1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "CGOpenCLRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/GlobalVariable.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32
EmitDecl(const Decl & D)33 void CodeGenFunction::EmitDecl(const Decl &D) {
34 switch (D.getKind()) {
35 case Decl::TranslationUnit:
36 case Decl::Namespace:
37 case Decl::UnresolvedUsingTypename:
38 case Decl::ClassTemplateSpecialization:
39 case Decl::ClassTemplatePartialSpecialization:
40 case Decl::TemplateTypeParm:
41 case Decl::UnresolvedUsingValue:
42 case Decl::NonTypeTemplateParm:
43 case Decl::CXXMethod:
44 case Decl::CXXConstructor:
45 case Decl::CXXDestructor:
46 case Decl::CXXConversion:
47 case Decl::Field:
48 case Decl::IndirectField:
49 case Decl::ObjCIvar:
50 case Decl::ObjCAtDefsField:
51 case Decl::ParmVar:
52 case Decl::ImplicitParam:
53 case Decl::ClassTemplate:
54 case Decl::FunctionTemplate:
55 case Decl::TypeAliasTemplate:
56 case Decl::TemplateTemplateParm:
57 case Decl::ObjCMethod:
58 case Decl::ObjCCategory:
59 case Decl::ObjCProtocol:
60 case Decl::ObjCInterface:
61 case Decl::ObjCCategoryImpl:
62 case Decl::ObjCImplementation:
63 case Decl::ObjCProperty:
64 case Decl::ObjCCompatibleAlias:
65 case Decl::AccessSpec:
66 case Decl::LinkageSpec:
67 case Decl::ObjCPropertyImpl:
68 case Decl::FileScopeAsm:
69 case Decl::Friend:
70 case Decl::FriendTemplate:
71 case Decl::Block:
72 case Decl::ClassScopeFunctionSpecialization:
73 llvm_unreachable("Declaration should not be in declstmts!");
74 case Decl::Function: // void X();
75 case Decl::Record: // struct/union/class X;
76 case Decl::Enum: // enum X;
77 case Decl::EnumConstant: // enum ? { X = ? }
78 case Decl::CXXRecord: // struct/union/class X; [C++]
79 case Decl::Using: // using X; [C++]
80 case Decl::UsingShadow:
81 case Decl::UsingDirective: // using namespace X; [C++]
82 case Decl::NamespaceAlias:
83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84 case Decl::Label: // __label__ x;
85 case Decl::Import:
86 // None of these decls require codegen support.
87 return;
88
89 case Decl::Var: {
90 const VarDecl &VD = cast<VarDecl>(D);
91 assert(VD.isLocalVarDecl() &&
92 "Should not see file-scope variables inside a function!");
93 return EmitVarDecl(VD);
94 }
95
96 case Decl::Typedef: // typedef int X;
97 case Decl::TypeAlias: { // using X = int; [C++0x]
98 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
99 QualType Ty = TD.getUnderlyingType();
100
101 if (Ty->isVariablyModifiedType())
102 EmitVariablyModifiedType(Ty);
103 }
104 }
105 }
106
107 /// EmitVarDecl - This method handles emission of any variable declaration
108 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)109 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
110 switch (D.getStorageClass()) {
111 case SC_None:
112 case SC_Auto:
113 case SC_Register:
114 return EmitAutoVarDecl(D);
115 case SC_Static: {
116 llvm::GlobalValue::LinkageTypes Linkage =
117 llvm::GlobalValue::InternalLinkage;
118
119 // If the function definition has some sort of weak linkage, its
120 // static variables should also be weak so that they get properly
121 // uniqued. We can't do this in C, though, because there's no
122 // standard way to agree on which variables are the same (i.e.
123 // there's no mangling).
124 if (getContext().getLangOpts().CPlusPlus)
125 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
126 Linkage = CurFn->getLinkage();
127
128 return EmitStaticVarDecl(D, Linkage);
129 }
130 case SC_Extern:
131 case SC_PrivateExtern:
132 // Don't emit it now, allow it to be emitted lazily on its first use.
133 return;
134 case SC_OpenCLWorkGroupLocal:
135 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
136 }
137
138 llvm_unreachable("Unknown storage class");
139 }
140
GetStaticDeclName(CodeGenFunction & CGF,const VarDecl & D,const char * Separator)141 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
142 const char *Separator) {
143 CodeGenModule &CGM = CGF.CGM;
144 if (CGF.getContext().getLangOpts().CPlusPlus) {
145 StringRef Name = CGM.getMangledName(&D);
146 return Name.str();
147 }
148
149 std::string ContextName;
150 if (!CGF.CurFuncDecl) {
151 // Better be in a block declared in global scope.
152 const NamedDecl *ND = cast<NamedDecl>(&D);
153 const DeclContext *DC = ND->getDeclContext();
154 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
155 MangleBuffer Name;
156 CGM.getBlockMangledName(GlobalDecl(), Name, BD);
157 ContextName = Name.getString();
158 }
159 else
160 llvm_unreachable("Unknown context for block static var decl");
161 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
162 StringRef Name = CGM.getMangledName(FD);
163 ContextName = Name.str();
164 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
165 ContextName = CGF.CurFn->getName();
166 else
167 llvm_unreachable("Unknown context for static var decl");
168
169 return ContextName + Separator + D.getNameAsString();
170 }
171
172 llvm::GlobalVariable *
CreateStaticVarDecl(const VarDecl & D,const char * Separator,llvm::GlobalValue::LinkageTypes Linkage)173 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
174 const char *Separator,
175 llvm::GlobalValue::LinkageTypes Linkage) {
176 QualType Ty = D.getType();
177 assert(Ty->isConstantSizeType() && "VLAs can't be static");
178
179 // Use the label if the variable is renamed with the asm-label extension.
180 std::string Name;
181 if (D.hasAttr<AsmLabelAttr>())
182 Name = CGM.getMangledName(&D);
183 else
184 Name = GetStaticDeclName(*this, D, Separator);
185
186 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
187 llvm::GlobalVariable *GV =
188 new llvm::GlobalVariable(CGM.getModule(), LTy,
189 Ty.isConstant(getContext()), Linkage,
190 CGM.EmitNullConstant(D.getType()), Name, 0,
191 D.isThreadSpecified(),
192 CGM.getContext().getTargetAddressSpace(Ty));
193 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
194 if (Linkage != llvm::GlobalValue::InternalLinkage)
195 GV->setVisibility(CurFn->getVisibility());
196 return GV;
197 }
198
199 /// hasNontrivialDestruction - Determine whether a type's destruction is
200 /// non-trivial. If so, and the variable uses static initialization, we must
201 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)202 static bool hasNontrivialDestruction(QualType T) {
203 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
204 return RD && !RD->hasTrivialDestructor();
205 }
206
207 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
208 /// global variable that has already been created for it. If the initializer
209 /// has a different type than GV does, this may free GV and return a different
210 /// one. Otherwise it just returns GV.
211 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)212 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
213 llvm::GlobalVariable *GV) {
214 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
215
216 // If constant emission failed, then this should be a C++ static
217 // initializer.
218 if (!Init) {
219 if (!getContext().getLangOpts().CPlusPlus)
220 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
221 else if (Builder.GetInsertBlock()) {
222 // Since we have a static initializer, this global variable can't
223 // be constant.
224 GV->setConstant(false);
225
226 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
227 }
228 return GV;
229 }
230
231 // The initializer may differ in type from the global. Rewrite
232 // the global to match the initializer. (We have to do this
233 // because some types, like unions, can't be completely represented
234 // in the LLVM type system.)
235 if (GV->getType()->getElementType() != Init->getType()) {
236 llvm::GlobalVariable *OldGV = GV;
237
238 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
239 OldGV->isConstant(),
240 OldGV->getLinkage(), Init, "",
241 /*InsertBefore*/ OldGV,
242 D.isThreadSpecified(),
243 CGM.getContext().getTargetAddressSpace(D.getType()));
244 GV->setVisibility(OldGV->getVisibility());
245
246 // Steal the name of the old global
247 GV->takeName(OldGV);
248
249 // Replace all uses of the old global with the new global
250 llvm::Constant *NewPtrForOldDecl =
251 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
252 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
253
254 // Erase the old global, since it is no longer used.
255 OldGV->eraseFromParent();
256 }
257
258 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
259 GV->setInitializer(Init);
260
261 if (hasNontrivialDestruction(D.getType())) {
262 // We have a constant initializer, but a nontrivial destructor. We still
263 // need to perform a guarded "initialization" in order to register the
264 // destructor.
265 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
266 }
267
268 return GV;
269 }
270
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)271 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
272 llvm::GlobalValue::LinkageTypes Linkage) {
273 llvm::Value *&DMEntry = LocalDeclMap[&D];
274 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
275
276 // Check to see if we already have a global variable for this
277 // declaration. This can happen when double-emitting function
278 // bodies, e.g. with complete and base constructors.
279 llvm::Constant *addr =
280 CGM.getStaticLocalDeclAddress(&D);
281
282 llvm::GlobalVariable *var;
283 if (addr) {
284 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
285 } else {
286 addr = var = CreateStaticVarDecl(D, ".", Linkage);
287 }
288
289 // Store into LocalDeclMap before generating initializer to handle
290 // circular references.
291 DMEntry = addr;
292 CGM.setStaticLocalDeclAddress(&D, addr);
293
294 // We can't have a VLA here, but we can have a pointer to a VLA,
295 // even though that doesn't really make any sense.
296 // Make sure to evaluate VLA bounds now so that we have them for later.
297 if (D.getType()->isVariablyModifiedType())
298 EmitVariablyModifiedType(D.getType());
299
300 // Save the type in case adding the initializer forces a type change.
301 llvm::Type *expectedType = addr->getType();
302
303 // If this value has an initializer, emit it.
304 if (D.getInit())
305 var = AddInitializerToStaticVarDecl(D, var);
306
307 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
308
309 if (D.hasAttr<AnnotateAttr>())
310 CGM.AddGlobalAnnotations(&D, var);
311
312 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
313 var->setSection(SA->getName());
314
315 if (D.hasAttr<UsedAttr>())
316 CGM.AddUsedGlobal(var);
317
318 // We may have to cast the constant because of the initializer
319 // mismatch above.
320 //
321 // FIXME: It is really dangerous to store this in the map; if anyone
322 // RAUW's the GV uses of this constant will be invalid.
323 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
324 DMEntry = castedAddr;
325 CGM.setStaticLocalDeclAddress(&D, castedAddr);
326
327 // Emit global variable debug descriptor for static vars.
328 CGDebugInfo *DI = getDebugInfo();
329 if (DI) {
330 DI->setLocation(D.getLocation());
331 DI->EmitGlobalVariable(var, &D);
332 }
333 }
334
335 namespace {
336 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon9ac7fd460111::DestroyObject337 DestroyObject(llvm::Value *addr, QualType type,
338 CodeGenFunction::Destroyer *destroyer,
339 bool useEHCleanupForArray)
340 : addr(addr), type(type), destroyer(destroyer),
341 useEHCleanupForArray(useEHCleanupForArray) {}
342
343 llvm::Value *addr;
344 QualType type;
345 CodeGenFunction::Destroyer *destroyer;
346 bool useEHCleanupForArray;
347
Emit__anon9ac7fd460111::DestroyObject348 void Emit(CodeGenFunction &CGF, Flags flags) {
349 // Don't use an EH cleanup recursively from an EH cleanup.
350 bool useEHCleanupForArray =
351 flags.isForNormalCleanup() && this->useEHCleanupForArray;
352
353 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
354 }
355 };
356
357 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon9ac7fd460111::DestroyNRVOVariable358 DestroyNRVOVariable(llvm::Value *addr,
359 const CXXDestructorDecl *Dtor,
360 llvm::Value *NRVOFlag)
361 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
362
363 const CXXDestructorDecl *Dtor;
364 llvm::Value *NRVOFlag;
365 llvm::Value *Loc;
366
Emit__anon9ac7fd460111::DestroyNRVOVariable367 void Emit(CodeGenFunction &CGF, Flags flags) {
368 // Along the exceptions path we always execute the dtor.
369 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
370
371 llvm::BasicBlock *SkipDtorBB = 0;
372 if (NRVO) {
373 // If we exited via NRVO, we skip the destructor call.
374 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
375 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
376 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
377 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
378 CGF.EmitBlock(RunDtorBB);
379 }
380
381 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
382 /*ForVirtualBase=*/false, Loc);
383
384 if (NRVO) CGF.EmitBlock(SkipDtorBB);
385 }
386 };
387
388 struct CallStackRestore : EHScopeStack::Cleanup {
389 llvm::Value *Stack;
CallStackRestore__anon9ac7fd460111::CallStackRestore390 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon9ac7fd460111::CallStackRestore391 void Emit(CodeGenFunction &CGF, Flags flags) {
392 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
393 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
394 CGF.Builder.CreateCall(F, V);
395 }
396 };
397
398 struct ExtendGCLifetime : EHScopeStack::Cleanup {
399 const VarDecl &Var;
ExtendGCLifetime__anon9ac7fd460111::ExtendGCLifetime400 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
401
Emit__anon9ac7fd460111::ExtendGCLifetime402 void Emit(CodeGenFunction &CGF, Flags flags) {
403 // Compute the address of the local variable, in case it's a
404 // byref or something.
405 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
406 Var.getType(), VK_LValue, SourceLocation());
407 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
408 CGF.EmitExtendGCLifetime(value);
409 }
410 };
411
412 struct CallCleanupFunction : EHScopeStack::Cleanup {
413 llvm::Constant *CleanupFn;
414 const CGFunctionInfo &FnInfo;
415 const VarDecl &Var;
416
CallCleanupFunction__anon9ac7fd460111::CallCleanupFunction417 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
418 const VarDecl *Var)
419 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
420
Emit__anon9ac7fd460111::CallCleanupFunction421 void Emit(CodeGenFunction &CGF, Flags flags) {
422 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
423 Var.getType(), VK_LValue, SourceLocation());
424 // Compute the address of the local variable, in case it's a byref
425 // or something.
426 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
427
428 // In some cases, the type of the function argument will be different from
429 // the type of the pointer. An example of this is
430 // void f(void* arg);
431 // __attribute__((cleanup(f))) void *g;
432 //
433 // To fix this we insert a bitcast here.
434 QualType ArgTy = FnInfo.arg_begin()->type;
435 llvm::Value *Arg =
436 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
437
438 CallArgList Args;
439 Args.add(RValue::get(Arg),
440 CGF.getContext().getPointerType(Var.getType()));
441 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
442 }
443 };
444 }
445
446 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
447 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)448 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
449 llvm::Value *addr,
450 Qualifiers::ObjCLifetime lifetime) {
451 switch (lifetime) {
452 case Qualifiers::OCL_None:
453 llvm_unreachable("present but none");
454
455 case Qualifiers::OCL_ExplicitNone:
456 // nothing to do
457 break;
458
459 case Qualifiers::OCL_Strong: {
460 CodeGenFunction::Destroyer *destroyer =
461 (var.hasAttr<ObjCPreciseLifetimeAttr>()
462 ? CodeGenFunction::destroyARCStrongPrecise
463 : CodeGenFunction::destroyARCStrongImprecise);
464
465 CleanupKind cleanupKind = CGF.getARCCleanupKind();
466 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
467 cleanupKind & EHCleanup);
468 break;
469 }
470 case Qualifiers::OCL_Autoreleasing:
471 // nothing to do
472 break;
473
474 case Qualifiers::OCL_Weak:
475 // __weak objects always get EH cleanups; otherwise, exceptions
476 // could cause really nasty crashes instead of mere leaks.
477 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
478 CodeGenFunction::destroyARCWeak,
479 /*useEHCleanup*/ true);
480 break;
481 }
482 }
483
isAccessedBy(const VarDecl & var,const Stmt * s)484 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
485 if (const Expr *e = dyn_cast<Expr>(s)) {
486 // Skip the most common kinds of expressions that make
487 // hierarchy-walking expensive.
488 s = e = e->IgnoreParenCasts();
489
490 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
491 return (ref->getDecl() == &var);
492 }
493
494 for (Stmt::const_child_range children = s->children(); children; ++children)
495 // children might be null; as in missing decl or conditional of an if-stmt.
496 if ((*children) && isAccessedBy(var, *children))
497 return true;
498
499 return false;
500 }
501
isAccessedBy(const ValueDecl * decl,const Expr * e)502 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
503 if (!decl) return false;
504 if (!isa<VarDecl>(decl)) return false;
505 const VarDecl *var = cast<VarDecl>(decl);
506 return isAccessedBy(*var, e);
507 }
508
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)509 static void drillIntoBlockVariable(CodeGenFunction &CGF,
510 LValue &lvalue,
511 const VarDecl *var) {
512 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
513 }
514
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)515 void CodeGenFunction::EmitScalarInit(const Expr *init,
516 const ValueDecl *D,
517 LValue lvalue,
518 bool capturedByInit) {
519 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
520 if (!lifetime) {
521 llvm::Value *value = EmitScalarExpr(init);
522 if (capturedByInit)
523 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
524 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
525 return;
526 }
527
528 // If we're emitting a value with lifetime, we have to do the
529 // initialization *before* we leave the cleanup scopes.
530 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
531 enterFullExpression(ewc);
532 init = ewc->getSubExpr();
533 }
534 CodeGenFunction::RunCleanupsScope Scope(*this);
535
536 // We have to maintain the illusion that the variable is
537 // zero-initialized. If the variable might be accessed in its
538 // initializer, zero-initialize before running the initializer, then
539 // actually perform the initialization with an assign.
540 bool accessedByInit = false;
541 if (lifetime != Qualifiers::OCL_ExplicitNone)
542 accessedByInit = (capturedByInit || isAccessedBy(D, init));
543 if (accessedByInit) {
544 LValue tempLV = lvalue;
545 // Drill down to the __block object if necessary.
546 if (capturedByInit) {
547 // We can use a simple GEP for this because it can't have been
548 // moved yet.
549 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
550 getByRefValueLLVMField(cast<VarDecl>(D))));
551 }
552
553 llvm::PointerType *ty
554 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
555 ty = cast<llvm::PointerType>(ty->getElementType());
556
557 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
558
559 // If __weak, we want to use a barrier under certain conditions.
560 if (lifetime == Qualifiers::OCL_Weak)
561 EmitARCInitWeak(tempLV.getAddress(), zero);
562
563 // Otherwise just do a simple store.
564 else
565 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
566 }
567
568 // Emit the initializer.
569 llvm::Value *value = 0;
570
571 switch (lifetime) {
572 case Qualifiers::OCL_None:
573 llvm_unreachable("present but none");
574
575 case Qualifiers::OCL_ExplicitNone:
576 // nothing to do
577 value = EmitScalarExpr(init);
578 break;
579
580 case Qualifiers::OCL_Strong: {
581 value = EmitARCRetainScalarExpr(init);
582 break;
583 }
584
585 case Qualifiers::OCL_Weak: {
586 // No way to optimize a producing initializer into this. It's not
587 // worth optimizing for, because the value will immediately
588 // disappear in the common case.
589 value = EmitScalarExpr(init);
590
591 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
592 if (accessedByInit)
593 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
594 else
595 EmitARCInitWeak(lvalue.getAddress(), value);
596 return;
597 }
598
599 case Qualifiers::OCL_Autoreleasing:
600 value = EmitARCRetainAutoreleaseScalarExpr(init);
601 break;
602 }
603
604 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
605
606 // If the variable might have been accessed by its initializer, we
607 // might have to initialize with a barrier. We have to do this for
608 // both __weak and __strong, but __weak got filtered out above.
609 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
610 llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
611 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
612 EmitARCRelease(oldValue, /*precise*/ false);
613 return;
614 }
615
616 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
617 }
618
619 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)620 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
621 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
622 if (!lifetime)
623 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
624
625 switch (lifetime) {
626 case Qualifiers::OCL_None:
627 llvm_unreachable("present but none");
628
629 case Qualifiers::OCL_ExplicitNone:
630 // nothing to do
631 break;
632
633 case Qualifiers::OCL_Strong:
634 init = EmitARCRetain(lvalue.getType(), init);
635 break;
636
637 case Qualifiers::OCL_Weak:
638 // Initialize and then skip the primitive store.
639 EmitARCInitWeak(lvalue.getAddress(), init);
640 return;
641
642 case Qualifiers::OCL_Autoreleasing:
643 init = EmitARCRetainAutorelease(lvalue.getType(), init);
644 break;
645 }
646
647 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
648 }
649
650 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
651 /// non-zero parts of the specified initializer with equal or fewer than
652 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)653 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
654 unsigned &NumStores) {
655 // Zero and Undef never requires any extra stores.
656 if (isa<llvm::ConstantAggregateZero>(Init) ||
657 isa<llvm::ConstantPointerNull>(Init) ||
658 isa<llvm::UndefValue>(Init))
659 return true;
660 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
661 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
662 isa<llvm::ConstantExpr>(Init))
663 return Init->isNullValue() || NumStores--;
664
665 // See if we can emit each element.
666 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
667 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
668 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
669 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
670 return false;
671 }
672 return true;
673 }
674
675 if (llvm::ConstantDataSequential *CDS =
676 dyn_cast<llvm::ConstantDataSequential>(Init)) {
677 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
678 llvm::Constant *Elt = CDS->getElementAsConstant(i);
679 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
680 return false;
681 }
682 return true;
683 }
684
685 // Anything else is hard and scary.
686 return false;
687 }
688
689 /// emitStoresForInitAfterMemset - For inits that
690 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
691 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)692 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
693 bool isVolatile, CGBuilderTy &Builder) {
694 // Zero doesn't require a store.
695 if (Init->isNullValue() || isa<llvm::UndefValue>(Init))
696 return;
697
698 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
699 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
700 isa<llvm::ConstantExpr>(Init)) {
701 Builder.CreateStore(Init, Loc, isVolatile);
702 return;
703 }
704
705 if (llvm::ConstantDataSequential *CDS =
706 dyn_cast<llvm::ConstantDataSequential>(Init)) {
707 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
708 llvm::Constant *Elt = CDS->getElementAsConstant(i);
709
710 // Get a pointer to the element and emit it.
711 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
712 isVolatile, Builder);
713 }
714 return;
715 }
716
717 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
718 "Unknown value type!");
719
720 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
721 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
722 // Get a pointer to the element and emit it.
723 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
724 isVolatile, Builder);
725 }
726 }
727
728
729 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
730 /// plus some stores to initialize a local variable instead of using a memcpy
731 /// from a constant global. It is beneficial to use memset if the global is all
732 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)733 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
734 uint64_t GlobalSize) {
735 // If a global is all zeros, always use a memset.
736 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
737
738
739 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
740 // do it if it will require 6 or fewer scalar stores.
741 // TODO: Should budget depends on the size? Avoiding a large global warrants
742 // plopping in more stores.
743 unsigned StoreBudget = 6;
744 uint64_t SizeLimit = 32;
745
746 return GlobalSize > SizeLimit &&
747 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
748 }
749
750
751 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
752 /// variable declaration with auto, register, or no storage class specifier.
753 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)754 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
755 AutoVarEmission emission = EmitAutoVarAlloca(D);
756 EmitAutoVarInit(emission);
757 EmitAutoVarCleanups(emission);
758 }
759
760 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
761 /// local variable. Does not emit initalization or destruction.
762 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)763 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
764 QualType Ty = D.getType();
765
766 AutoVarEmission emission(D);
767
768 bool isByRef = D.hasAttr<BlocksAttr>();
769 emission.IsByRef = isByRef;
770
771 CharUnits alignment = getContext().getDeclAlign(&D);
772 emission.Alignment = alignment;
773
774 // If the type is variably-modified, emit all the VLA sizes for it.
775 if (Ty->isVariablyModifiedType())
776 EmitVariablyModifiedType(Ty);
777
778 llvm::Value *DeclPtr;
779 if (Ty->isConstantSizeType()) {
780 if (!Target.useGlobalsForAutomaticVariables()) {
781 bool NRVO = getContext().getLangOpts().ElideConstructors &&
782 D.isNRVOVariable();
783
784 // If this value is a POD array or struct with a statically
785 // determinable constant initializer, there are optimizations we can do.
786 //
787 // TODO: We should constant-evaluate the initializer of any variable,
788 // as long as it is initialized by a constant expression. Currently,
789 // isConstantInitializer produces wrong answers for structs with
790 // reference or bitfield members, and a few other cases, and checking
791 // for POD-ness protects us from some of these.
792 if (D.getInit() &&
793 (Ty->isArrayType() || Ty->isRecordType()) &&
794 (Ty.isPODType(getContext()) ||
795 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
796 D.getInit()->isConstantInitializer(getContext(), false)) {
797
798 // If the variable's a const type, and it's neither an NRVO
799 // candidate nor a __block variable and has no mutable members,
800 // emit it as a global instead.
801 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
802 CGM.isTypeConstant(Ty, true)) {
803 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
804
805 emission.Address = 0; // signal this condition to later callbacks
806 assert(emission.wasEmittedAsGlobal());
807 return emission;
808 }
809
810 // Otherwise, tell the initialization code that we're in this case.
811 emission.IsConstantAggregate = true;
812 }
813
814 // A normal fixed sized variable becomes an alloca in the entry block,
815 // unless it's an NRVO variable.
816 llvm::Type *LTy = ConvertTypeForMem(Ty);
817
818 if (NRVO) {
819 // The named return value optimization: allocate this variable in the
820 // return slot, so that we can elide the copy when returning this
821 // variable (C++0x [class.copy]p34).
822 DeclPtr = ReturnValue;
823
824 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
825 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
826 // Create a flag that is used to indicate when the NRVO was applied
827 // to this variable. Set it to zero to indicate that NRVO was not
828 // applied.
829 llvm::Value *Zero = Builder.getFalse();
830 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
831 EnsureInsertPoint();
832 Builder.CreateStore(Zero, NRVOFlag);
833
834 // Record the NRVO flag for this variable.
835 NRVOFlags[&D] = NRVOFlag;
836 emission.NRVOFlag = NRVOFlag;
837 }
838 }
839 } else {
840 if (isByRef)
841 LTy = BuildByRefType(&D);
842
843 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
844 Alloc->setName(D.getName());
845
846 CharUnits allocaAlignment = alignment;
847 if (isByRef)
848 allocaAlignment = std::max(allocaAlignment,
849 getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
850 Alloc->setAlignment(allocaAlignment.getQuantity());
851 DeclPtr = Alloc;
852 }
853 } else {
854 // Targets that don't support recursion emit locals as globals.
855 const char *Class =
856 D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
857 DeclPtr = CreateStaticVarDecl(D, Class,
858 llvm::GlobalValue::InternalLinkage);
859 }
860 } else {
861 EnsureInsertPoint();
862
863 if (!DidCallStackSave) {
864 // Save the stack.
865 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
866
867 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
868 llvm::Value *V = Builder.CreateCall(F);
869
870 Builder.CreateStore(V, Stack);
871
872 DidCallStackSave = true;
873
874 // Push a cleanup block and restore the stack there.
875 // FIXME: in general circumstances, this should be an EH cleanup.
876 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
877 }
878
879 llvm::Value *elementCount;
880 QualType elementType;
881 llvm::tie(elementCount, elementType) = getVLASize(Ty);
882
883 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
884
885 // Allocate memory for the array.
886 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
887 vla->setAlignment(alignment.getQuantity());
888
889 DeclPtr = vla;
890 }
891
892 llvm::Value *&DMEntry = LocalDeclMap[&D];
893 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
894 DMEntry = DeclPtr;
895 emission.Address = DeclPtr;
896
897 // Emit debug info for local var declaration.
898 if (HaveInsertPoint())
899 if (CGDebugInfo *DI = getDebugInfo()) {
900 DI->setLocation(D.getLocation());
901 if (Target.useGlobalsForAutomaticVariables()) {
902 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
903 } else
904 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
905 }
906
907 if (D.hasAttr<AnnotateAttr>())
908 EmitVarAnnotations(&D, emission.Address);
909
910 return emission;
911 }
912
913 /// Determines whether the given __block variable is potentially
914 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)915 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
916 // Skip the most common kinds of expressions that make
917 // hierarchy-walking expensive.
918 e = e->IgnoreParenCasts();
919
920 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
921 const BlockDecl *block = be->getBlockDecl();
922 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
923 e = block->capture_end(); i != e; ++i) {
924 if (i->getVariable() == &var)
925 return true;
926 }
927
928 // No need to walk into the subexpressions.
929 return false;
930 }
931
932 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
933 const CompoundStmt *CS = SE->getSubStmt();
934 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
935 BE = CS->body_end(); BI != BE; ++BI)
936 if (Expr *E = dyn_cast<Expr>((*BI))) {
937 if (isCapturedBy(var, E))
938 return true;
939 }
940 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
941 // special case declarations
942 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
943 I != E; ++I) {
944 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
945 Expr *Init = VD->getInit();
946 if (Init && isCapturedBy(var, Init))
947 return true;
948 }
949 }
950 }
951 else
952 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
953 // Later, provide code to poke into statements for capture analysis.
954 return true;
955 return false;
956 }
957
958 for (Stmt::const_child_range children = e->children(); children; ++children)
959 if (isCapturedBy(var, cast<Expr>(*children)))
960 return true;
961
962 return false;
963 }
964
965 /// \brief Determine whether the given initializer is trivial in the sense
966 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)967 static bool isTrivialInitializer(const Expr *Init) {
968 if (!Init)
969 return true;
970
971 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
972 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
973 if (Constructor->isTrivial() &&
974 Constructor->isDefaultConstructor() &&
975 !Construct->requiresZeroInitialization())
976 return true;
977
978 return false;
979 }
EmitAutoVarInit(const AutoVarEmission & emission)980 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
981 assert(emission.Variable && "emission was not valid!");
982
983 // If this was emitted as a global constant, we're done.
984 if (emission.wasEmittedAsGlobal()) return;
985
986 const VarDecl &D = *emission.Variable;
987 QualType type = D.getType();
988
989 // If this local has an initializer, emit it now.
990 const Expr *Init = D.getInit();
991
992 // If we are at an unreachable point, we don't need to emit the initializer
993 // unless it contains a label.
994 if (!HaveInsertPoint()) {
995 if (!Init || !ContainsLabel(Init)) return;
996 EnsureInsertPoint();
997 }
998
999 // Initialize the structure of a __block variable.
1000 if (emission.IsByRef)
1001 emitByrefStructureInit(emission);
1002
1003 if (isTrivialInitializer(Init))
1004 return;
1005
1006 CharUnits alignment = emission.Alignment;
1007
1008 // Check whether this is a byref variable that's potentially
1009 // captured and moved by its own initializer. If so, we'll need to
1010 // emit the initializer first, then copy into the variable.
1011 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1012
1013 llvm::Value *Loc =
1014 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1015
1016 llvm::Constant *constant = 0;
1017 if (emission.IsConstantAggregate) {
1018 assert(!capturedByInit && "constant init contains a capturing block?");
1019 constant = CGM.EmitConstantInit(D, this);
1020 }
1021
1022 if (!constant) {
1023 LValue lv = MakeAddrLValue(Loc, type, alignment);
1024 lv.setNonGC(true);
1025 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1026 }
1027
1028 // If this is a simple aggregate initialization, we can optimize it
1029 // in various ways.
1030 bool isVolatile = type.isVolatileQualified();
1031
1032 llvm::Value *SizeVal =
1033 llvm::ConstantInt::get(IntPtrTy,
1034 getContext().getTypeSizeInChars(type).getQuantity());
1035
1036 llvm::Type *BP = Int8PtrTy;
1037 if (Loc->getType() != BP)
1038 Loc = Builder.CreateBitCast(Loc, BP);
1039
1040 // If the initializer is all or mostly zeros, codegen with memset then do
1041 // a few stores afterward.
1042 if (shouldUseMemSetPlusStoresToInitialize(constant,
1043 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
1044 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1045 alignment.getQuantity(), isVolatile);
1046 if (!constant->isNullValue()) {
1047 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1048 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1049 }
1050 } else {
1051 // Otherwise, create a temporary global with the initializer then
1052 // memcpy from the global to the alloca.
1053 std::string Name = GetStaticDeclName(*this, D, ".");
1054 llvm::GlobalVariable *GV =
1055 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1056 llvm::GlobalValue::PrivateLinkage,
1057 constant, Name, 0, false, 0);
1058 GV->setAlignment(alignment.getQuantity());
1059 GV->setUnnamedAddr(true);
1060
1061 llvm::Value *SrcPtr = GV;
1062 if (SrcPtr->getType() != BP)
1063 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1064
1065 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1066 isVolatile);
1067 }
1068 }
1069
1070 /// Emit an expression as an initializer for a variable at the given
1071 /// location. The expression is not necessarily the normal
1072 /// initializer for the variable, and the address is not necessarily
1073 /// its normal location.
1074 ///
1075 /// \param init the initializing expression
1076 /// \param var the variable to act as if we're initializing
1077 /// \param loc the address to initialize; its type is a pointer
1078 /// to the LLVM mapping of the variable's type
1079 /// \param alignment the alignment of the address
1080 /// \param capturedByInit true if the variable is a __block variable
1081 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1082 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1083 const ValueDecl *D,
1084 LValue lvalue,
1085 bool capturedByInit) {
1086 QualType type = D->getType();
1087
1088 if (type->isReferenceType()) {
1089 RValue rvalue = EmitReferenceBindingToExpr(init, D);
1090 if (capturedByInit)
1091 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1092 EmitStoreThroughLValue(rvalue, lvalue, true);
1093 } else if (!hasAggregateLLVMType(type)) {
1094 EmitScalarInit(init, D, lvalue, capturedByInit);
1095 } else if (type->isAnyComplexType()) {
1096 ComplexPairTy complex = EmitComplexExpr(init);
1097 if (capturedByInit)
1098 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1099 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1100 } else {
1101 // TODO: how can we delay here if D is captured by its initializer?
1102 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1103 AggValueSlot::IsDestructed,
1104 AggValueSlot::DoesNotNeedGCBarriers,
1105 AggValueSlot::IsNotAliased));
1106 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1107 }
1108 }
1109
1110 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1111 void CodeGenFunction::emitAutoVarTypeCleanup(
1112 const CodeGenFunction::AutoVarEmission &emission,
1113 QualType::DestructionKind dtorKind) {
1114 assert(dtorKind != QualType::DK_none);
1115
1116 // Note that for __block variables, we want to destroy the
1117 // original stack object, not the possibly forwarded object.
1118 llvm::Value *addr = emission.getObjectAddress(*this);
1119
1120 const VarDecl *var = emission.Variable;
1121 QualType type = var->getType();
1122
1123 CleanupKind cleanupKind = NormalAndEHCleanup;
1124 CodeGenFunction::Destroyer *destroyer = 0;
1125
1126 switch (dtorKind) {
1127 case QualType::DK_none:
1128 llvm_unreachable("no cleanup for trivially-destructible variable");
1129
1130 case QualType::DK_cxx_destructor:
1131 // If there's an NRVO flag on the emission, we need a different
1132 // cleanup.
1133 if (emission.NRVOFlag) {
1134 assert(!type->isArrayType());
1135 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1136 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1137 emission.NRVOFlag);
1138 return;
1139 }
1140 break;
1141
1142 case QualType::DK_objc_strong_lifetime:
1143 // Suppress cleanups for pseudo-strong variables.
1144 if (var->isARCPseudoStrong()) return;
1145
1146 // Otherwise, consider whether to use an EH cleanup or not.
1147 cleanupKind = getARCCleanupKind();
1148
1149 // Use the imprecise destroyer by default.
1150 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1151 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1152 break;
1153
1154 case QualType::DK_objc_weak_lifetime:
1155 break;
1156 }
1157
1158 // If we haven't chosen a more specific destroyer, use the default.
1159 if (!destroyer) destroyer = getDestroyer(dtorKind);
1160
1161 // Use an EH cleanup in array destructors iff the destructor itself
1162 // is being pushed as an EH cleanup.
1163 bool useEHCleanup = (cleanupKind & EHCleanup);
1164 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1165 useEHCleanup);
1166 }
1167
EmitAutoVarCleanups(const AutoVarEmission & emission)1168 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1169 assert(emission.Variable && "emission was not valid!");
1170
1171 // If this was emitted as a global constant, we're done.
1172 if (emission.wasEmittedAsGlobal()) return;
1173
1174 // If we don't have an insertion point, we're done. Sema prevents
1175 // us from jumping into any of these scopes anyway.
1176 if (!HaveInsertPoint()) return;
1177
1178 const VarDecl &D = *emission.Variable;
1179
1180 // Check the type for a cleanup.
1181 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1182 emitAutoVarTypeCleanup(emission, dtorKind);
1183
1184 // In GC mode, honor objc_precise_lifetime.
1185 if (getLangOpts().getGC() != LangOptions::NonGC &&
1186 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1187 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1188 }
1189
1190 // Handle the cleanup attribute.
1191 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1192 const FunctionDecl *FD = CA->getFunctionDecl();
1193
1194 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1195 assert(F && "Could not find function!");
1196
1197 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1198 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1199 }
1200
1201 // If this is a block variable, call _Block_object_destroy
1202 // (on the unforwarded address).
1203 if (emission.IsByRef)
1204 enterByrefCleanup(emission);
1205 }
1206
1207 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1208 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1209 switch (kind) {
1210 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1211 case QualType::DK_cxx_destructor:
1212 return destroyCXXObject;
1213 case QualType::DK_objc_strong_lifetime:
1214 return destroyARCStrongPrecise;
1215 case QualType::DK_objc_weak_lifetime:
1216 return destroyARCWeak;
1217 }
1218 llvm_unreachable("Unknown DestructionKind");
1219 }
1220
1221 /// pushDestroy - Push the standard destructor for the given type.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1222 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1223 llvm::Value *addr, QualType type) {
1224 assert(dtorKind && "cannot push destructor for trivial type");
1225
1226 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1227 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1228 cleanupKind & EHCleanup);
1229 }
1230
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1231 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1232 QualType type, Destroyer *destroyer,
1233 bool useEHCleanupForArray) {
1234 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1235 destroyer, useEHCleanupForArray);
1236 }
1237
1238 /// emitDestroy - Immediately perform the destruction of the given
1239 /// object.
1240 ///
1241 /// \param addr - the address of the object; a type*
1242 /// \param type - the type of the object; if an array type, all
1243 /// objects are destroyed in reverse order
1244 /// \param destroyer - the function to call to destroy individual
1245 /// elements
1246 /// \param useEHCleanupForArray - whether an EH cleanup should be
1247 /// used when destroying array elements, in case one of the
1248 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1249 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1250 Destroyer *destroyer,
1251 bool useEHCleanupForArray) {
1252 const ArrayType *arrayType = getContext().getAsArrayType(type);
1253 if (!arrayType)
1254 return destroyer(*this, addr, type);
1255
1256 llvm::Value *begin = addr;
1257 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1258
1259 // Normally we have to check whether the array is zero-length.
1260 bool checkZeroLength = true;
1261
1262 // But if the array length is constant, we can suppress that.
1263 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1264 // ...and if it's constant zero, we can just skip the entire thing.
1265 if (constLength->isZero()) return;
1266 checkZeroLength = false;
1267 }
1268
1269 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1270 emitArrayDestroy(begin, end, type, destroyer,
1271 checkZeroLength, useEHCleanupForArray);
1272 }
1273
1274 /// emitArrayDestroy - Destroys all the elements of the given array,
1275 /// beginning from last to first. The array cannot be zero-length.
1276 ///
1277 /// \param begin - a type* denoting the first element of the array
1278 /// \param end - a type* denoting one past the end of the array
1279 /// \param type - the element type of the array
1280 /// \param destroyer - the function to call to destroy elements
1281 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1282 /// the remaining elements in case the destruction of a single
1283 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1284 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1285 llvm::Value *end,
1286 QualType type,
1287 Destroyer *destroyer,
1288 bool checkZeroLength,
1289 bool useEHCleanup) {
1290 assert(!type->isArrayType());
1291
1292 // The basic structure here is a do-while loop, because we don't
1293 // need to check for the zero-element case.
1294 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1295 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1296
1297 if (checkZeroLength) {
1298 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1299 "arraydestroy.isempty");
1300 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1301 }
1302
1303 // Enter the loop body, making that address the current address.
1304 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1305 EmitBlock(bodyBB);
1306 llvm::PHINode *elementPast =
1307 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1308 elementPast->addIncoming(end, entryBB);
1309
1310 // Shift the address back by one element.
1311 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1312 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1313 "arraydestroy.element");
1314
1315 if (useEHCleanup)
1316 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1317
1318 // Perform the actual destruction there.
1319 destroyer(*this, element, type);
1320
1321 if (useEHCleanup)
1322 PopCleanupBlock();
1323
1324 // Check whether we've reached the end.
1325 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1326 Builder.CreateCondBr(done, doneBB, bodyBB);
1327 elementPast->addIncoming(element, Builder.GetInsertBlock());
1328
1329 // Done.
1330 EmitBlock(doneBB);
1331 }
1332
1333 /// Perform partial array destruction as if in an EH cleanup. Unlike
1334 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1335 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1336 llvm::Value *begin, llvm::Value *end,
1337 QualType type,
1338 CodeGenFunction::Destroyer *destroyer) {
1339 // If the element type is itself an array, drill down.
1340 unsigned arrayDepth = 0;
1341 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1342 // VLAs don't require a GEP index to walk into.
1343 if (!isa<VariableArrayType>(arrayType))
1344 arrayDepth++;
1345 type = arrayType->getElementType();
1346 }
1347
1348 if (arrayDepth) {
1349 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1350
1351 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1352 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1353 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1354 }
1355
1356 // Destroy the array. We don't ever need an EH cleanup because we
1357 // assume that we're in an EH cleanup ourselves, so a throwing
1358 // destructor causes an immediate terminate.
1359 CGF.emitArrayDestroy(begin, end, type, destroyer,
1360 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1361 }
1362
1363 namespace {
1364 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1365 /// array destroy where the end pointer is regularly determined and
1366 /// does not need to be loaded from a local.
1367 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1368 llvm::Value *ArrayBegin;
1369 llvm::Value *ArrayEnd;
1370 QualType ElementType;
1371 CodeGenFunction::Destroyer *Destroyer;
1372 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1373 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1374 QualType elementType,
1375 CodeGenFunction::Destroyer *destroyer)
1376 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1377 ElementType(elementType), Destroyer(destroyer) {}
1378
Emit(CodeGenFunction & CGF,Flags flags)1379 void Emit(CodeGenFunction &CGF, Flags flags) {
1380 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1381 ElementType, Destroyer);
1382 }
1383 };
1384
1385 /// IrregularPartialArrayDestroy - a cleanup which performs a
1386 /// partial array destroy where the end pointer is irregularly
1387 /// determined and must be loaded from a local.
1388 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1389 llvm::Value *ArrayBegin;
1390 llvm::Value *ArrayEndPointer;
1391 QualType ElementType;
1392 CodeGenFunction::Destroyer *Destroyer;
1393 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1394 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1395 llvm::Value *arrayEndPointer,
1396 QualType elementType,
1397 CodeGenFunction::Destroyer *destroyer)
1398 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1399 ElementType(elementType), Destroyer(destroyer) {}
1400
Emit(CodeGenFunction & CGF,Flags flags)1401 void Emit(CodeGenFunction &CGF, Flags flags) {
1402 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1403 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1404 ElementType, Destroyer);
1405 }
1406 };
1407 }
1408
1409 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1410 /// already-constructed elements of the given array. The cleanup
1411 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1412 ///
1413 /// \param elementType - the immediate element type of the array;
1414 /// possibly still an array type
1415 /// \param array - a value of type elementType*
1416 /// \param destructionKind - the kind of destruction required
1417 /// \param initializedElementCount - a value of type size_t* holding
1418 /// the number of successfully-constructed elements
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1419 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1420 llvm::Value *arrayEndPointer,
1421 QualType elementType,
1422 Destroyer *destroyer) {
1423 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1424 arrayBegin, arrayEndPointer,
1425 elementType, destroyer);
1426 }
1427
1428 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1429 /// already-constructed elements of the given array. The cleanup
1430 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1431 ///
1432 /// \param elementType - the immediate element type of the array;
1433 /// possibly still an array type
1434 /// \param array - a value of type elementType*
1435 /// \param destructionKind - the kind of destruction required
1436 /// \param initializedElementCount - a value of type size_t* holding
1437 /// the number of successfully-constructed elements
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1438 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1439 llvm::Value *arrayEnd,
1440 QualType elementType,
1441 Destroyer *destroyer) {
1442 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1443 arrayBegin, arrayEnd,
1444 elementType, destroyer);
1445 }
1446
1447 namespace {
1448 /// A cleanup to perform a release of an object at the end of a
1449 /// function. This is used to balance out the incoming +1 of a
1450 /// ns_consumed argument when we can't reasonably do that just by
1451 /// not doing the initial retain for a __block argument.
1452 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon9ac7fd460311::ConsumeARCParameter1453 ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1454
1455 llvm::Value *Param;
1456
Emit__anon9ac7fd460311::ConsumeARCParameter1457 void Emit(CodeGenFunction &CGF, Flags flags) {
1458 CGF.EmitARCRelease(Param, /*precise*/ false);
1459 }
1460 };
1461 }
1462
1463 /// Emit an alloca (or GlobalValue depending on target)
1464 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,unsigned ArgNo)1465 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1466 unsigned ArgNo) {
1467 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1468 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1469 "Invalid argument to EmitParmDecl");
1470
1471 Arg->setName(D.getName());
1472
1473 // Use better IR generation for certain implicit parameters.
1474 if (isa<ImplicitParamDecl>(D)) {
1475 // The only implicit argument a block has is its literal.
1476 if (BlockInfo) {
1477 LocalDeclMap[&D] = Arg;
1478
1479 if (CGDebugInfo *DI = getDebugInfo()) {
1480 DI->setLocation(D.getLocation());
1481 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1482 }
1483
1484 return;
1485 }
1486 }
1487
1488 QualType Ty = D.getType();
1489
1490 llvm::Value *DeclPtr;
1491 // If this is an aggregate or variable sized value, reuse the input pointer.
1492 if (!Ty->isConstantSizeType() ||
1493 CodeGenFunction::hasAggregateLLVMType(Ty)) {
1494 DeclPtr = Arg;
1495 } else {
1496 // Otherwise, create a temporary to hold the value.
1497 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1498 D.getName() + ".addr");
1499 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1500 DeclPtr = Alloc;
1501
1502 bool doStore = true;
1503
1504 Qualifiers qs = Ty.getQualifiers();
1505
1506 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1507 // We honor __attribute__((ns_consumed)) for types with lifetime.
1508 // For __strong, it's handled by just skipping the initial retain;
1509 // otherwise we have to balance out the initial +1 with an extra
1510 // cleanup to do the release at the end of the function.
1511 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1512
1513 // 'self' is always formally __strong, but if this is not an
1514 // init method then we don't want to retain it.
1515 if (D.isARCPseudoStrong()) {
1516 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1517 assert(&D == method->getSelfDecl());
1518 assert(lt == Qualifiers::OCL_Strong);
1519 assert(qs.hasConst());
1520 assert(method->getMethodFamily() != OMF_init);
1521 (void) method;
1522 lt = Qualifiers::OCL_ExplicitNone;
1523 }
1524
1525 if (lt == Qualifiers::OCL_Strong) {
1526 if (!isConsumed)
1527 // Don't use objc_retainBlock for block pointers, because we
1528 // don't want to Block_copy something just because we got it
1529 // as a parameter.
1530 Arg = EmitARCRetainNonBlock(Arg);
1531 } else {
1532 // Push the cleanup for a consumed parameter.
1533 if (isConsumed)
1534 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1535
1536 if (lt == Qualifiers::OCL_Weak) {
1537 EmitARCInitWeak(DeclPtr, Arg);
1538 doStore = false; // The weak init is a store, no need to do two.
1539 }
1540 }
1541
1542 // Enter the cleanup scope.
1543 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1544 }
1545
1546 // Store the initial value into the alloca.
1547 if (doStore) {
1548 LValue lv = MakeAddrLValue(DeclPtr, Ty,
1549 getContext().getDeclAlign(&D));
1550 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1551 }
1552 }
1553
1554 llvm::Value *&DMEntry = LocalDeclMap[&D];
1555 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1556 DMEntry = DeclPtr;
1557
1558 // Emit debug info for param declaration.
1559 if (CGDebugInfo *DI = getDebugInfo())
1560 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1561
1562 if (D.hasAttr<AnnotateAttr>())
1563 EmitVarAnnotations(&D, DeclPtr);
1564 }
1565