1 //===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of RTTI descriptors.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGCXXABI.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/AST/Type.h"
18 #include "clang/Frontend/CodeGenOptions.h"
19 #include "CGObjCRuntime.h"
20
21 using namespace clang;
22 using namespace CodeGen;
23
24 namespace {
25 class RTTIBuilder {
26 CodeGenModule &CGM; // Per-module state.
27 llvm::LLVMContext &VMContext;
28
29 /// Fields - The fields of the RTTI descriptor currently being built.
30 SmallVector<llvm::Constant *, 16> Fields;
31
32 /// GetAddrOfTypeName - Returns the mangled type name of the given type.
33 llvm::GlobalVariable *
34 GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
35
36 /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
37 /// descriptor of the given type.
38 llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
39
40 /// BuildVTablePointer - Build the vtable pointer for the given type.
41 void BuildVTablePointer(const Type *Ty);
42
43 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
44 /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
45 void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
46
47 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
48 /// classes with bases that do not satisfy the abi::__si_class_type_info
49 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
50 void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
51
52 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
53 /// for pointer types.
54 void BuildPointerTypeInfo(QualType PointeeTy);
55
56 /// BuildObjCObjectTypeInfo - Build the appropriate kind of
57 /// type_info for an object type.
58 void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
59
60 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
61 /// struct, used for member pointer types.
62 void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
63
64 public:
RTTIBuilder(CodeGenModule & CGM)65 RTTIBuilder(CodeGenModule &CGM) : CGM(CGM),
66 VMContext(CGM.getModule().getContext()) { }
67
68 // Pointer type info flags.
69 enum {
70 /// PTI_Const - Type has const qualifier.
71 PTI_Const = 0x1,
72
73 /// PTI_Volatile - Type has volatile qualifier.
74 PTI_Volatile = 0x2,
75
76 /// PTI_Restrict - Type has restrict qualifier.
77 PTI_Restrict = 0x4,
78
79 /// PTI_Incomplete - Type is incomplete.
80 PTI_Incomplete = 0x8,
81
82 /// PTI_ContainingClassIncomplete - Containing class is incomplete.
83 /// (in pointer to member).
84 PTI_ContainingClassIncomplete = 0x10
85 };
86
87 // VMI type info flags.
88 enum {
89 /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
90 VMI_NonDiamondRepeat = 0x1,
91
92 /// VMI_DiamondShaped - Class is diamond shaped.
93 VMI_DiamondShaped = 0x2
94 };
95
96 // Base class type info flags.
97 enum {
98 /// BCTI_Virtual - Base class is virtual.
99 BCTI_Virtual = 0x1,
100
101 /// BCTI_Public - Base class is public.
102 BCTI_Public = 0x2
103 };
104
105 /// BuildTypeInfo - Build the RTTI type info struct for the given type.
106 ///
107 /// \param Force - true to force the creation of this RTTI value
108 /// \param ForEH - true if this is for exception handling
109 llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
110 };
111 }
112
113 llvm::GlobalVariable *
GetAddrOfTypeName(QualType Ty,llvm::GlobalVariable::LinkageTypes Linkage)114 RTTIBuilder::GetAddrOfTypeName(QualType Ty,
115 llvm::GlobalVariable::LinkageTypes Linkage) {
116 SmallString<256> OutName;
117 llvm::raw_svector_ostream Out(OutName);
118 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
119 Out.flush();
120 StringRef Name = OutName.str();
121
122 // We know that the mangled name of the type starts at index 4 of the
123 // mangled name of the typename, so we can just index into it in order to
124 // get the mangled name of the type.
125 llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
126 Name.substr(4));
127
128 llvm::GlobalVariable *GV =
129 CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
130
131 GV->setInitializer(Init);
132
133 return GV;
134 }
135
GetAddrOfExternalRTTIDescriptor(QualType Ty)136 llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
137 // Mangle the RTTI name.
138 SmallString<256> OutName;
139 llvm::raw_svector_ostream Out(OutName);
140 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
141 Out.flush();
142 StringRef Name = OutName.str();
143
144 // Look for an existing global.
145 llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
146
147 if (!GV) {
148 // Create a new global variable.
149 GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
150 /*Constant=*/true,
151 llvm::GlobalValue::ExternalLinkage, 0, Name);
152 }
153
154 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
155 }
156
157 /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
158 /// info for that type is defined in the standard library.
TypeInfoIsInStandardLibrary(const BuiltinType * Ty)159 static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
160 // Itanium C++ ABI 2.9.2:
161 // Basic type information (e.g. for "int", "bool", etc.) will be kept in
162 // the run-time support library. Specifically, the run-time support
163 // library should contain type_info objects for the types X, X* and
164 // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
165 // unsigned char, signed char, short, unsigned short, int, unsigned int,
166 // long, unsigned long, long long, unsigned long long, float, double,
167 // long double, char16_t, char32_t, and the IEEE 754r decimal and
168 // half-precision floating point types.
169 switch (Ty->getKind()) {
170 case BuiltinType::Void:
171 case BuiltinType::NullPtr:
172 case BuiltinType::Bool:
173 case BuiltinType::WChar_S:
174 case BuiltinType::WChar_U:
175 case BuiltinType::Char_U:
176 case BuiltinType::Char_S:
177 case BuiltinType::UChar:
178 case BuiltinType::SChar:
179 case BuiltinType::Short:
180 case BuiltinType::UShort:
181 case BuiltinType::Int:
182 case BuiltinType::UInt:
183 case BuiltinType::Long:
184 case BuiltinType::ULong:
185 case BuiltinType::LongLong:
186 case BuiltinType::ULongLong:
187 case BuiltinType::Half:
188 case BuiltinType::Float:
189 case BuiltinType::Double:
190 case BuiltinType::LongDouble:
191 case BuiltinType::Char16:
192 case BuiltinType::Char32:
193 case BuiltinType::Int128:
194 case BuiltinType::UInt128:
195 return true;
196
197 case BuiltinType::Dependent:
198 #define BUILTIN_TYPE(Id, SingletonId)
199 #define PLACEHOLDER_TYPE(Id, SingletonId) \
200 case BuiltinType::Id:
201 #include "clang/AST/BuiltinTypes.def"
202 llvm_unreachable("asking for RRTI for a placeholder type!");
203
204 case BuiltinType::ObjCId:
205 case BuiltinType::ObjCClass:
206 case BuiltinType::ObjCSel:
207 llvm_unreachable("FIXME: Objective-C types are unsupported!");
208 }
209
210 llvm_unreachable("Invalid BuiltinType Kind!");
211 }
212
TypeInfoIsInStandardLibrary(const PointerType * PointerTy)213 static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
214 QualType PointeeTy = PointerTy->getPointeeType();
215 const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
216 if (!BuiltinTy)
217 return false;
218
219 // Check the qualifiers.
220 Qualifiers Quals = PointeeTy.getQualifiers();
221 Quals.removeConst();
222
223 if (!Quals.empty())
224 return false;
225
226 return TypeInfoIsInStandardLibrary(BuiltinTy);
227 }
228
229 /// IsStandardLibraryRTTIDescriptor - Returns whether the type
230 /// information for the given type exists in the standard library.
IsStandardLibraryRTTIDescriptor(QualType Ty)231 static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
232 // Type info for builtin types is defined in the standard library.
233 if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
234 return TypeInfoIsInStandardLibrary(BuiltinTy);
235
236 // Type info for some pointer types to builtin types is defined in the
237 // standard library.
238 if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
239 return TypeInfoIsInStandardLibrary(PointerTy);
240
241 return false;
242 }
243
244 /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
245 /// the given type exists somewhere else, and that we should not emit the type
246 /// information in this translation unit. Assumes that it is not a
247 /// standard-library type.
ShouldUseExternalRTTIDescriptor(CodeGenModule & CGM,QualType Ty)248 static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) {
249 ASTContext &Context = CGM.getContext();
250
251 // If RTTI is disabled, don't consider key functions.
252 if (!Context.getLangOpts().RTTI) return false;
253
254 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
255 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
256 if (!RD->hasDefinition())
257 return false;
258
259 if (!RD->isDynamicClass())
260 return false;
261
262 return !CGM.getVTables().ShouldEmitVTableInThisTU(RD);
263 }
264
265 return false;
266 }
267
268 /// IsIncompleteClassType - Returns whether the given record type is incomplete.
IsIncompleteClassType(const RecordType * RecordTy)269 static bool IsIncompleteClassType(const RecordType *RecordTy) {
270 return !RecordTy->getDecl()->isCompleteDefinition();
271 }
272
273 /// ContainsIncompleteClassType - Returns whether the given type contains an
274 /// incomplete class type. This is true if
275 ///
276 /// * The given type is an incomplete class type.
277 /// * The given type is a pointer type whose pointee type contains an
278 /// incomplete class type.
279 /// * The given type is a member pointer type whose class is an incomplete
280 /// class type.
281 /// * The given type is a member pointer type whoise pointee type contains an
282 /// incomplete class type.
283 /// is an indirect or direct pointer to an incomplete class type.
ContainsIncompleteClassType(QualType Ty)284 static bool ContainsIncompleteClassType(QualType Ty) {
285 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
286 if (IsIncompleteClassType(RecordTy))
287 return true;
288 }
289
290 if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
291 return ContainsIncompleteClassType(PointerTy->getPointeeType());
292
293 if (const MemberPointerType *MemberPointerTy =
294 dyn_cast<MemberPointerType>(Ty)) {
295 // Check if the class type is incomplete.
296 const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
297 if (IsIncompleteClassType(ClassType))
298 return true;
299
300 return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
301 }
302
303 return false;
304 }
305
306 /// getTypeInfoLinkage - Return the linkage that the type info and type info
307 /// name constants should have for the given type.
308 static llvm::GlobalVariable::LinkageTypes
getTypeInfoLinkage(CodeGenModule & CGM,QualType Ty)309 getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) {
310 // Itanium C++ ABI 2.9.5p7:
311 // In addition, it and all of the intermediate abi::__pointer_type_info
312 // structs in the chain down to the abi::__class_type_info for the
313 // incomplete class type must be prevented from resolving to the
314 // corresponding type_info structs for the complete class type, possibly
315 // by making them local static objects. Finally, a dummy class RTTI is
316 // generated for the incomplete type that will not resolve to the final
317 // complete class RTTI (because the latter need not exist), possibly by
318 // making it a local static object.
319 if (ContainsIncompleteClassType(Ty))
320 return llvm::GlobalValue::InternalLinkage;
321
322 switch (Ty->getLinkage()) {
323 case NoLinkage:
324 case InternalLinkage:
325 case UniqueExternalLinkage:
326 return llvm::GlobalValue::InternalLinkage;
327
328 case ExternalLinkage:
329 if (!CGM.getLangOpts().RTTI) {
330 // RTTI is not enabled, which means that this type info struct is going
331 // to be used for exception handling. Give it linkonce_odr linkage.
332 return llvm::GlobalValue::LinkOnceODRLinkage;
333 }
334
335 if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
336 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
337 if (RD->hasAttr<WeakAttr>())
338 return llvm::GlobalValue::WeakODRLinkage;
339 if (RD->isDynamicClass())
340 return CGM.getVTableLinkage(RD);
341 }
342
343 return llvm::GlobalValue::LinkOnceODRLinkage;
344 }
345
346 llvm_unreachable("Invalid linkage!");
347 }
348
349 // CanUseSingleInheritance - Return whether the given record decl has a "single,
350 // public, non-virtual base at offset zero (i.e. the derived class is dynamic
351 // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
CanUseSingleInheritance(const CXXRecordDecl * RD)352 static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
353 // Check the number of bases.
354 if (RD->getNumBases() != 1)
355 return false;
356
357 // Get the base.
358 CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
359
360 // Check that the base is not virtual.
361 if (Base->isVirtual())
362 return false;
363
364 // Check that the base is public.
365 if (Base->getAccessSpecifier() != AS_public)
366 return false;
367
368 // Check that the class is dynamic iff the base is.
369 const CXXRecordDecl *BaseDecl =
370 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
371 if (!BaseDecl->isEmpty() &&
372 BaseDecl->isDynamicClass() != RD->isDynamicClass())
373 return false;
374
375 return true;
376 }
377
BuildVTablePointer(const Type * Ty)378 void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
379 // abi::__class_type_info.
380 static const char * const ClassTypeInfo =
381 "_ZTVN10__cxxabiv117__class_type_infoE";
382 // abi::__si_class_type_info.
383 static const char * const SIClassTypeInfo =
384 "_ZTVN10__cxxabiv120__si_class_type_infoE";
385 // abi::__vmi_class_type_info.
386 static const char * const VMIClassTypeInfo =
387 "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
388
389 const char *VTableName = 0;
390
391 switch (Ty->getTypeClass()) {
392 #define TYPE(Class, Base)
393 #define ABSTRACT_TYPE(Class, Base)
394 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
395 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
396 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
397 #include "clang/AST/TypeNodes.def"
398 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
399
400 case Type::LValueReference:
401 case Type::RValueReference:
402 llvm_unreachable("References shouldn't get here");
403
404 case Type::Builtin:
405 // GCC treats vector and complex types as fundamental types.
406 case Type::Vector:
407 case Type::ExtVector:
408 case Type::Complex:
409 case Type::Atomic:
410 // FIXME: GCC treats block pointers as fundamental types?!
411 case Type::BlockPointer:
412 // abi::__fundamental_type_info.
413 VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
414 break;
415
416 case Type::ConstantArray:
417 case Type::IncompleteArray:
418 case Type::VariableArray:
419 // abi::__array_type_info.
420 VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
421 break;
422
423 case Type::FunctionNoProto:
424 case Type::FunctionProto:
425 // abi::__function_type_info.
426 VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
427 break;
428
429 case Type::Enum:
430 // abi::__enum_type_info.
431 VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
432 break;
433
434 case Type::Record: {
435 const CXXRecordDecl *RD =
436 cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
437
438 if (!RD->hasDefinition() || !RD->getNumBases()) {
439 VTableName = ClassTypeInfo;
440 } else if (CanUseSingleInheritance(RD)) {
441 VTableName = SIClassTypeInfo;
442 } else {
443 VTableName = VMIClassTypeInfo;
444 }
445
446 break;
447 }
448
449 case Type::ObjCObject:
450 // Ignore protocol qualifiers.
451 Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
452
453 // Handle id and Class.
454 if (isa<BuiltinType>(Ty)) {
455 VTableName = ClassTypeInfo;
456 break;
457 }
458
459 assert(isa<ObjCInterfaceType>(Ty));
460 // Fall through.
461
462 case Type::ObjCInterface:
463 if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
464 VTableName = SIClassTypeInfo;
465 } else {
466 VTableName = ClassTypeInfo;
467 }
468 break;
469
470 case Type::ObjCObjectPointer:
471 case Type::Pointer:
472 // abi::__pointer_type_info.
473 VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
474 break;
475
476 case Type::MemberPointer:
477 // abi::__pointer_to_member_type_info.
478 VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
479 break;
480 }
481
482 llvm::Constant *VTable =
483 CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
484
485 llvm::Type *PtrDiffTy =
486 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
487
488 // The vtable address point is 2.
489 llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
490 VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Two);
491 VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
492
493 Fields.push_back(VTable);
494 }
495
496 // maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures
497 // from available_externally to the correct linkage if necessary. An example of
498 // this is:
499 //
500 // struct A {
501 // virtual void f();
502 // };
503 //
504 // const std::type_info &g() {
505 // return typeid(A);
506 // }
507 //
508 // void A::f() { }
509 //
510 // When we're generating the typeid(A) expression, we do not yet know that
511 // A's key function is defined in this translation unit, so we will give the
512 // typeinfo and typename structures available_externally linkage. When A::f
513 // forces the vtable to be generated, we need to change the linkage of the
514 // typeinfo and typename structs, otherwise we'll end up with undefined
515 // externals when linking.
516 static void
maybeUpdateRTTILinkage(CodeGenModule & CGM,llvm::GlobalVariable * GV,QualType Ty)517 maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV,
518 QualType Ty) {
519 // We're only interested in globals with available_externally linkage.
520 if (!GV->hasAvailableExternallyLinkage())
521 return;
522
523 // Get the real linkage for the type.
524 llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
525
526 // If variable is supposed to have available_externally linkage, we don't
527 // need to do anything.
528 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
529 return;
530
531 // Update the typeinfo linkage.
532 GV->setLinkage(Linkage);
533
534 // Get the typename global.
535 SmallString<256> OutName;
536 llvm::raw_svector_ostream Out(OutName);
537 CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
538 Out.flush();
539 StringRef Name = OutName.str();
540
541 llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name);
542
543 assert(TypeNameGV->hasAvailableExternallyLinkage() &&
544 "Type name has different linkage from type info!");
545
546 // And update its linkage.
547 TypeNameGV->setLinkage(Linkage);
548 }
549
BuildTypeInfo(QualType Ty,bool Force)550 llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
551 // We want to operate on the canonical type.
552 Ty = CGM.getContext().getCanonicalType(Ty);
553
554 // Check if we've already emitted an RTTI descriptor for this type.
555 SmallString<256> OutName;
556 llvm::raw_svector_ostream Out(OutName);
557 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
558 Out.flush();
559 StringRef Name = OutName.str();
560
561 llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
562 if (OldGV && !OldGV->isDeclaration()) {
563 maybeUpdateRTTILinkage(CGM, OldGV, Ty);
564
565 return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
566 }
567
568 // Check if there is already an external RTTI descriptor for this type.
569 bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
570 if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
571 return GetAddrOfExternalRTTIDescriptor(Ty);
572
573 // Emit the standard library with external linkage.
574 llvm::GlobalVariable::LinkageTypes Linkage;
575 if (IsStdLib)
576 Linkage = llvm::GlobalValue::ExternalLinkage;
577 else
578 Linkage = getTypeInfoLinkage(CGM, Ty);
579
580 // Add the vtable pointer.
581 BuildVTablePointer(cast<Type>(Ty));
582
583 // And the name.
584 llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
585
586 Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy));
587
588 switch (Ty->getTypeClass()) {
589 #define TYPE(Class, Base)
590 #define ABSTRACT_TYPE(Class, Base)
591 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
592 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
593 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
594 #include "clang/AST/TypeNodes.def"
595 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
596
597 // GCC treats vector types as fundamental types.
598 case Type::Builtin:
599 case Type::Vector:
600 case Type::ExtVector:
601 case Type::Complex:
602 case Type::BlockPointer:
603 // Itanium C++ ABI 2.9.5p4:
604 // abi::__fundamental_type_info adds no data members to std::type_info.
605 break;
606
607 case Type::LValueReference:
608 case Type::RValueReference:
609 llvm_unreachable("References shouldn't get here");
610
611 case Type::ConstantArray:
612 case Type::IncompleteArray:
613 case Type::VariableArray:
614 // Itanium C++ ABI 2.9.5p5:
615 // abi::__array_type_info adds no data members to std::type_info.
616 break;
617
618 case Type::FunctionNoProto:
619 case Type::FunctionProto:
620 // Itanium C++ ABI 2.9.5p5:
621 // abi::__function_type_info adds no data members to std::type_info.
622 break;
623
624 case Type::Enum:
625 // Itanium C++ ABI 2.9.5p5:
626 // abi::__enum_type_info adds no data members to std::type_info.
627 break;
628
629 case Type::Record: {
630 const CXXRecordDecl *RD =
631 cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
632 if (!RD->hasDefinition() || !RD->getNumBases()) {
633 // We don't need to emit any fields.
634 break;
635 }
636
637 if (CanUseSingleInheritance(RD))
638 BuildSIClassTypeInfo(RD);
639 else
640 BuildVMIClassTypeInfo(RD);
641
642 break;
643 }
644
645 case Type::ObjCObject:
646 case Type::ObjCInterface:
647 BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
648 break;
649
650 case Type::ObjCObjectPointer:
651 BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
652 break;
653
654 case Type::Pointer:
655 BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
656 break;
657
658 case Type::MemberPointer:
659 BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
660 break;
661
662 case Type::Atomic:
663 // No fields, at least for the moment.
664 break;
665 }
666
667 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
668
669 llvm::GlobalVariable *GV =
670 new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
671 /*Constant=*/true, Linkage, Init, Name);
672
673 // If there's already an old global variable, replace it with the new one.
674 if (OldGV) {
675 GV->takeName(OldGV);
676 llvm::Constant *NewPtr =
677 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
678 OldGV->replaceAllUsesWith(NewPtr);
679 OldGV->eraseFromParent();
680 }
681
682 // GCC only relies on the uniqueness of the type names, not the
683 // type_infos themselves, so we can emit these as hidden symbols.
684 // But don't do this if we're worried about strict visibility
685 // compatibility.
686 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
687 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
688
689 CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI);
690 CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName);
691 } else {
692 Visibility TypeInfoVisibility = DefaultVisibility;
693 if (CGM.getCodeGenOpts().HiddenWeakVTables &&
694 Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
695 TypeInfoVisibility = HiddenVisibility;
696
697 // The type name should have the same visibility as the type itself.
698 Visibility ExplicitVisibility = Ty->getVisibility();
699 TypeName->setVisibility(CodeGenModule::
700 GetLLVMVisibility(ExplicitVisibility));
701
702 TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility());
703 GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility));
704 }
705
706 GV->setUnnamedAddr(true);
707
708 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
709 }
710
711 /// ComputeQualifierFlags - Compute the pointer type info flags from the
712 /// given qualifier.
ComputeQualifierFlags(Qualifiers Quals)713 static unsigned ComputeQualifierFlags(Qualifiers Quals) {
714 unsigned Flags = 0;
715
716 if (Quals.hasConst())
717 Flags |= RTTIBuilder::PTI_Const;
718 if (Quals.hasVolatile())
719 Flags |= RTTIBuilder::PTI_Volatile;
720 if (Quals.hasRestrict())
721 Flags |= RTTIBuilder::PTI_Restrict;
722
723 return Flags;
724 }
725
726 /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
727 /// for the given Objective-C object type.
BuildObjCObjectTypeInfo(const ObjCObjectType * OT)728 void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
729 // Drop qualifiers.
730 const Type *T = OT->getBaseType().getTypePtr();
731 assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
732
733 // The builtin types are abi::__class_type_infos and don't require
734 // extra fields.
735 if (isa<BuiltinType>(T)) return;
736
737 ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
738 ObjCInterfaceDecl *Super = Class->getSuperClass();
739
740 // Root classes are also __class_type_info.
741 if (!Super) return;
742
743 QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
744
745 // Everything else is single inheritance.
746 llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy);
747 Fields.push_back(BaseTypeInfo);
748 }
749
750 /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
751 /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
BuildSIClassTypeInfo(const CXXRecordDecl * RD)752 void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
753 // Itanium C++ ABI 2.9.5p6b:
754 // It adds to abi::__class_type_info a single member pointing to the
755 // type_info structure for the base type,
756 llvm::Constant *BaseTypeInfo =
757 RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType());
758 Fields.push_back(BaseTypeInfo);
759 }
760
761 namespace {
762 /// SeenBases - Contains virtual and non-virtual bases seen when traversing
763 /// a class hierarchy.
764 struct SeenBases {
765 llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
766 llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
767 };
768 }
769
770 /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
771 /// abi::__vmi_class_type_info.
772 ///
ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier * Base,SeenBases & Bases)773 static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
774 SeenBases &Bases) {
775
776 unsigned Flags = 0;
777
778 const CXXRecordDecl *BaseDecl =
779 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
780
781 if (Base->isVirtual()) {
782 if (Bases.VirtualBases.count(BaseDecl)) {
783 // If this virtual base has been seen before, then the class is diamond
784 // shaped.
785 Flags |= RTTIBuilder::VMI_DiamondShaped;
786 } else {
787 if (Bases.NonVirtualBases.count(BaseDecl))
788 Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
789
790 // Mark the virtual base as seen.
791 Bases.VirtualBases.insert(BaseDecl);
792 }
793 } else {
794 if (Bases.NonVirtualBases.count(BaseDecl)) {
795 // If this non-virtual base has been seen before, then the class has non-
796 // diamond shaped repeated inheritance.
797 Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
798 } else {
799 if (Bases.VirtualBases.count(BaseDecl))
800 Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
801
802 // Mark the non-virtual base as seen.
803 Bases.NonVirtualBases.insert(BaseDecl);
804 }
805 }
806
807 // Walk all bases.
808 for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(),
809 E = BaseDecl->bases_end(); I != E; ++I)
810 Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
811
812 return Flags;
813 }
814
ComputeVMIClassTypeInfoFlags(const CXXRecordDecl * RD)815 static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
816 unsigned Flags = 0;
817 SeenBases Bases;
818
819 // Walk all bases.
820 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
821 E = RD->bases_end(); I != E; ++I)
822 Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
823
824 return Flags;
825 }
826
827 /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
828 /// classes with bases that do not satisfy the abi::__si_class_type_info
829 /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
BuildVMIClassTypeInfo(const CXXRecordDecl * RD)830 void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
831 llvm::Type *UnsignedIntLTy =
832 CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
833
834 // Itanium C++ ABI 2.9.5p6c:
835 // __flags is a word with flags describing details about the class
836 // structure, which may be referenced by using the __flags_masks
837 // enumeration. These flags refer to both direct and indirect bases.
838 unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
839 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
840
841 // Itanium C++ ABI 2.9.5p6c:
842 // __base_count is a word with the number of direct proper base class
843 // descriptions that follow.
844 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
845
846 if (!RD->getNumBases())
847 return;
848
849 llvm::Type *LongLTy =
850 CGM.getTypes().ConvertType(CGM.getContext().LongTy);
851
852 // Now add the base class descriptions.
853
854 // Itanium C++ ABI 2.9.5p6c:
855 // __base_info[] is an array of base class descriptions -- one for every
856 // direct proper base. Each description is of the type:
857 //
858 // struct abi::__base_class_type_info {
859 // public:
860 // const __class_type_info *__base_type;
861 // long __offset_flags;
862 //
863 // enum __offset_flags_masks {
864 // __virtual_mask = 0x1,
865 // __public_mask = 0x2,
866 // __offset_shift = 8
867 // };
868 // };
869 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
870 E = RD->bases_end(); I != E; ++I) {
871 const CXXBaseSpecifier *Base = I;
872
873 // The __base_type member points to the RTTI for the base type.
874 Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType()));
875
876 const CXXRecordDecl *BaseDecl =
877 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
878
879 int64_t OffsetFlags = 0;
880
881 // All but the lower 8 bits of __offset_flags are a signed offset.
882 // For a non-virtual base, this is the offset in the object of the base
883 // subobject. For a virtual base, this is the offset in the virtual table of
884 // the virtual base offset for the virtual base referenced (negative).
885 CharUnits Offset;
886 if (Base->isVirtual())
887 Offset =
888 CGM.getVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
889 else {
890 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
891 Offset = Layout.getBaseClassOffset(BaseDecl);
892 };
893
894 OffsetFlags = Offset.getQuantity() << 8;
895
896 // The low-order byte of __offset_flags contains flags, as given by the
897 // masks from the enumeration __offset_flags_masks.
898 if (Base->isVirtual())
899 OffsetFlags |= BCTI_Virtual;
900 if (Base->getAccessSpecifier() == AS_public)
901 OffsetFlags |= BCTI_Public;
902
903 Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
904 }
905 }
906
907 /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
908 /// used for pointer types.
BuildPointerTypeInfo(QualType PointeeTy)909 void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
910 Qualifiers Quals;
911 QualType UnqualifiedPointeeTy =
912 CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
913
914 // Itanium C++ ABI 2.9.5p7:
915 // __flags is a flag word describing the cv-qualification and other
916 // attributes of the type pointed to
917 unsigned Flags = ComputeQualifierFlags(Quals);
918
919 // Itanium C++ ABI 2.9.5p7:
920 // When the abi::__pbase_type_info is for a direct or indirect pointer to an
921 // incomplete class type, the incomplete target type flag is set.
922 if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
923 Flags |= PTI_Incomplete;
924
925 llvm::Type *UnsignedIntLTy =
926 CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
927 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
928
929 // Itanium C++ ABI 2.9.5p7:
930 // __pointee is a pointer to the std::type_info derivation for the
931 // unqualified type being pointed to.
932 llvm::Constant *PointeeTypeInfo =
933 RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
934 Fields.push_back(PointeeTypeInfo);
935 }
936
937 /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
938 /// struct, used for member pointer types.
BuildPointerToMemberTypeInfo(const MemberPointerType * Ty)939 void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
940 QualType PointeeTy = Ty->getPointeeType();
941
942 Qualifiers Quals;
943 QualType UnqualifiedPointeeTy =
944 CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
945
946 // Itanium C++ ABI 2.9.5p7:
947 // __flags is a flag word describing the cv-qualification and other
948 // attributes of the type pointed to.
949 unsigned Flags = ComputeQualifierFlags(Quals);
950
951 const RecordType *ClassType = cast<RecordType>(Ty->getClass());
952
953 // Itanium C++ ABI 2.9.5p7:
954 // When the abi::__pbase_type_info is for a direct or indirect pointer to an
955 // incomplete class type, the incomplete target type flag is set.
956 if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
957 Flags |= PTI_Incomplete;
958
959 if (IsIncompleteClassType(ClassType))
960 Flags |= PTI_ContainingClassIncomplete;
961
962 llvm::Type *UnsignedIntLTy =
963 CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
964 Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
965
966 // Itanium C++ ABI 2.9.5p7:
967 // __pointee is a pointer to the std::type_info derivation for the
968 // unqualified type being pointed to.
969 llvm::Constant *PointeeTypeInfo =
970 RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
971 Fields.push_back(PointeeTypeInfo);
972
973 // Itanium C++ ABI 2.9.5p9:
974 // __context is a pointer to an abi::__class_type_info corresponding to the
975 // class type containing the member pointed to
976 // (e.g., the "A" in "int A::*").
977 Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0)));
978 }
979
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)980 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
981 bool ForEH) {
982 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
983 // FIXME: should we even be calling this method if RTTI is disabled
984 // and it's not for EH?
985 if (!ForEH && !getContext().getLangOpts().RTTI)
986 return llvm::Constant::getNullValue(Int8PtrTy);
987
988 if (ForEH && Ty->isObjCObjectPointerType() && !LangOpts.NeXTRuntime)
989 return ObjCRuntime->GetEHType(Ty);
990
991 return RTTIBuilder(*this).BuildTypeInfo(Ty);
992 }
993
EmitFundamentalRTTIDescriptor(QualType Type)994 void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) {
995 QualType PointerType = Context.getPointerType(Type);
996 QualType PointerTypeConst = Context.getPointerType(Type.withConst());
997 RTTIBuilder(*this).BuildTypeInfo(Type, true);
998 RTTIBuilder(*this).BuildTypeInfo(PointerType, true);
999 RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
1000 }
1001
EmitFundamentalRTTIDescriptors()1002 void CodeGenModule::EmitFundamentalRTTIDescriptors() {
1003 QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy,
1004 Context.BoolTy, Context.WCharTy,
1005 Context.CharTy, Context.UnsignedCharTy,
1006 Context.SignedCharTy, Context.ShortTy,
1007 Context.UnsignedShortTy, Context.IntTy,
1008 Context.UnsignedIntTy, Context.LongTy,
1009 Context.UnsignedLongTy, Context.LongLongTy,
1010 Context.UnsignedLongLongTy, Context.FloatTy,
1011 Context.DoubleTy, Context.LongDoubleTy,
1012 Context.Char16Ty, Context.Char32Ty };
1013 for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i)
1014 EmitFundamentalRTTIDescriptor(FundamentalTypes[i]);
1015 }
1016