ::= L <mangled-name> E # external name
3132 // <expr-primary> ::= L <type> 0 E
3133 // Clang produces AST's where pointer-to-member-function expressions
3134 // and pointer-to-function expressions are represented as a declaration not
3135 // an expression. We compensate for it here to produce the correct mangling.
3136 const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3137
3138 // Handle NULL pointer arguments.
3139 if (!A.getAsDecl()) {
3140 Out << "L";
3141 mangleType(Parameter->getType());
3142 Out << "0E";
3143 break;
3144 }
3145
3146
3147 NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3148 bool compensateMangling = !Parameter->getType()->isReferenceType();
3149 if (compensateMangling) {
3150 Out << 'X';
3151 mangleOperatorName(OO_Amp, 1);
3152 }
3153
3154 Out << 'L';
3155 // References to external entities use the mangled name; if the name would
3156 // not normally be manged then mangle it as unqualified.
3157 //
3158 // FIXME: The ABI specifies that external names here should have _Z, but
3159 // gcc leaves this off.
3160 if (compensateMangling)
3161 mangle(D, "_Z");
3162 else
3163 mangle(D, "Z");
3164 Out << 'E';
3165
3166 if (compensateMangling)
3167 Out << 'E';
3168
3169 break;
3170 }
3171
3172 case TemplateArgument::Pack: {
3173 // Note: proposal by Mike Herrick on 12/20/10
3174 Out << 'J';
3175 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3176 PAEnd = A.pack_end();
3177 PA != PAEnd; ++PA)
3178 mangleTemplateArg(P, *PA);
3179 Out << 'E';
3180 }
3181 }
3182 }
3183
mangleTemplateParameter(unsigned Index)3184 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3185 // <template-param> ::= T_ # first template parameter
3186 // ::= T <parameter-2 non-negative number> _
3187 if (Index == 0)
3188 Out << "T_";
3189 else
3190 Out << 'T' << (Index - 1) << '_';
3191 }
3192
mangleExistingSubstitution(QualType type)3193 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3194 bool result = mangleSubstitution(type);
3195 assert(result && "no existing substitution for type");
3196 (void) result;
3197 }
3198
mangleExistingSubstitution(TemplateName tname)3199 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3200 bool result = mangleSubstitution(tname);
3201 assert(result && "no existing substitution for template name");
3202 (void) result;
3203 }
3204
3205 // <substitution> ::= S <seq-id> _
3206 // ::= S_
mangleSubstitution(const NamedDecl * ND)3207 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3208 // Try one of the standard substitutions first.
3209 if (mangleStandardSubstitution(ND))
3210 return true;
3211
3212 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3213 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3214 }
3215
3216 /// \brief Determine whether the given type has any qualifiers that are
3217 /// relevant for substitutions.
hasMangledSubstitutionQualifiers(QualType T)3218 static bool hasMangledSubstitutionQualifiers(QualType T) {
3219 Qualifiers Qs = T.getQualifiers();
3220 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3221 }
3222
mangleSubstitution(QualType T)3223 bool CXXNameMangler::mangleSubstitution(QualType T) {
3224 if (!hasMangledSubstitutionQualifiers(T)) {
3225 if (const RecordType *RT = T->getAs<RecordType>())
3226 return mangleSubstitution(RT->getDecl());
3227 }
3228
3229 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3230
3231 return mangleSubstitution(TypePtr);
3232 }
3233
mangleSubstitution(TemplateName Template)3234 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3235 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3236 return mangleSubstitution(TD);
3237
3238 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3239 return mangleSubstitution(
3240 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3241 }
3242
mangleSubstitution(uintptr_t Ptr)3243 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3244 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3245 if (I == Substitutions.end())
3246 return false;
3247
3248 unsigned SeqID = I->second;
3249 if (SeqID == 0)
3250 Out << "S_";
3251 else {
3252 SeqID--;
3253
3254 // <seq-id> is encoded in base-36, using digits and upper case letters.
3255 char Buffer[10];
3256 char *BufferPtr = llvm::array_endof(Buffer);
3257
3258 if (SeqID == 0) *--BufferPtr = '0';
3259
3260 while (SeqID) {
3261 assert(BufferPtr > Buffer && "Buffer overflow!");
3262
3263 char c = static_cast<char>(SeqID % 36);
3264
3265 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3266 SeqID /= 36;
3267 }
3268
3269 Out << 'S'
3270 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3271 << '_';
3272 }
3273
3274 return true;
3275 }
3276
isCharType(QualType T)3277 static bool isCharType(QualType T) {
3278 if (T.isNull())
3279 return false;
3280
3281 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3282 T->isSpecificBuiltinType(BuiltinType::Char_U);
3283 }
3284
3285 /// isCharSpecialization - Returns whether a given type is a template
3286 /// specialization of a given name with a single argument of type char.
isCharSpecialization(QualType T,const char * Name)3287 static bool isCharSpecialization(QualType T, const char *Name) {
3288 if (T.isNull())
3289 return false;
3290
3291 const RecordType *RT = T->getAs<RecordType>();
3292 if (!RT)
3293 return false;
3294
3295 const ClassTemplateSpecializationDecl *SD =
3296 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3297 if (!SD)
3298 return false;
3299
3300 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3301 return false;
3302
3303 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3304 if (TemplateArgs.size() != 1)
3305 return false;
3306
3307 if (!isCharType(TemplateArgs[0].getAsType()))
3308 return false;
3309
3310 return SD->getIdentifier()->getName() == Name;
3311 }
3312
3313 template <std::size_t StrLen>
isStreamCharSpecialization(const ClassTemplateSpecializationDecl * SD,const char (& Str)[StrLen])3314 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3315 const char (&Str)[StrLen]) {
3316 if (!SD->getIdentifier()->isStr(Str))
3317 return false;
3318
3319 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3320 if (TemplateArgs.size() != 2)
3321 return false;
3322
3323 if (!isCharType(TemplateArgs[0].getAsType()))
3324 return false;
3325
3326 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3327 return false;
3328
3329 return true;
3330 }
3331
mangleStandardSubstitution(const NamedDecl * ND)3332 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3333 // <substitution> ::= St # ::std::
3334 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3335 if (isStd(NS)) {
3336 Out << "St";
3337 return true;
3338 }
3339 }
3340
3341 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3342 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3343 return false;
3344
3345 // <substitution> ::= Sa # ::std::allocator
3346 if (TD->getIdentifier()->isStr("allocator")) {
3347 Out << "Sa";
3348 return true;
3349 }
3350
3351 // <<substitution> ::= Sb # ::std::basic_string
3352 if (TD->getIdentifier()->isStr("basic_string")) {
3353 Out << "Sb";
3354 return true;
3355 }
3356 }
3357
3358 if (const ClassTemplateSpecializationDecl *SD =
3359 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3360 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3361 return false;
3362
3363 // <substitution> ::= Ss # ::std::basic_string<char,
3364 // ::std::char_traits<char>,
3365 // ::std::allocator<char> >
3366 if (SD->getIdentifier()->isStr("basic_string")) {
3367 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3368
3369 if (TemplateArgs.size() != 3)
3370 return false;
3371
3372 if (!isCharType(TemplateArgs[0].getAsType()))
3373 return false;
3374
3375 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3376 return false;
3377
3378 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3379 return false;
3380
3381 Out << "Ss";
3382 return true;
3383 }
3384
3385 // <substitution> ::= Si # ::std::basic_istream<char,
3386 // ::std::char_traits<char> >
3387 if (isStreamCharSpecialization(SD, "basic_istream")) {
3388 Out << "Si";
3389 return true;
3390 }
3391
3392 // <substitution> ::= So # ::std::basic_ostream<char,
3393 // ::std::char_traits<char> >
3394 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3395 Out << "So";
3396 return true;
3397 }
3398
3399 // <substitution> ::= Sd # ::std::basic_iostream<char,
3400 // ::std::char_traits<char> >
3401 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3402 Out << "Sd";
3403 return true;
3404 }
3405 }
3406 return false;
3407 }
3408
addSubstitution(QualType T)3409 void CXXNameMangler::addSubstitution(QualType T) {
3410 if (!hasMangledSubstitutionQualifiers(T)) {
3411 if (const RecordType *RT = T->getAs<RecordType>()) {
3412 addSubstitution(RT->getDecl());
3413 return;
3414 }
3415 }
3416
3417 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3418 addSubstitution(TypePtr);
3419 }
3420
addSubstitution(TemplateName Template)3421 void CXXNameMangler::addSubstitution(TemplateName Template) {
3422 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3423 return addSubstitution(TD);
3424
3425 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3426 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3427 }
3428
addSubstitution(uintptr_t Ptr)3429 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3430 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3431 Substitutions[Ptr] = SeqID++;
3432 }
3433
3434 //
3435
3436 /// \brief Mangles the name of the declaration D and emits that name to the
3437 /// given output stream.
3438 ///
3439 /// If the declaration D requires a mangled name, this routine will emit that
3440 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3441 /// and this routine will return false. In this case, the caller should just
3442 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3443 /// name.
mangleName(const NamedDecl * D,raw_ostream & Out)3444 void ItaniumMangleContext::mangleName(const NamedDecl *D,
3445 raw_ostream &Out) {
3446 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3447 "Invalid mangleName() call, argument is not a variable or function!");
3448 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3449 "Invalid mangleName() call on 'structor decl!");
3450
3451 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3452 getASTContext().getSourceManager(),
3453 "Mangling declaration");
3454
3455 CXXNameMangler Mangler(*this, Out, D);
3456 return Mangler.mangle(D);
3457 }
3458
mangleCXXCtor(const CXXConstructorDecl * D,CXXCtorType Type,raw_ostream & Out)3459 void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3460 CXXCtorType Type,
3461 raw_ostream &Out) {
3462 CXXNameMangler Mangler(*this, Out, D, Type);
3463 Mangler.mangle(D);
3464 }
3465
mangleCXXDtor(const CXXDestructorDecl * D,CXXDtorType Type,raw_ostream & Out)3466 void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3467 CXXDtorType Type,
3468 raw_ostream &Out) {
3469 CXXNameMangler Mangler(*this, Out, D, Type);
3470 Mangler.mangle(D);
3471 }
3472
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3473 void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3474 const ThunkInfo &Thunk,
3475 raw_ostream &Out) {
3476 // <special-name> ::= T <call-offset> <base encoding>
3477 // # base is the nominal target function of thunk
3478 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3479 // # base is the nominal target function of thunk
3480 // # first call-offset is 'this' adjustment
3481 // # second call-offset is result adjustment
3482
3483 assert(!isa<CXXDestructorDecl>(MD) &&
3484 "Use mangleCXXDtor for destructor decls!");
3485 CXXNameMangler Mangler(*this, Out);
3486 Mangler.getStream() << "_ZT";
3487 if (!Thunk.Return.isEmpty())
3488 Mangler.getStream() << 'c';
3489
3490 // Mangle the 'this' pointer adjustment.
3491 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3492
3493 // Mangle the return pointer adjustment if there is one.
3494 if (!Thunk.Return.isEmpty())
3495 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3496 Thunk.Return.VBaseOffsetOffset);
3497
3498 Mangler.mangleFunctionEncoding(MD);
3499 }
3500
3501 void
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & ThisAdjustment,raw_ostream & Out)3502 ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3503 CXXDtorType Type,
3504 const ThisAdjustment &ThisAdjustment,
3505 raw_ostream &Out) {
3506 // <special-name> ::= T <call-offset> <base encoding>
3507 // # base is the nominal target function of thunk
3508 CXXNameMangler Mangler(*this, Out, DD, Type);
3509 Mangler.getStream() << "_ZT";
3510
3511 // Mangle the 'this' pointer adjustment.
3512 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3513 ThisAdjustment.VCallOffsetOffset);
3514
3515 Mangler.mangleFunctionEncoding(DD);
3516 }
3517
3518 /// mangleGuardVariable - Returns the mangled name for a guard variable
3519 /// for the passed in VarDecl.
mangleItaniumGuardVariable(const VarDecl * D,raw_ostream & Out)3520 void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3521 raw_ostream &Out) {
3522 // <special-name> ::= GV <object name> # Guard variable for one-time
3523 // # initialization
3524 CXXNameMangler Mangler(*this, Out);
3525 Mangler.getStream() << "_ZGV";
3526 Mangler.mangleName(D);
3527 }
3528
mangleReferenceTemporary(const VarDecl * D,raw_ostream & Out)3529 void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3530 raw_ostream &Out) {
3531 // We match the GCC mangling here.
3532 // <special-name> ::= GR <object name>
3533 CXXNameMangler Mangler(*this, Out);
3534 Mangler.getStream() << "_ZGR";
3535 Mangler.mangleName(D);
3536 }
3537
mangleCXXVTable(const CXXRecordDecl * RD,raw_ostream & Out)3538 void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3539 raw_ostream &Out) {
3540 // <special-name> ::= TV <type> # virtual table
3541 CXXNameMangler Mangler(*this, Out);
3542 Mangler.getStream() << "_ZTV";
3543 Mangler.mangleNameOrStandardSubstitution(RD);
3544 }
3545
mangleCXXVTT(const CXXRecordDecl * RD,raw_ostream & Out)3546 void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3547 raw_ostream &Out) {
3548 // <special-name> ::= TT <type> # VTT structure
3549 CXXNameMangler Mangler(*this, Out);
3550 Mangler.getStream() << "_ZTT";
3551 Mangler.mangleNameOrStandardSubstitution(RD);
3552 }
3553
mangleCXXCtorVTable(const CXXRecordDecl * RD,int64_t Offset,const CXXRecordDecl * Type,raw_ostream & Out)3554 void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3555 int64_t Offset,
3556 const CXXRecordDecl *Type,
3557 raw_ostream &Out) {
3558 // <special-name> ::= TC <type> <offset number> _ <base type>
3559 CXXNameMangler Mangler(*this, Out);
3560 Mangler.getStream() << "_ZTC";
3561 Mangler.mangleNameOrStandardSubstitution(RD);
3562 Mangler.getStream() << Offset;
3563 Mangler.getStream() << '_';
3564 Mangler.mangleNameOrStandardSubstitution(Type);
3565 }
3566
mangleCXXRTTI(QualType Ty,raw_ostream & Out)3567 void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3568 raw_ostream &Out) {
3569 // <special-name> ::= TI <type> # typeinfo structure
3570 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3571 CXXNameMangler Mangler(*this, Out);
3572 Mangler.getStream() << "_ZTI";
3573 Mangler.mangleType(Ty);
3574 }
3575
mangleCXXRTTIName(QualType Ty,raw_ostream & Out)3576 void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3577 raw_ostream &Out) {
3578 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3579 CXXNameMangler Mangler(*this, Out);
3580 Mangler.getStream() << "_ZTS";
3581 Mangler.mangleType(Ty);
3582 }
3583
createItaniumMangleContext(ASTContext & Context,DiagnosticsEngine & Diags)3584 MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3585 DiagnosticsEngine &Diags) {
3586 return new ItaniumMangleContext(Context, Diags);
3587 }
3588