1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime. The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CodeGenFunction.h"
20 #include "CGCleanup.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/FileManager.h"
28
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Module.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringMap.h"
34 #include "llvm/Support/CallSite.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Target/TargetData.h"
37
38 #include <cstdarg>
39
40
41 using namespace clang;
42 using namespace CodeGen;
43
44
45 namespace {
46 /// Class that lazily initialises the runtime function. Avoids inserting the
47 /// types and the function declaration into a module if they're not used, and
48 /// avoids constructing the type more than once if it's used more than once.
49 class LazyRuntimeFunction {
50 CodeGenModule *CGM;
51 std::vector<llvm::Type*> ArgTys;
52 const char *FunctionName;
53 llvm::Constant *Function;
54 public:
55 /// Constructor leaves this class uninitialized, because it is intended to
56 /// be used as a field in another class and not all of the types that are
57 /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()58 LazyRuntimeFunction() : CGM(0), FunctionName(0), Function(0) {}
59
60 /// Initialises the lazy function with the name, return type, and the types
61 /// of the arguments.
62 END_WITH_NULL
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,...)63 void init(CodeGenModule *Mod, const char *name,
64 llvm::Type *RetTy, ...) {
65 CGM =Mod;
66 FunctionName = name;
67 Function = 0;
68 ArgTys.clear();
69 va_list Args;
70 va_start(Args, RetTy);
71 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
72 ArgTys.push_back(ArgTy);
73 va_end(Args);
74 // Push the return type on at the end so we can pop it off easily
75 ArgTys.push_back(RetTy);
76 }
77 /// Overloaded cast operator, allows the class to be implicitly cast to an
78 /// LLVM constant.
operator llvm::Constant*()79 operator llvm::Constant*() {
80 if (!Function) {
81 if (0 == FunctionName) return 0;
82 // We put the return type on the end of the vector, so pop it back off
83 llvm::Type *RetTy = ArgTys.back();
84 ArgTys.pop_back();
85 llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
86 Function =
87 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
88 // We won't need to use the types again, so we may as well clean up the
89 // vector now
90 ArgTys.resize(0);
91 }
92 return Function;
93 }
operator llvm::Function*()94 operator llvm::Function*() {
95 return cast<llvm::Function>((llvm::Constant*)*this);
96 }
97
98 };
99
100
101 /// GNU Objective-C runtime code generation. This class implements the parts of
102 /// Objective-C support that are specific to the GNU family of runtimes (GCC and
103 /// GNUstep).
104 class CGObjCGNU : public CGObjCRuntime {
105 protected:
106 /// The LLVM module into which output is inserted
107 llvm::Module &TheModule;
108 /// strut objc_super. Used for sending messages to super. This structure
109 /// contains the receiver (object) and the expected class.
110 llvm::StructType *ObjCSuperTy;
111 /// struct objc_super*. The type of the argument to the superclass message
112 /// lookup functions.
113 llvm::PointerType *PtrToObjCSuperTy;
114 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
115 /// SEL is included in a header somewhere, in which case it will be whatever
116 /// type is declared in that header, most likely {i8*, i8*}.
117 llvm::PointerType *SelectorTy;
118 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
119 /// places where it's used
120 llvm::IntegerType *Int8Ty;
121 /// Pointer to i8 - LLVM type of char*, for all of the places where the
122 /// runtime needs to deal with C strings.
123 llvm::PointerType *PtrToInt8Ty;
124 /// Instance Method Pointer type. This is a pointer to a function that takes,
125 /// at a minimum, an object and a selector, and is the generic type for
126 /// Objective-C methods. Due to differences between variadic / non-variadic
127 /// calling conventions, it must always be cast to the correct type before
128 /// actually being used.
129 llvm::PointerType *IMPTy;
130 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
131 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
132 /// but if the runtime header declaring it is included then it may be a
133 /// pointer to a structure.
134 llvm::PointerType *IdTy;
135 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
136 /// message lookup function and some GC-related functions.
137 llvm::PointerType *PtrToIdTy;
138 /// The clang type of id. Used when using the clang CGCall infrastructure to
139 /// call Objective-C methods.
140 CanQualType ASTIdTy;
141 /// LLVM type for C int type.
142 llvm::IntegerType *IntTy;
143 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
144 /// used in the code to document the difference between i8* meaning a pointer
145 /// to a C string and i8* meaning a pointer to some opaque type.
146 llvm::PointerType *PtrTy;
147 /// LLVM type for C long type. The runtime uses this in a lot of places where
148 /// it should be using intptr_t, but we can't fix this without breaking
149 /// compatibility with GCC...
150 llvm::IntegerType *LongTy;
151 /// LLVM type for C size_t. Used in various runtime data structures.
152 llvm::IntegerType *SizeTy;
153 /// LLVM type for C intptr_t.
154 llvm::IntegerType *IntPtrTy;
155 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
156 llvm::IntegerType *PtrDiffTy;
157 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
158 /// variables.
159 llvm::PointerType *PtrToIntTy;
160 /// LLVM type for Objective-C BOOL type.
161 llvm::Type *BoolTy;
162 /// 32-bit integer type, to save us needing to look it up every time it's used.
163 llvm::IntegerType *Int32Ty;
164 /// 64-bit integer type, to save us needing to look it up every time it's used.
165 llvm::IntegerType *Int64Ty;
166 /// Metadata kind used to tie method lookups to message sends. The GNUstep
167 /// runtime provides some LLVM passes that can use this to do things like
168 /// automatic IMP caching and speculative inlining.
169 unsigned msgSendMDKind;
170 /// Helper function that generates a constant string and returns a pointer to
171 /// the start of the string. The result of this function can be used anywhere
172 /// where the C code specifies const char*.
MakeConstantString(const std::string & Str,const std::string & Name="")173 llvm::Constant *MakeConstantString(const std::string &Str,
174 const std::string &Name="") {
175 llvm::Constant *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
176 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
177 }
178 /// Emits a linkonce_odr string, whose name is the prefix followed by the
179 /// string value. This allows the linker to combine the strings between
180 /// different modules. Used for EH typeinfo names, selector strings, and a
181 /// few other things.
ExportUniqueString(const std::string & Str,const std::string prefix)182 llvm::Constant *ExportUniqueString(const std::string &Str,
183 const std::string prefix) {
184 std::string name = prefix + Str;
185 llvm::Constant *ConstStr = TheModule.getGlobalVariable(name);
186 if (!ConstStr) {
187 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
188 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
189 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
190 }
191 return llvm::ConstantExpr::getGetElementPtr(ConstStr, Zeros);
192 }
193 /// Generates a global structure, initialized by the elements in the vector.
194 /// The element types must match the types of the structure elements in the
195 /// first argument.
MakeGlobal(llvm::StructType * Ty,llvm::ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)196 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
197 llvm::ArrayRef<llvm::Constant*> V,
198 StringRef Name="",
199 llvm::GlobalValue::LinkageTypes linkage
200 =llvm::GlobalValue::InternalLinkage) {
201 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
202 return new llvm::GlobalVariable(TheModule, Ty, false,
203 linkage, C, Name);
204 }
205 /// Generates a global array. The vector must contain the same number of
206 /// elements that the array type declares, of the type specified as the array
207 /// element type.
MakeGlobal(llvm::ArrayType * Ty,llvm::ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)208 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
209 llvm::ArrayRef<llvm::Constant*> V,
210 StringRef Name="",
211 llvm::GlobalValue::LinkageTypes linkage
212 =llvm::GlobalValue::InternalLinkage) {
213 llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
214 return new llvm::GlobalVariable(TheModule, Ty, false,
215 linkage, C, Name);
216 }
217 /// Generates a global array, inferring the array type from the specified
218 /// element type and the size of the initialiser.
MakeGlobalArray(llvm::Type * Ty,llvm::ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)219 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
220 llvm::ArrayRef<llvm::Constant*> V,
221 StringRef Name="",
222 llvm::GlobalValue::LinkageTypes linkage
223 =llvm::GlobalValue::InternalLinkage) {
224 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
225 return MakeGlobal(ArrayTy, V, Name, linkage);
226 }
227 /// Ensures that the value has the required type, by inserting a bitcast if
228 /// required. This function lets us avoid inserting bitcasts that are
229 /// redundant.
EnforceType(CGBuilderTy B,llvm::Value * V,llvm::Type * Ty)230 llvm::Value* EnforceType(CGBuilderTy B, llvm::Value *V, llvm::Type *Ty){
231 if (V->getType() == Ty) return V;
232 return B.CreateBitCast(V, Ty);
233 }
234 // Some zeros used for GEPs in lots of places.
235 llvm::Constant *Zeros[2];
236 /// Null pointer value. Mainly used as a terminator in various arrays.
237 llvm::Constant *NULLPtr;
238 /// LLVM context.
239 llvm::LLVMContext &VMContext;
240 private:
241 /// Placeholder for the class. Lots of things refer to the class before we've
242 /// actually emitted it. We use this alias as a placeholder, and then replace
243 /// it with a pointer to the class structure before finally emitting the
244 /// module.
245 llvm::GlobalAlias *ClassPtrAlias;
246 /// Placeholder for the metaclass. Lots of things refer to the class before
247 /// we've / actually emitted it. We use this alias as a placeholder, and then
248 /// replace / it with a pointer to the metaclass structure before finally
249 /// emitting the / module.
250 llvm::GlobalAlias *MetaClassPtrAlias;
251 /// All of the classes that have been generated for this compilation units.
252 std::vector<llvm::Constant*> Classes;
253 /// All of the categories that have been generated for this compilation units.
254 std::vector<llvm::Constant*> Categories;
255 /// All of the Objective-C constant strings that have been generated for this
256 /// compilation units.
257 std::vector<llvm::Constant*> ConstantStrings;
258 /// Map from string values to Objective-C constant strings in the output.
259 /// Used to prevent emitting Objective-C strings more than once. This should
260 /// not be required at all - CodeGenModule should manage this list.
261 llvm::StringMap<llvm::Constant*> ObjCStrings;
262 /// All of the protocols that have been declared.
263 llvm::StringMap<llvm::Constant*> ExistingProtocols;
264 /// For each variant of a selector, we store the type encoding and a
265 /// placeholder value. For an untyped selector, the type will be the empty
266 /// string. Selector references are all done via the module's selector table,
267 /// so we create an alias as a placeholder and then replace it with the real
268 /// value later.
269 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
270 /// Type of the selector map. This is roughly equivalent to the structure
271 /// used in the GNUstep runtime, which maintains a list of all of the valid
272 /// types for a selector in a table.
273 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
274 SelectorMap;
275 /// A map from selectors to selector types. This allows us to emit all
276 /// selectors of the same name and type together.
277 SelectorMap SelectorTable;
278
279 /// Selectors related to memory management. When compiling in GC mode, we
280 /// omit these.
281 Selector RetainSel, ReleaseSel, AutoreleaseSel;
282 /// Runtime functions used for memory management in GC mode. Note that clang
283 /// supports code generation for calling these functions, but neither GNU
284 /// runtime actually supports this API properly yet.
285 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
286 WeakAssignFn, GlobalAssignFn;
287
288 typedef std::pair<std::string, std::string> ClassAliasPair;
289 /// All classes that have aliases set for them.
290 std::vector<ClassAliasPair> ClassAliases;
291
292 protected:
293 /// Function used for throwing Objective-C exceptions.
294 LazyRuntimeFunction ExceptionThrowFn;
295 /// Function used for rethrowing exceptions, used at the end of @finally or
296 /// @synchronize blocks.
297 LazyRuntimeFunction ExceptionReThrowFn;
298 /// Function called when entering a catch function. This is required for
299 /// differentiating Objective-C exceptions and foreign exceptions.
300 LazyRuntimeFunction EnterCatchFn;
301 /// Function called when exiting from a catch block. Used to do exception
302 /// cleanup.
303 LazyRuntimeFunction ExitCatchFn;
304 /// Function called when entering an @synchronize block. Acquires the lock.
305 LazyRuntimeFunction SyncEnterFn;
306 /// Function called when exiting an @synchronize block. Releases the lock.
307 LazyRuntimeFunction SyncExitFn;
308
309 private:
310
311 /// Function called if fast enumeration detects that the collection is
312 /// modified during the update.
313 LazyRuntimeFunction EnumerationMutationFn;
314 /// Function for implementing synthesized property getters that return an
315 /// object.
316 LazyRuntimeFunction GetPropertyFn;
317 /// Function for implementing synthesized property setters that return an
318 /// object.
319 LazyRuntimeFunction SetPropertyFn;
320 /// Function used for non-object declared property getters.
321 LazyRuntimeFunction GetStructPropertyFn;
322 /// Function used for non-object declared property setters.
323 LazyRuntimeFunction SetStructPropertyFn;
324
325 /// The version of the runtime that this class targets. Must match the
326 /// version in the runtime.
327 int RuntimeVersion;
328 /// The version of the protocol class. Used to differentiate between ObjC1
329 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
330 /// components and can not contain declared properties. We always emit
331 /// Objective-C 2 property structures, but we have to pretend that they're
332 /// Objective-C 1 property structures when targeting the GCC runtime or it
333 /// will abort.
334 const int ProtocolVersion;
335 private:
336 /// Generates an instance variable list structure. This is a structure
337 /// containing a size and an array of structures containing instance variable
338 /// metadata. This is used purely for introspection in the fragile ABI. In
339 /// the non-fragile ABI, it's used for instance variable fixup.
340 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
341 ArrayRef<llvm::Constant *> IvarTypes,
342 ArrayRef<llvm::Constant *> IvarOffsets);
343 /// Generates a method list structure. This is a structure containing a size
344 /// and an array of structures containing method metadata.
345 ///
346 /// This structure is used by both classes and categories, and contains a next
347 /// pointer allowing them to be chained together in a linked list.
348 llvm::Constant *GenerateMethodList(const StringRef &ClassName,
349 const StringRef &CategoryName,
350 ArrayRef<Selector> MethodSels,
351 ArrayRef<llvm::Constant *> MethodTypes,
352 bool isClassMethodList);
353 /// Emits an empty protocol. This is used for @protocol() where no protocol
354 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
355 /// real protocol.
356 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
357 /// Generates a list of property metadata structures. This follows the same
358 /// pattern as method and instance variable metadata lists.
359 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
360 SmallVectorImpl<Selector> &InstanceMethodSels,
361 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
362 /// Generates a list of referenced protocols. Classes, categories, and
363 /// protocols all use this structure.
364 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
365 /// To ensure that all protocols are seen by the runtime, we add a category on
366 /// a class defined in the runtime, declaring no methods, but adopting the
367 /// protocols. This is a horribly ugly hack, but it allows us to collect all
368 /// of the protocols without changing the ABI.
369 void GenerateProtocolHolderCategory(void);
370 /// Generates a class structure.
371 llvm::Constant *GenerateClassStructure(
372 llvm::Constant *MetaClass,
373 llvm::Constant *SuperClass,
374 unsigned info,
375 const char *Name,
376 llvm::Constant *Version,
377 llvm::Constant *InstanceSize,
378 llvm::Constant *IVars,
379 llvm::Constant *Methods,
380 llvm::Constant *Protocols,
381 llvm::Constant *IvarOffsets,
382 llvm::Constant *Properties,
383 llvm::Constant *StrongIvarBitmap,
384 llvm::Constant *WeakIvarBitmap,
385 bool isMeta=false);
386 /// Generates a method list. This is used by protocols to define the required
387 /// and optional methods.
388 llvm::Constant *GenerateProtocolMethodList(
389 ArrayRef<llvm::Constant *> MethodNames,
390 ArrayRef<llvm::Constant *> MethodTypes);
391 /// Returns a selector with the specified type encoding. An empty string is
392 /// used to return an untyped selector (with the types field set to NULL).
393 llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel,
394 const std::string &TypeEncoding, bool lval);
395 /// Returns the variable used to store the offset of an instance variable.
396 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
397 const ObjCIvarDecl *Ivar);
398 /// Emits a reference to a class. This allows the linker to object if there
399 /// is no class of the matching name.
400 void EmitClassRef(const std::string &className);
401 /// Emits a pointer to the named class
402 llvm::Value *GetClassNamed(CGBuilderTy &Builder, const std::string &Name,
403 bool isWeak);
404 protected:
405 /// Looks up the method for sending a message to the specified object. This
406 /// mechanism differs between the GCC and GNU runtimes, so this method must be
407 /// overridden in subclasses.
408 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
409 llvm::Value *&Receiver,
410 llvm::Value *cmd,
411 llvm::MDNode *node) = 0;
412 /// Looks up the method for sending a message to a superclass. This
413 /// mechanism differs between the GCC and GNU runtimes, so this method must
414 /// be overridden in subclasses.
415 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
416 llvm::Value *ObjCSuper,
417 llvm::Value *cmd) = 0;
418 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
419 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
420 /// bits set to their values, LSB first, while larger ones are stored in a
421 /// structure of this / form:
422 ///
423 /// struct { int32_t length; int32_t values[length]; };
424 ///
425 /// The values in the array are stored in host-endian format, with the least
426 /// significant bit being assumed to come first in the bitfield. Therefore,
427 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
428 /// while a bitfield / with the 63rd bit set will be 1<<64.
429 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
430 public:
431 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
432 unsigned protocolClassVersion);
433
434 virtual llvm::Constant *GenerateConstantString(const StringLiteral *);
435
436 virtual RValue
437 GenerateMessageSend(CodeGenFunction &CGF,
438 ReturnValueSlot Return,
439 QualType ResultType,
440 Selector Sel,
441 llvm::Value *Receiver,
442 const CallArgList &CallArgs,
443 const ObjCInterfaceDecl *Class,
444 const ObjCMethodDecl *Method);
445 virtual RValue
446 GenerateMessageSendSuper(CodeGenFunction &CGF,
447 ReturnValueSlot Return,
448 QualType ResultType,
449 Selector Sel,
450 const ObjCInterfaceDecl *Class,
451 bool isCategoryImpl,
452 llvm::Value *Receiver,
453 bool IsClassMessage,
454 const CallArgList &CallArgs,
455 const ObjCMethodDecl *Method);
456 virtual llvm::Value *GetClass(CGBuilderTy &Builder,
457 const ObjCInterfaceDecl *OID);
458 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel,
459 bool lval = false);
460 virtual llvm::Value *GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl
461 *Method);
462 virtual llvm::Constant *GetEHType(QualType T);
463
464 virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
465 const ObjCContainerDecl *CD);
466 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD);
467 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl);
468 virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD);
469 virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder,
470 const ObjCProtocolDecl *PD);
471 virtual void GenerateProtocol(const ObjCProtocolDecl *PD);
472 virtual llvm::Function *ModuleInitFunction();
473 virtual llvm::Constant *GetPropertyGetFunction();
474 virtual llvm::Constant *GetPropertySetFunction();
475 virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
476 bool copy);
477 virtual llvm::Constant *GetSetStructFunction();
478 virtual llvm::Constant *GetCppAtomicObjectFunction();
479 virtual llvm::Constant *GetGetStructFunction();
480 virtual llvm::Constant *EnumerationMutationFunction();
481
482 virtual void EmitTryStmt(CodeGenFunction &CGF,
483 const ObjCAtTryStmt &S);
484 virtual void EmitSynchronizedStmt(CodeGenFunction &CGF,
485 const ObjCAtSynchronizedStmt &S);
486 virtual void EmitThrowStmt(CodeGenFunction &CGF,
487 const ObjCAtThrowStmt &S);
488 virtual llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
489 llvm::Value *AddrWeakObj);
490 virtual void EmitObjCWeakAssign(CodeGenFunction &CGF,
491 llvm::Value *src, llvm::Value *dst);
492 virtual void EmitObjCGlobalAssign(CodeGenFunction &CGF,
493 llvm::Value *src, llvm::Value *dest,
494 bool threadlocal=false);
495 virtual void EmitObjCIvarAssign(CodeGenFunction &CGF,
496 llvm::Value *src, llvm::Value *dest,
497 llvm::Value *ivarOffset);
498 virtual void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
499 llvm::Value *src, llvm::Value *dest);
500 virtual void EmitGCMemmoveCollectable(CodeGenFunction &CGF,
501 llvm::Value *DestPtr,
502 llvm::Value *SrcPtr,
503 llvm::Value *Size);
504 virtual LValue EmitObjCValueForIvar(CodeGenFunction &CGF,
505 QualType ObjectTy,
506 llvm::Value *BaseValue,
507 const ObjCIvarDecl *Ivar,
508 unsigned CVRQualifiers);
509 virtual llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
510 const ObjCInterfaceDecl *Interface,
511 const ObjCIvarDecl *Ivar);
512 virtual llvm::Value *EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder);
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)513 virtual llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
514 const CGBlockInfo &blockInfo) {
515 return NULLPtr;
516 }
517
GetClassGlobal(const std::string & Name)518 virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) {
519 return 0;
520 }
521 };
522 /// Class representing the legacy GCC Objective-C ABI. This is the default when
523 /// -fobjc-nonfragile-abi is not specified.
524 ///
525 /// The GCC ABI target actually generates code that is approximately compatible
526 /// with the new GNUstep runtime ABI, but refrains from using any features that
527 /// would not work with the GCC runtime. For example, clang always generates
528 /// the extended form of the class structure, and the extra fields are simply
529 /// ignored by GCC libobjc.
530 class CGObjCGCC : public CGObjCGNU {
531 /// The GCC ABI message lookup function. Returns an IMP pointing to the
532 /// method implementation for this message.
533 LazyRuntimeFunction MsgLookupFn;
534 /// The GCC ABI superclass message lookup function. Takes a pointer to a
535 /// structure describing the receiver and the class, and a selector as
536 /// arguments. Returns the IMP for the corresponding method.
537 LazyRuntimeFunction MsgLookupSuperFn;
538 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node)539 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
540 llvm::Value *&Receiver,
541 llvm::Value *cmd,
542 llvm::MDNode *node) {
543 CGBuilderTy &Builder = CGF.Builder;
544 llvm::Value *args[] = {
545 EnforceType(Builder, Receiver, IdTy),
546 EnforceType(Builder, cmd, SelectorTy) };
547 llvm::CallSite imp = CGF.EmitCallOrInvoke(MsgLookupFn, args);
548 imp->setMetadata(msgSendMDKind, node);
549 return imp.getInstruction();
550 }
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd)551 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
552 llvm::Value *ObjCSuper,
553 llvm::Value *cmd) {
554 CGBuilderTy &Builder = CGF.Builder;
555 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
556 PtrToObjCSuperTy), cmd};
557 return Builder.CreateCall(MsgLookupSuperFn, lookupArgs);
558 }
559 public:
CGObjCGCC(CodeGenModule & Mod)560 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
561 // IMP objc_msg_lookup(id, SEL);
562 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, NULL);
563 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
564 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
565 PtrToObjCSuperTy, SelectorTy, NULL);
566 }
567 };
568 /// Class used when targeting the new GNUstep runtime ABI.
569 class CGObjCGNUstep : public CGObjCGNU {
570 /// The slot lookup function. Returns a pointer to a cacheable structure
571 /// that contains (among other things) the IMP.
572 LazyRuntimeFunction SlotLookupFn;
573 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
574 /// a structure describing the receiver and the class, and a selector as
575 /// arguments. Returns the slot for the corresponding method. Superclass
576 /// message lookup rarely changes, so this is a good caching opportunity.
577 LazyRuntimeFunction SlotLookupSuperFn;
578 /// Type of an slot structure pointer. This is returned by the various
579 /// lookup functions.
580 llvm::Type *SlotTy;
581 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node)582 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
583 llvm::Value *&Receiver,
584 llvm::Value *cmd,
585 llvm::MDNode *node) {
586 CGBuilderTy &Builder = CGF.Builder;
587 llvm::Function *LookupFn = SlotLookupFn;
588
589 // Store the receiver on the stack so that we can reload it later
590 llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
591 Builder.CreateStore(Receiver, ReceiverPtr);
592
593 llvm::Value *self;
594
595 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
596 self = CGF.LoadObjCSelf();
597 } else {
598 self = llvm::ConstantPointerNull::get(IdTy);
599 }
600
601 // The lookup function is guaranteed not to capture the receiver pointer.
602 LookupFn->setDoesNotCapture(1);
603
604 llvm::Value *args[] = {
605 EnforceType(Builder, ReceiverPtr, PtrToIdTy),
606 EnforceType(Builder, cmd, SelectorTy),
607 EnforceType(Builder, self, IdTy) };
608 llvm::CallSite slot = CGF.EmitCallOrInvoke(LookupFn, args);
609 slot.setOnlyReadsMemory();
610 slot->setMetadata(msgSendMDKind, node);
611
612 // Load the imp from the slot
613 llvm::Value *imp =
614 Builder.CreateLoad(Builder.CreateStructGEP(slot.getInstruction(), 4));
615
616 // The lookup function may have changed the receiver, so make sure we use
617 // the new one.
618 Receiver = Builder.CreateLoad(ReceiverPtr, true);
619 return imp;
620 }
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd)621 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
622 llvm::Value *ObjCSuper,
623 llvm::Value *cmd) {
624 CGBuilderTy &Builder = CGF.Builder;
625 llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
626
627 llvm::CallInst *slot = Builder.CreateCall(SlotLookupSuperFn, lookupArgs);
628 slot->setOnlyReadsMemory();
629
630 return Builder.CreateLoad(Builder.CreateStructGEP(slot, 4));
631 }
632 public:
CGObjCGNUstep(CodeGenModule & Mod)633 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
634 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
635 PtrTy, PtrTy, IntTy, IMPTy, NULL);
636 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
637 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
638 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
639 SelectorTy, IdTy, NULL);
640 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
641 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
642 PtrToObjCSuperTy, SelectorTy, NULL);
643 // If we're in ObjC++ mode, then we want to make
644 if (CGM.getLangOpts().CPlusPlus) {
645 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
646 // void *__cxa_begin_catch(void *e)
647 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, NULL);
648 // void __cxa_end_catch(void)
649 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, NULL);
650 // void _Unwind_Resume_or_Rethrow(void*)
651 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy, PtrTy, NULL);
652 }
653 }
654 };
655
656 } // end anonymous namespace
657
658
659 /// Emits a reference to a dummy variable which is emitted with each class.
660 /// This ensures that a linker error will be generated when trying to link
661 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)662 void CGObjCGNU::EmitClassRef(const std::string &className) {
663 std::string symbolRef = "__objc_class_ref_" + className;
664 // Don't emit two copies of the same symbol
665 if (TheModule.getGlobalVariable(symbolRef))
666 return;
667 std::string symbolName = "__objc_class_name_" + className;
668 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
669 if (!ClassSymbol) {
670 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
671 llvm::GlobalValue::ExternalLinkage, 0, symbolName);
672 }
673 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
674 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
675 }
676
SymbolNameForMethod(const StringRef & ClassName,const StringRef & CategoryName,const Selector MethodName,bool isClassMethod)677 static std::string SymbolNameForMethod(const StringRef &ClassName,
678 const StringRef &CategoryName, const Selector MethodName,
679 bool isClassMethod) {
680 std::string MethodNameColonStripped = MethodName.getAsString();
681 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
682 ':', '_');
683 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
684 CategoryName + "_" + MethodNameColonStripped).str();
685 }
686
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion)687 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
688 unsigned protocolClassVersion)
689 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
690 VMContext(cgm.getLLVMContext()), ClassPtrAlias(0), MetaClassPtrAlias(0),
691 RuntimeVersion(runtimeABIVersion), ProtocolVersion(protocolClassVersion) {
692
693 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
694
695 CodeGenTypes &Types = CGM.getTypes();
696 IntTy = cast<llvm::IntegerType>(
697 Types.ConvertType(CGM.getContext().IntTy));
698 LongTy = cast<llvm::IntegerType>(
699 Types.ConvertType(CGM.getContext().LongTy));
700 SizeTy = cast<llvm::IntegerType>(
701 Types.ConvertType(CGM.getContext().getSizeType()));
702 PtrDiffTy = cast<llvm::IntegerType>(
703 Types.ConvertType(CGM.getContext().getPointerDiffType()));
704 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
705
706 Int8Ty = llvm::Type::getInt8Ty(VMContext);
707 // C string type. Used in lots of places.
708 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
709
710 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
711 Zeros[1] = Zeros[0];
712 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
713 // Get the selector Type.
714 QualType selTy = CGM.getContext().getObjCSelType();
715 if (QualType() == selTy) {
716 SelectorTy = PtrToInt8Ty;
717 } else {
718 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
719 }
720
721 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
722 PtrTy = PtrToInt8Ty;
723
724 Int32Ty = llvm::Type::getInt32Ty(VMContext);
725 Int64Ty = llvm::Type::getInt64Ty(VMContext);
726
727 IntPtrTy =
728 TheModule.getPointerSize() == llvm::Module::Pointer32 ? Int32Ty : Int64Ty;
729
730 // Object type
731 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
732 ASTIdTy = CanQualType();
733 if (UnqualIdTy != QualType()) {
734 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
735 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
736 } else {
737 IdTy = PtrToInt8Ty;
738 }
739 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
740
741 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, NULL);
742 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
743
744 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
745
746 // void objc_exception_throw(id);
747 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL);
748 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, NULL);
749 // int objc_sync_enter(id);
750 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, NULL);
751 // int objc_sync_exit(id);
752 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, NULL);
753
754 // void objc_enumerationMutation (id)
755 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
756 IdTy, NULL);
757
758 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
759 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
760 PtrDiffTy, BoolTy, NULL);
761 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
762 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
763 PtrDiffTy, IdTy, BoolTy, BoolTy, NULL);
764 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
765 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
766 PtrDiffTy, BoolTy, BoolTy, NULL);
767 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
768 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
769 PtrDiffTy, BoolTy, BoolTy, NULL);
770
771 // IMP type
772 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
773 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
774 true));
775
776 const LangOptions &Opts = CGM.getLangOpts();
777 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
778 RuntimeVersion = 10;
779
780 // Don't bother initialising the GC stuff unless we're compiling in GC mode
781 if (Opts.getGC() != LangOptions::NonGC) {
782 // This is a bit of an hack. We should sort this out by having a proper
783 // CGObjCGNUstep subclass for GC, but we may want to really support the old
784 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
785 // Get selectors needed in GC mode
786 RetainSel = GetNullarySelector("retain", CGM.getContext());
787 ReleaseSel = GetNullarySelector("release", CGM.getContext());
788 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
789
790 // Get functions needed in GC mode
791
792 // id objc_assign_ivar(id, id, ptrdiff_t);
793 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
794 NULL);
795 // id objc_assign_strongCast (id, id*)
796 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
797 PtrToIdTy, NULL);
798 // id objc_assign_global(id, id*);
799 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
800 NULL);
801 // id objc_assign_weak(id, id*);
802 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, NULL);
803 // id objc_read_weak(id*);
804 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, NULL);
805 // void *objc_memmove_collectable(void*, void *, size_t);
806 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
807 SizeTy, NULL);
808 }
809 }
810
GetClassNamed(CGBuilderTy & Builder,const std::string & Name,bool isWeak)811 llvm::Value *CGObjCGNU::GetClassNamed(CGBuilderTy &Builder,
812 const std::string &Name,
813 bool isWeak) {
814 llvm::Value *ClassName = CGM.GetAddrOfConstantCString(Name);
815 // With the incompatible ABI, this will need to be replaced with a direct
816 // reference to the class symbol. For the compatible nonfragile ABI we are
817 // still performing this lookup at run time but emitting the symbol for the
818 // class externally so that we can make the switch later.
819 //
820 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
821 // with memoized versions or with static references if it's safe to do so.
822 if (!isWeak)
823 EmitClassRef(Name);
824 ClassName = Builder.CreateStructGEP(ClassName, 0);
825
826 llvm::Constant *ClassLookupFn =
827 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
828 "objc_lookup_class");
829 return Builder.CreateCall(ClassLookupFn, ClassName);
830 }
831
832 // This has to perform the lookup every time, since posing and related
833 // techniques can modify the name -> class mapping.
GetClass(CGBuilderTy & Builder,const ObjCInterfaceDecl * OID)834 llvm::Value *CGObjCGNU::GetClass(CGBuilderTy &Builder,
835 const ObjCInterfaceDecl *OID) {
836 return GetClassNamed(Builder, OID->getNameAsString(), OID->isWeakImported());
837 }
EmitNSAutoreleasePoolClassRef(CGBuilderTy & Builder)838 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CGBuilderTy &Builder) {
839 return GetClassNamed(Builder, "NSAutoreleasePool", false);
840 }
841
GetSelector(CGBuilderTy & Builder,Selector Sel,const std::string & TypeEncoding,bool lval)842 llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, Selector Sel,
843 const std::string &TypeEncoding, bool lval) {
844
845 SmallVector<TypedSelector, 2> &Types = SelectorTable[Sel];
846 llvm::GlobalAlias *SelValue = 0;
847
848
849 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
850 e = Types.end() ; i!=e ; i++) {
851 if (i->first == TypeEncoding) {
852 SelValue = i->second;
853 break;
854 }
855 }
856 if (0 == SelValue) {
857 SelValue = new llvm::GlobalAlias(SelectorTy,
858 llvm::GlobalValue::PrivateLinkage,
859 ".objc_selector_"+Sel.getAsString(), NULL,
860 &TheModule);
861 Types.push_back(TypedSelector(TypeEncoding, SelValue));
862 }
863
864 if (lval) {
865 llvm::Value *tmp = Builder.CreateAlloca(SelValue->getType());
866 Builder.CreateStore(SelValue, tmp);
867 return tmp;
868 }
869 return SelValue;
870 }
871
GetSelector(CGBuilderTy & Builder,Selector Sel,bool lval)872 llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, Selector Sel,
873 bool lval) {
874 return GetSelector(Builder, Sel, std::string(), lval);
875 }
876
GetSelector(CGBuilderTy & Builder,const ObjCMethodDecl * Method)877 llvm::Value *CGObjCGNU::GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl
878 *Method) {
879 std::string SelTypes;
880 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
881 return GetSelector(Builder, Method->getSelector(), SelTypes, false);
882 }
883
GetEHType(QualType T)884 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
885 if (!CGM.getLangOpts().CPlusPlus) {
886 if (T->isObjCIdType()
887 || T->isObjCQualifiedIdType()) {
888 // With the old ABI, there was only one kind of catchall, which broke
889 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
890 // a pointer indicating object catchalls, and NULL to indicate real
891 // catchalls
892 if (CGM.getLangOpts().ObjCNonFragileABI) {
893 return MakeConstantString("@id");
894 } else {
895 return 0;
896 }
897 }
898
899 // All other types should be Objective-C interface pointer types.
900 const ObjCObjectPointerType *OPT =
901 T->getAs<ObjCObjectPointerType>();
902 assert(OPT && "Invalid @catch type.");
903 const ObjCInterfaceDecl *IDecl =
904 OPT->getObjectType()->getInterface();
905 assert(IDecl && "Invalid @catch type.");
906 return MakeConstantString(IDecl->getIdentifier()->getName());
907 }
908 // For Objective-C++, we want to provide the ability to catch both C++ and
909 // Objective-C objects in the same function.
910
911 // There's a particular fixed type info for 'id'.
912 if (T->isObjCIdType() ||
913 T->isObjCQualifiedIdType()) {
914 llvm::Constant *IDEHType =
915 CGM.getModule().getGlobalVariable("__objc_id_type_info");
916 if (!IDEHType)
917 IDEHType =
918 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
919 false,
920 llvm::GlobalValue::ExternalLinkage,
921 0, "__objc_id_type_info");
922 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
923 }
924
925 const ObjCObjectPointerType *PT =
926 T->getAs<ObjCObjectPointerType>();
927 assert(PT && "Invalid @catch type.");
928 const ObjCInterfaceType *IT = PT->getInterfaceType();
929 assert(IT && "Invalid @catch type.");
930 std::string className = IT->getDecl()->getIdentifier()->getName();
931
932 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
933
934 // Return the existing typeinfo if it exists
935 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
936 if (typeinfo)
937 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
938
939 // Otherwise create it.
940
941 // vtable for gnustep::libobjc::__objc_class_type_info
942 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
943 // platform's name mangling.
944 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
945 llvm::Constant *Vtable = TheModule.getGlobalVariable(vtableName);
946 if (!Vtable) {
947 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
948 llvm::GlobalValue::ExternalLinkage, 0, vtableName);
949 }
950 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
951 Vtable = llvm::ConstantExpr::getGetElementPtr(Vtable, Two);
952 Vtable = llvm::ConstantExpr::getBitCast(Vtable, PtrToInt8Ty);
953
954 llvm::Constant *typeName =
955 ExportUniqueString(className, "__objc_eh_typename_");
956
957 std::vector<llvm::Constant*> fields;
958 fields.push_back(Vtable);
959 fields.push_back(typeName);
960 llvm::Constant *TI =
961 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
962 NULL), fields, "__objc_eh_typeinfo_" + className,
963 llvm::GlobalValue::LinkOnceODRLinkage);
964 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
965 }
966
967 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)968 llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
969
970 std::string Str = SL->getString().str();
971
972 // Look for an existing one
973 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
974 if (old != ObjCStrings.end())
975 return old->getValue();
976
977 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
978
979 if (StringClass.empty()) StringClass = "NXConstantString";
980
981 std::string Sym = "_OBJC_CLASS_";
982 Sym += StringClass;
983
984 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
985
986 if (!isa)
987 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
988 llvm::GlobalValue::ExternalWeakLinkage, 0, Sym);
989 else if (isa->getType() != PtrToIdTy)
990 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
991
992 std::vector<llvm::Constant*> Ivars;
993 Ivars.push_back(isa);
994 Ivars.push_back(MakeConstantString(Str));
995 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
996 llvm::Constant *ObjCStr = MakeGlobal(
997 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, NULL),
998 Ivars, ".objc_str");
999 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1000 ObjCStrings[Str] = ObjCStr;
1001 ConstantStrings.push_back(ObjCStr);
1002 return ObjCStr;
1003 }
1004
1005 ///Generates a message send where the super is the receiver. This is a message
1006 ///send to self with special delivery semantics indicating which class's method
1007 ///should be called.
1008 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)1009 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1010 ReturnValueSlot Return,
1011 QualType ResultType,
1012 Selector Sel,
1013 const ObjCInterfaceDecl *Class,
1014 bool isCategoryImpl,
1015 llvm::Value *Receiver,
1016 bool IsClassMessage,
1017 const CallArgList &CallArgs,
1018 const ObjCMethodDecl *Method) {
1019 CGBuilderTy &Builder = CGF.Builder;
1020 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1021 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1022 return RValue::get(EnforceType(Builder, Receiver,
1023 CGM.getTypes().ConvertType(ResultType)));
1024 }
1025 if (Sel == ReleaseSel) {
1026 return RValue::get(0);
1027 }
1028 }
1029
1030 llvm::Value *cmd = GetSelector(Builder, Sel);
1031
1032
1033 CallArgList ActualArgs;
1034
1035 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1036 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1037 ActualArgs.addFrom(CallArgs);
1038
1039 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1040
1041 llvm::Value *ReceiverClass = 0;
1042 if (isCategoryImpl) {
1043 llvm::Constant *classLookupFunction = 0;
1044 if (IsClassMessage) {
1045 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1046 IdTy, PtrTy, true), "objc_get_meta_class");
1047 } else {
1048 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1049 IdTy, PtrTy, true), "objc_get_class");
1050 }
1051 ReceiverClass = Builder.CreateCall(classLookupFunction,
1052 MakeConstantString(Class->getNameAsString()));
1053 } else {
1054 // Set up global aliases for the metaclass or class pointer if they do not
1055 // already exist. These will are forward-references which will be set to
1056 // pointers to the class and metaclass structure created for the runtime
1057 // load function. To send a message to super, we look up the value of the
1058 // super_class pointer from either the class or metaclass structure.
1059 if (IsClassMessage) {
1060 if (!MetaClassPtrAlias) {
1061 MetaClassPtrAlias = new llvm::GlobalAlias(IdTy,
1062 llvm::GlobalValue::InternalLinkage, ".objc_metaclass_ref" +
1063 Class->getNameAsString(), NULL, &TheModule);
1064 }
1065 ReceiverClass = MetaClassPtrAlias;
1066 } else {
1067 if (!ClassPtrAlias) {
1068 ClassPtrAlias = new llvm::GlobalAlias(IdTy,
1069 llvm::GlobalValue::InternalLinkage, ".objc_class_ref" +
1070 Class->getNameAsString(), NULL, &TheModule);
1071 }
1072 ReceiverClass = ClassPtrAlias;
1073 }
1074 }
1075 // Cast the pointer to a simplified version of the class structure
1076 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1077 llvm::PointerType::getUnqual(
1078 llvm::StructType::get(IdTy, IdTy, NULL)));
1079 // Get the superclass pointer
1080 ReceiverClass = Builder.CreateStructGEP(ReceiverClass, 1);
1081 // Load the superclass pointer
1082 ReceiverClass = Builder.CreateLoad(ReceiverClass);
1083 // Construct the structure used to look up the IMP
1084 llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1085 Receiver->getType(), IdTy, NULL);
1086 llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1087
1088 Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
1089 Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
1090
1091 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1092
1093 // Get the IMP
1094 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd);
1095 imp = EnforceType(Builder, imp, MSI.MessengerType);
1096
1097 llvm::Value *impMD[] = {
1098 llvm::MDString::get(VMContext, Sel.getAsString()),
1099 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1100 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsClassMessage)
1101 };
1102 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1103
1104 llvm::Instruction *call;
1105 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, 0, &call);
1106 call->setMetadata(msgSendMDKind, node);
1107 return msgRet;
1108 }
1109
1110 /// Generate code for a message send expression.
1111 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1112 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1113 ReturnValueSlot Return,
1114 QualType ResultType,
1115 Selector Sel,
1116 llvm::Value *Receiver,
1117 const CallArgList &CallArgs,
1118 const ObjCInterfaceDecl *Class,
1119 const ObjCMethodDecl *Method) {
1120 CGBuilderTy &Builder = CGF.Builder;
1121
1122 // Strip out message sends to retain / release in GC mode
1123 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1124 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1125 return RValue::get(EnforceType(Builder, Receiver,
1126 CGM.getTypes().ConvertType(ResultType)));
1127 }
1128 if (Sel == ReleaseSel) {
1129 return RValue::get(0);
1130 }
1131 }
1132
1133 // If the return type is something that goes in an integer register, the
1134 // runtime will handle 0 returns. For other cases, we fill in the 0 value
1135 // ourselves.
1136 //
1137 // The language spec says the result of this kind of message send is
1138 // undefined, but lots of people seem to have forgotten to read that
1139 // paragraph and insist on sending messages to nil that have structure
1140 // returns. With GCC, this generates a random return value (whatever happens
1141 // to be on the stack / in those registers at the time) on most platforms,
1142 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
1143 // the stack.
1144 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1145 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1146
1147 llvm::BasicBlock *startBB = 0;
1148 llvm::BasicBlock *messageBB = 0;
1149 llvm::BasicBlock *continueBB = 0;
1150
1151 if (!isPointerSizedReturn) {
1152 startBB = Builder.GetInsertBlock();
1153 messageBB = CGF.createBasicBlock("msgSend");
1154 continueBB = CGF.createBasicBlock("continue");
1155
1156 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1157 llvm::Constant::getNullValue(Receiver->getType()));
1158 Builder.CreateCondBr(isNil, continueBB, messageBB);
1159 CGF.EmitBlock(messageBB);
1160 }
1161
1162 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1163 llvm::Value *cmd;
1164 if (Method)
1165 cmd = GetSelector(Builder, Method);
1166 else
1167 cmd = GetSelector(Builder, Sel);
1168 cmd = EnforceType(Builder, cmd, SelectorTy);
1169 Receiver = EnforceType(Builder, Receiver, IdTy);
1170
1171 llvm::Value *impMD[] = {
1172 llvm::MDString::get(VMContext, Sel.getAsString()),
1173 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() :""),
1174 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), Class!=0)
1175 };
1176 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1177
1178 CallArgList ActualArgs;
1179 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1180 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1181 ActualArgs.addFrom(CallArgs);
1182
1183 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1184
1185 // Get the IMP to call
1186 llvm::Value *imp;
1187
1188 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1189 // functions. These are not supported on all platforms (or all runtimes on a
1190 // given platform), so we
1191 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1192 case CodeGenOptions::Legacy:
1193 imp = LookupIMP(CGF, Receiver, cmd, node);
1194 break;
1195 case CodeGenOptions::Mixed:
1196 case CodeGenOptions::NonLegacy:
1197 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1198 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1199 "objc_msgSend_fpret");
1200 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1201 // The actual types here don't matter - we're going to bitcast the
1202 // function anyway
1203 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1204 "objc_msgSend_stret");
1205 } else {
1206 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1207 "objc_msgSend");
1208 }
1209 }
1210
1211 // Reset the receiver in case the lookup modified it
1212 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1213
1214 imp = EnforceType(Builder, imp, MSI.MessengerType);
1215
1216 llvm::Instruction *call;
1217 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1218 0, &call);
1219 call->setMetadata(msgSendMDKind, node);
1220
1221
1222 if (!isPointerSizedReturn) {
1223 messageBB = CGF.Builder.GetInsertBlock();
1224 CGF.Builder.CreateBr(continueBB);
1225 CGF.EmitBlock(continueBB);
1226 if (msgRet.isScalar()) {
1227 llvm::Value *v = msgRet.getScalarVal();
1228 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1229 phi->addIncoming(v, messageBB);
1230 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1231 msgRet = RValue::get(phi);
1232 } else if (msgRet.isAggregate()) {
1233 llvm::Value *v = msgRet.getAggregateAddr();
1234 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1235 llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1236 llvm::AllocaInst *NullVal =
1237 CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1238 CGF.InitTempAlloca(NullVal,
1239 llvm::Constant::getNullValue(RetTy->getElementType()));
1240 phi->addIncoming(v, messageBB);
1241 phi->addIncoming(NullVal, startBB);
1242 msgRet = RValue::getAggregate(phi);
1243 } else /* isComplex() */ {
1244 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1245 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1246 phi->addIncoming(v.first, messageBB);
1247 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1248 startBB);
1249 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1250 phi2->addIncoming(v.second, messageBB);
1251 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1252 startBB);
1253 msgRet = RValue::getComplex(phi, phi2);
1254 }
1255 }
1256 return msgRet;
1257 }
1258
1259 /// Generates a MethodList. Used in construction of a objc_class and
1260 /// objc_category structures.
1261 llvm::Constant *CGObjCGNU::
GenerateMethodList(const StringRef & ClassName,const StringRef & CategoryName,ArrayRef<Selector> MethodSels,ArrayRef<llvm::Constant * > MethodTypes,bool isClassMethodList)1262 GenerateMethodList(const StringRef &ClassName,
1263 const StringRef &CategoryName,
1264 ArrayRef<Selector> MethodSels,
1265 ArrayRef<llvm::Constant *> MethodTypes,
1266 bool isClassMethodList) {
1267 if (MethodSels.empty())
1268 return NULLPtr;
1269 // Get the method structure type.
1270 llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1271 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1272 PtrToInt8Ty, // Method types
1273 IMPTy, //Method pointer
1274 NULL);
1275 std::vector<llvm::Constant*> Methods;
1276 std::vector<llvm::Constant*> Elements;
1277 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1278 Elements.clear();
1279 llvm::Constant *Method =
1280 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1281 MethodSels[i],
1282 isClassMethodList));
1283 assert(Method && "Can't generate metadata for method that doesn't exist");
1284 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1285 Elements.push_back(C);
1286 Elements.push_back(MethodTypes[i]);
1287 Method = llvm::ConstantExpr::getBitCast(Method,
1288 IMPTy);
1289 Elements.push_back(Method);
1290 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1291 }
1292
1293 // Array of method structures
1294 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1295 Methods.size());
1296 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1297 Methods);
1298
1299 // Structure containing list pointer, array and array count
1300 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1301 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1302 ObjCMethodListTy->setBody(
1303 NextPtrTy,
1304 IntTy,
1305 ObjCMethodArrayTy,
1306 NULL);
1307
1308 Methods.clear();
1309 Methods.push_back(llvm::ConstantPointerNull::get(
1310 llvm::PointerType::getUnqual(ObjCMethodListTy)));
1311 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1312 Methods.push_back(MethodArray);
1313
1314 // Create an instance of the structure
1315 return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1316 }
1317
1318 /// Generates an IvarList. Used in construction of a objc_class.
1319 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets)1320 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1321 ArrayRef<llvm::Constant *> IvarTypes,
1322 ArrayRef<llvm::Constant *> IvarOffsets) {
1323 if (IvarNames.size() == 0)
1324 return NULLPtr;
1325 // Get the method structure type.
1326 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1327 PtrToInt8Ty,
1328 PtrToInt8Ty,
1329 IntTy,
1330 NULL);
1331 std::vector<llvm::Constant*> Ivars;
1332 std::vector<llvm::Constant*> Elements;
1333 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1334 Elements.clear();
1335 Elements.push_back(IvarNames[i]);
1336 Elements.push_back(IvarTypes[i]);
1337 Elements.push_back(IvarOffsets[i]);
1338 Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1339 }
1340
1341 // Array of method structures
1342 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1343 IvarNames.size());
1344
1345
1346 Elements.clear();
1347 Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1348 Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1349 // Structure containing array and array count
1350 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1351 ObjCIvarArrayTy,
1352 NULL);
1353
1354 // Create an instance of the structure
1355 return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1356 }
1357
1358 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)1359 llvm::Constant *CGObjCGNU::GenerateClassStructure(
1360 llvm::Constant *MetaClass,
1361 llvm::Constant *SuperClass,
1362 unsigned info,
1363 const char *Name,
1364 llvm::Constant *Version,
1365 llvm::Constant *InstanceSize,
1366 llvm::Constant *IVars,
1367 llvm::Constant *Methods,
1368 llvm::Constant *Protocols,
1369 llvm::Constant *IvarOffsets,
1370 llvm::Constant *Properties,
1371 llvm::Constant *StrongIvarBitmap,
1372 llvm::Constant *WeakIvarBitmap,
1373 bool isMeta) {
1374 // Set up the class structure
1375 // Note: Several of these are char*s when they should be ids. This is
1376 // because the runtime performs this translation on load.
1377 //
1378 // Fields marked New ABI are part of the GNUstep runtime. We emit them
1379 // anyway; the classes will still work with the GNU runtime, they will just
1380 // be ignored.
1381 llvm::StructType *ClassTy = llvm::StructType::get(
1382 PtrToInt8Ty, // isa
1383 PtrToInt8Ty, // super_class
1384 PtrToInt8Ty, // name
1385 LongTy, // version
1386 LongTy, // info
1387 LongTy, // instance_size
1388 IVars->getType(), // ivars
1389 Methods->getType(), // methods
1390 // These are all filled in by the runtime, so we pretend
1391 PtrTy, // dtable
1392 PtrTy, // subclass_list
1393 PtrTy, // sibling_class
1394 PtrTy, // protocols
1395 PtrTy, // gc_object_type
1396 // New ABI:
1397 LongTy, // abi_version
1398 IvarOffsets->getType(), // ivar_offsets
1399 Properties->getType(), // properties
1400 IntPtrTy, // strong_pointers
1401 IntPtrTy, // weak_pointers
1402 NULL);
1403 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1404 // Fill in the structure
1405 std::vector<llvm::Constant*> Elements;
1406 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1407 Elements.push_back(SuperClass);
1408 Elements.push_back(MakeConstantString(Name, ".class_name"));
1409 Elements.push_back(Zero);
1410 Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1411 if (isMeta) {
1412 llvm::TargetData td(&TheModule);
1413 Elements.push_back(
1414 llvm::ConstantInt::get(LongTy,
1415 td.getTypeSizeInBits(ClassTy) /
1416 CGM.getContext().getCharWidth()));
1417 } else
1418 Elements.push_back(InstanceSize);
1419 Elements.push_back(IVars);
1420 Elements.push_back(Methods);
1421 Elements.push_back(NULLPtr);
1422 Elements.push_back(NULLPtr);
1423 Elements.push_back(NULLPtr);
1424 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1425 Elements.push_back(NULLPtr);
1426 Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1427 Elements.push_back(IvarOffsets);
1428 Elements.push_back(Properties);
1429 Elements.push_back(StrongIvarBitmap);
1430 Elements.push_back(WeakIvarBitmap);
1431 // Create an instance of the structure
1432 // This is now an externally visible symbol, so that we can speed up class
1433 // messages in the next ABI. We may already have some weak references to
1434 // this, so check and fix them properly.
1435 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1436 std::string(Name));
1437 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1438 llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1439 llvm::GlobalValue::ExternalLinkage);
1440 if (ClassRef) {
1441 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1442 ClassRef->getType()));
1443 ClassRef->removeFromParent();
1444 Class->setName(ClassSym);
1445 }
1446 return Class;
1447 }
1448
1449 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<llvm::Constant * > MethodNames,ArrayRef<llvm::Constant * > MethodTypes)1450 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1451 ArrayRef<llvm::Constant *> MethodTypes) {
1452 // Get the method structure type.
1453 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1454 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1455 PtrToInt8Ty,
1456 NULL);
1457 std::vector<llvm::Constant*> Methods;
1458 std::vector<llvm::Constant*> Elements;
1459 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1460 Elements.clear();
1461 Elements.push_back(MethodNames[i]);
1462 Elements.push_back(MethodTypes[i]);
1463 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1464 }
1465 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1466 MethodNames.size());
1467 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1468 Methods);
1469 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1470 IntTy, ObjCMethodArrayTy, NULL);
1471 Methods.clear();
1472 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1473 Methods.push_back(Array);
1474 return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1475 }
1476
1477 // Create the protocol list structure used in classes, categories and so on
GenerateProtocolList(ArrayRef<std::string> Protocols)1478 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1479 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1480 Protocols.size());
1481 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1482 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1483 SizeTy,
1484 ProtocolArrayTy,
1485 NULL);
1486 std::vector<llvm::Constant*> Elements;
1487 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1488 iter != endIter ; iter++) {
1489 llvm::Constant *protocol = 0;
1490 llvm::StringMap<llvm::Constant*>::iterator value =
1491 ExistingProtocols.find(*iter);
1492 if (value == ExistingProtocols.end()) {
1493 protocol = GenerateEmptyProtocol(*iter);
1494 } else {
1495 protocol = value->getValue();
1496 }
1497 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1498 PtrToInt8Ty);
1499 Elements.push_back(Ptr);
1500 }
1501 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1502 Elements);
1503 Elements.clear();
1504 Elements.push_back(NULLPtr);
1505 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1506 Elements.push_back(ProtocolArray);
1507 return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1508 }
1509
GenerateProtocolRef(CGBuilderTy & Builder,const ObjCProtocolDecl * PD)1510 llvm::Value *CGObjCGNU::GenerateProtocolRef(CGBuilderTy &Builder,
1511 const ObjCProtocolDecl *PD) {
1512 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1513 llvm::Type *T =
1514 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1515 return Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1516 }
1517
GenerateEmptyProtocol(const std::string & ProtocolName)1518 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1519 const std::string &ProtocolName) {
1520 SmallVector<std::string, 0> EmptyStringVector;
1521 SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1522
1523 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1524 llvm::Constant *MethodList =
1525 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1526 // Protocols are objects containing lists of the methods implemented and
1527 // protocols adopted.
1528 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1529 PtrToInt8Ty,
1530 ProtocolList->getType(),
1531 MethodList->getType(),
1532 MethodList->getType(),
1533 MethodList->getType(),
1534 MethodList->getType(),
1535 NULL);
1536 std::vector<llvm::Constant*> Elements;
1537 // The isa pointer must be set to a magic number so the runtime knows it's
1538 // the correct layout.
1539 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1540 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1541 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1542 Elements.push_back(ProtocolList);
1543 Elements.push_back(MethodList);
1544 Elements.push_back(MethodList);
1545 Elements.push_back(MethodList);
1546 Elements.push_back(MethodList);
1547 return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1548 }
1549
GenerateProtocol(const ObjCProtocolDecl * PD)1550 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1551 ASTContext &Context = CGM.getContext();
1552 std::string ProtocolName = PD->getNameAsString();
1553
1554 // Use the protocol definition, if there is one.
1555 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1556 PD = Def;
1557
1558 SmallVector<std::string, 16> Protocols;
1559 for (ObjCProtocolDecl::protocol_iterator PI = PD->protocol_begin(),
1560 E = PD->protocol_end(); PI != E; ++PI)
1561 Protocols.push_back((*PI)->getNameAsString());
1562 SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1563 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1564 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1565 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1566 for (ObjCProtocolDecl::instmeth_iterator iter = PD->instmeth_begin(),
1567 E = PD->instmeth_end(); iter != E; iter++) {
1568 std::string TypeStr;
1569 Context.getObjCEncodingForMethodDecl(*iter, TypeStr);
1570 if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) {
1571 InstanceMethodNames.push_back(
1572 MakeConstantString((*iter)->getSelector().getAsString()));
1573 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1574 } else {
1575 OptionalInstanceMethodNames.push_back(
1576 MakeConstantString((*iter)->getSelector().getAsString()));
1577 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1578 }
1579 }
1580 // Collect information about class methods:
1581 SmallVector<llvm::Constant*, 16> ClassMethodNames;
1582 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1583 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1584 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1585 for (ObjCProtocolDecl::classmeth_iterator
1586 iter = PD->classmeth_begin(), endIter = PD->classmeth_end();
1587 iter != endIter ; iter++) {
1588 std::string TypeStr;
1589 Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
1590 if ((*iter)->getImplementationControl() == ObjCMethodDecl::Optional) {
1591 ClassMethodNames.push_back(
1592 MakeConstantString((*iter)->getSelector().getAsString()));
1593 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1594 } else {
1595 OptionalClassMethodNames.push_back(
1596 MakeConstantString((*iter)->getSelector().getAsString()));
1597 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1598 }
1599 }
1600
1601 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1602 llvm::Constant *InstanceMethodList =
1603 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1604 llvm::Constant *ClassMethodList =
1605 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1606 llvm::Constant *OptionalInstanceMethodList =
1607 GenerateProtocolMethodList(OptionalInstanceMethodNames,
1608 OptionalInstanceMethodTypes);
1609 llvm::Constant *OptionalClassMethodList =
1610 GenerateProtocolMethodList(OptionalClassMethodNames,
1611 OptionalClassMethodTypes);
1612
1613 // Property metadata: name, attributes, isSynthesized, setter name, setter
1614 // types, getter name, getter types.
1615 // The isSynthesized value is always set to 0 in a protocol. It exists to
1616 // simplify the runtime library by allowing it to use the same data
1617 // structures for protocol metadata everywhere.
1618 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1619 PtrToInt8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty,
1620 PtrToInt8Ty, NULL);
1621 std::vector<llvm::Constant*> Properties;
1622 std::vector<llvm::Constant*> OptionalProperties;
1623
1624 // Add all of the property methods need adding to the method list and to the
1625 // property metadata list.
1626 for (ObjCContainerDecl::prop_iterator
1627 iter = PD->prop_begin(), endIter = PD->prop_end();
1628 iter != endIter ; iter++) {
1629 std::vector<llvm::Constant*> Fields;
1630 ObjCPropertyDecl *property = (*iter);
1631
1632 Fields.push_back(MakeConstantString(property->getNameAsString()));
1633 Fields.push_back(llvm::ConstantInt::get(Int8Ty,
1634 property->getPropertyAttributes()));
1635 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
1636 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1637 std::string TypeStr;
1638 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1639 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1640 InstanceMethodTypes.push_back(TypeEncoding);
1641 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1642 Fields.push_back(TypeEncoding);
1643 } else {
1644 Fields.push_back(NULLPtr);
1645 Fields.push_back(NULLPtr);
1646 }
1647 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1648 std::string TypeStr;
1649 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1650 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1651 InstanceMethodTypes.push_back(TypeEncoding);
1652 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1653 Fields.push_back(TypeEncoding);
1654 } else {
1655 Fields.push_back(NULLPtr);
1656 Fields.push_back(NULLPtr);
1657 }
1658 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1659 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1660 } else {
1661 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1662 }
1663 }
1664 llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1665 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1666 llvm::Constant* PropertyListInitFields[] =
1667 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1668
1669 llvm::Constant *PropertyListInit =
1670 llvm::ConstantStruct::getAnon(PropertyListInitFields);
1671 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1672 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1673 PropertyListInit, ".objc_property_list");
1674
1675 llvm::Constant *OptionalPropertyArray =
1676 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1677 OptionalProperties.size()) , OptionalProperties);
1678 llvm::Constant* OptionalPropertyListInitFields[] = {
1679 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1680 OptionalPropertyArray };
1681
1682 llvm::Constant *OptionalPropertyListInit =
1683 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1684 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1685 OptionalPropertyListInit->getType(), false,
1686 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1687 ".objc_property_list");
1688
1689 // Protocols are objects containing lists of the methods implemented and
1690 // protocols adopted.
1691 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1692 PtrToInt8Ty,
1693 ProtocolList->getType(),
1694 InstanceMethodList->getType(),
1695 ClassMethodList->getType(),
1696 OptionalInstanceMethodList->getType(),
1697 OptionalClassMethodList->getType(),
1698 PropertyList->getType(),
1699 OptionalPropertyList->getType(),
1700 NULL);
1701 std::vector<llvm::Constant*> Elements;
1702 // The isa pointer must be set to a magic number so the runtime knows it's
1703 // the correct layout.
1704 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1705 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1706 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1707 Elements.push_back(ProtocolList);
1708 Elements.push_back(InstanceMethodList);
1709 Elements.push_back(ClassMethodList);
1710 Elements.push_back(OptionalInstanceMethodList);
1711 Elements.push_back(OptionalClassMethodList);
1712 Elements.push_back(PropertyList);
1713 Elements.push_back(OptionalPropertyList);
1714 ExistingProtocols[ProtocolName] =
1715 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1716 ".objc_protocol"), IdTy);
1717 }
GenerateProtocolHolderCategory(void)1718 void CGObjCGNU::GenerateProtocolHolderCategory(void) {
1719 // Collect information about instance methods
1720 SmallVector<Selector, 1> MethodSels;
1721 SmallVector<llvm::Constant*, 1> MethodTypes;
1722
1723 std::vector<llvm::Constant*> Elements;
1724 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1725 const std::string CategoryName = "AnotherHack";
1726 Elements.push_back(MakeConstantString(CategoryName));
1727 Elements.push_back(MakeConstantString(ClassName));
1728 // Instance method list
1729 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1730 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1731 // Class method list
1732 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1733 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1734 // Protocol list
1735 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1736 ExistingProtocols.size());
1737 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1738 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1739 SizeTy,
1740 ProtocolArrayTy,
1741 NULL);
1742 std::vector<llvm::Constant*> ProtocolElements;
1743 for (llvm::StringMapIterator<llvm::Constant*> iter =
1744 ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1745 iter != endIter ; iter++) {
1746 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1747 PtrTy);
1748 ProtocolElements.push_back(Ptr);
1749 }
1750 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1751 ProtocolElements);
1752 ProtocolElements.clear();
1753 ProtocolElements.push_back(NULLPtr);
1754 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1755 ExistingProtocols.size()));
1756 ProtocolElements.push_back(ProtocolArray);
1757 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1758 ProtocolElements, ".objc_protocol_list"), PtrTy));
1759 Categories.push_back(llvm::ConstantExpr::getBitCast(
1760 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1761 PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy));
1762 }
1763
1764 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1765 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1766 /// bits set to their values, LSB first, while larger ones are stored in a
1767 /// structure of this / form:
1768 ///
1769 /// struct { int32_t length; int32_t values[length]; };
1770 ///
1771 /// The values in the array are stored in host-endian format, with the least
1772 /// significant bit being assumed to come first in the bitfield. Therefore, a
1773 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1774 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)1775 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1776 int bitCount = bits.size();
1777 int ptrBits =
1778 (TheModule.getPointerSize() == llvm::Module::Pointer32) ? 32 : 64;
1779 if (bitCount < ptrBits) {
1780 uint64_t val = 1;
1781 for (int i=0 ; i<bitCount ; ++i) {
1782 if (bits[i]) val |= 1ULL<<(i+1);
1783 }
1784 return llvm::ConstantInt::get(IntPtrTy, val);
1785 }
1786 llvm::SmallVector<llvm::Constant*, 8> values;
1787 int v=0;
1788 while (v < bitCount) {
1789 int32_t word = 0;
1790 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
1791 if (bits[v]) word |= 1<<i;
1792 v++;
1793 }
1794 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1795 }
1796 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1797 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1798 llvm::Constant *fields[2] = {
1799 llvm::ConstantInt::get(Int32Ty, values.size()),
1800 array };
1801 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
1802 NULL), fields);
1803 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
1804 return ptr;
1805 }
1806
GenerateCategory(const ObjCCategoryImplDecl * OCD)1807 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
1808 std::string ClassName = OCD->getClassInterface()->getNameAsString();
1809 std::string CategoryName = OCD->getNameAsString();
1810 // Collect information about instance methods
1811 SmallVector<Selector, 16> InstanceMethodSels;
1812 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1813 for (ObjCCategoryImplDecl::instmeth_iterator
1814 iter = OCD->instmeth_begin(), endIter = OCD->instmeth_end();
1815 iter != endIter ; iter++) {
1816 InstanceMethodSels.push_back((*iter)->getSelector());
1817 std::string TypeStr;
1818 CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr);
1819 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1820 }
1821
1822 // Collect information about class methods
1823 SmallVector<Selector, 16> ClassMethodSels;
1824 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1825 for (ObjCCategoryImplDecl::classmeth_iterator
1826 iter = OCD->classmeth_begin(), endIter = OCD->classmeth_end();
1827 iter != endIter ; iter++) {
1828 ClassMethodSels.push_back((*iter)->getSelector());
1829 std::string TypeStr;
1830 CGM.getContext().getObjCEncodingForMethodDecl(*iter,TypeStr);
1831 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1832 }
1833
1834 // Collect the names of referenced protocols
1835 SmallVector<std::string, 16> Protocols;
1836 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
1837 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
1838 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
1839 E = Protos.end(); I != E; ++I)
1840 Protocols.push_back((*I)->getNameAsString());
1841
1842 std::vector<llvm::Constant*> Elements;
1843 Elements.push_back(MakeConstantString(CategoryName));
1844 Elements.push_back(MakeConstantString(ClassName));
1845 // Instance method list
1846 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1847 ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
1848 false), PtrTy));
1849 // Class method list
1850 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1851 ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
1852 PtrTy));
1853 // Protocol list
1854 Elements.push_back(llvm::ConstantExpr::getBitCast(
1855 GenerateProtocolList(Protocols), PtrTy));
1856 Categories.push_back(llvm::ConstantExpr::getBitCast(
1857 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1858 PtrTy, PtrTy, PtrTy, NULL), Elements), PtrTy));
1859 }
1860
GeneratePropertyList(const ObjCImplementationDecl * OID,SmallVectorImpl<Selector> & InstanceMethodSels,SmallVectorImpl<llvm::Constant * > & InstanceMethodTypes)1861 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
1862 SmallVectorImpl<Selector> &InstanceMethodSels,
1863 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
1864 ASTContext &Context = CGM.getContext();
1865 //
1866 // Property metadata: name, attributes, isSynthesized, setter name, setter
1867 // types, getter name, getter types.
1868 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1869 PtrToInt8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty,
1870 PtrToInt8Ty, NULL);
1871 std::vector<llvm::Constant*> Properties;
1872
1873
1874 // Add all of the property methods need adding to the method list and to the
1875 // property metadata list.
1876 for (ObjCImplDecl::propimpl_iterator
1877 iter = OID->propimpl_begin(), endIter = OID->propimpl_end();
1878 iter != endIter ; iter++) {
1879 std::vector<llvm::Constant*> Fields;
1880 ObjCPropertyDecl *property = (*iter)->getPropertyDecl();
1881 ObjCPropertyImplDecl *propertyImpl = *iter;
1882 bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
1883 ObjCPropertyImplDecl::Synthesize);
1884
1885 Fields.push_back(MakeConstantString(property->getNameAsString()));
1886 Fields.push_back(llvm::ConstantInt::get(Int8Ty,
1887 property->getPropertyAttributes()));
1888 Fields.push_back(llvm::ConstantInt::get(Int8Ty, isSynthesized));
1889 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1890 std::string TypeStr;
1891 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1892 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1893 if (isSynthesized) {
1894 InstanceMethodTypes.push_back(TypeEncoding);
1895 InstanceMethodSels.push_back(getter->getSelector());
1896 }
1897 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1898 Fields.push_back(TypeEncoding);
1899 } else {
1900 Fields.push_back(NULLPtr);
1901 Fields.push_back(NULLPtr);
1902 }
1903 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1904 std::string TypeStr;
1905 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1906 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1907 if (isSynthesized) {
1908 InstanceMethodTypes.push_back(TypeEncoding);
1909 InstanceMethodSels.push_back(setter->getSelector());
1910 }
1911 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1912 Fields.push_back(TypeEncoding);
1913 } else {
1914 Fields.push_back(NULLPtr);
1915 Fields.push_back(NULLPtr);
1916 }
1917 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1918 }
1919 llvm::ArrayType *PropertyArrayTy =
1920 llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
1921 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
1922 Properties);
1923 llvm::Constant* PropertyListInitFields[] =
1924 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1925
1926 llvm::Constant *PropertyListInit =
1927 llvm::ConstantStruct::getAnon(PropertyListInitFields);
1928 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
1929 llvm::GlobalValue::InternalLinkage, PropertyListInit,
1930 ".objc_property_list");
1931 }
1932
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)1933 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
1934 // Get the class declaration for which the alias is specified.
1935 ObjCInterfaceDecl *ClassDecl =
1936 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
1937 std::string ClassName = ClassDecl->getNameAsString();
1938 std::string AliasName = OAD->getNameAsString();
1939 ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
1940 }
1941
GenerateClass(const ObjCImplementationDecl * OID)1942 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
1943 ASTContext &Context = CGM.getContext();
1944
1945 // Get the superclass name.
1946 const ObjCInterfaceDecl * SuperClassDecl =
1947 OID->getClassInterface()->getSuperClass();
1948 std::string SuperClassName;
1949 if (SuperClassDecl) {
1950 SuperClassName = SuperClassDecl->getNameAsString();
1951 EmitClassRef(SuperClassName);
1952 }
1953
1954 // Get the class name
1955 ObjCInterfaceDecl *ClassDecl =
1956 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1957 std::string ClassName = ClassDecl->getNameAsString();
1958 // Emit the symbol that is used to generate linker errors if this class is
1959 // referenced in other modules but not declared.
1960 std::string classSymbolName = "__objc_class_name_" + ClassName;
1961 if (llvm::GlobalVariable *symbol =
1962 TheModule.getGlobalVariable(classSymbolName)) {
1963 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
1964 } else {
1965 new llvm::GlobalVariable(TheModule, LongTy, false,
1966 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
1967 classSymbolName);
1968 }
1969
1970 // Get the size of instances.
1971 int instanceSize =
1972 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
1973
1974 // Collect information about instance variables.
1975 SmallVector<llvm::Constant*, 16> IvarNames;
1976 SmallVector<llvm::Constant*, 16> IvarTypes;
1977 SmallVector<llvm::Constant*, 16> IvarOffsets;
1978
1979 std::vector<llvm::Constant*> IvarOffsetValues;
1980 SmallVector<bool, 16> WeakIvars;
1981 SmallVector<bool, 16> StrongIvars;
1982
1983 int superInstanceSize = !SuperClassDecl ? 0 :
1984 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1985 // For non-fragile ivars, set the instance size to 0 - {the size of just this
1986 // class}. The runtime will then set this to the correct value on load.
1987 if (CGM.getContext().getLangOpts().ObjCNonFragileABI) {
1988 instanceSize = 0 - (instanceSize - superInstanceSize);
1989 }
1990
1991 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
1992 IVD = IVD->getNextIvar()) {
1993 // Store the name
1994 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
1995 // Get the type encoding for this ivar
1996 std::string TypeStr;
1997 Context.getObjCEncodingForType(IVD->getType(), TypeStr);
1998 IvarTypes.push_back(MakeConstantString(TypeStr));
1999 // Get the offset
2000 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2001 uint64_t Offset = BaseOffset;
2002 if (CGM.getContext().getLangOpts().ObjCNonFragileABI) {
2003 Offset = BaseOffset - superInstanceSize;
2004 }
2005 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2006 // Create the direct offset value
2007 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2008 IVD->getNameAsString();
2009 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2010 if (OffsetVar) {
2011 OffsetVar->setInitializer(OffsetValue);
2012 // If this is the real definition, change its linkage type so that
2013 // different modules will use this one, rather than their private
2014 // copy.
2015 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2016 } else
2017 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2018 false, llvm::GlobalValue::ExternalLinkage,
2019 OffsetValue,
2020 "__objc_ivar_offset_value_" + ClassName +"." +
2021 IVD->getNameAsString());
2022 IvarOffsets.push_back(OffsetValue);
2023 IvarOffsetValues.push_back(OffsetVar);
2024 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2025 switch (lt) {
2026 case Qualifiers::OCL_Strong:
2027 StrongIvars.push_back(true);
2028 WeakIvars.push_back(false);
2029 break;
2030 case Qualifiers::OCL_Weak:
2031 StrongIvars.push_back(false);
2032 WeakIvars.push_back(true);
2033 break;
2034 default:
2035 StrongIvars.push_back(false);
2036 WeakIvars.push_back(false);
2037 }
2038 }
2039 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2040 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2041 llvm::GlobalVariable *IvarOffsetArray =
2042 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2043
2044
2045 // Collect information about instance methods
2046 SmallVector<Selector, 16> InstanceMethodSels;
2047 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2048 for (ObjCImplementationDecl::instmeth_iterator
2049 iter = OID->instmeth_begin(), endIter = OID->instmeth_end();
2050 iter != endIter ; iter++) {
2051 InstanceMethodSels.push_back((*iter)->getSelector());
2052 std::string TypeStr;
2053 Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
2054 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2055 }
2056
2057 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2058 InstanceMethodTypes);
2059
2060
2061 // Collect information about class methods
2062 SmallVector<Selector, 16> ClassMethodSels;
2063 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2064 for (ObjCImplementationDecl::classmeth_iterator
2065 iter = OID->classmeth_begin(), endIter = OID->classmeth_end();
2066 iter != endIter ; iter++) {
2067 ClassMethodSels.push_back((*iter)->getSelector());
2068 std::string TypeStr;
2069 Context.getObjCEncodingForMethodDecl((*iter),TypeStr);
2070 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2071 }
2072 // Collect the names of referenced protocols
2073 SmallVector<std::string, 16> Protocols;
2074 for (ObjCInterfaceDecl::protocol_iterator
2075 I = ClassDecl->protocol_begin(),
2076 E = ClassDecl->protocol_end(); I != E; ++I)
2077 Protocols.push_back((*I)->getNameAsString());
2078
2079
2080
2081 // Get the superclass pointer.
2082 llvm::Constant *SuperClass;
2083 if (!SuperClassName.empty()) {
2084 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2085 } else {
2086 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2087 }
2088 // Empty vector used to construct empty method lists
2089 SmallVector<llvm::Constant*, 1> empty;
2090 // Generate the method and instance variable lists
2091 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2092 InstanceMethodSels, InstanceMethodTypes, false);
2093 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2094 ClassMethodSels, ClassMethodTypes, true);
2095 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2096 IvarOffsets);
2097 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2098 // we emit a symbol containing the offset for each ivar in the class. This
2099 // allows code compiled for the non-Fragile ABI to inherit from code compiled
2100 // for the legacy ABI, without causing problems. The converse is also
2101 // possible, but causes all ivar accesses to be fragile.
2102
2103 // Offset pointer for getting at the correct field in the ivar list when
2104 // setting up the alias. These are: The base address for the global, the
2105 // ivar array (second field), the ivar in this list (set for each ivar), and
2106 // the offset (third field in ivar structure)
2107 llvm::Type *IndexTy = Int32Ty;
2108 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2109 llvm::ConstantInt::get(IndexTy, 1), 0,
2110 llvm::ConstantInt::get(IndexTy, 2) };
2111
2112 unsigned ivarIndex = 0;
2113 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2114 IVD = IVD->getNextIvar()) {
2115 const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2116 + IVD->getNameAsString();
2117 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2118 // Get the correct ivar field
2119 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2120 IvarList, offsetPointerIndexes);
2121 // Get the existing variable, if one exists.
2122 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2123 if (offset) {
2124 offset->setInitializer(offsetValue);
2125 // If this is the real definition, change its linkage type so that
2126 // different modules will use this one, rather than their private
2127 // copy.
2128 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2129 } else {
2130 // Add a new alias if there isn't one already.
2131 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2132 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2133 (void) offset; // Silence dead store warning.
2134 }
2135 ++ivarIndex;
2136 }
2137 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2138 //Generate metaclass for class methods
2139 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2140 NULLPtr, 0x12L, ClassName.c_str(), 0, Zeros[0], GenerateIvarList(
2141 empty, empty, empty), ClassMethodList, NULLPtr,
2142 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2143
2144 // Generate the class structure
2145 llvm::Constant *ClassStruct =
2146 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2147 ClassName.c_str(), 0,
2148 llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2149 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2150 Properties, StrongIvarBitmap, WeakIvarBitmap);
2151
2152 // Resolve the class aliases, if they exist.
2153 if (ClassPtrAlias) {
2154 ClassPtrAlias->replaceAllUsesWith(
2155 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2156 ClassPtrAlias->eraseFromParent();
2157 ClassPtrAlias = 0;
2158 }
2159 if (MetaClassPtrAlias) {
2160 MetaClassPtrAlias->replaceAllUsesWith(
2161 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2162 MetaClassPtrAlias->eraseFromParent();
2163 MetaClassPtrAlias = 0;
2164 }
2165
2166 // Add class structure to list to be added to the symtab later
2167 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2168 Classes.push_back(ClassStruct);
2169 }
2170
2171
ModuleInitFunction()2172 llvm::Function *CGObjCGNU::ModuleInitFunction() {
2173 // Only emit an ObjC load function if no Objective-C stuff has been called
2174 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2175 ExistingProtocols.empty() && SelectorTable.empty())
2176 return NULL;
2177
2178 // Add all referenced protocols to a category.
2179 GenerateProtocolHolderCategory();
2180
2181 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2182 SelectorTy->getElementType());
2183 llvm::Type *SelStructPtrTy = SelectorTy;
2184 if (SelStructTy == 0) {
2185 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, NULL);
2186 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2187 }
2188
2189 std::vector<llvm::Constant*> Elements;
2190 llvm::Constant *Statics = NULLPtr;
2191 // Generate statics list:
2192 if (ConstantStrings.size()) {
2193 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2194 ConstantStrings.size() + 1);
2195 ConstantStrings.push_back(NULLPtr);
2196
2197 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2198
2199 if (StringClass.empty()) StringClass = "NXConstantString";
2200
2201 Elements.push_back(MakeConstantString(StringClass,
2202 ".objc_static_class_name"));
2203 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2204 ConstantStrings));
2205 llvm::StructType *StaticsListTy =
2206 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, NULL);
2207 llvm::Type *StaticsListPtrTy =
2208 llvm::PointerType::getUnqual(StaticsListTy);
2209 Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2210 llvm::ArrayType *StaticsListArrayTy =
2211 llvm::ArrayType::get(StaticsListPtrTy, 2);
2212 Elements.clear();
2213 Elements.push_back(Statics);
2214 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2215 Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2216 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2217 }
2218 // Array of classes, categories, and constant objects
2219 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2220 Classes.size() + Categories.size() + 2);
2221 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2222 llvm::Type::getInt16Ty(VMContext),
2223 llvm::Type::getInt16Ty(VMContext),
2224 ClassListTy, NULL);
2225
2226 Elements.clear();
2227 // Pointer to an array of selectors used in this module.
2228 std::vector<llvm::Constant*> Selectors;
2229 std::vector<llvm::GlobalAlias*> SelectorAliases;
2230 for (SelectorMap::iterator iter = SelectorTable.begin(),
2231 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2232
2233 std::string SelNameStr = iter->first.getAsString();
2234 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2235
2236 SmallVectorImpl<TypedSelector> &Types = iter->second;
2237 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2238 e = Types.end() ; i!=e ; i++) {
2239
2240 llvm::Constant *SelectorTypeEncoding = NULLPtr;
2241 if (!i->first.empty())
2242 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2243
2244 Elements.push_back(SelName);
2245 Elements.push_back(SelectorTypeEncoding);
2246 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2247 Elements.clear();
2248
2249 // Store the selector alias for later replacement
2250 SelectorAliases.push_back(i->second);
2251 }
2252 }
2253 unsigned SelectorCount = Selectors.size();
2254 // NULL-terminate the selector list. This should not actually be required,
2255 // because the selector list has a length field. Unfortunately, the GCC
2256 // runtime decides to ignore the length field and expects a NULL terminator,
2257 // and GCC cooperates with this by always setting the length to 0.
2258 Elements.push_back(NULLPtr);
2259 Elements.push_back(NULLPtr);
2260 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2261 Elements.clear();
2262
2263 // Number of static selectors
2264 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2265 llvm::Constant *SelectorList = MakeGlobalArray(SelStructTy, Selectors,
2266 ".objc_selector_list");
2267 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2268 SelStructPtrTy));
2269
2270 // Now that all of the static selectors exist, create pointers to them.
2271 for (unsigned int i=0 ; i<SelectorCount ; i++) {
2272
2273 llvm::Constant *Idxs[] = {Zeros[0],
2274 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2275 // FIXME: We're generating redundant loads and stores here!
2276 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(SelectorList,
2277 makeArrayRef(Idxs, 2));
2278 // If selectors are defined as an opaque type, cast the pointer to this
2279 // type.
2280 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2281 SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2282 SelectorAliases[i]->eraseFromParent();
2283 }
2284
2285 // Number of classes defined.
2286 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2287 Classes.size()));
2288 // Number of categories defined
2289 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2290 Categories.size()));
2291 // Create an array of classes, then categories, then static object instances
2292 Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2293 // NULL-terminated list of static object instances (mainly constant strings)
2294 Classes.push_back(Statics);
2295 Classes.push_back(NULLPtr);
2296 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2297 Elements.push_back(ClassList);
2298 // Construct the symbol table
2299 llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2300
2301 // The symbol table is contained in a module which has some version-checking
2302 // constants
2303 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2304 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2305 (RuntimeVersion >= 10) ? IntTy : NULL, NULL);
2306 Elements.clear();
2307 // Runtime version, used for ABI compatibility checking.
2308 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2309 // sizeof(ModuleTy)
2310 llvm::TargetData td(&TheModule);
2311 Elements.push_back(
2312 llvm::ConstantInt::get(LongTy,
2313 td.getTypeSizeInBits(ModuleTy) /
2314 CGM.getContext().getCharWidth()));
2315
2316 // The path to the source file where this module was declared
2317 SourceManager &SM = CGM.getContext().getSourceManager();
2318 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2319 std::string path =
2320 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2321 Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2322 Elements.push_back(SymTab);
2323
2324 if (RuntimeVersion >= 10)
2325 switch (CGM.getLangOpts().getGC()) {
2326 case LangOptions::GCOnly:
2327 Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2328 break;
2329 case LangOptions::NonGC:
2330 if (CGM.getLangOpts().ObjCAutoRefCount)
2331 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2332 else
2333 Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2334 break;
2335 case LangOptions::HybridGC:
2336 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2337 break;
2338 }
2339
2340 llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2341
2342 // Create the load function calling the runtime entry point with the module
2343 // structure
2344 llvm::Function * LoadFunction = llvm::Function::Create(
2345 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2346 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2347 &TheModule);
2348 llvm::BasicBlock *EntryBB =
2349 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2350 CGBuilderTy Builder(VMContext);
2351 Builder.SetInsertPoint(EntryBB);
2352
2353 llvm::FunctionType *FT =
2354 llvm::FunctionType::get(Builder.getVoidTy(),
2355 llvm::PointerType::getUnqual(ModuleTy), true);
2356 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2357 Builder.CreateCall(Register, Module);
2358
2359 if (!ClassAliases.empty()) {
2360 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2361 llvm::FunctionType *RegisterAliasTy =
2362 llvm::FunctionType::get(Builder.getVoidTy(),
2363 ArgTypes, false);
2364 llvm::Function *RegisterAlias = llvm::Function::Create(
2365 RegisterAliasTy,
2366 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2367 &TheModule);
2368 llvm::BasicBlock *AliasBB =
2369 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2370 llvm::BasicBlock *NoAliasBB =
2371 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2372
2373 // Branch based on whether the runtime provided class_registerAlias_np()
2374 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2375 llvm::Constant::getNullValue(RegisterAlias->getType()));
2376 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2377
2378 // The true branch (has alias registration fucntion):
2379 Builder.SetInsertPoint(AliasBB);
2380 // Emit alias registration calls:
2381 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2382 iter != ClassAliases.end(); ++iter) {
2383 llvm::Constant *TheClass =
2384 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2385 true);
2386 if (0 != TheClass) {
2387 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2388 Builder.CreateCall2(RegisterAlias, TheClass,
2389 MakeConstantString(iter->second));
2390 }
2391 }
2392 // Jump to end:
2393 Builder.CreateBr(NoAliasBB);
2394
2395 // Missing alias registration function, just return from the function:
2396 Builder.SetInsertPoint(NoAliasBB);
2397 }
2398 Builder.CreateRetVoid();
2399
2400 return LoadFunction;
2401 }
2402
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)2403 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2404 const ObjCContainerDecl *CD) {
2405 const ObjCCategoryImplDecl *OCD =
2406 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2407 StringRef CategoryName = OCD ? OCD->getName() : "";
2408 StringRef ClassName = CD->getName();
2409 Selector MethodName = OMD->getSelector();
2410 bool isClassMethod = !OMD->isInstanceMethod();
2411
2412 CodeGenTypes &Types = CGM.getTypes();
2413 llvm::FunctionType *MethodTy =
2414 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2415 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2416 MethodName, isClassMethod);
2417
2418 llvm::Function *Method
2419 = llvm::Function::Create(MethodTy,
2420 llvm::GlobalValue::InternalLinkage,
2421 FunctionName,
2422 &TheModule);
2423 return Method;
2424 }
2425
GetPropertyGetFunction()2426 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2427 return GetPropertyFn;
2428 }
2429
GetPropertySetFunction()2430 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2431 return SetPropertyFn;
2432 }
2433
GetOptimizedPropertySetFunction(bool atomic,bool copy)2434 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2435 bool copy) {
2436 return 0;
2437 }
2438
GetGetStructFunction()2439 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2440 return GetStructPropertyFn;
2441 }
GetSetStructFunction()2442 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2443 return SetStructPropertyFn;
2444 }
GetCppAtomicObjectFunction()2445 llvm::Constant *CGObjCGNU::GetCppAtomicObjectFunction() {
2446 return 0;
2447 }
2448
EnumerationMutationFunction()2449 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2450 return EnumerationMutationFn;
2451 }
2452
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)2453 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2454 const ObjCAtSynchronizedStmt &S) {
2455 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2456 }
2457
2458
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)2459 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2460 const ObjCAtTryStmt &S) {
2461 // Unlike the Apple non-fragile runtimes, which also uses
2462 // unwind-based zero cost exceptions, the GNU Objective C runtime's
2463 // EH support isn't a veneer over C++ EH. Instead, exception
2464 // objects are created by __objc_exception_throw and destroyed by
2465 // the personality function; this avoids the need for bracketing
2466 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2467 // (or even _Unwind_DeleteException), but probably doesn't
2468 // interoperate very well with foreign exceptions.
2469 //
2470 // In Objective-C++ mode, we actually emit something equivalent to the C++
2471 // exception handler.
2472 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2473 return ;
2474 }
2475
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S)2476 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2477 const ObjCAtThrowStmt &S) {
2478 llvm::Value *ExceptionAsObject;
2479
2480 if (const Expr *ThrowExpr = S.getThrowExpr()) {
2481 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2482 ExceptionAsObject = Exception;
2483 } else {
2484 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2485 "Unexpected rethrow outside @catch block.");
2486 ExceptionAsObject = CGF.ObjCEHValueStack.back();
2487 }
2488 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2489
2490 // Note: This may have to be an invoke, if we want to support constructs like:
2491 // @try {
2492 // @throw(obj);
2493 // }
2494 // @catch(id) ...
2495 //
2496 // This is effectively turning @throw into an incredibly-expensive goto, but
2497 // it may happen as a result of inlining followed by missed optimizations, or
2498 // as a result of stupidity.
2499 llvm::BasicBlock *UnwindBB = CGF.getInvokeDest();
2500 if (!UnwindBB) {
2501 CGF.Builder.CreateCall(ExceptionThrowFn, ExceptionAsObject);
2502 CGF.Builder.CreateUnreachable();
2503 } else {
2504 CGF.Builder.CreateInvoke(ExceptionThrowFn, UnwindBB, UnwindBB,
2505 ExceptionAsObject);
2506 }
2507 // Clear the insertion point to indicate we are in unreachable code.
2508 CGF.Builder.ClearInsertionPoint();
2509 }
2510
EmitObjCWeakRead(CodeGenFunction & CGF,llvm::Value * AddrWeakObj)2511 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2512 llvm::Value *AddrWeakObj) {
2513 CGBuilderTy B = CGF.Builder;
2514 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2515 return B.CreateCall(WeakReadFn, AddrWeakObj);
2516 }
2517
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst)2518 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2519 llvm::Value *src, llvm::Value *dst) {
2520 CGBuilderTy B = CGF.Builder;
2521 src = EnforceType(B, src, IdTy);
2522 dst = EnforceType(B, dst, PtrToIdTy);
2523 B.CreateCall2(WeakAssignFn, src, dst);
2524 }
2525
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst,bool threadlocal)2526 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2527 llvm::Value *src, llvm::Value *dst,
2528 bool threadlocal) {
2529 CGBuilderTy B = CGF.Builder;
2530 src = EnforceType(B, src, IdTy);
2531 dst = EnforceType(B, dst, PtrToIdTy);
2532 if (!threadlocal)
2533 B.CreateCall2(GlobalAssignFn, src, dst);
2534 else
2535 // FIXME. Add threadloca assign API
2536 llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2537 }
2538
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst,llvm::Value * ivarOffset)2539 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2540 llvm::Value *src, llvm::Value *dst,
2541 llvm::Value *ivarOffset) {
2542 CGBuilderTy B = CGF.Builder;
2543 src = EnforceType(B, src, IdTy);
2544 dst = EnforceType(B, dst, IdTy);
2545 B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2546 }
2547
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst)2548 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2549 llvm::Value *src, llvm::Value *dst) {
2550 CGBuilderTy B = CGF.Builder;
2551 src = EnforceType(B, src, IdTy);
2552 dst = EnforceType(B, dst, PtrToIdTy);
2553 B.CreateCall2(StrongCastAssignFn, src, dst);
2554 }
2555
EmitGCMemmoveCollectable(CodeGenFunction & CGF,llvm::Value * DestPtr,llvm::Value * SrcPtr,llvm::Value * Size)2556 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2557 llvm::Value *DestPtr,
2558 llvm::Value *SrcPtr,
2559 llvm::Value *Size) {
2560 CGBuilderTy B = CGF.Builder;
2561 DestPtr = EnforceType(B, DestPtr, PtrTy);
2562 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2563
2564 B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2565 }
2566
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)2567 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2568 const ObjCInterfaceDecl *ID,
2569 const ObjCIvarDecl *Ivar) {
2570 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2571 + '.' + Ivar->getNameAsString();
2572 // Emit the variable and initialize it with what we think the correct value
2573 // is. This allows code compiled with non-fragile ivars to work correctly
2574 // when linked against code which isn't (most of the time).
2575 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2576 if (!IvarOffsetPointer) {
2577 // This will cause a run-time crash if we accidentally use it. A value of
2578 // 0 would seem more sensible, but will silently overwrite the isa pointer
2579 // causing a great deal of confusion.
2580 uint64_t Offset = -1;
2581 // We can't call ComputeIvarBaseOffset() here if we have the
2582 // implementation, because it will create an invalid ASTRecordLayout object
2583 // that we are then stuck with forever, so we only initialize the ivar
2584 // offset variable with a guess if we only have the interface. The
2585 // initializer will be reset later anyway, when we are generating the class
2586 // description.
2587 if (!CGM.getContext().getObjCImplementation(
2588 const_cast<ObjCInterfaceDecl *>(ID)))
2589 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2590
2591 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2592 /*isSigned*/true);
2593 // Don't emit the guess in non-PIC code because the linker will not be able
2594 // to replace it with the real version for a library. In non-PIC code you
2595 // must compile with the fragile ABI if you want to use ivars from a
2596 // GCC-compiled class.
2597 if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2598 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2599 Int32Ty, false,
2600 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2601 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2602 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2603 IvarOffsetGV, Name);
2604 } else {
2605 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2606 llvm::Type::getInt32PtrTy(VMContext), false,
2607 llvm::GlobalValue::ExternalLinkage, 0, Name);
2608 }
2609 }
2610 return IvarOffsetPointer;
2611 }
2612
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2613 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2614 QualType ObjectTy,
2615 llvm::Value *BaseValue,
2616 const ObjCIvarDecl *Ivar,
2617 unsigned CVRQualifiers) {
2618 const ObjCInterfaceDecl *ID =
2619 ObjectTy->getAs<ObjCObjectType>()->getInterface();
2620 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2621 EmitIvarOffset(CGF, ID, Ivar));
2622 }
2623
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)2624 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2625 const ObjCInterfaceDecl *OID,
2626 const ObjCIvarDecl *OIVD) {
2627 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2628 next = next->getNextIvar()) {
2629 if (OIVD == next)
2630 return OID;
2631 }
2632
2633 // Otherwise check in the super class.
2634 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2635 return FindIvarInterface(Context, Super, OIVD);
2636
2637 return 0;
2638 }
2639
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2640 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2641 const ObjCInterfaceDecl *Interface,
2642 const ObjCIvarDecl *Ivar) {
2643 if (CGM.getLangOpts().ObjCNonFragileABI) {
2644 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2645 if (RuntimeVersion < 10)
2646 return CGF.Builder.CreateZExtOrBitCast(
2647 CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2648 ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2649 PtrDiffTy);
2650 std::string name = "__objc_ivar_offset_value_" +
2651 Interface->getNameAsString() +"." + Ivar->getNameAsString();
2652 llvm::Value *Offset = TheModule.getGlobalVariable(name);
2653 if (!Offset)
2654 Offset = new llvm::GlobalVariable(TheModule, IntTy,
2655 false, llvm::GlobalValue::LinkOnceAnyLinkage,
2656 llvm::Constant::getNullValue(IntTy), name);
2657 Offset = CGF.Builder.CreateLoad(Offset);
2658 if (Offset->getType() != PtrDiffTy)
2659 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2660 return Offset;
2661 }
2662 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2663 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2664 }
2665
2666 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)2667 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2668 if (CGM.getLangOpts().ObjCNonFragileABI)
2669 return new CGObjCGNUstep(CGM);
2670 return new CGObjCGCC(CGM);
2671 }
2672