• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of RTTI descriptors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCXXABI.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/AST/Type.h"
18 #include "clang/Frontend/CodeGenOptions.h"
19 #include "CGObjCRuntime.h"
20 
21 using namespace clang;
22 using namespace CodeGen;
23 
24 namespace {
25 class RTTIBuilder {
26   CodeGenModule &CGM;  // Per-module state.
27   llvm::LLVMContext &VMContext;
28 
29   /// Fields - The fields of the RTTI descriptor currently being built.
30   SmallVector<llvm::Constant *, 16> Fields;
31 
32   /// GetAddrOfTypeName - Returns the mangled type name of the given type.
33   llvm::GlobalVariable *
34   GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
35 
36   /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
37   /// descriptor of the given type.
38   llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
39 
40   /// BuildVTablePointer - Build the vtable pointer for the given type.
41   void BuildVTablePointer(const Type *Ty);
42 
43   /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
44   /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
45   void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
46 
47   /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
48   /// classes with bases that do not satisfy the abi::__si_class_type_info
49   /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
50   void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
51 
52   /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
53   /// for pointer types.
54   void BuildPointerTypeInfo(QualType PointeeTy);
55 
56   /// BuildObjCObjectTypeInfo - Build the appropriate kind of
57   /// type_info for an object type.
58   void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
59 
60   /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
61   /// struct, used for member pointer types.
62   void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
63 
64 public:
RTTIBuilder(CodeGenModule & CGM)65   RTTIBuilder(CodeGenModule &CGM) : CGM(CGM),
66     VMContext(CGM.getModule().getContext()) { }
67 
68   // Pointer type info flags.
69   enum {
70     /// PTI_Const - Type has const qualifier.
71     PTI_Const = 0x1,
72 
73     /// PTI_Volatile - Type has volatile qualifier.
74     PTI_Volatile = 0x2,
75 
76     /// PTI_Restrict - Type has restrict qualifier.
77     PTI_Restrict = 0x4,
78 
79     /// PTI_Incomplete - Type is incomplete.
80     PTI_Incomplete = 0x8,
81 
82     /// PTI_ContainingClassIncomplete - Containing class is incomplete.
83     /// (in pointer to member).
84     PTI_ContainingClassIncomplete = 0x10
85   };
86 
87   // VMI type info flags.
88   enum {
89     /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
90     VMI_NonDiamondRepeat = 0x1,
91 
92     /// VMI_DiamondShaped - Class is diamond shaped.
93     VMI_DiamondShaped = 0x2
94   };
95 
96   // Base class type info flags.
97   enum {
98     /// BCTI_Virtual - Base class is virtual.
99     BCTI_Virtual = 0x1,
100 
101     /// BCTI_Public - Base class is public.
102     BCTI_Public = 0x2
103   };
104 
105   /// BuildTypeInfo - Build the RTTI type info struct for the given type.
106   ///
107   /// \param Force - true to force the creation of this RTTI value
108   /// \param ForEH - true if this is for exception handling
109   llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
110 };
111 }
112 
113 llvm::GlobalVariable *
GetAddrOfTypeName(QualType Ty,llvm::GlobalVariable::LinkageTypes Linkage)114 RTTIBuilder::GetAddrOfTypeName(QualType Ty,
115                                llvm::GlobalVariable::LinkageTypes Linkage) {
116   SmallString<256> OutName;
117   llvm::raw_svector_ostream Out(OutName);
118   CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
119   Out.flush();
120   StringRef Name = OutName.str();
121 
122   // We know that the mangled name of the type starts at index 4 of the
123   // mangled name of the typename, so we can just index into it in order to
124   // get the mangled name of the type.
125   llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
126                                                             Name.substr(4));
127 
128   llvm::GlobalVariable *GV =
129     CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
130 
131   GV->setInitializer(Init);
132 
133   return GV;
134 }
135 
GetAddrOfExternalRTTIDescriptor(QualType Ty)136 llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
137   // Mangle the RTTI name.
138   SmallString<256> OutName;
139   llvm::raw_svector_ostream Out(OutName);
140   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
141   Out.flush();
142   StringRef Name = OutName.str();
143 
144   // Look for an existing global.
145   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
146 
147   if (!GV) {
148     // Create a new global variable.
149     GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
150                                   /*Constant=*/true,
151                                   llvm::GlobalValue::ExternalLinkage, 0, Name);
152   }
153 
154   return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
155 }
156 
157 /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
158 /// info for that type is defined in the standard library.
TypeInfoIsInStandardLibrary(const BuiltinType * Ty)159 static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
160   // Itanium C++ ABI 2.9.2:
161   //   Basic type information (e.g. for "int", "bool", etc.) will be kept in
162   //   the run-time support library. Specifically, the run-time support
163   //   library should contain type_info objects for the types X, X* and
164   //   X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
165   //   unsigned char, signed char, short, unsigned short, int, unsigned int,
166   //   long, unsigned long, long long, unsigned long long, float, double,
167   //   long double, char16_t, char32_t, and the IEEE 754r decimal and
168   //   half-precision floating point types.
169   switch (Ty->getKind()) {
170     case BuiltinType::Void:
171     case BuiltinType::NullPtr:
172     case BuiltinType::Bool:
173     case BuiltinType::WChar_S:
174     case BuiltinType::WChar_U:
175     case BuiltinType::Char_U:
176     case BuiltinType::Char_S:
177     case BuiltinType::UChar:
178     case BuiltinType::SChar:
179     case BuiltinType::Short:
180     case BuiltinType::UShort:
181     case BuiltinType::Int:
182     case BuiltinType::UInt:
183     case BuiltinType::Long:
184     case BuiltinType::ULong:
185     case BuiltinType::LongLong:
186     case BuiltinType::ULongLong:
187     case BuiltinType::Half:
188     case BuiltinType::Float:
189     case BuiltinType::Double:
190     case BuiltinType::LongDouble:
191     case BuiltinType::Char16:
192     case BuiltinType::Char32:
193     case BuiltinType::Int128:
194     case BuiltinType::UInt128:
195       return true;
196 
197     case BuiltinType::Dependent:
198 #define BUILTIN_TYPE(Id, SingletonId)
199 #define PLACEHOLDER_TYPE(Id, SingletonId) \
200     case BuiltinType::Id:
201 #include "clang/AST/BuiltinTypes.def"
202       llvm_unreachable("asking for RRTI for a placeholder type!");
203 
204     case BuiltinType::ObjCId:
205     case BuiltinType::ObjCClass:
206     case BuiltinType::ObjCSel:
207       llvm_unreachable("FIXME: Objective-C types are unsupported!");
208   }
209 
210   llvm_unreachable("Invalid BuiltinType Kind!");
211 }
212 
TypeInfoIsInStandardLibrary(const PointerType * PointerTy)213 static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
214   QualType PointeeTy = PointerTy->getPointeeType();
215   const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
216   if (!BuiltinTy)
217     return false;
218 
219   // Check the qualifiers.
220   Qualifiers Quals = PointeeTy.getQualifiers();
221   Quals.removeConst();
222 
223   if (!Quals.empty())
224     return false;
225 
226   return TypeInfoIsInStandardLibrary(BuiltinTy);
227 }
228 
229 /// IsStandardLibraryRTTIDescriptor - Returns whether the type
230 /// information for the given type exists in the standard library.
IsStandardLibraryRTTIDescriptor(QualType Ty)231 static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
232   // Type info for builtin types is defined in the standard library.
233   if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
234     return TypeInfoIsInStandardLibrary(BuiltinTy);
235 
236   // Type info for some pointer types to builtin types is defined in the
237   // standard library.
238   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
239     return TypeInfoIsInStandardLibrary(PointerTy);
240 
241   return false;
242 }
243 
244 /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
245 /// the given type exists somewhere else, and that we should not emit the type
246 /// information in this translation unit.  Assumes that it is not a
247 /// standard-library type.
ShouldUseExternalRTTIDescriptor(CodeGenModule & CGM,QualType Ty)248 static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) {
249   ASTContext &Context = CGM.getContext();
250 
251   // If RTTI is disabled, don't consider key functions.
252   if (!Context.getLangOpts().RTTI) return false;
253 
254   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
255     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
256     if (!RD->hasDefinition())
257       return false;
258 
259     if (!RD->isDynamicClass())
260       return false;
261 
262     return !CGM.getVTables().ShouldEmitVTableInThisTU(RD);
263   }
264 
265   return false;
266 }
267 
268 /// IsIncompleteClassType - Returns whether the given record type is incomplete.
IsIncompleteClassType(const RecordType * RecordTy)269 static bool IsIncompleteClassType(const RecordType *RecordTy) {
270   return !RecordTy->getDecl()->isCompleteDefinition();
271 }
272 
273 /// ContainsIncompleteClassType - Returns whether the given type contains an
274 /// incomplete class type. This is true if
275 ///
276 ///   * The given type is an incomplete class type.
277 ///   * The given type is a pointer type whose pointee type contains an
278 ///     incomplete class type.
279 ///   * The given type is a member pointer type whose class is an incomplete
280 ///     class type.
281 ///   * The given type is a member pointer type whoise pointee type contains an
282 ///     incomplete class type.
283 /// is an indirect or direct pointer to an incomplete class type.
ContainsIncompleteClassType(QualType Ty)284 static bool ContainsIncompleteClassType(QualType Ty) {
285   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
286     if (IsIncompleteClassType(RecordTy))
287       return true;
288   }
289 
290   if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
291     return ContainsIncompleteClassType(PointerTy->getPointeeType());
292 
293   if (const MemberPointerType *MemberPointerTy =
294       dyn_cast<MemberPointerType>(Ty)) {
295     // Check if the class type is incomplete.
296     const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
297     if (IsIncompleteClassType(ClassType))
298       return true;
299 
300     return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
301   }
302 
303   return false;
304 }
305 
306 /// getTypeInfoLinkage - Return the linkage that the type info and type info
307 /// name constants should have for the given type.
308 static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule & CGM,QualType Ty)309 getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) {
310   // Itanium C++ ABI 2.9.5p7:
311   //   In addition, it and all of the intermediate abi::__pointer_type_info
312   //   structs in the chain down to the abi::__class_type_info for the
313   //   incomplete class type must be prevented from resolving to the
314   //   corresponding type_info structs for the complete class type, possibly
315   //   by making them local static objects. Finally, a dummy class RTTI is
316   //   generated for the incomplete type that will not resolve to the final
317   //   complete class RTTI (because the latter need not exist), possibly by
318   //   making it a local static object.
319   if (ContainsIncompleteClassType(Ty))
320     return llvm::GlobalValue::InternalLinkage;
321 
322   switch (Ty->getLinkage()) {
323   case NoLinkage:
324   case InternalLinkage:
325   case UniqueExternalLinkage:
326     return llvm::GlobalValue::InternalLinkage;
327 
328   case ExternalLinkage:
329     if (!CGM.getLangOpts().RTTI) {
330       // RTTI is not enabled, which means that this type info struct is going
331       // to be used for exception handling. Give it linkonce_odr linkage.
332       return llvm::GlobalValue::LinkOnceODRLinkage;
333     }
334 
335     if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
336       const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
337       if (RD->hasAttr<WeakAttr>())
338         return llvm::GlobalValue::WeakODRLinkage;
339       if (RD->isDynamicClass())
340         return CGM.getVTableLinkage(RD);
341     }
342 
343     return llvm::GlobalValue::LinkOnceODRLinkage;
344   }
345 
346   llvm_unreachable("Invalid linkage!");
347 }
348 
349 // CanUseSingleInheritance - Return whether the given record decl has a "single,
350 // public, non-virtual base at offset zero (i.e. the derived class is dynamic
351 // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
CanUseSingleInheritance(const CXXRecordDecl * RD)352 static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
353   // Check the number of bases.
354   if (RD->getNumBases() != 1)
355     return false;
356 
357   // Get the base.
358   CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
359 
360   // Check that the base is not virtual.
361   if (Base->isVirtual())
362     return false;
363 
364   // Check that the base is public.
365   if (Base->getAccessSpecifier() != AS_public)
366     return false;
367 
368   // Check that the class is dynamic iff the base is.
369   const CXXRecordDecl *BaseDecl =
370     cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
371   if (!BaseDecl->isEmpty() &&
372       BaseDecl->isDynamicClass() != RD->isDynamicClass())
373     return false;
374 
375   return true;
376 }
377 
BuildVTablePointer(const Type * Ty)378 void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
379   // abi::__class_type_info.
380   static const char * const ClassTypeInfo =
381     "_ZTVN10__cxxabiv117__class_type_infoE";
382   // abi::__si_class_type_info.
383   static const char * const SIClassTypeInfo =
384     "_ZTVN10__cxxabiv120__si_class_type_infoE";
385   // abi::__vmi_class_type_info.
386   static const char * const VMIClassTypeInfo =
387     "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
388 
389   const char *VTableName = 0;
390 
391   switch (Ty->getTypeClass()) {
392 #define TYPE(Class, Base)
393 #define ABSTRACT_TYPE(Class, Base)
394 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
395 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
396 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
397 #include "clang/AST/TypeNodes.def"
398     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
399 
400   case Type::LValueReference:
401   case Type::RValueReference:
402     llvm_unreachable("References shouldn't get here");
403 
404   case Type::Builtin:
405   // GCC treats vector and complex types as fundamental types.
406   case Type::Vector:
407   case Type::ExtVector:
408   case Type::Complex:
409   case Type::Atomic:
410   // FIXME: GCC treats block pointers as fundamental types?!
411   case Type::BlockPointer:
412     // abi::__fundamental_type_info.
413     VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
414     break;
415 
416   case Type::ConstantArray:
417   case Type::IncompleteArray:
418   case Type::VariableArray:
419     // abi::__array_type_info.
420     VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
421     break;
422 
423   case Type::FunctionNoProto:
424   case Type::FunctionProto:
425     // abi::__function_type_info.
426     VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
427     break;
428 
429   case Type::Enum:
430     // abi::__enum_type_info.
431     VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
432     break;
433 
434   case Type::Record: {
435     const CXXRecordDecl *RD =
436       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
437 
438     if (!RD->hasDefinition() || !RD->getNumBases()) {
439       VTableName = ClassTypeInfo;
440     } else if (CanUseSingleInheritance(RD)) {
441       VTableName = SIClassTypeInfo;
442     } else {
443       VTableName = VMIClassTypeInfo;
444     }
445 
446     break;
447   }
448 
449   case Type::ObjCObject:
450     // Ignore protocol qualifiers.
451     Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
452 
453     // Handle id and Class.
454     if (isa<BuiltinType>(Ty)) {
455       VTableName = ClassTypeInfo;
456       break;
457     }
458 
459     assert(isa<ObjCInterfaceType>(Ty));
460     // Fall through.
461 
462   case Type::ObjCInterface:
463     if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
464       VTableName = SIClassTypeInfo;
465     } else {
466       VTableName = ClassTypeInfo;
467     }
468     break;
469 
470   case Type::ObjCObjectPointer:
471   case Type::Pointer:
472     // abi::__pointer_type_info.
473     VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
474     break;
475 
476   case Type::MemberPointer:
477     // abi::__pointer_to_member_type_info.
478     VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
479     break;
480   }
481 
482   llvm::Constant *VTable =
483     CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
484 
485   llvm::Type *PtrDiffTy =
486     CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
487 
488   // The vtable address point is 2.
489   llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
490   VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Two);
491   VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
492 
493   Fields.push_back(VTable);
494 }
495 
496 // maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures
497 // from available_externally to the correct linkage if necessary. An example of
498 // this is:
499 //
500 //   struct A {
501 //     virtual void f();
502 //   };
503 //
504 //   const std::type_info &g() {
505 //     return typeid(A);
506 //   }
507 //
508 //   void A::f() { }
509 //
510 // When we're generating the typeid(A) expression, we do not yet know that
511 // A's key function is defined in this translation unit, so we will give the
512 // typeinfo and typename structures available_externally linkage. When A::f
513 // forces the vtable to be generated, we need to change the linkage of the
514 // typeinfo and typename structs, otherwise we'll end up with undefined
515 // externals when linking.
516 static void
maybeUpdateRTTILinkage(CodeGenModule & CGM,llvm::GlobalVariable * GV,QualType Ty)517 maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV,
518                        QualType Ty) {
519   // We're only interested in globals with available_externally linkage.
520   if (!GV->hasAvailableExternallyLinkage())
521     return;
522 
523   // Get the real linkage for the type.
524   llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
525 
526   // If variable is supposed to have available_externally linkage, we don't
527   // need to do anything.
528   if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
529     return;
530 
531   // Update the typeinfo linkage.
532   GV->setLinkage(Linkage);
533 
534   // Get the typename global.
535   SmallString<256> OutName;
536   llvm::raw_svector_ostream Out(OutName);
537   CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
538   Out.flush();
539   StringRef Name = OutName.str();
540 
541   llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name);
542 
543   assert(TypeNameGV->hasAvailableExternallyLinkage() &&
544          "Type name has different linkage from type info!");
545 
546   // And update its linkage.
547   TypeNameGV->setLinkage(Linkage);
548 }
549 
BuildTypeInfo(QualType Ty,bool Force)550 llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
551   // We want to operate on the canonical type.
552   Ty = CGM.getContext().getCanonicalType(Ty);
553 
554   // Check if we've already emitted an RTTI descriptor for this type.
555   SmallString<256> OutName;
556   llvm::raw_svector_ostream Out(OutName);
557   CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
558   Out.flush();
559   StringRef Name = OutName.str();
560 
561   llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
562   if (OldGV && !OldGV->isDeclaration()) {
563     maybeUpdateRTTILinkage(CGM, OldGV, Ty);
564 
565     return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
566   }
567 
568   // Check if there is already an external RTTI descriptor for this type.
569   bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
570   if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
571     return GetAddrOfExternalRTTIDescriptor(Ty);
572 
573   // Emit the standard library with external linkage.
574   llvm::GlobalVariable::LinkageTypes Linkage;
575   if (IsStdLib)
576     Linkage = llvm::GlobalValue::ExternalLinkage;
577   else
578     Linkage = getTypeInfoLinkage(CGM, Ty);
579 
580   // Add the vtable pointer.
581   BuildVTablePointer(cast<Type>(Ty));
582 
583   // And the name.
584   llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
585 
586   Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy));
587 
588   switch (Ty->getTypeClass()) {
589 #define TYPE(Class, Base)
590 #define ABSTRACT_TYPE(Class, Base)
591 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
592 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
593 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
594 #include "clang/AST/TypeNodes.def"
595     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
596 
597   // GCC treats vector types as fundamental types.
598   case Type::Builtin:
599   case Type::Vector:
600   case Type::ExtVector:
601   case Type::Complex:
602   case Type::BlockPointer:
603     // Itanium C++ ABI 2.9.5p4:
604     // abi::__fundamental_type_info adds no data members to std::type_info.
605     break;
606 
607   case Type::LValueReference:
608   case Type::RValueReference:
609     llvm_unreachable("References shouldn't get here");
610 
611   case Type::ConstantArray:
612   case Type::IncompleteArray:
613   case Type::VariableArray:
614     // Itanium C++ ABI 2.9.5p5:
615     // abi::__array_type_info adds no data members to std::type_info.
616     break;
617 
618   case Type::FunctionNoProto:
619   case Type::FunctionProto:
620     // Itanium C++ ABI 2.9.5p5:
621     // abi::__function_type_info adds no data members to std::type_info.
622     break;
623 
624   case Type::Enum:
625     // Itanium C++ ABI 2.9.5p5:
626     // abi::__enum_type_info adds no data members to std::type_info.
627     break;
628 
629   case Type::Record: {
630     const CXXRecordDecl *RD =
631       cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
632     if (!RD->hasDefinition() || !RD->getNumBases()) {
633       // We don't need to emit any fields.
634       break;
635     }
636 
637     if (CanUseSingleInheritance(RD))
638       BuildSIClassTypeInfo(RD);
639     else
640       BuildVMIClassTypeInfo(RD);
641 
642     break;
643   }
644 
645   case Type::ObjCObject:
646   case Type::ObjCInterface:
647     BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
648     break;
649 
650   case Type::ObjCObjectPointer:
651     BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
652     break;
653 
654   case Type::Pointer:
655     BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
656     break;
657 
658   case Type::MemberPointer:
659     BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
660     break;
661 
662   case Type::Atomic:
663     // No fields, at least for the moment.
664     break;
665   }
666 
667   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
668 
669   llvm::GlobalVariable *GV =
670     new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
671                              /*Constant=*/true, Linkage, Init, Name);
672 
673   // If there's already an old global variable, replace it with the new one.
674   if (OldGV) {
675     GV->takeName(OldGV);
676     llvm::Constant *NewPtr =
677       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
678     OldGV->replaceAllUsesWith(NewPtr);
679     OldGV->eraseFromParent();
680   }
681 
682   // GCC only relies on the uniqueness of the type names, not the
683   // type_infos themselves, so we can emit these as hidden symbols.
684   // But don't do this if we're worried about strict visibility
685   // compatibility.
686   if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
687     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
688 
689     CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI);
690     CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName);
691   } else {
692     Visibility TypeInfoVisibility = DefaultVisibility;
693     if (CGM.getCodeGenOpts().HiddenWeakVTables &&
694         Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
695       TypeInfoVisibility = HiddenVisibility;
696 
697     // The type name should have the same visibility as the type itself.
698     Visibility ExplicitVisibility = Ty->getVisibility();
699     TypeName->setVisibility(CodeGenModule::
700                             GetLLVMVisibility(ExplicitVisibility));
701 
702     TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility());
703     GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility));
704   }
705 
706   GV->setUnnamedAddr(true);
707 
708   return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
709 }
710 
711 /// ComputeQualifierFlags - Compute the pointer type info flags from the
712 /// given qualifier.
ComputeQualifierFlags(Qualifiers Quals)713 static unsigned ComputeQualifierFlags(Qualifiers Quals) {
714   unsigned Flags = 0;
715 
716   if (Quals.hasConst())
717     Flags |= RTTIBuilder::PTI_Const;
718   if (Quals.hasVolatile())
719     Flags |= RTTIBuilder::PTI_Volatile;
720   if (Quals.hasRestrict())
721     Flags |= RTTIBuilder::PTI_Restrict;
722 
723   return Flags;
724 }
725 
726 /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
727 /// for the given Objective-C object type.
BuildObjCObjectTypeInfo(const ObjCObjectType * OT)728 void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
729   // Drop qualifiers.
730   const Type *T = OT->getBaseType().getTypePtr();
731   assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
732 
733   // The builtin types are abi::__class_type_infos and don't require
734   // extra fields.
735   if (isa<BuiltinType>(T)) return;
736 
737   ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
738   ObjCInterfaceDecl *Super = Class->getSuperClass();
739 
740   // Root classes are also __class_type_info.
741   if (!Super) return;
742 
743   QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
744 
745   // Everything else is single inheritance.
746   llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy);
747   Fields.push_back(BaseTypeInfo);
748 }
749 
750 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
751 /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
BuildSIClassTypeInfo(const CXXRecordDecl * RD)752 void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
753   // Itanium C++ ABI 2.9.5p6b:
754   // It adds to abi::__class_type_info a single member pointing to the
755   // type_info structure for the base type,
756   llvm::Constant *BaseTypeInfo =
757     RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType());
758   Fields.push_back(BaseTypeInfo);
759 }
760 
761 namespace {
762   /// SeenBases - Contains virtual and non-virtual bases seen when traversing
763   /// a class hierarchy.
764   struct SeenBases {
765     llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
766     llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
767   };
768 }
769 
770 /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
771 /// abi::__vmi_class_type_info.
772 ///
ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier * Base,SeenBases & Bases)773 static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
774                                              SeenBases &Bases) {
775 
776   unsigned Flags = 0;
777 
778   const CXXRecordDecl *BaseDecl =
779     cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
780 
781   if (Base->isVirtual()) {
782     if (Bases.VirtualBases.count(BaseDecl)) {
783       // If this virtual base has been seen before, then the class is diamond
784       // shaped.
785       Flags |= RTTIBuilder::VMI_DiamondShaped;
786     } else {
787       if (Bases.NonVirtualBases.count(BaseDecl))
788         Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
789 
790       // Mark the virtual base as seen.
791       Bases.VirtualBases.insert(BaseDecl);
792     }
793   } else {
794     if (Bases.NonVirtualBases.count(BaseDecl)) {
795       // If this non-virtual base has been seen before, then the class has non-
796       // diamond shaped repeated inheritance.
797       Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
798     } else {
799       if (Bases.VirtualBases.count(BaseDecl))
800         Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
801 
802       // Mark the non-virtual base as seen.
803       Bases.NonVirtualBases.insert(BaseDecl);
804     }
805   }
806 
807   // Walk all bases.
808   for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(),
809        E = BaseDecl->bases_end(); I != E; ++I)
810     Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
811 
812   return Flags;
813 }
814 
ComputeVMIClassTypeInfoFlags(const CXXRecordDecl * RD)815 static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
816   unsigned Flags = 0;
817   SeenBases Bases;
818 
819   // Walk all bases.
820   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
821        E = RD->bases_end(); I != E; ++I)
822     Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
823 
824   return Flags;
825 }
826 
827 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
828 /// classes with bases that do not satisfy the abi::__si_class_type_info
829 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
BuildVMIClassTypeInfo(const CXXRecordDecl * RD)830 void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
831   llvm::Type *UnsignedIntLTy =
832     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
833 
834   // Itanium C++ ABI 2.9.5p6c:
835   //   __flags is a word with flags describing details about the class
836   //   structure, which may be referenced by using the __flags_masks
837   //   enumeration. These flags refer to both direct and indirect bases.
838   unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
839   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
840 
841   // Itanium C++ ABI 2.9.5p6c:
842   //   __base_count is a word with the number of direct proper base class
843   //   descriptions that follow.
844   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
845 
846   if (!RD->getNumBases())
847     return;
848 
849   llvm::Type *LongLTy =
850     CGM.getTypes().ConvertType(CGM.getContext().LongTy);
851 
852   // Now add the base class descriptions.
853 
854   // Itanium C++ ABI 2.9.5p6c:
855   //   __base_info[] is an array of base class descriptions -- one for every
856   //   direct proper base. Each description is of the type:
857   //
858   //   struct abi::__base_class_type_info {
859   //   public:
860   //     const __class_type_info *__base_type;
861   //     long __offset_flags;
862   //
863   //     enum __offset_flags_masks {
864   //       __virtual_mask = 0x1,
865   //       __public_mask = 0x2,
866   //       __offset_shift = 8
867   //     };
868   //   };
869   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
870        E = RD->bases_end(); I != E; ++I) {
871     const CXXBaseSpecifier *Base = I;
872 
873     // The __base_type member points to the RTTI for the base type.
874     Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType()));
875 
876     const CXXRecordDecl *BaseDecl =
877       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
878 
879     int64_t OffsetFlags = 0;
880 
881     // All but the lower 8 bits of __offset_flags are a signed offset.
882     // For a non-virtual base, this is the offset in the object of the base
883     // subobject. For a virtual base, this is the offset in the virtual table of
884     // the virtual base offset for the virtual base referenced (negative).
885     CharUnits Offset;
886     if (Base->isVirtual())
887       Offset =
888         CGM.getVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
889     else {
890       const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
891       Offset = Layout.getBaseClassOffset(BaseDecl);
892     };
893 
894     OffsetFlags = Offset.getQuantity() << 8;
895 
896     // The low-order byte of __offset_flags contains flags, as given by the
897     // masks from the enumeration __offset_flags_masks.
898     if (Base->isVirtual())
899       OffsetFlags |= BCTI_Virtual;
900     if (Base->getAccessSpecifier() == AS_public)
901       OffsetFlags |= BCTI_Public;
902 
903     Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
904   }
905 }
906 
907 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
908 /// used for pointer types.
BuildPointerTypeInfo(QualType PointeeTy)909 void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
910   Qualifiers Quals;
911   QualType UnqualifiedPointeeTy =
912     CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
913 
914   // Itanium C++ ABI 2.9.5p7:
915   //   __flags is a flag word describing the cv-qualification and other
916   //   attributes of the type pointed to
917   unsigned Flags = ComputeQualifierFlags(Quals);
918 
919   // Itanium C++ ABI 2.9.5p7:
920   //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
921   //   incomplete class type, the incomplete target type flag is set.
922   if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
923     Flags |= PTI_Incomplete;
924 
925   llvm::Type *UnsignedIntLTy =
926     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
927   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
928 
929   // Itanium C++ ABI 2.9.5p7:
930   //  __pointee is a pointer to the std::type_info derivation for the
931   //  unqualified type being pointed to.
932   llvm::Constant *PointeeTypeInfo =
933     RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
934   Fields.push_back(PointeeTypeInfo);
935 }
936 
937 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
938 /// struct, used for member pointer types.
BuildPointerToMemberTypeInfo(const MemberPointerType * Ty)939 void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
940   QualType PointeeTy = Ty->getPointeeType();
941 
942   Qualifiers Quals;
943   QualType UnqualifiedPointeeTy =
944     CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
945 
946   // Itanium C++ ABI 2.9.5p7:
947   //   __flags is a flag word describing the cv-qualification and other
948   //   attributes of the type pointed to.
949   unsigned Flags = ComputeQualifierFlags(Quals);
950 
951   const RecordType *ClassType = cast<RecordType>(Ty->getClass());
952 
953   // Itanium C++ ABI 2.9.5p7:
954   //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
955   //   incomplete class type, the incomplete target type flag is set.
956   if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
957     Flags |= PTI_Incomplete;
958 
959   if (IsIncompleteClassType(ClassType))
960     Flags |= PTI_ContainingClassIncomplete;
961 
962   llvm::Type *UnsignedIntLTy =
963     CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
964   Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
965 
966   // Itanium C++ ABI 2.9.5p7:
967   //   __pointee is a pointer to the std::type_info derivation for the
968   //   unqualified type being pointed to.
969   llvm::Constant *PointeeTypeInfo =
970     RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
971   Fields.push_back(PointeeTypeInfo);
972 
973   // Itanium C++ ABI 2.9.5p9:
974   //   __context is a pointer to an abi::__class_type_info corresponding to the
975   //   class type containing the member pointed to
976   //   (e.g., the "A" in "int A::*").
977   Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0)));
978 }
979 
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)980 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
981                                                        bool ForEH) {
982   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
983   // FIXME: should we even be calling this method if RTTI is disabled
984   // and it's not for EH?
985   if (!ForEH && !getContext().getLangOpts().RTTI)
986     return llvm::Constant::getNullValue(Int8PtrTy);
987 
988   if (ForEH && Ty->isObjCObjectPointerType() && !LangOpts.NeXTRuntime)
989     return ObjCRuntime->GetEHType(Ty);
990 
991   return RTTIBuilder(*this).BuildTypeInfo(Ty);
992 }
993 
EmitFundamentalRTTIDescriptor(QualType Type)994 void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) {
995   QualType PointerType = Context.getPointerType(Type);
996   QualType PointerTypeConst = Context.getPointerType(Type.withConst());
997   RTTIBuilder(*this).BuildTypeInfo(Type, true);
998   RTTIBuilder(*this).BuildTypeInfo(PointerType, true);
999   RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
1000 }
1001 
EmitFundamentalRTTIDescriptors()1002 void CodeGenModule::EmitFundamentalRTTIDescriptors() {
1003   QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy,
1004                                   Context.BoolTy, Context.WCharTy,
1005                                   Context.CharTy, Context.UnsignedCharTy,
1006                                   Context.SignedCharTy, Context.ShortTy,
1007                                   Context.UnsignedShortTy, Context.IntTy,
1008                                   Context.UnsignedIntTy, Context.LongTy,
1009                                   Context.UnsignedLongTy, Context.LongLongTy,
1010                                   Context.UnsignedLongLongTy, Context.FloatTy,
1011                                   Context.DoubleTy, Context.LongDoubleTy,
1012                                   Context.Char16Ty, Context.Char32Ty };
1013   for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i)
1014     EmitFundamentalRTTIDescriptor(FundamentalTypes[i]);
1015 }
1016