• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGRecordLayout.h - LLVM Record Layout Information ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef CLANG_CODEGEN_CGRECORDLAYOUT_H
11 #define CLANG_CODEGEN_CGRECORDLAYOUT_H
12 
13 #include "clang/AST/CharUnits.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/Basic/LLVM.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/DerivedTypes.h"
18 
19 namespace llvm {
20   class StructType;
21 }
22 
23 namespace clang {
24 namespace CodeGen {
25 
26 /// \brief Helper object for describing how to generate the code for access to a
27 /// bit-field.
28 ///
29 /// This structure is intended to describe the "policy" of how the bit-field
30 /// should be accessed, which may be target, language, or ABI dependent.
31 class CGBitFieldInfo {
32 public:
33   /// Descriptor for a single component of a bit-field access. The entire
34   /// bit-field is constituted of a bitwise OR of all of the individual
35   /// components.
36   ///
37   /// Each component describes an accessed value, which is how the component
38   /// should be transferred to/from memory, and a target placement, which is how
39   /// that component fits into the constituted bit-field. The pseudo-IR for a
40   /// load is:
41   ///
42   ///   %0 = gep %base, 0, FieldIndex
43   ///   %1 = gep (i8*) %0, FieldByteOffset
44   ///   %2 = (i(AccessWidth) *) %1
45   ///   %3 = load %2, align AccessAlignment
46   ///   %4 = shr %3, FieldBitStart
47   ///
48   /// and the composed bit-field is formed as the boolean OR of all accesses,
49   /// masked to TargetBitWidth bits and shifted to TargetBitOffset.
50   struct AccessInfo {
51     /// Offset of the field to load in the LLVM structure, if any.
52     unsigned FieldIndex;
53 
54     /// Byte offset from the field address, if any. This should generally be
55     /// unused as the cleanest IR comes from having a well-constructed LLVM type
56     /// with proper GEP instructions, but sometimes its use is required, for
57     /// example if an access is intended to straddle an LLVM field boundary.
58     CharUnits FieldByteOffset;
59 
60     /// Bit offset in the accessed value to use. The width is implied by \see
61     /// TargetBitWidth.
62     unsigned FieldBitStart;
63 
64     /// Bit width of the memory access to perform.
65     unsigned AccessWidth;
66 
67     /// The alignment of the memory access, or 0 if the default alignment should
68     /// be used.
69     //
70     // FIXME: Remove use of 0 to encode default, instead have IRgen do the right
71     // thing when it generates the code, if avoiding align directives is
72     // desired.
73     CharUnits AccessAlignment;
74 
75     /// Offset for the target value.
76     unsigned TargetBitOffset;
77 
78     /// Number of bits in the access that are destined for the bit-field.
79     unsigned TargetBitWidth;
80   };
81 
82 private:
83   /// The components to use to access the bit-field. We may need up to three
84   /// separate components to support up to i64 bit-field access (4 + 2 + 1 byte
85   /// accesses).
86   //
87   // FIXME: De-hardcode this, just allocate following the struct.
88   AccessInfo Components[3];
89 
90   /// The total size of the bit-field, in bits.
91   unsigned Size;
92 
93   /// The number of access components to use.
94   unsigned NumComponents;
95 
96   /// Whether the bit-field is signed.
97   bool IsSigned : 1;
98 
99 public:
CGBitFieldInfo(unsigned Size,unsigned NumComponents,AccessInfo * _Components,bool IsSigned)100   CGBitFieldInfo(unsigned Size, unsigned NumComponents, AccessInfo *_Components,
101                  bool IsSigned) : Size(Size), NumComponents(NumComponents),
102                                   IsSigned(IsSigned) {
103     assert(NumComponents <= 3 && "invalid number of components!");
104     for (unsigned i = 0; i != NumComponents; ++i)
105       Components[i] = _Components[i];
106 
107     // Check some invariants.
108     unsigned AccessedSize = 0;
109     for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
110       const AccessInfo &AI = getComponent(i);
111       AccessedSize += AI.TargetBitWidth;
112 
113       // We shouldn't try to load 0 bits.
114       assert(AI.TargetBitWidth > 0);
115 
116       // We can't load more bits than we accessed.
117       assert(AI.FieldBitStart + AI.TargetBitWidth <= AI.AccessWidth);
118 
119       // We shouldn't put any bits outside the result size.
120       assert(AI.TargetBitWidth + AI.TargetBitOffset <= Size);
121     }
122 
123     // Check that the total number of target bits matches the total bit-field
124     // size.
125     assert(AccessedSize == Size && "Total size does not match accessed size!");
126   }
127 
128 public:
129   /// \brief Check whether this bit-field access is (i.e., should be sign
130   /// extended on loads).
isSigned()131   bool isSigned() const { return IsSigned; }
132 
133   /// \brief Get the size of the bit-field, in bits.
getSize()134   unsigned getSize() const { return Size; }
135 
136   /// @name Component Access
137   /// @{
138 
getNumComponents()139   unsigned getNumComponents() const { return NumComponents; }
140 
getComponent(unsigned Index)141   const AccessInfo &getComponent(unsigned Index) const {
142     assert(Index < getNumComponents() && "Invalid access!");
143     return Components[Index];
144   }
145 
146   /// @}
147 
148   void print(raw_ostream &OS) const;
149   void dump() const;
150 
151   /// \brief Given a bit-field decl, build an appropriate helper object for
152   /// accessing that field (which is expected to have the given offset and
153   /// size).
154   static CGBitFieldInfo MakeInfo(class CodeGenTypes &Types, const FieldDecl *FD,
155                                  uint64_t FieldOffset, uint64_t FieldSize);
156 
157   /// \brief Given a bit-field decl, build an appropriate helper object for
158   /// accessing that field (which is expected to have the given offset and
159   /// size). The field decl should be known to be contained within a type of at
160   /// least the given size and with the given alignment.
161   static CGBitFieldInfo MakeInfo(CodeGenTypes &Types, const FieldDecl *FD,
162                                  uint64_t FieldOffset, uint64_t FieldSize,
163                                  uint64_t ContainingTypeSizeInBits,
164                                  unsigned ContainingTypeAlign);
165 };
166 
167 /// CGRecordLayout - This class handles struct and union layout info while
168 /// lowering AST types to LLVM types.
169 ///
170 /// These layout objects are only created on demand as IR generation requires.
171 class CGRecordLayout {
172   friend class CodeGenTypes;
173 
174   CGRecordLayout(const CGRecordLayout&); // DO NOT IMPLEMENT
175   void operator=(const CGRecordLayout&); // DO NOT IMPLEMENT
176 
177 private:
178   /// The LLVM type corresponding to this record layout; used when
179   /// laying it out as a complete object.
180   llvm::StructType *CompleteObjectType;
181 
182   /// The LLVM type for the non-virtual part of this record layout;
183   /// used when laying it out as a base subobject.
184   llvm::StructType *BaseSubobjectType;
185 
186   /// Map from (non-bit-field) struct field to the corresponding llvm struct
187   /// type field no. This info is populated by record builder.
188   llvm::DenseMap<const FieldDecl *, unsigned> FieldInfo;
189 
190   /// Map from (bit-field) struct field to the corresponding llvm struct type
191   /// field no. This info is populated by record builder.
192   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
193 
194   // FIXME: Maybe we could use a CXXBaseSpecifier as the key and use a single
195   // map for both virtual and non virtual bases.
196   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
197 
198   /// Map from virtual bases to their field index in the complete object.
199   llvm::DenseMap<const CXXRecordDecl *, unsigned> CompleteObjectVirtualBases;
200 
201   /// False if any direct or indirect subobject of this class, when
202   /// considered as a complete object, requires a non-zero bitpattern
203   /// when zero-initialized.
204   bool IsZeroInitializable : 1;
205 
206   /// False if any direct or indirect subobject of this class, when
207   /// considered as a base subobject, requires a non-zero bitpattern
208   /// when zero-initialized.
209   bool IsZeroInitializableAsBase : 1;
210 
211 public:
CGRecordLayout(llvm::StructType * CompleteObjectType,llvm::StructType * BaseSubobjectType,bool IsZeroInitializable,bool IsZeroInitializableAsBase)212   CGRecordLayout(llvm::StructType *CompleteObjectType,
213                  llvm::StructType *BaseSubobjectType,
214                  bool IsZeroInitializable,
215                  bool IsZeroInitializableAsBase)
216     : CompleteObjectType(CompleteObjectType),
217       BaseSubobjectType(BaseSubobjectType),
218       IsZeroInitializable(IsZeroInitializable),
219       IsZeroInitializableAsBase(IsZeroInitializableAsBase) {}
220 
221   /// \brief Return the "complete object" LLVM type associated with
222   /// this record.
getLLVMType()223   llvm::StructType *getLLVMType() const {
224     return CompleteObjectType;
225   }
226 
227   /// \brief Return the "base subobject" LLVM type associated with
228   /// this record.
getBaseSubobjectLLVMType()229   llvm::StructType *getBaseSubobjectLLVMType() const {
230     return BaseSubobjectType;
231   }
232 
233   /// \brief Check whether this struct can be C++ zero-initialized
234   /// with a zeroinitializer.
isZeroInitializable()235   bool isZeroInitializable() const {
236     return IsZeroInitializable;
237   }
238 
239   /// \brief Check whether this struct can be C++ zero-initialized
240   /// with a zeroinitializer when considered as a base subobject.
isZeroInitializableAsBase()241   bool isZeroInitializableAsBase() const {
242     return IsZeroInitializableAsBase;
243   }
244 
245   /// \brief Return llvm::StructType element number that corresponds to the
246   /// field FD.
getLLVMFieldNo(const FieldDecl * FD)247   unsigned getLLVMFieldNo(const FieldDecl *FD) const {
248     assert(!FD->isBitField() && "Invalid call for bit-field decl!");
249     assert(FieldInfo.count(FD) && "Invalid field for record!");
250     return FieldInfo.lookup(FD);
251   }
252 
getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl * RD)253   unsigned getNonVirtualBaseLLVMFieldNo(const CXXRecordDecl *RD) const {
254     assert(NonVirtualBases.count(RD) && "Invalid non-virtual base!");
255     return NonVirtualBases.lookup(RD);
256   }
257 
258   /// \brief Return the LLVM field index corresponding to the given
259   /// virtual base.  Only valid when operating on the complete object.
getVirtualBaseIndex(const CXXRecordDecl * base)260   unsigned getVirtualBaseIndex(const CXXRecordDecl *base) const {
261     assert(CompleteObjectVirtualBases.count(base) && "Invalid virtual base!");
262     return CompleteObjectVirtualBases.lookup(base);
263   }
264 
265   /// \brief Return the BitFieldInfo that corresponds to the field FD.
getBitFieldInfo(const FieldDecl * FD)266   const CGBitFieldInfo &getBitFieldInfo(const FieldDecl *FD) const {
267     assert(FD->isBitField() && "Invalid call for non bit-field decl!");
268     llvm::DenseMap<const FieldDecl *, CGBitFieldInfo>::const_iterator
269       it = BitFields.find(FD);
270     assert(it != BitFields.end() && "Unable to find bitfield info");
271     return it->second;
272   }
273 
274   void print(raw_ostream &OS) const;
275   void dump() const;
276 };
277 
278 }  // end namespace CodeGen
279 }  // end namespace clang
280 
281 #endif
282