1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37
38 //===----------------------------------------------------------------------===//
39 // Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 struct BinOpInfo {
44 Value *LHS;
45 Value *RHS;
46 QualType Ty; // Computation Type.
47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48 const Expr *E; // Entire expr, for error unsupported. May not be binop.
49 };
50
MustVisitNullValue(const Expr * E)51 static bool MustVisitNullValue(const Expr *E) {
52 // If a null pointer expression's type is the C++0x nullptr_t, then
53 // it's not necessarily a simple constant and it must be evaluated
54 // for its potential side effects.
55 return E->getType()->isNullPtrType();
56 }
57
58 class ScalarExprEmitter
59 : public StmtVisitor<ScalarExprEmitter, Value*> {
60 CodeGenFunction &CGF;
61 CGBuilderTy &Builder;
62 bool IgnoreResultAssign;
63 llvm::LLVMContext &VMContext;
64 public:
65
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)66 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68 VMContext(cgf.getLLVMContext()) {
69 }
70
71 //===--------------------------------------------------------------------===//
72 // Utilities
73 //===--------------------------------------------------------------------===//
74
TestAndClearIgnoreResultAssign()75 bool TestAndClearIgnoreResultAssign() {
76 bool I = IgnoreResultAssign;
77 IgnoreResultAssign = false;
78 return I;
79 }
80
ConvertType(QualType T)81 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)82 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E)83 LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
EmitLoadOfLValue(LValue LV)85 Value *EmitLoadOfLValue(LValue LV) {
86 return CGF.EmitLoadOfLValue(LV).getScalarVal();
87 }
88
89 /// EmitLoadOfLValue - Given an expression with complex type that represents a
90 /// value l-value, this method emits the address of the l-value, then loads
91 /// and returns the result.
EmitLoadOfLValue(const Expr * E)92 Value *EmitLoadOfLValue(const Expr *E) {
93 return EmitLoadOfLValue(EmitCheckedLValue(E));
94 }
95
96 /// EmitConversionToBool - Convert the specified expression value to a
97 /// boolean (i1) truth value. This is equivalent to "Val != 0".
98 Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100 /// EmitScalarConversion - Emit a conversion from the specified type to the
101 /// specified destination type, both of which are LLVM scalar types.
102 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104 /// EmitComplexToScalarConversion - Emit a conversion from the specified
105 /// complex type to the specified destination type, where the destination type
106 /// is an LLVM scalar type.
107 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108 QualType SrcTy, QualType DstTy);
109
110 /// EmitNullValue - Emit a value that corresponds to null for the given type.
111 Value *EmitNullValue(QualType Ty);
112
113 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)114 Value *EmitFloatToBoolConversion(Value *V) {
115 // Compare against 0.0 for fp scalars.
116 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117 return Builder.CreateFCmpUNE(V, Zero, "tobool");
118 }
119
120 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)121 Value *EmitPointerToBoolConversion(Value *V) {
122 Value *Zero = llvm::ConstantPointerNull::get(
123 cast<llvm::PointerType>(V->getType()));
124 return Builder.CreateICmpNE(V, Zero, "tobool");
125 }
126
EmitIntToBoolConversion(Value * V)127 Value *EmitIntToBoolConversion(Value *V) {
128 // Because of the type rules of C, we often end up computing a
129 // logical value, then zero extending it to int, then wanting it
130 // as a logical value again. Optimize this common case.
131 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133 Value *Result = ZI->getOperand(0);
134 // If there aren't any more uses, zap the instruction to save space.
135 // Note that there can be more uses, for example if this
136 // is the result of an assignment.
137 if (ZI->use_empty())
138 ZI->eraseFromParent();
139 return Result;
140 }
141 }
142
143 return Builder.CreateIsNotNull(V, "tobool");
144 }
145
146 //===--------------------------------------------------------------------===//
147 // Visitor Methods
148 //===--------------------------------------------------------------------===//
149
Visit(Expr * E)150 Value *Visit(Expr *E) {
151 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152 }
153
VisitStmt(Stmt * S)154 Value *VisitStmt(Stmt *S) {
155 S->dump(CGF.getContext().getSourceManager());
156 llvm_unreachable("Stmt can't have complex result type!");
157 }
158 Value *VisitExpr(Expr *S);
159
VisitParenExpr(ParenExpr * PE)160 Value *VisitParenExpr(ParenExpr *PE) {
161 return Visit(PE->getSubExpr());
162 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)163 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164 return Visit(E->getReplacement());
165 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)166 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167 return Visit(GE->getResultExpr());
168 }
169
170 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)171 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172 return Builder.getInt(E->getValue());
173 }
VisitFloatingLiteral(const FloatingLiteral * E)174 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175 return llvm::ConstantFP::get(VMContext, E->getValue());
176 }
VisitCharacterLiteral(const CharacterLiteral * E)177 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)180 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
181 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)183 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
184 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
185 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)186 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
187 return EmitNullValue(E->getType());
188 }
VisitGNUNullExpr(const GNUNullExpr * E)189 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
190 return EmitNullValue(E->getType());
191 }
192 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
193 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)194 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
195 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
196 return Builder.CreateBitCast(V, ConvertType(E->getType()));
197 }
198
VisitSizeOfPackExpr(SizeOfPackExpr * E)199 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
200 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
201 }
202
VisitPseudoObjectExpr(PseudoObjectExpr * E)203 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
204 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
205 }
206
VisitOpaqueValueExpr(OpaqueValueExpr * E)207 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
208 if (E->isGLValue())
209 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
210
211 // Otherwise, assume the mapping is the scalar directly.
212 return CGF.getOpaqueRValueMapping(E).getScalarVal();
213 }
214
215 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)216 Value *VisitDeclRefExpr(DeclRefExpr *E) {
217 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
218 if (result.isReference())
219 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
220 return result.getValue();
221 }
222 return EmitLoadOfLValue(E);
223 }
224
VisitObjCSelectorExpr(ObjCSelectorExpr * E)225 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
226 return CGF.EmitObjCSelectorExpr(E);
227 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)228 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
229 return CGF.EmitObjCProtocolExpr(E);
230 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)231 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
232 return EmitLoadOfLValue(E);
233 }
VisitObjCMessageExpr(ObjCMessageExpr * E)234 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
235 if (E->getMethodDecl() &&
236 E->getMethodDecl()->getResultType()->isReferenceType())
237 return EmitLoadOfLValue(E);
238 return CGF.EmitObjCMessageExpr(E).getScalarVal();
239 }
240
VisitObjCIsaExpr(ObjCIsaExpr * E)241 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
242 LValue LV = CGF.EmitObjCIsaExpr(E);
243 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
244 return V;
245 }
246
247 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
248 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
249 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)250 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)251 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
252 return EmitLoadOfLValue(E);
253 }
254
255 Value *VisitInitListExpr(InitListExpr *E);
256
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)257 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
258 return CGF.CGM.EmitNullConstant(E->getType());
259 }
VisitExplicitCastExpr(ExplicitCastExpr * E)260 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
261 if (E->getType()->isVariablyModifiedType())
262 CGF.EmitVariablyModifiedType(E->getType());
263 return VisitCastExpr(E);
264 }
265 Value *VisitCastExpr(CastExpr *E);
266
VisitCallExpr(const CallExpr * E)267 Value *VisitCallExpr(const CallExpr *E) {
268 if (E->getCallReturnType()->isReferenceType())
269 return EmitLoadOfLValue(E);
270
271 return CGF.EmitCallExpr(E).getScalarVal();
272 }
273
274 Value *VisitStmtExpr(const StmtExpr *E);
275
276 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)277 Value *VisitUnaryPostDec(const UnaryOperator *E) {
278 LValue LV = EmitLValue(E->getSubExpr());
279 return EmitScalarPrePostIncDec(E, LV, false, false);
280 }
VisitUnaryPostInc(const UnaryOperator * E)281 Value *VisitUnaryPostInc(const UnaryOperator *E) {
282 LValue LV = EmitLValue(E->getSubExpr());
283 return EmitScalarPrePostIncDec(E, LV, true, false);
284 }
VisitUnaryPreDec(const UnaryOperator * E)285 Value *VisitUnaryPreDec(const UnaryOperator *E) {
286 LValue LV = EmitLValue(E->getSubExpr());
287 return EmitScalarPrePostIncDec(E, LV, false, true);
288 }
VisitUnaryPreInc(const UnaryOperator * E)289 Value *VisitUnaryPreInc(const UnaryOperator *E) {
290 LValue LV = EmitLValue(E->getSubExpr());
291 return EmitScalarPrePostIncDec(E, LV, true, true);
292 }
293
294 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
295 llvm::Value *InVal,
296 llvm::Value *NextVal,
297 bool IsInc);
298
299 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
300 bool isInc, bool isPre);
301
302
VisitUnaryAddrOf(const UnaryOperator * E)303 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
304 if (isa<MemberPointerType>(E->getType())) // never sugared
305 return CGF.CGM.getMemberPointerConstant(E);
306
307 return EmitLValue(E->getSubExpr()).getAddress();
308 }
VisitUnaryDeref(const UnaryOperator * E)309 Value *VisitUnaryDeref(const UnaryOperator *E) {
310 if (E->getType()->isVoidType())
311 return Visit(E->getSubExpr()); // the actual value should be unused
312 return EmitLoadOfLValue(E);
313 }
VisitUnaryPlus(const UnaryOperator * E)314 Value *VisitUnaryPlus(const UnaryOperator *E) {
315 // This differs from gcc, though, most likely due to a bug in gcc.
316 TestAndClearIgnoreResultAssign();
317 return Visit(E->getSubExpr());
318 }
319 Value *VisitUnaryMinus (const UnaryOperator *E);
320 Value *VisitUnaryNot (const UnaryOperator *E);
321 Value *VisitUnaryLNot (const UnaryOperator *E);
322 Value *VisitUnaryReal (const UnaryOperator *E);
323 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)324 Value *VisitUnaryExtension(const UnaryOperator *E) {
325 return Visit(E->getSubExpr());
326 }
327
328 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)329 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
330 return EmitLoadOfLValue(E);
331 }
332
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)333 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
334 return Visit(DAE->getExpr());
335 }
VisitCXXThisExpr(CXXThisExpr * TE)336 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
337 return CGF.LoadCXXThis();
338 }
339
VisitExprWithCleanups(ExprWithCleanups * E)340 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
341 CGF.enterFullExpression(E);
342 CodeGenFunction::RunCleanupsScope Scope(CGF);
343 return Visit(E->getSubExpr());
344 }
VisitCXXNewExpr(const CXXNewExpr * E)345 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
346 return CGF.EmitCXXNewExpr(E);
347 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)348 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
349 CGF.EmitCXXDeleteExpr(E);
350 return 0;
351 }
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)352 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
353 return Builder.getInt1(E->getValue());
354 }
355
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)356 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
357 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
358 }
359
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)360 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
361 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
362 }
363
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)364 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
365 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
366 }
367
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)368 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
369 // C++ [expr.pseudo]p1:
370 // The result shall only be used as the operand for the function call
371 // operator (), and the result of such a call has type void. The only
372 // effect is the evaluation of the postfix-expression before the dot or
373 // arrow.
374 CGF.EmitScalarExpr(E->getBase());
375 return 0;
376 }
377
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)378 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
379 return EmitNullValue(E->getType());
380 }
381
VisitCXXThrowExpr(const CXXThrowExpr * E)382 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
383 CGF.EmitCXXThrowExpr(E);
384 return 0;
385 }
386
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)387 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
388 return Builder.getInt1(E->getValue());
389 }
390
391 // Binary Operators.
EmitMul(const BinOpInfo & Ops)392 Value *EmitMul(const BinOpInfo &Ops) {
393 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
394 switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
395 case LangOptions::SOB_Undefined:
396 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
397 case LangOptions::SOB_Defined:
398 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
399 case LangOptions::SOB_Trapping:
400 return EmitOverflowCheckedBinOp(Ops);
401 }
402 }
403
404 if (Ops.LHS->getType()->isFPOrFPVectorTy())
405 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
406 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
407 }
isTrapvOverflowBehavior()408 bool isTrapvOverflowBehavior() {
409 return CGF.getContext().getLangOpts().getSignedOverflowBehavior()
410 == LangOptions::SOB_Trapping;
411 }
412 /// Create a binary op that checks for overflow.
413 /// Currently only supports +, - and *.
414 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
415 // Emit the overflow BB when -ftrapv option is activated.
EmitOverflowBB(llvm::BasicBlock * overflowBB)416 void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
417 Builder.SetInsertPoint(overflowBB);
418 llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
419 Builder.CreateCall(Trap);
420 Builder.CreateUnreachable();
421 }
422 // Check for undefined division and modulus behaviors.
423 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
424 llvm::Value *Zero,bool isDiv);
425 Value *EmitDiv(const BinOpInfo &Ops);
426 Value *EmitRem(const BinOpInfo &Ops);
427 Value *EmitAdd(const BinOpInfo &Ops);
428 Value *EmitSub(const BinOpInfo &Ops);
429 Value *EmitShl(const BinOpInfo &Ops);
430 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)431 Value *EmitAnd(const BinOpInfo &Ops) {
432 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
433 }
EmitXor(const BinOpInfo & Ops)434 Value *EmitXor(const BinOpInfo &Ops) {
435 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
436 }
EmitOr(const BinOpInfo & Ops)437 Value *EmitOr (const BinOpInfo &Ops) {
438 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
439 }
440
441 BinOpInfo EmitBinOps(const BinaryOperator *E);
442 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
443 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
444 Value *&Result);
445
446 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
447 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
448
449 // Binary operators and binary compound assignment operators.
450 #define HANDLEBINOP(OP) \
451 Value *VisitBin ## OP(const BinaryOperator *E) { \
452 return Emit ## OP(EmitBinOps(E)); \
453 } \
454 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
455 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
456 }
457 HANDLEBINOP(Mul)
458 HANDLEBINOP(Div)
459 HANDLEBINOP(Rem)
460 HANDLEBINOP(Add)
461 HANDLEBINOP(Sub)
462 HANDLEBINOP(Shl)
463 HANDLEBINOP(Shr)
464 HANDLEBINOP(And)
465 HANDLEBINOP(Xor)
466 HANDLEBINOP(Or)
467 #undef HANDLEBINOP
468
469 // Comparisons.
470 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
471 unsigned SICmpOpc, unsigned FCmpOpc);
472 #define VISITCOMP(CODE, UI, SI, FP) \
473 Value *VisitBin##CODE(const BinaryOperator *E) { \
474 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
475 llvm::FCmpInst::FP); }
476 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
477 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
478 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
479 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
480 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
481 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
482 #undef VISITCOMP
483
484 Value *VisitBinAssign (const BinaryOperator *E);
485
486 Value *VisitBinLAnd (const BinaryOperator *E);
487 Value *VisitBinLOr (const BinaryOperator *E);
488 Value *VisitBinComma (const BinaryOperator *E);
489
VisitBinPtrMemD(const Expr * E)490 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)491 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
492
493 // Other Operators.
494 Value *VisitBlockExpr(const BlockExpr *BE);
495 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
496 Value *VisitChooseExpr(ChooseExpr *CE);
497 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)498 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
499 return CGF.EmitObjCStringLiteral(E);
500 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)501 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
502 return CGF.EmitObjCBoxedExpr(E);
503 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)504 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
505 return CGF.EmitObjCArrayLiteral(E);
506 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)507 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
508 return CGF.EmitObjCDictionaryLiteral(E);
509 }
510 Value *VisitAsTypeExpr(AsTypeExpr *CE);
511 Value *VisitAtomicExpr(AtomicExpr *AE);
512 };
513 } // end anonymous namespace.
514
515 //===----------------------------------------------------------------------===//
516 // Utilities
517 //===----------------------------------------------------------------------===//
518
519 /// EmitConversionToBool - Convert the specified expression value to a
520 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)521 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
522 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
523
524 if (SrcType->isRealFloatingType())
525 return EmitFloatToBoolConversion(Src);
526
527 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
528 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
529
530 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
531 "Unknown scalar type to convert");
532
533 if (isa<llvm::IntegerType>(Src->getType()))
534 return EmitIntToBoolConversion(Src);
535
536 assert(isa<llvm::PointerType>(Src->getType()));
537 return EmitPointerToBoolConversion(Src);
538 }
539
540 /// EmitScalarConversion - Emit a conversion from the specified type to the
541 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)542 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
543 QualType DstType) {
544 SrcType = CGF.getContext().getCanonicalType(SrcType);
545 DstType = CGF.getContext().getCanonicalType(DstType);
546 if (SrcType == DstType) return Src;
547
548 if (DstType->isVoidType()) return 0;
549
550 llvm::Type *SrcTy = Src->getType();
551
552 // Floating casts might be a bit special: if we're doing casts to / from half
553 // FP, we should go via special intrinsics.
554 if (SrcType->isHalfType()) {
555 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
556 SrcType = CGF.getContext().FloatTy;
557 SrcTy = CGF.FloatTy;
558 }
559
560 // Handle conversions to bool first, they are special: comparisons against 0.
561 if (DstType->isBooleanType())
562 return EmitConversionToBool(Src, SrcType);
563
564 llvm::Type *DstTy = ConvertType(DstType);
565
566 // Ignore conversions like int -> uint.
567 if (SrcTy == DstTy)
568 return Src;
569
570 // Handle pointer conversions next: pointers can only be converted to/from
571 // other pointers and integers. Check for pointer types in terms of LLVM, as
572 // some native types (like Obj-C id) may map to a pointer type.
573 if (isa<llvm::PointerType>(DstTy)) {
574 // The source value may be an integer, or a pointer.
575 if (isa<llvm::PointerType>(SrcTy))
576 return Builder.CreateBitCast(Src, DstTy, "conv");
577
578 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
579 // First, convert to the correct width so that we control the kind of
580 // extension.
581 llvm::Type *MiddleTy = CGF.IntPtrTy;
582 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
583 llvm::Value* IntResult =
584 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
585 // Then, cast to pointer.
586 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
587 }
588
589 if (isa<llvm::PointerType>(SrcTy)) {
590 // Must be an ptr to int cast.
591 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
592 return Builder.CreatePtrToInt(Src, DstTy, "conv");
593 }
594
595 // A scalar can be splatted to an extended vector of the same element type
596 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
597 // Cast the scalar to element type
598 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
599 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
600
601 // Insert the element in element zero of an undef vector
602 llvm::Value *UnV = llvm::UndefValue::get(DstTy);
603 llvm::Value *Idx = Builder.getInt32(0);
604 UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
605
606 // Splat the element across to all elements
607 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
608 llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
609 Builder.getInt32(0));
610 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
611 return Yay;
612 }
613
614 // Allow bitcast from vector to integer/fp of the same size.
615 if (isa<llvm::VectorType>(SrcTy) ||
616 isa<llvm::VectorType>(DstTy))
617 return Builder.CreateBitCast(Src, DstTy, "conv");
618
619 // Finally, we have the arithmetic types: real int/float.
620 Value *Res = NULL;
621 llvm::Type *ResTy = DstTy;
622
623 // Cast to half via float
624 if (DstType->isHalfType())
625 DstTy = CGF.FloatTy;
626
627 if (isa<llvm::IntegerType>(SrcTy)) {
628 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
629 if (isa<llvm::IntegerType>(DstTy))
630 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
631 else if (InputSigned)
632 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
633 else
634 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
635 } else if (isa<llvm::IntegerType>(DstTy)) {
636 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
637 if (DstType->isSignedIntegerOrEnumerationType())
638 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
639 else
640 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
641 } else {
642 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
643 "Unknown real conversion");
644 if (DstTy->getTypeID() < SrcTy->getTypeID())
645 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
646 else
647 Res = Builder.CreateFPExt(Src, DstTy, "conv");
648 }
649
650 if (DstTy != ResTy) {
651 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
652 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
653 }
654
655 return Res;
656 }
657
658 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
659 /// type to the specified destination type, where the destination type is an
660 /// LLVM scalar type.
661 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)662 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
663 QualType SrcTy, QualType DstTy) {
664 // Get the source element type.
665 SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
666
667 // Handle conversions to bool first, they are special: comparisons against 0.
668 if (DstTy->isBooleanType()) {
669 // Complex != 0 -> (Real != 0) | (Imag != 0)
670 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
671 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
672 return Builder.CreateOr(Src.first, Src.second, "tobool");
673 }
674
675 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
676 // the imaginary part of the complex value is discarded and the value of the
677 // real part is converted according to the conversion rules for the
678 // corresponding real type.
679 return EmitScalarConversion(Src.first, SrcTy, DstTy);
680 }
681
EmitNullValue(QualType Ty)682 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
683 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
684 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
685
686 return llvm::Constant::getNullValue(ConvertType(Ty));
687 }
688
689 //===----------------------------------------------------------------------===//
690 // Visitor Methods
691 //===----------------------------------------------------------------------===//
692
VisitExpr(Expr * E)693 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
694 CGF.ErrorUnsupported(E, "scalar expression");
695 if (E->getType()->isVoidType())
696 return 0;
697 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
698 }
699
VisitShuffleVectorExpr(ShuffleVectorExpr * E)700 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
701 // Vector Mask Case
702 if (E->getNumSubExprs() == 2 ||
703 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
704 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
705 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
706 Value *Mask;
707
708 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
709 unsigned LHSElts = LTy->getNumElements();
710
711 if (E->getNumSubExprs() == 3) {
712 Mask = CGF.EmitScalarExpr(E->getExpr(2));
713
714 // Shuffle LHS & RHS into one input vector.
715 SmallVector<llvm::Constant*, 32> concat;
716 for (unsigned i = 0; i != LHSElts; ++i) {
717 concat.push_back(Builder.getInt32(2*i));
718 concat.push_back(Builder.getInt32(2*i+1));
719 }
720
721 Value* CV = llvm::ConstantVector::get(concat);
722 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
723 LHSElts *= 2;
724 } else {
725 Mask = RHS;
726 }
727
728 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
729 llvm::Constant* EltMask;
730
731 // Treat vec3 like vec4.
732 if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
733 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
734 (1 << llvm::Log2_32(LHSElts+2))-1);
735 else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
736 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
737 (1 << llvm::Log2_32(LHSElts+1))-1);
738 else
739 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
740 (1 << llvm::Log2_32(LHSElts))-1);
741
742 // Mask off the high bits of each shuffle index.
743 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
744 EltMask);
745 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
746
747 // newv = undef
748 // mask = mask & maskbits
749 // for each elt
750 // n = extract mask i
751 // x = extract val n
752 // newv = insert newv, x, i
753 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
754 MTy->getNumElements());
755 Value* NewV = llvm::UndefValue::get(RTy);
756 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
757 Value *IIndx = Builder.getInt32(i);
758 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
759 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
760
761 // Handle vec3 special since the index will be off by one for the RHS.
762 if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
763 Value *cmpIndx, *newIndx;
764 cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
765 "cmp_shuf_idx");
766 newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
767 Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
768 }
769 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
770 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
771 }
772 return NewV;
773 }
774
775 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
776 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
777
778 // Handle vec3 special since the index will be off by one for the RHS.
779 llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
780 SmallVector<llvm::Constant*, 32> indices;
781 for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
782 unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
783 if (VTy->getNumElements() == 3 && Idx > 3)
784 Idx -= 1;
785 indices.push_back(Builder.getInt32(Idx));
786 }
787
788 Value *SV = llvm::ConstantVector::get(indices);
789 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
790 }
VisitMemberExpr(MemberExpr * E)791 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
792 llvm::APSInt Value;
793 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
794 if (E->isArrow())
795 CGF.EmitScalarExpr(E->getBase());
796 else
797 EmitLValue(E->getBase());
798 return Builder.getInt(Value);
799 }
800
801 // Emit debug info for aggregate now, if it was delayed to reduce
802 // debug info size.
803 CGDebugInfo *DI = CGF.getDebugInfo();
804 if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
805 QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
806 if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
807 if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
808 DI->getOrCreateRecordType(PTy->getPointeeType(),
809 M->getParent()->getLocation());
810 }
811 return EmitLoadOfLValue(E);
812 }
813
VisitArraySubscriptExpr(ArraySubscriptExpr * E)814 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
815 TestAndClearIgnoreResultAssign();
816
817 // Emit subscript expressions in rvalue context's. For most cases, this just
818 // loads the lvalue formed by the subscript expr. However, we have to be
819 // careful, because the base of a vector subscript is occasionally an rvalue,
820 // so we can't get it as an lvalue.
821 if (!E->getBase()->getType()->isVectorType())
822 return EmitLoadOfLValue(E);
823
824 // Handle the vector case. The base must be a vector, the index must be an
825 // integer value.
826 Value *Base = Visit(E->getBase());
827 Value *Idx = Visit(E->getIdx());
828 bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
829 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
830 return Builder.CreateExtractElement(Base, Idx, "vecext");
831 }
832
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)833 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
834 unsigned Off, llvm::Type *I32Ty) {
835 int MV = SVI->getMaskValue(Idx);
836 if (MV == -1)
837 return llvm::UndefValue::get(I32Ty);
838 return llvm::ConstantInt::get(I32Ty, Off+MV);
839 }
840
VisitInitListExpr(InitListExpr * E)841 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
842 bool Ignore = TestAndClearIgnoreResultAssign();
843 (void)Ignore;
844 assert (Ignore == false && "init list ignored");
845 unsigned NumInitElements = E->getNumInits();
846
847 if (E->hadArrayRangeDesignator())
848 CGF.ErrorUnsupported(E, "GNU array range designator extension");
849
850 llvm::VectorType *VType =
851 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
852
853 if (!VType) {
854 if (NumInitElements == 0) {
855 // C++11 value-initialization for the scalar.
856 return EmitNullValue(E->getType());
857 }
858 // We have a scalar in braces. Just use the first element.
859 return Visit(E->getInit(0));
860 }
861
862 unsigned ResElts = VType->getNumElements();
863
864 // Loop over initializers collecting the Value for each, and remembering
865 // whether the source was swizzle (ExtVectorElementExpr). This will allow
866 // us to fold the shuffle for the swizzle into the shuffle for the vector
867 // initializer, since LLVM optimizers generally do not want to touch
868 // shuffles.
869 unsigned CurIdx = 0;
870 bool VIsUndefShuffle = false;
871 llvm::Value *V = llvm::UndefValue::get(VType);
872 for (unsigned i = 0; i != NumInitElements; ++i) {
873 Expr *IE = E->getInit(i);
874 Value *Init = Visit(IE);
875 SmallVector<llvm::Constant*, 16> Args;
876
877 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
878
879 // Handle scalar elements. If the scalar initializer is actually one
880 // element of a different vector of the same width, use shuffle instead of
881 // extract+insert.
882 if (!VVT) {
883 if (isa<ExtVectorElementExpr>(IE)) {
884 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
885
886 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
887 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
888 Value *LHS = 0, *RHS = 0;
889 if (CurIdx == 0) {
890 // insert into undef -> shuffle (src, undef)
891 Args.push_back(C);
892 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
893
894 LHS = EI->getVectorOperand();
895 RHS = V;
896 VIsUndefShuffle = true;
897 } else if (VIsUndefShuffle) {
898 // insert into undefshuffle && size match -> shuffle (v, src)
899 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
900 for (unsigned j = 0; j != CurIdx; ++j)
901 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
902 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
903 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
904
905 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
906 RHS = EI->getVectorOperand();
907 VIsUndefShuffle = false;
908 }
909 if (!Args.empty()) {
910 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
911 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
912 ++CurIdx;
913 continue;
914 }
915 }
916 }
917 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
918 "vecinit");
919 VIsUndefShuffle = false;
920 ++CurIdx;
921 continue;
922 }
923
924 unsigned InitElts = VVT->getNumElements();
925
926 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
927 // input is the same width as the vector being constructed, generate an
928 // optimized shuffle of the swizzle input into the result.
929 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
930 if (isa<ExtVectorElementExpr>(IE)) {
931 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
932 Value *SVOp = SVI->getOperand(0);
933 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
934
935 if (OpTy->getNumElements() == ResElts) {
936 for (unsigned j = 0; j != CurIdx; ++j) {
937 // If the current vector initializer is a shuffle with undef, merge
938 // this shuffle directly into it.
939 if (VIsUndefShuffle) {
940 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
941 CGF.Int32Ty));
942 } else {
943 Args.push_back(Builder.getInt32(j));
944 }
945 }
946 for (unsigned j = 0, je = InitElts; j != je; ++j)
947 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
948 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
949
950 if (VIsUndefShuffle)
951 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
952
953 Init = SVOp;
954 }
955 }
956
957 // Extend init to result vector length, and then shuffle its contribution
958 // to the vector initializer into V.
959 if (Args.empty()) {
960 for (unsigned j = 0; j != InitElts; ++j)
961 Args.push_back(Builder.getInt32(j));
962 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
963 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
964 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
965 Mask, "vext");
966
967 Args.clear();
968 for (unsigned j = 0; j != CurIdx; ++j)
969 Args.push_back(Builder.getInt32(j));
970 for (unsigned j = 0; j != InitElts; ++j)
971 Args.push_back(Builder.getInt32(j+Offset));
972 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
973 }
974
975 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
976 // merging subsequent shuffles into this one.
977 if (CurIdx == 0)
978 std::swap(V, Init);
979 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
980 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
981 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
982 CurIdx += InitElts;
983 }
984
985 // FIXME: evaluate codegen vs. shuffling against constant null vector.
986 // Emit remaining default initializers.
987 llvm::Type *EltTy = VType->getElementType();
988
989 // Emit remaining default initializers
990 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
991 Value *Idx = Builder.getInt32(CurIdx);
992 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
993 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
994 }
995 return V;
996 }
997
ShouldNullCheckClassCastValue(const CastExpr * CE)998 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
999 const Expr *E = CE->getSubExpr();
1000
1001 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1002 return false;
1003
1004 if (isa<CXXThisExpr>(E)) {
1005 // We always assume that 'this' is never null.
1006 return false;
1007 }
1008
1009 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1010 // And that glvalue casts are never null.
1011 if (ICE->getValueKind() != VK_RValue)
1012 return false;
1013 }
1014
1015 return true;
1016 }
1017
1018 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1019 // have to handle a more broad range of conversions than explicit casts, as they
1020 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1021 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1022 Expr *E = CE->getSubExpr();
1023 QualType DestTy = CE->getType();
1024 CastKind Kind = CE->getCastKind();
1025
1026 if (!DestTy->isVoidType())
1027 TestAndClearIgnoreResultAssign();
1028
1029 // Since almost all cast kinds apply to scalars, this switch doesn't have
1030 // a default case, so the compiler will warn on a missing case. The cases
1031 // are in the same order as in the CastKind enum.
1032 switch (Kind) {
1033 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1034
1035 case CK_LValueBitCast:
1036 case CK_ObjCObjectLValueCast: {
1037 Value *V = EmitLValue(E).getAddress();
1038 V = Builder.CreateBitCast(V,
1039 ConvertType(CGF.getContext().getPointerType(DestTy)));
1040 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1041 }
1042
1043 case CK_CPointerToObjCPointerCast:
1044 case CK_BlockPointerToObjCPointerCast:
1045 case CK_AnyPointerToBlockPointerCast:
1046 case CK_BitCast: {
1047 Value *Src = Visit(const_cast<Expr*>(E));
1048 return Builder.CreateBitCast(Src, ConvertType(DestTy));
1049 }
1050 case CK_AtomicToNonAtomic:
1051 case CK_NonAtomicToAtomic:
1052 case CK_NoOp:
1053 case CK_UserDefinedConversion:
1054 return Visit(const_cast<Expr*>(E));
1055
1056 case CK_BaseToDerived: {
1057 const CXXRecordDecl *DerivedClassDecl =
1058 DestTy->getCXXRecordDeclForPointerType();
1059
1060 return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1061 CE->path_begin(), CE->path_end(),
1062 ShouldNullCheckClassCastValue(CE));
1063 }
1064 case CK_UncheckedDerivedToBase:
1065 case CK_DerivedToBase: {
1066 const RecordType *DerivedClassTy =
1067 E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1068 CXXRecordDecl *DerivedClassDecl =
1069 cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1070
1071 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1072 CE->path_begin(), CE->path_end(),
1073 ShouldNullCheckClassCastValue(CE));
1074 }
1075 case CK_Dynamic: {
1076 Value *V = Visit(const_cast<Expr*>(E));
1077 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1078 return CGF.EmitDynamicCast(V, DCE);
1079 }
1080
1081 case CK_ArrayToPointerDecay: {
1082 assert(E->getType()->isArrayType() &&
1083 "Array to pointer decay must have array source type!");
1084
1085 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
1086
1087 // Note that VLA pointers are always decayed, so we don't need to do
1088 // anything here.
1089 if (!E->getType()->isVariableArrayType()) {
1090 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1091 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1092 ->getElementType()) &&
1093 "Expected pointer to array");
1094 V = Builder.CreateStructGEP(V, 0, "arraydecay");
1095 }
1096
1097 // Make sure the array decay ends up being the right type. This matters if
1098 // the array type was of an incomplete type.
1099 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1100 }
1101 case CK_FunctionToPointerDecay:
1102 return EmitLValue(E).getAddress();
1103
1104 case CK_NullToPointer:
1105 if (MustVisitNullValue(E))
1106 (void) Visit(E);
1107
1108 return llvm::ConstantPointerNull::get(
1109 cast<llvm::PointerType>(ConvertType(DestTy)));
1110
1111 case CK_NullToMemberPointer: {
1112 if (MustVisitNullValue(E))
1113 (void) Visit(E);
1114
1115 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1116 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1117 }
1118
1119 case CK_ReinterpretMemberPointer:
1120 case CK_BaseToDerivedMemberPointer:
1121 case CK_DerivedToBaseMemberPointer: {
1122 Value *Src = Visit(E);
1123
1124 // Note that the AST doesn't distinguish between checked and
1125 // unchecked member pointer conversions, so we always have to
1126 // implement checked conversions here. This is inefficient when
1127 // actual control flow may be required in order to perform the
1128 // check, which it is for data member pointers (but not member
1129 // function pointers on Itanium and ARM).
1130 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1131 }
1132
1133 case CK_ARCProduceObject:
1134 return CGF.EmitARCRetainScalarExpr(E);
1135 case CK_ARCConsumeObject:
1136 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1137 case CK_ARCReclaimReturnedObject: {
1138 llvm::Value *value = Visit(E);
1139 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1140 return CGF.EmitObjCConsumeObject(E->getType(), value);
1141 }
1142 case CK_ARCExtendBlockObject:
1143 return CGF.EmitARCExtendBlockObject(E);
1144
1145 case CK_CopyAndAutoreleaseBlockObject:
1146 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1147
1148 case CK_FloatingRealToComplex:
1149 case CK_FloatingComplexCast:
1150 case CK_IntegralRealToComplex:
1151 case CK_IntegralComplexCast:
1152 case CK_IntegralComplexToFloatingComplex:
1153 case CK_FloatingComplexToIntegralComplex:
1154 case CK_ConstructorConversion:
1155 case CK_ToUnion:
1156 llvm_unreachable("scalar cast to non-scalar value");
1157
1158 case CK_LValueToRValue:
1159 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1160 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1161 return Visit(const_cast<Expr*>(E));
1162
1163 case CK_IntegralToPointer: {
1164 Value *Src = Visit(const_cast<Expr*>(E));
1165
1166 // First, convert to the correct width so that we control the kind of
1167 // extension.
1168 llvm::Type *MiddleTy = CGF.IntPtrTy;
1169 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1170 llvm::Value* IntResult =
1171 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1172
1173 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1174 }
1175 case CK_PointerToIntegral:
1176 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1177 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1178
1179 case CK_ToVoid: {
1180 CGF.EmitIgnoredExpr(E);
1181 return 0;
1182 }
1183 case CK_VectorSplat: {
1184 llvm::Type *DstTy = ConvertType(DestTy);
1185 Value *Elt = Visit(const_cast<Expr*>(E));
1186 Elt = EmitScalarConversion(Elt, E->getType(),
1187 DestTy->getAs<VectorType>()->getElementType());
1188
1189 // Insert the element in element zero of an undef vector
1190 llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1191 llvm::Value *Idx = Builder.getInt32(0);
1192 UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1193
1194 // Splat the element across to all elements
1195 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1196 llvm::Constant *Zero = Builder.getInt32(0);
1197 llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1198 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1199 return Yay;
1200 }
1201
1202 case CK_IntegralCast:
1203 case CK_IntegralToFloating:
1204 case CK_FloatingToIntegral:
1205 case CK_FloatingCast:
1206 return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1207 case CK_IntegralToBoolean:
1208 return EmitIntToBoolConversion(Visit(E));
1209 case CK_PointerToBoolean:
1210 return EmitPointerToBoolConversion(Visit(E));
1211 case CK_FloatingToBoolean:
1212 return EmitFloatToBoolConversion(Visit(E));
1213 case CK_MemberPointerToBoolean: {
1214 llvm::Value *MemPtr = Visit(E);
1215 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1216 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1217 }
1218
1219 case CK_FloatingComplexToReal:
1220 case CK_IntegralComplexToReal:
1221 return CGF.EmitComplexExpr(E, false, true).first;
1222
1223 case CK_FloatingComplexToBoolean:
1224 case CK_IntegralComplexToBoolean: {
1225 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1226
1227 // TODO: kill this function off, inline appropriate case here
1228 return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1229 }
1230
1231 }
1232
1233 llvm_unreachable("unknown scalar cast");
1234 }
1235
VisitStmtExpr(const StmtExpr * E)1236 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1237 CodeGenFunction::StmtExprEvaluation eval(CGF);
1238 return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1239 .getScalarVal();
1240 }
1241
1242 //===----------------------------------------------------------------------===//
1243 // Unary Operators
1244 //===----------------------------------------------------------------------===//
1245
1246 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1247 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1248 llvm::Value *InVal,
1249 llvm::Value *NextVal, bool IsInc) {
1250 switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
1251 case LangOptions::SOB_Undefined:
1252 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1253 case LangOptions::SOB_Defined:
1254 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1255 case LangOptions::SOB_Trapping:
1256 BinOpInfo BinOp;
1257 BinOp.LHS = InVal;
1258 BinOp.RHS = NextVal;
1259 BinOp.Ty = E->getType();
1260 BinOp.Opcode = BO_Add;
1261 BinOp.E = E;
1262 return EmitOverflowCheckedBinOp(BinOp);
1263 }
1264 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1265 }
1266
1267 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1268 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1269 bool isInc, bool isPre) {
1270
1271 QualType type = E->getSubExpr()->getType();
1272 llvm::Value *value = EmitLoadOfLValue(LV);
1273 llvm::Value *input = value;
1274 llvm::PHINode *atomicPHI = 0;
1275
1276 int amount = (isInc ? 1 : -1);
1277
1278 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1279 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1280 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1281 Builder.CreateBr(opBB);
1282 Builder.SetInsertPoint(opBB);
1283 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1284 atomicPHI->addIncoming(value, startBB);
1285 type = atomicTy->getValueType();
1286 value = atomicPHI;
1287 }
1288
1289 // Special case of integer increment that we have to check first: bool++.
1290 // Due to promotion rules, we get:
1291 // bool++ -> bool = bool + 1
1292 // -> bool = (int)bool + 1
1293 // -> bool = ((int)bool + 1 != 0)
1294 // An interesting aspect of this is that increment is always true.
1295 // Decrement does not have this property.
1296 if (isInc && type->isBooleanType()) {
1297 value = Builder.getTrue();
1298
1299 // Most common case by far: integer increment.
1300 } else if (type->isIntegerType()) {
1301
1302 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1303
1304 // Note that signed integer inc/dec with width less than int can't
1305 // overflow because of promotion rules; we're just eliding a few steps here.
1306 if (type->isSignedIntegerOrEnumerationType() &&
1307 value->getType()->getPrimitiveSizeInBits() >=
1308 CGF.IntTy->getBitWidth())
1309 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1310 else
1311 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1312
1313 // Next most common: pointer increment.
1314 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1315 QualType type = ptr->getPointeeType();
1316
1317 // VLA types don't have constant size.
1318 if (const VariableArrayType *vla
1319 = CGF.getContext().getAsVariableArrayType(type)) {
1320 llvm::Value *numElts = CGF.getVLASize(vla).first;
1321 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1322 if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1323 value = Builder.CreateGEP(value, numElts, "vla.inc");
1324 else
1325 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1326
1327 // Arithmetic on function pointers (!) is just +-1.
1328 } else if (type->isFunctionType()) {
1329 llvm::Value *amt = Builder.getInt32(amount);
1330
1331 value = CGF.EmitCastToVoidPtr(value);
1332 if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1333 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1334 else
1335 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1336 value = Builder.CreateBitCast(value, input->getType());
1337
1338 // For everything else, we can just do a simple increment.
1339 } else {
1340 llvm::Value *amt = Builder.getInt32(amount);
1341 if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1342 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1343 else
1344 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1345 }
1346
1347 // Vector increment/decrement.
1348 } else if (type->isVectorType()) {
1349 if (type->hasIntegerRepresentation()) {
1350 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1351
1352 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1353 } else {
1354 value = Builder.CreateFAdd(
1355 value,
1356 llvm::ConstantFP::get(value->getType(), amount),
1357 isInc ? "inc" : "dec");
1358 }
1359
1360 // Floating point.
1361 } else if (type->isRealFloatingType()) {
1362 // Add the inc/dec to the real part.
1363 llvm::Value *amt;
1364
1365 if (type->isHalfType()) {
1366 // Another special case: half FP increment should be done via float
1367 value =
1368 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1369 input);
1370 }
1371
1372 if (value->getType()->isFloatTy())
1373 amt = llvm::ConstantFP::get(VMContext,
1374 llvm::APFloat(static_cast<float>(amount)));
1375 else if (value->getType()->isDoubleTy())
1376 amt = llvm::ConstantFP::get(VMContext,
1377 llvm::APFloat(static_cast<double>(amount)));
1378 else {
1379 llvm::APFloat F(static_cast<float>(amount));
1380 bool ignored;
1381 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1382 &ignored);
1383 amt = llvm::ConstantFP::get(VMContext, F);
1384 }
1385 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1386
1387 if (type->isHalfType())
1388 value =
1389 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1390 value);
1391
1392 // Objective-C pointer types.
1393 } else {
1394 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1395 value = CGF.EmitCastToVoidPtr(value);
1396
1397 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1398 if (!isInc) size = -size;
1399 llvm::Value *sizeValue =
1400 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1401
1402 if (CGF.getContext().getLangOpts().isSignedOverflowDefined())
1403 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1404 else
1405 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1406 value = Builder.CreateBitCast(value, input->getType());
1407 }
1408
1409 if (atomicPHI) {
1410 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1411 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1412 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1413 value, llvm::SequentiallyConsistent);
1414 atomicPHI->addIncoming(old, opBB);
1415 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1416 Builder.CreateCondBr(success, contBB, opBB);
1417 Builder.SetInsertPoint(contBB);
1418 return isPre ? value : input;
1419 }
1420
1421 // Store the updated result through the lvalue.
1422 if (LV.isBitField())
1423 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1424 else
1425 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1426
1427 // If this is a postinc, return the value read from memory, otherwise use the
1428 // updated value.
1429 return isPre ? value : input;
1430 }
1431
1432
1433
VisitUnaryMinus(const UnaryOperator * E)1434 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1435 TestAndClearIgnoreResultAssign();
1436 // Emit unary minus with EmitSub so we handle overflow cases etc.
1437 BinOpInfo BinOp;
1438 BinOp.RHS = Visit(E->getSubExpr());
1439
1440 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1441 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1442 else
1443 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1444 BinOp.Ty = E->getType();
1445 BinOp.Opcode = BO_Sub;
1446 BinOp.E = E;
1447 return EmitSub(BinOp);
1448 }
1449
VisitUnaryNot(const UnaryOperator * E)1450 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1451 TestAndClearIgnoreResultAssign();
1452 Value *Op = Visit(E->getSubExpr());
1453 return Builder.CreateNot(Op, "neg");
1454 }
1455
VisitUnaryLNot(const UnaryOperator * E)1456 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1457
1458 // Perform vector logical not on comparison with zero vector.
1459 if (E->getType()->isExtVectorType()) {
1460 Value *Oper = Visit(E->getSubExpr());
1461 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1462 Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1463 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1464 }
1465
1466 // Compare operand to zero.
1467 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1468
1469 // Invert value.
1470 // TODO: Could dynamically modify easy computations here. For example, if
1471 // the operand is an icmp ne, turn into icmp eq.
1472 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1473
1474 // ZExt result to the expr type.
1475 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1476 }
1477
VisitOffsetOfExpr(OffsetOfExpr * E)1478 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1479 // Try folding the offsetof to a constant.
1480 llvm::APSInt Value;
1481 if (E->EvaluateAsInt(Value, CGF.getContext()))
1482 return Builder.getInt(Value);
1483
1484 // Loop over the components of the offsetof to compute the value.
1485 unsigned n = E->getNumComponents();
1486 llvm::Type* ResultType = ConvertType(E->getType());
1487 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1488 QualType CurrentType = E->getTypeSourceInfo()->getType();
1489 for (unsigned i = 0; i != n; ++i) {
1490 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1491 llvm::Value *Offset = 0;
1492 switch (ON.getKind()) {
1493 case OffsetOfExpr::OffsetOfNode::Array: {
1494 // Compute the index
1495 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1496 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1497 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1498 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1499
1500 // Save the element type
1501 CurrentType =
1502 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1503
1504 // Compute the element size
1505 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1506 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1507
1508 // Multiply out to compute the result
1509 Offset = Builder.CreateMul(Idx, ElemSize);
1510 break;
1511 }
1512
1513 case OffsetOfExpr::OffsetOfNode::Field: {
1514 FieldDecl *MemberDecl = ON.getField();
1515 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1516 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1517
1518 // Compute the index of the field in its parent.
1519 unsigned i = 0;
1520 // FIXME: It would be nice if we didn't have to loop here!
1521 for (RecordDecl::field_iterator Field = RD->field_begin(),
1522 FieldEnd = RD->field_end();
1523 Field != FieldEnd; (void)++Field, ++i) {
1524 if (*Field == MemberDecl)
1525 break;
1526 }
1527 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1528
1529 // Compute the offset to the field
1530 int64_t OffsetInt = RL.getFieldOffset(i) /
1531 CGF.getContext().getCharWidth();
1532 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1533
1534 // Save the element type.
1535 CurrentType = MemberDecl->getType();
1536 break;
1537 }
1538
1539 case OffsetOfExpr::OffsetOfNode::Identifier:
1540 llvm_unreachable("dependent __builtin_offsetof");
1541
1542 case OffsetOfExpr::OffsetOfNode::Base: {
1543 if (ON.getBase()->isVirtual()) {
1544 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1545 continue;
1546 }
1547
1548 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1549 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1550
1551 // Save the element type.
1552 CurrentType = ON.getBase()->getType();
1553
1554 // Compute the offset to the base.
1555 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1556 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1557 int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1558 CGF.getContext().getCharWidth();
1559 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1560 break;
1561 }
1562 }
1563 Result = Builder.CreateAdd(Result, Offset);
1564 }
1565 return Result;
1566 }
1567
1568 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1569 /// argument of the sizeof expression as an integer.
1570 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1571 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1572 const UnaryExprOrTypeTraitExpr *E) {
1573 QualType TypeToSize = E->getTypeOfArgument();
1574 if (E->getKind() == UETT_SizeOf) {
1575 if (const VariableArrayType *VAT =
1576 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1577 if (E->isArgumentType()) {
1578 // sizeof(type) - make sure to emit the VLA size.
1579 CGF.EmitVariablyModifiedType(TypeToSize);
1580 } else {
1581 // C99 6.5.3.4p2: If the argument is an expression of type
1582 // VLA, it is evaluated.
1583 CGF.EmitIgnoredExpr(E->getArgumentExpr());
1584 }
1585
1586 QualType eltType;
1587 llvm::Value *numElts;
1588 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1589
1590 llvm::Value *size = numElts;
1591
1592 // Scale the number of non-VLA elements by the non-VLA element size.
1593 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1594 if (!eltSize.isOne())
1595 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1596
1597 return size;
1598 }
1599 }
1600
1601 // If this isn't sizeof(vla), the result must be constant; use the constant
1602 // folding logic so we don't have to duplicate it here.
1603 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1604 }
1605
VisitUnaryReal(const UnaryOperator * E)1606 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1607 Expr *Op = E->getSubExpr();
1608 if (Op->getType()->isAnyComplexType()) {
1609 // If it's an l-value, load through the appropriate subobject l-value.
1610 // Note that we have to ask E because Op might be an l-value that
1611 // this won't work for, e.g. an Obj-C property.
1612 if (E->isGLValue())
1613 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1614
1615 // Otherwise, calculate and project.
1616 return CGF.EmitComplexExpr(Op, false, true).first;
1617 }
1618
1619 return Visit(Op);
1620 }
1621
VisitUnaryImag(const UnaryOperator * E)1622 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1623 Expr *Op = E->getSubExpr();
1624 if (Op->getType()->isAnyComplexType()) {
1625 // If it's an l-value, load through the appropriate subobject l-value.
1626 // Note that we have to ask E because Op might be an l-value that
1627 // this won't work for, e.g. an Obj-C property.
1628 if (Op->isGLValue())
1629 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1630
1631 // Otherwise, calculate and project.
1632 return CGF.EmitComplexExpr(Op, true, false).second;
1633 }
1634
1635 // __imag on a scalar returns zero. Emit the subexpr to ensure side
1636 // effects are evaluated, but not the actual value.
1637 if (Op->isGLValue())
1638 CGF.EmitLValue(Op);
1639 else
1640 CGF.EmitScalarExpr(Op, true);
1641 return llvm::Constant::getNullValue(ConvertType(E->getType()));
1642 }
1643
1644 //===----------------------------------------------------------------------===//
1645 // Binary Operators
1646 //===----------------------------------------------------------------------===//
1647
EmitBinOps(const BinaryOperator * E)1648 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1649 TestAndClearIgnoreResultAssign();
1650 BinOpInfo Result;
1651 Result.LHS = Visit(E->getLHS());
1652 Result.RHS = Visit(E->getRHS());
1653 Result.Ty = E->getType();
1654 Result.Opcode = E->getOpcode();
1655 Result.E = E;
1656 return Result;
1657 }
1658
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)1659 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1660 const CompoundAssignOperator *E,
1661 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1662 Value *&Result) {
1663 QualType LHSTy = E->getLHS()->getType();
1664 BinOpInfo OpInfo;
1665
1666 if (E->getComputationResultType()->isAnyComplexType()) {
1667 // This needs to go through the complex expression emitter, but it's a tad
1668 // complicated to do that... I'm leaving it out for now. (Note that we do
1669 // actually need the imaginary part of the RHS for multiplication and
1670 // division.)
1671 CGF.ErrorUnsupported(E, "complex compound assignment");
1672 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1673 return LValue();
1674 }
1675
1676 // Emit the RHS first. __block variables need to have the rhs evaluated
1677 // first, plus this should improve codegen a little.
1678 OpInfo.RHS = Visit(E->getRHS());
1679 OpInfo.Ty = E->getComputationResultType();
1680 OpInfo.Opcode = E->getOpcode();
1681 OpInfo.E = E;
1682 // Load/convert the LHS.
1683 LValue LHSLV = EmitCheckedLValue(E->getLHS());
1684 OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1685 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1686 E->getComputationLHSType());
1687
1688 llvm::PHINode *atomicPHI = 0;
1689 if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1690 // FIXME: For floating point types, we should be saving and restoring the
1691 // floating point environment in the loop.
1692 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1693 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1694 Builder.CreateBr(opBB);
1695 Builder.SetInsertPoint(opBB);
1696 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1697 atomicPHI->addIncoming(OpInfo.LHS, startBB);
1698 OpInfo.Ty = atomicTy->getValueType();
1699 OpInfo.LHS = atomicPHI;
1700 }
1701
1702 // Expand the binary operator.
1703 Result = (this->*Func)(OpInfo);
1704
1705 // Convert the result back to the LHS type.
1706 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1707
1708 if (atomicPHI) {
1709 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1710 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1711 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1712 Result, llvm::SequentiallyConsistent);
1713 atomicPHI->addIncoming(old, opBB);
1714 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1715 Builder.CreateCondBr(success, contBB, opBB);
1716 Builder.SetInsertPoint(contBB);
1717 return LHSLV;
1718 }
1719
1720 // Store the result value into the LHS lvalue. Bit-fields are handled
1721 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1722 // 'An assignment expression has the value of the left operand after the
1723 // assignment...'.
1724 if (LHSLV.isBitField())
1725 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1726 else
1727 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1728
1729 return LHSLV;
1730 }
1731
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))1732 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1733 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1734 bool Ignore = TestAndClearIgnoreResultAssign();
1735 Value *RHS;
1736 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1737
1738 // If the result is clearly ignored, return now.
1739 if (Ignore)
1740 return 0;
1741
1742 // The result of an assignment in C is the assigned r-value.
1743 if (!CGF.getContext().getLangOpts().CPlusPlus)
1744 return RHS;
1745
1746 // If the lvalue is non-volatile, return the computed value of the assignment.
1747 if (!LHS.isVolatileQualified())
1748 return RHS;
1749
1750 // Otherwise, reload the value.
1751 return EmitLoadOfLValue(LHS);
1752 }
1753
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)1754 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1755 const BinOpInfo &Ops,
1756 llvm::Value *Zero, bool isDiv) {
1757 llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1758 llvm::BasicBlock *contBB =
1759 CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1760 llvm::next(insertPt));
1761 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1762
1763 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1764
1765 if (Ops.Ty->hasSignedIntegerRepresentation()) {
1766 llvm::Value *IntMin =
1767 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1768 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1769
1770 llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1771 llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1772 llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1773 llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1774 Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1775 overflowBB, contBB);
1776 } else {
1777 CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1778 overflowBB, contBB);
1779 }
1780 EmitOverflowBB(overflowBB);
1781 Builder.SetInsertPoint(contBB);
1782 }
1783
EmitDiv(const BinOpInfo & Ops)1784 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1785 if (isTrapvOverflowBehavior()) {
1786 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1787
1788 if (Ops.Ty->isIntegerType())
1789 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1790 else if (Ops.Ty->isRealFloatingType()) {
1791 llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1792 llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1793 llvm::next(insertPt));
1794 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1795 CGF.CurFn);
1796 CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1797 overflowBB, DivCont);
1798 EmitOverflowBB(overflowBB);
1799 Builder.SetInsertPoint(DivCont);
1800 }
1801 }
1802 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1803 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1804 if (CGF.getContext().getLangOpts().OpenCL) {
1805 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1806 llvm::Type *ValTy = Val->getType();
1807 if (ValTy->isFloatTy() ||
1808 (isa<llvm::VectorType>(ValTy) &&
1809 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1810 CGF.SetFPAccuracy(Val, 2.5);
1811 }
1812 return Val;
1813 }
1814 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1815 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1816 else
1817 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1818 }
1819
EmitRem(const BinOpInfo & Ops)1820 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1821 // Rem in C can't be a floating point type: C99 6.5.5p2.
1822 if (isTrapvOverflowBehavior()) {
1823 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1824
1825 if (Ops.Ty->isIntegerType())
1826 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1827 }
1828
1829 if (Ops.Ty->hasUnsignedIntegerRepresentation())
1830 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1831 else
1832 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1833 }
1834
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)1835 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1836 unsigned IID;
1837 unsigned OpID = 0;
1838
1839 switch (Ops.Opcode) {
1840 case BO_Add:
1841 case BO_AddAssign:
1842 OpID = 1;
1843 IID = llvm::Intrinsic::sadd_with_overflow;
1844 break;
1845 case BO_Sub:
1846 case BO_SubAssign:
1847 OpID = 2;
1848 IID = llvm::Intrinsic::ssub_with_overflow;
1849 break;
1850 case BO_Mul:
1851 case BO_MulAssign:
1852 OpID = 3;
1853 IID = llvm::Intrinsic::smul_with_overflow;
1854 break;
1855 default:
1856 llvm_unreachable("Unsupported operation for overflow detection");
1857 }
1858 OpID <<= 1;
1859 OpID |= 1;
1860
1861 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1862
1863 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1864
1865 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1866 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1867 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1868
1869 // Branch in case of overflow.
1870 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1871 llvm::Function::iterator insertPt = initialBB;
1872 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1873 llvm::next(insertPt));
1874 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1875
1876 Builder.CreateCondBr(overflow, overflowBB, continueBB);
1877
1878 // Handle overflow with llvm.trap.
1879 const std::string *handlerName =
1880 &CGF.getContext().getLangOpts().OverflowHandler;
1881 if (handlerName->empty()) {
1882 EmitOverflowBB(overflowBB);
1883 Builder.SetInsertPoint(continueBB);
1884 return result;
1885 }
1886
1887 // If an overflow handler is set, then we want to call it and then use its
1888 // result, if it returns.
1889 Builder.SetInsertPoint(overflowBB);
1890
1891 // Get the overflow handler.
1892 llvm::Type *Int8Ty = CGF.Int8Ty;
1893 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1894 llvm::FunctionType *handlerTy =
1895 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1896 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1897
1898 // Sign extend the args to 64-bit, so that we can use the same handler for
1899 // all types of overflow.
1900 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1901 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1902
1903 // Call the handler with the two arguments, the operation, and the size of
1904 // the result.
1905 llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1906 Builder.getInt8(OpID),
1907 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1908
1909 // Truncate the result back to the desired size.
1910 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1911 Builder.CreateBr(continueBB);
1912
1913 Builder.SetInsertPoint(continueBB);
1914 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1915 phi->addIncoming(result, initialBB);
1916 phi->addIncoming(handlerResult, overflowBB);
1917
1918 return phi;
1919 }
1920
1921 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)1922 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1923 const BinOpInfo &op,
1924 bool isSubtraction) {
1925 // Must have binary (not unary) expr here. Unary pointer
1926 // increment/decrement doesn't use this path.
1927 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1928
1929 Value *pointer = op.LHS;
1930 Expr *pointerOperand = expr->getLHS();
1931 Value *index = op.RHS;
1932 Expr *indexOperand = expr->getRHS();
1933
1934 // In a subtraction, the LHS is always the pointer.
1935 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1936 std::swap(pointer, index);
1937 std::swap(pointerOperand, indexOperand);
1938 }
1939
1940 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1941 if (width != CGF.PointerWidthInBits) {
1942 // Zero-extend or sign-extend the pointer value according to
1943 // whether the index is signed or not.
1944 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1945 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1946 "idx.ext");
1947 }
1948
1949 // If this is subtraction, negate the index.
1950 if (isSubtraction)
1951 index = CGF.Builder.CreateNeg(index, "idx.neg");
1952
1953 const PointerType *pointerType
1954 = pointerOperand->getType()->getAs<PointerType>();
1955 if (!pointerType) {
1956 QualType objectType = pointerOperand->getType()
1957 ->castAs<ObjCObjectPointerType>()
1958 ->getPointeeType();
1959 llvm::Value *objectSize
1960 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1961
1962 index = CGF.Builder.CreateMul(index, objectSize);
1963
1964 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1965 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1966 return CGF.Builder.CreateBitCast(result, pointer->getType());
1967 }
1968
1969 QualType elementType = pointerType->getPointeeType();
1970 if (const VariableArrayType *vla
1971 = CGF.getContext().getAsVariableArrayType(elementType)) {
1972 // The element count here is the total number of non-VLA elements.
1973 llvm::Value *numElements = CGF.getVLASize(vla).first;
1974
1975 // Effectively, the multiply by the VLA size is part of the GEP.
1976 // GEP indexes are signed, and scaling an index isn't permitted to
1977 // signed-overflow, so we use the same semantics for our explicit
1978 // multiply. We suppress this if overflow is not undefined behavior.
1979 if (CGF.getLangOpts().isSignedOverflowDefined()) {
1980 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1981 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1982 } else {
1983 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1984 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1985 }
1986 return pointer;
1987 }
1988
1989 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1990 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1991 // future proof.
1992 if (elementType->isVoidType() || elementType->isFunctionType()) {
1993 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1994 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1995 return CGF.Builder.CreateBitCast(result, pointer->getType());
1996 }
1997
1998 if (CGF.getLangOpts().isSignedOverflowDefined())
1999 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2000
2001 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2002 }
2003
EmitAdd(const BinOpInfo & op)2004 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2005 if (op.LHS->getType()->isPointerTy() ||
2006 op.RHS->getType()->isPointerTy())
2007 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2008
2009 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2010 switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
2011 case LangOptions::SOB_Undefined:
2012 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2013 case LangOptions::SOB_Defined:
2014 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2015 case LangOptions::SOB_Trapping:
2016 return EmitOverflowCheckedBinOp(op);
2017 }
2018 }
2019
2020 if (op.LHS->getType()->isFPOrFPVectorTy())
2021 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2022
2023 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2024 }
2025
EmitSub(const BinOpInfo & op)2026 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2027 // The LHS is always a pointer if either side is.
2028 if (!op.LHS->getType()->isPointerTy()) {
2029 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2030 switch (CGF.getContext().getLangOpts().getSignedOverflowBehavior()) {
2031 case LangOptions::SOB_Undefined:
2032 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2033 case LangOptions::SOB_Defined:
2034 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2035 case LangOptions::SOB_Trapping:
2036 return EmitOverflowCheckedBinOp(op);
2037 }
2038 }
2039
2040 if (op.LHS->getType()->isFPOrFPVectorTy())
2041 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2042
2043 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2044 }
2045
2046 // If the RHS is not a pointer, then we have normal pointer
2047 // arithmetic.
2048 if (!op.RHS->getType()->isPointerTy())
2049 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2050
2051 // Otherwise, this is a pointer subtraction.
2052
2053 // Do the raw subtraction part.
2054 llvm::Value *LHS
2055 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2056 llvm::Value *RHS
2057 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2058 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2059
2060 // Okay, figure out the element size.
2061 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2062 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2063
2064 llvm::Value *divisor = 0;
2065
2066 // For a variable-length array, this is going to be non-constant.
2067 if (const VariableArrayType *vla
2068 = CGF.getContext().getAsVariableArrayType(elementType)) {
2069 llvm::Value *numElements;
2070 llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2071
2072 divisor = numElements;
2073
2074 // Scale the number of non-VLA elements by the non-VLA element size.
2075 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2076 if (!eltSize.isOne())
2077 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2078
2079 // For everything elese, we can just compute it, safe in the
2080 // assumption that Sema won't let anything through that we can't
2081 // safely compute the size of.
2082 } else {
2083 CharUnits elementSize;
2084 // Handle GCC extension for pointer arithmetic on void* and
2085 // function pointer types.
2086 if (elementType->isVoidType() || elementType->isFunctionType())
2087 elementSize = CharUnits::One();
2088 else
2089 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2090
2091 // Don't even emit the divide for element size of 1.
2092 if (elementSize.isOne())
2093 return diffInChars;
2094
2095 divisor = CGF.CGM.getSize(elementSize);
2096 }
2097
2098 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2099 // pointer difference in C is only defined in the case where both operands
2100 // are pointing to elements of an array.
2101 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2102 }
2103
EmitShl(const BinOpInfo & Ops)2104 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2105 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2106 // RHS to the same size as the LHS.
2107 Value *RHS = Ops.RHS;
2108 if (Ops.LHS->getType() != RHS->getType())
2109 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2110
2111 if (CGF.CatchUndefined
2112 && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2113 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2114 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2115 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2116 llvm::ConstantInt::get(RHS->getType(), Width)),
2117 Cont, CGF.getTrapBB());
2118 CGF.EmitBlock(Cont);
2119 }
2120
2121 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2122 }
2123
EmitShr(const BinOpInfo & Ops)2124 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2125 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2126 // RHS to the same size as the LHS.
2127 Value *RHS = Ops.RHS;
2128 if (Ops.LHS->getType() != RHS->getType())
2129 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2130
2131 if (CGF.CatchUndefined
2132 && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2133 unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2134 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2135 CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2136 llvm::ConstantInt::get(RHS->getType(), Width)),
2137 Cont, CGF.getTrapBB());
2138 CGF.EmitBlock(Cont);
2139 }
2140
2141 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2142 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2143 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2144 }
2145
2146 enum IntrinsicType { VCMPEQ, VCMPGT };
2147 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2148 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2149 BuiltinType::Kind ElemKind) {
2150 switch (ElemKind) {
2151 default: llvm_unreachable("unexpected element type");
2152 case BuiltinType::Char_U:
2153 case BuiltinType::UChar:
2154 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2155 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2156 case BuiltinType::Char_S:
2157 case BuiltinType::SChar:
2158 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2159 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2160 case BuiltinType::UShort:
2161 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2162 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2163 case BuiltinType::Short:
2164 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2165 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2166 case BuiltinType::UInt:
2167 case BuiltinType::ULong:
2168 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2169 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2170 case BuiltinType::Int:
2171 case BuiltinType::Long:
2172 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2173 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2174 case BuiltinType::Float:
2175 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2176 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2177 }
2178 }
2179
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2180 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2181 unsigned SICmpOpc, unsigned FCmpOpc) {
2182 TestAndClearIgnoreResultAssign();
2183 Value *Result;
2184 QualType LHSTy = E->getLHS()->getType();
2185 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2186 assert(E->getOpcode() == BO_EQ ||
2187 E->getOpcode() == BO_NE);
2188 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2189 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2190 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2191 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2192 } else if (!LHSTy->isAnyComplexType()) {
2193 Value *LHS = Visit(E->getLHS());
2194 Value *RHS = Visit(E->getRHS());
2195
2196 // If AltiVec, the comparison results in a numeric type, so we use
2197 // intrinsics comparing vectors and giving 0 or 1 as a result
2198 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2199 // constants for mapping CR6 register bits to predicate result
2200 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2201
2202 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2203
2204 // in several cases vector arguments order will be reversed
2205 Value *FirstVecArg = LHS,
2206 *SecondVecArg = RHS;
2207
2208 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2209 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2210 BuiltinType::Kind ElementKind = BTy->getKind();
2211
2212 switch(E->getOpcode()) {
2213 default: llvm_unreachable("is not a comparison operation");
2214 case BO_EQ:
2215 CR6 = CR6_LT;
2216 ID = GetIntrinsic(VCMPEQ, ElementKind);
2217 break;
2218 case BO_NE:
2219 CR6 = CR6_EQ;
2220 ID = GetIntrinsic(VCMPEQ, ElementKind);
2221 break;
2222 case BO_LT:
2223 CR6 = CR6_LT;
2224 ID = GetIntrinsic(VCMPGT, ElementKind);
2225 std::swap(FirstVecArg, SecondVecArg);
2226 break;
2227 case BO_GT:
2228 CR6 = CR6_LT;
2229 ID = GetIntrinsic(VCMPGT, ElementKind);
2230 break;
2231 case BO_LE:
2232 if (ElementKind == BuiltinType::Float) {
2233 CR6 = CR6_LT;
2234 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2235 std::swap(FirstVecArg, SecondVecArg);
2236 }
2237 else {
2238 CR6 = CR6_EQ;
2239 ID = GetIntrinsic(VCMPGT, ElementKind);
2240 }
2241 break;
2242 case BO_GE:
2243 if (ElementKind == BuiltinType::Float) {
2244 CR6 = CR6_LT;
2245 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2246 }
2247 else {
2248 CR6 = CR6_EQ;
2249 ID = GetIntrinsic(VCMPGT, ElementKind);
2250 std::swap(FirstVecArg, SecondVecArg);
2251 }
2252 break;
2253 }
2254
2255 Value *CR6Param = Builder.getInt32(CR6);
2256 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2257 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2258 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2259 }
2260
2261 if (LHS->getType()->isFPOrFPVectorTy()) {
2262 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2263 LHS, RHS, "cmp");
2264 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2265 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2266 LHS, RHS, "cmp");
2267 } else {
2268 // Unsigned integers and pointers.
2269 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2270 LHS, RHS, "cmp");
2271 }
2272
2273 // If this is a vector comparison, sign extend the result to the appropriate
2274 // vector integer type and return it (don't convert to bool).
2275 if (LHSTy->isVectorType())
2276 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2277
2278 } else {
2279 // Complex Comparison: can only be an equality comparison.
2280 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2281 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2282
2283 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2284
2285 Value *ResultR, *ResultI;
2286 if (CETy->isRealFloatingType()) {
2287 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2288 LHS.first, RHS.first, "cmp.r");
2289 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2290 LHS.second, RHS.second, "cmp.i");
2291 } else {
2292 // Complex comparisons can only be equality comparisons. As such, signed
2293 // and unsigned opcodes are the same.
2294 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2295 LHS.first, RHS.first, "cmp.r");
2296 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2297 LHS.second, RHS.second, "cmp.i");
2298 }
2299
2300 if (E->getOpcode() == BO_EQ) {
2301 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2302 } else {
2303 assert(E->getOpcode() == BO_NE &&
2304 "Complex comparison other than == or != ?");
2305 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2306 }
2307 }
2308
2309 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2310 }
2311
VisitBinAssign(const BinaryOperator * E)2312 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2313 bool Ignore = TestAndClearIgnoreResultAssign();
2314
2315 Value *RHS;
2316 LValue LHS;
2317
2318 switch (E->getLHS()->getType().getObjCLifetime()) {
2319 case Qualifiers::OCL_Strong:
2320 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2321 break;
2322
2323 case Qualifiers::OCL_Autoreleasing:
2324 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2325 break;
2326
2327 case Qualifiers::OCL_Weak:
2328 RHS = Visit(E->getRHS());
2329 LHS = EmitCheckedLValue(E->getLHS());
2330 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2331 break;
2332
2333 // No reason to do any of these differently.
2334 case Qualifiers::OCL_None:
2335 case Qualifiers::OCL_ExplicitNone:
2336 // __block variables need to have the rhs evaluated first, plus
2337 // this should improve codegen just a little.
2338 RHS = Visit(E->getRHS());
2339 LHS = EmitCheckedLValue(E->getLHS());
2340
2341 // Store the value into the LHS. Bit-fields are handled specially
2342 // because the result is altered by the store, i.e., [C99 6.5.16p1]
2343 // 'An assignment expression has the value of the left operand after
2344 // the assignment...'.
2345 if (LHS.isBitField())
2346 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2347 else
2348 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2349 }
2350
2351 // If the result is clearly ignored, return now.
2352 if (Ignore)
2353 return 0;
2354
2355 // The result of an assignment in C is the assigned r-value.
2356 if (!CGF.getContext().getLangOpts().CPlusPlus)
2357 return RHS;
2358
2359 // If the lvalue is non-volatile, return the computed value of the assignment.
2360 if (!LHS.isVolatileQualified())
2361 return RHS;
2362
2363 // Otherwise, reload the value.
2364 return EmitLoadOfLValue(LHS);
2365 }
2366
VisitBinLAnd(const BinaryOperator * E)2367 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2368
2369 // Perform vector logical and on comparisons with zero vectors.
2370 if (E->getType()->isVectorType()) {
2371 Value *LHS = Visit(E->getLHS());
2372 Value *RHS = Visit(E->getRHS());
2373 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2374 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2375 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2376 Value *And = Builder.CreateAnd(LHS, RHS);
2377 return Builder.CreateSExt(And, Zero->getType(), "sext");
2378 }
2379
2380 llvm::Type *ResTy = ConvertType(E->getType());
2381
2382 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2383 // If we have 1 && X, just emit X without inserting the control flow.
2384 bool LHSCondVal;
2385 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2386 if (LHSCondVal) { // If we have 1 && X, just emit X.
2387 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2388 // ZExt result to int or bool.
2389 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2390 }
2391
2392 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2393 if (!CGF.ContainsLabel(E->getRHS()))
2394 return llvm::Constant::getNullValue(ResTy);
2395 }
2396
2397 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2398 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
2399
2400 CodeGenFunction::ConditionalEvaluation eval(CGF);
2401
2402 // Branch on the LHS first. If it is false, go to the failure (cont) block.
2403 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2404
2405 // Any edges into the ContBlock are now from an (indeterminate number of)
2406 // edges from this first condition. All of these values will be false. Start
2407 // setting up the PHI node in the Cont Block for this.
2408 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2409 "", ContBlock);
2410 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2411 PI != PE; ++PI)
2412 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2413
2414 eval.begin(CGF);
2415 CGF.EmitBlock(RHSBlock);
2416 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2417 eval.end(CGF);
2418
2419 // Reaquire the RHS block, as there may be subblocks inserted.
2420 RHSBlock = Builder.GetInsertBlock();
2421
2422 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2423 // into the phi node for the edge with the value of RHSCond.
2424 if (CGF.getDebugInfo())
2425 // There is no need to emit line number for unconditional branch.
2426 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2427 CGF.EmitBlock(ContBlock);
2428 PN->addIncoming(RHSCond, RHSBlock);
2429
2430 // ZExt result to int.
2431 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2432 }
2433
VisitBinLOr(const BinaryOperator * E)2434 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2435
2436 // Perform vector logical or on comparisons with zero vectors.
2437 if (E->getType()->isVectorType()) {
2438 Value *LHS = Visit(E->getLHS());
2439 Value *RHS = Visit(E->getRHS());
2440 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2441 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2442 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2443 Value *Or = Builder.CreateOr(LHS, RHS);
2444 return Builder.CreateSExt(Or, Zero->getType(), "sext");
2445 }
2446
2447 llvm::Type *ResTy = ConvertType(E->getType());
2448
2449 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2450 // If we have 0 || X, just emit X without inserting the control flow.
2451 bool LHSCondVal;
2452 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2453 if (!LHSCondVal) { // If we have 0 || X, just emit X.
2454 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2455 // ZExt result to int or bool.
2456 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2457 }
2458
2459 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2460 if (!CGF.ContainsLabel(E->getRHS()))
2461 return llvm::ConstantInt::get(ResTy, 1);
2462 }
2463
2464 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2465 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2466
2467 CodeGenFunction::ConditionalEvaluation eval(CGF);
2468
2469 // Branch on the LHS first. If it is true, go to the success (cont) block.
2470 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2471
2472 // Any edges into the ContBlock are now from an (indeterminate number of)
2473 // edges from this first condition. All of these values will be true. Start
2474 // setting up the PHI node in the Cont Block for this.
2475 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2476 "", ContBlock);
2477 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2478 PI != PE; ++PI)
2479 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2480
2481 eval.begin(CGF);
2482
2483 // Emit the RHS condition as a bool value.
2484 CGF.EmitBlock(RHSBlock);
2485 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2486
2487 eval.end(CGF);
2488
2489 // Reaquire the RHS block, as there may be subblocks inserted.
2490 RHSBlock = Builder.GetInsertBlock();
2491
2492 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2493 // into the phi node for the edge with the value of RHSCond.
2494 CGF.EmitBlock(ContBlock);
2495 PN->addIncoming(RHSCond, RHSBlock);
2496
2497 // ZExt result to int.
2498 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2499 }
2500
VisitBinComma(const BinaryOperator * E)2501 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2502 CGF.EmitIgnoredExpr(E->getLHS());
2503 CGF.EnsureInsertPoint();
2504 return Visit(E->getRHS());
2505 }
2506
2507 //===----------------------------------------------------------------------===//
2508 // Other Operators
2509 //===----------------------------------------------------------------------===//
2510
2511 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2512 /// expression is cheap enough and side-effect-free enough to evaluate
2513 /// unconditionally instead of conditionally. This is used to convert control
2514 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)2515 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2516 CodeGenFunction &CGF) {
2517 E = E->IgnoreParens();
2518
2519 // Anything that is an integer or floating point constant is fine.
2520 if (E->isConstantInitializer(CGF.getContext(), false))
2521 return true;
2522
2523 // Non-volatile automatic variables too, to get "cond ? X : Y" where
2524 // X and Y are local variables.
2525 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2526 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2527 if (VD->hasLocalStorage() && !(CGF.getContext()
2528 .getCanonicalType(VD->getType())
2529 .isVolatileQualified()))
2530 return true;
2531
2532 return false;
2533 }
2534
2535
2536 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)2537 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2538 TestAndClearIgnoreResultAssign();
2539
2540 // Bind the common expression if necessary.
2541 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2542
2543 Expr *condExpr = E->getCond();
2544 Expr *lhsExpr = E->getTrueExpr();
2545 Expr *rhsExpr = E->getFalseExpr();
2546
2547 // If the condition constant folds and can be elided, try to avoid emitting
2548 // the condition and the dead arm.
2549 bool CondExprBool;
2550 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2551 Expr *live = lhsExpr, *dead = rhsExpr;
2552 if (!CondExprBool) std::swap(live, dead);
2553
2554 // If the dead side doesn't have labels we need, just emit the Live part.
2555 if (!CGF.ContainsLabel(dead)) {
2556 Value *Result = Visit(live);
2557
2558 // If the live part is a throw expression, it acts like it has a void
2559 // type, so evaluating it returns a null Value*. However, a conditional
2560 // with non-void type must return a non-null Value*.
2561 if (!Result && !E->getType()->isVoidType())
2562 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2563
2564 return Result;
2565 }
2566 }
2567
2568 // OpenCL: If the condition is a vector, we can treat this condition like
2569 // the select function.
2570 if (CGF.getContext().getLangOpts().OpenCL
2571 && condExpr->getType()->isVectorType()) {
2572 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2573 llvm::Value *LHS = Visit(lhsExpr);
2574 llvm::Value *RHS = Visit(rhsExpr);
2575
2576 llvm::Type *condType = ConvertType(condExpr->getType());
2577 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2578
2579 unsigned numElem = vecTy->getNumElements();
2580 llvm::Type *elemType = vecTy->getElementType();
2581
2582 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2583 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2584 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2585 llvm::VectorType::get(elemType,
2586 numElem),
2587 "sext");
2588 llvm::Value *tmp2 = Builder.CreateNot(tmp);
2589
2590 // Cast float to int to perform ANDs if necessary.
2591 llvm::Value *RHSTmp = RHS;
2592 llvm::Value *LHSTmp = LHS;
2593 bool wasCast = false;
2594 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2595 if (rhsVTy->getElementType()->isFloatTy()) {
2596 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2597 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2598 wasCast = true;
2599 }
2600
2601 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2602 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2603 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2604 if (wasCast)
2605 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2606
2607 return tmp5;
2608 }
2609
2610 // If this is a really simple expression (like x ? 4 : 5), emit this as a
2611 // select instead of as control flow. We can only do this if it is cheap and
2612 // safe to evaluate the LHS and RHS unconditionally.
2613 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2614 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2615 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2616 llvm::Value *LHS = Visit(lhsExpr);
2617 llvm::Value *RHS = Visit(rhsExpr);
2618 if (!LHS) {
2619 // If the conditional has void type, make sure we return a null Value*.
2620 assert(!RHS && "LHS and RHS types must match");
2621 return 0;
2622 }
2623 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2624 }
2625
2626 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2627 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2628 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2629
2630 CodeGenFunction::ConditionalEvaluation eval(CGF);
2631 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2632
2633 CGF.EmitBlock(LHSBlock);
2634 eval.begin(CGF);
2635 Value *LHS = Visit(lhsExpr);
2636 eval.end(CGF);
2637
2638 LHSBlock = Builder.GetInsertBlock();
2639 Builder.CreateBr(ContBlock);
2640
2641 CGF.EmitBlock(RHSBlock);
2642 eval.begin(CGF);
2643 Value *RHS = Visit(rhsExpr);
2644 eval.end(CGF);
2645
2646 RHSBlock = Builder.GetInsertBlock();
2647 CGF.EmitBlock(ContBlock);
2648
2649 // If the LHS or RHS is a throw expression, it will be legitimately null.
2650 if (!LHS)
2651 return RHS;
2652 if (!RHS)
2653 return LHS;
2654
2655 // Create a PHI node for the real part.
2656 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2657 PN->addIncoming(LHS, LHSBlock);
2658 PN->addIncoming(RHS, RHSBlock);
2659 return PN;
2660 }
2661
VisitChooseExpr(ChooseExpr * E)2662 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2663 return Visit(E->getChosenSubExpr(CGF.getContext()));
2664 }
2665
VisitVAArgExpr(VAArgExpr * VE)2666 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2667 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2668 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2669
2670 // If EmitVAArg fails, we fall back to the LLVM instruction.
2671 if (!ArgPtr)
2672 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2673
2674 // FIXME Volatility.
2675 return Builder.CreateLoad(ArgPtr);
2676 }
2677
VisitBlockExpr(const BlockExpr * block)2678 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2679 return CGF.EmitBlockLiteral(block);
2680 }
2681
VisitAsTypeExpr(AsTypeExpr * E)2682 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2683 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
2684 llvm::Type *DstTy = ConvertType(E->getType());
2685
2686 // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2687 // a shuffle vector instead of a bitcast.
2688 llvm::Type *SrcTy = Src->getType();
2689 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2690 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2691 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2692 if ((numElementsDst == 3 && numElementsSrc == 4)
2693 || (numElementsDst == 4 && numElementsSrc == 3)) {
2694
2695
2696 // In the case of going from int4->float3, a bitcast is needed before
2697 // doing a shuffle.
2698 llvm::Type *srcElemTy =
2699 cast<llvm::VectorType>(SrcTy)->getElementType();
2700 llvm::Type *dstElemTy =
2701 cast<llvm::VectorType>(DstTy)->getElementType();
2702
2703 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2704 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2705 // Create a float type of the same size as the source or destination.
2706 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2707 numElementsSrc);
2708
2709 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2710 }
2711
2712 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2713
2714 SmallVector<llvm::Constant*, 3> Args;
2715 Args.push_back(Builder.getInt32(0));
2716 Args.push_back(Builder.getInt32(1));
2717 Args.push_back(Builder.getInt32(2));
2718
2719 if (numElementsDst == 4)
2720 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2721
2722 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2723
2724 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2725 }
2726 }
2727
2728 return Builder.CreateBitCast(Src, DstTy, "astype");
2729 }
2730
VisitAtomicExpr(AtomicExpr * E)2731 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2732 return CGF.EmitAtomicExpr(E).getScalarVal();
2733 }
2734
2735 //===----------------------------------------------------------------------===//
2736 // Entry Point into this File
2737 //===----------------------------------------------------------------------===//
2738
2739 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2740 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)2741 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2742 assert(E && !hasAggregateLLVMType(E->getType()) &&
2743 "Invalid scalar expression to emit");
2744
2745 if (isa<CXXDefaultArgExpr>(E))
2746 disableDebugInfo();
2747 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2748 .Visit(const_cast<Expr*>(E));
2749 if (isa<CXXDefaultArgExpr>(E))
2750 enableDebugInfo();
2751 return V;
2752 }
2753
2754 /// EmitScalarConversion - Emit a conversion from the specified type to the
2755 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)2756 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2757 QualType DstTy) {
2758 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2759 "Invalid scalar expression to emit");
2760 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2761 }
2762
2763 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2764 /// type to the specified destination type, where the destination type is an
2765 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)2766 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2767 QualType SrcTy,
2768 QualType DstTy) {
2769 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2770 "Invalid complex -> scalar conversion");
2771 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2772 DstTy);
2773 }
2774
2775
2776 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2777 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2778 bool isInc, bool isPre) {
2779 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2780 }
2781
EmitObjCIsaExpr(const ObjCIsaExpr * E)2782 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2783 llvm::Value *V;
2784 // object->isa or (*object).isa
2785 // Generate code as for: *(Class*)object
2786 // build Class* type
2787 llvm::Type *ClassPtrTy = ConvertType(E->getType());
2788
2789 Expr *BaseExpr = E->getBase();
2790 if (BaseExpr->isRValue()) {
2791 V = CreateMemTemp(E->getType(), "resval");
2792 llvm::Value *Src = EmitScalarExpr(BaseExpr);
2793 Builder.CreateStore(Src, V);
2794 V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2795 MakeNaturalAlignAddrLValue(V, E->getType()));
2796 } else {
2797 if (E->isArrow())
2798 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2799 else
2800 V = EmitLValue(BaseExpr).getAddress();
2801 }
2802
2803 // build Class* type
2804 ClassPtrTy = ClassPtrTy->getPointerTo();
2805 V = Builder.CreateBitCast(V, ClassPtrTy);
2806 return MakeNaturalAlignAddrLValue(V, E->getType());
2807 }
2808
2809
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)2810 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2811 const CompoundAssignOperator *E) {
2812 ScalarExprEmitter Scalar(*this);
2813 Value *Result = 0;
2814 switch (E->getOpcode()) {
2815 #define COMPOUND_OP(Op) \
2816 case BO_##Op##Assign: \
2817 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2818 Result)
2819 COMPOUND_OP(Mul);
2820 COMPOUND_OP(Div);
2821 COMPOUND_OP(Rem);
2822 COMPOUND_OP(Add);
2823 COMPOUND_OP(Sub);
2824 COMPOUND_OP(Shl);
2825 COMPOUND_OP(Shr);
2826 COMPOUND_OP(And);
2827 COMPOUND_OP(Xor);
2828 COMPOUND_OP(Or);
2829 #undef COMPOUND_OP
2830
2831 case BO_PtrMemD:
2832 case BO_PtrMemI:
2833 case BO_Mul:
2834 case BO_Div:
2835 case BO_Rem:
2836 case BO_Add:
2837 case BO_Sub:
2838 case BO_Shl:
2839 case BO_Shr:
2840 case BO_LT:
2841 case BO_GT:
2842 case BO_LE:
2843 case BO_GE:
2844 case BO_EQ:
2845 case BO_NE:
2846 case BO_And:
2847 case BO_Xor:
2848 case BO_Or:
2849 case BO_LAnd:
2850 case BO_LOr:
2851 case BO_Assign:
2852 case BO_Comma:
2853 llvm_unreachable("Not valid compound assignment operators");
2854 }
2855
2856 llvm_unreachable("Unhandled compound assignment operator");
2857 }
2858