1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50
51 static const char AnnotationSection[] = "llvm.metadata";
52
createCXXABI(CodeGenModule & CGM)53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54 switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55 case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58 }
59
60 llvm_unreachable("invalid C++ ABI kind");
61 }
62
63
CodeGenModule(ASTContext & C,const CodeGenOptions & CGO,llvm::Module & M,const llvm::TargetData & TD,DiagnosticsEngine & diags)64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65 llvm::Module &M, const llvm::TargetData &TD,
66 DiagnosticsEngine &diags)
67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69 ABI(createCXXABI(*this)),
70 Types(*this),
71 TBAA(0),
72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74 RRData(0), CFConstantStringClassRef(0),
75 ConstantStringClassRef(0), NSConstantStringType(0),
76 VMContext(M.getContext()),
77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78 BlockObjectAssign(0), BlockObjectDispose(0),
79 BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81 // Initialize the type cache.
82 llvm::LLVMContext &LLVMContext = M.getContext();
83 VoidTy = llvm::Type::getVoidTy(LLVMContext);
84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88 FloatTy = llvm::Type::getFloatTy(LLVMContext);
89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91 PointerAlignInBytes =
92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95 Int8PtrTy = Int8Ty->getPointerTo(0);
96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98 if (LangOpts.ObjC1)
99 createObjCRuntime();
100 if (LangOpts.OpenCL)
101 createOpenCLRuntime();
102 if (LangOpts.CUDA)
103 createCUDARuntime();
104
105 // Enable TBAA unless it's suppressed.
106 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
107 TBAA = new CodeGenTBAA(Context, VMContext, getLangOpts(),
108 ABI.getMangleContext());
109
110 // If debug info or coverage generation is enabled, create the CGDebugInfo
111 // object.
112 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
113 CodeGenOpts.EmitGcovNotes)
114 DebugInfo = new CGDebugInfo(*this);
115
116 Block.GlobalUniqueCount = 0;
117
118 if (C.getLangOpts().ObjCAutoRefCount)
119 ARCData = new ARCEntrypoints();
120 RRData = new RREntrypoints();
121 }
122
~CodeGenModule()123 CodeGenModule::~CodeGenModule() {
124 delete ObjCRuntime;
125 delete OpenCLRuntime;
126 delete CUDARuntime;
127 delete TheTargetCodeGenInfo;
128 delete &ABI;
129 delete TBAA;
130 delete DebugInfo;
131 delete ARCData;
132 delete RRData;
133 }
134
createObjCRuntime()135 void CodeGenModule::createObjCRuntime() {
136 if (!LangOpts.NeXTRuntime)
137 ObjCRuntime = CreateGNUObjCRuntime(*this);
138 else
139 ObjCRuntime = CreateMacObjCRuntime(*this);
140 }
141
createOpenCLRuntime()142 void CodeGenModule::createOpenCLRuntime() {
143 OpenCLRuntime = new CGOpenCLRuntime(*this);
144 }
145
createCUDARuntime()146 void CodeGenModule::createCUDARuntime() {
147 CUDARuntime = CreateNVCUDARuntime(*this);
148 }
149
Release()150 void CodeGenModule::Release() {
151 EmitDeferred();
152 EmitCXXGlobalInitFunc();
153 EmitCXXGlobalDtorFunc();
154 if (ObjCRuntime)
155 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
156 AddGlobalCtor(ObjCInitFunction);
157 EmitCtorList(GlobalCtors, "llvm.global_ctors");
158 EmitCtorList(GlobalDtors, "llvm.global_dtors");
159 EmitGlobalAnnotations();
160 EmitLLVMUsed();
161
162 SimplifyPersonality();
163
164 if (getCodeGenOpts().EmitDeclMetadata)
165 EmitDeclMetadata();
166
167 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
168 EmitCoverageFile();
169
170 if (DebugInfo)
171 DebugInfo->finalize();
172 }
173
UpdateCompletedType(const TagDecl * TD)174 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
175 // Make sure that this type is translated.
176 Types.UpdateCompletedType(TD);
177 }
178
getTBAAInfo(QualType QTy)179 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
180 if (!TBAA)
181 return 0;
182 return TBAA->getTBAAInfo(QTy);
183 }
184
getTBAAInfoForVTablePtr()185 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
186 if (!TBAA)
187 return 0;
188 return TBAA->getTBAAInfoForVTablePtr();
189 }
190
DecorateInstruction(llvm::Instruction * Inst,llvm::MDNode * TBAAInfo)191 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
192 llvm::MDNode *TBAAInfo) {
193 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
194 }
195
isTargetDarwin() const196 bool CodeGenModule::isTargetDarwin() const {
197 return getContext().getTargetInfo().getTriple().isOSDarwin();
198 }
199
Error(SourceLocation loc,StringRef error)200 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
201 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
202 getDiags().Report(Context.getFullLoc(loc), diagID);
203 }
204
205 /// ErrorUnsupported - Print out an error that codegen doesn't support the
206 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type,bool OmitOnError)207 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
208 bool OmitOnError) {
209 if (OmitOnError && getDiags().hasErrorOccurred())
210 return;
211 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
212 "cannot compile this %0 yet");
213 std::string Msg = Type;
214 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
215 << Msg << S->getSourceRange();
216 }
217
218 /// ErrorUnsupported - Print out an error that codegen doesn't support the
219 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type,bool OmitOnError)220 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
221 bool OmitOnError) {
222 if (OmitOnError && getDiags().hasErrorOccurred())
223 return;
224 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
225 "cannot compile this %0 yet");
226 std::string Msg = Type;
227 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
228 }
229
getSize(CharUnits size)230 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
231 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
232 }
233
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const234 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
235 const NamedDecl *D) const {
236 // Internal definitions always have default visibility.
237 if (GV->hasLocalLinkage()) {
238 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
239 return;
240 }
241
242 // Set visibility for definitions.
243 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
244 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
245 GV->setVisibility(GetLLVMVisibility(LV.visibility()));
246 }
247
248 /// Set the symbol visibility of type information (vtable and RTTI)
249 /// associated with the given type.
setTypeVisibility(llvm::GlobalValue * GV,const CXXRecordDecl * RD,TypeVisibilityKind TVK) const250 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
251 const CXXRecordDecl *RD,
252 TypeVisibilityKind TVK) const {
253 setGlobalVisibility(GV, RD);
254
255 if (!CodeGenOpts.HiddenWeakVTables)
256 return;
257
258 // We never want to drop the visibility for RTTI names.
259 if (TVK == TVK_ForRTTIName)
260 return;
261
262 // We want to drop the visibility to hidden for weak type symbols.
263 // This isn't possible if there might be unresolved references
264 // elsewhere that rely on this symbol being visible.
265
266 // This should be kept roughly in sync with setThunkVisibility
267 // in CGVTables.cpp.
268
269 // Preconditions.
270 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
271 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
272 return;
273
274 // Don't override an explicit visibility attribute.
275 if (RD->getExplicitVisibility())
276 return;
277
278 switch (RD->getTemplateSpecializationKind()) {
279 // We have to disable the optimization if this is an EI definition
280 // because there might be EI declarations in other shared objects.
281 case TSK_ExplicitInstantiationDefinition:
282 case TSK_ExplicitInstantiationDeclaration:
283 return;
284
285 // Every use of a non-template class's type information has to emit it.
286 case TSK_Undeclared:
287 break;
288
289 // In theory, implicit instantiations can ignore the possibility of
290 // an explicit instantiation declaration because there necessarily
291 // must be an EI definition somewhere with default visibility. In
292 // practice, it's possible to have an explicit instantiation for
293 // an arbitrary template class, and linkers aren't necessarily able
294 // to deal with mixed-visibility symbols.
295 case TSK_ExplicitSpecialization:
296 case TSK_ImplicitInstantiation:
297 if (!CodeGenOpts.HiddenWeakTemplateVTables)
298 return;
299 break;
300 }
301
302 // If there's a key function, there may be translation units
303 // that don't have the key function's definition. But ignore
304 // this if we're emitting RTTI under -fno-rtti.
305 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
306 if (Context.getKeyFunction(RD))
307 return;
308 }
309
310 // Otherwise, drop the visibility to hidden.
311 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
312 GV->setUnnamedAddr(true);
313 }
314
getMangledName(GlobalDecl GD)315 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
316 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
317
318 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
319 if (!Str.empty())
320 return Str;
321
322 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
323 IdentifierInfo *II = ND->getIdentifier();
324 assert(II && "Attempt to mangle unnamed decl.");
325
326 Str = II->getName();
327 return Str;
328 }
329
330 SmallString<256> Buffer;
331 llvm::raw_svector_ostream Out(Buffer);
332 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
333 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
334 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
335 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
336 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
337 getCXXABI().getMangleContext().mangleBlock(BD, Out);
338 else
339 getCXXABI().getMangleContext().mangleName(ND, Out);
340
341 // Allocate space for the mangled name.
342 Out.flush();
343 size_t Length = Buffer.size();
344 char *Name = MangledNamesAllocator.Allocate<char>(Length);
345 std::copy(Buffer.begin(), Buffer.end(), Name);
346
347 Str = StringRef(Name, Length);
348
349 return Str;
350 }
351
getBlockMangledName(GlobalDecl GD,MangleBuffer & Buffer,const BlockDecl * BD)352 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
353 const BlockDecl *BD) {
354 MangleContext &MangleCtx = getCXXABI().getMangleContext();
355 const Decl *D = GD.getDecl();
356 llvm::raw_svector_ostream Out(Buffer.getBuffer());
357 if (D == 0)
358 MangleCtx.mangleGlobalBlock(BD, Out);
359 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
360 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
361 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
362 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
363 else
364 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
365 }
366
GetGlobalValue(StringRef Name)367 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
368 return getModule().getNamedValue(Name);
369 }
370
371 /// AddGlobalCtor - Add a function to the list that will be called before
372 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority)373 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
374 // FIXME: Type coercion of void()* types.
375 GlobalCtors.push_back(std::make_pair(Ctor, Priority));
376 }
377
378 /// AddGlobalDtor - Add a function to the list that will be called
379 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority)380 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
381 // FIXME: Type coercion of void()* types.
382 GlobalDtors.push_back(std::make_pair(Dtor, Priority));
383 }
384
EmitCtorList(const CtorList & Fns,const char * GlobalName)385 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
386 // Ctor function type is void()*.
387 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
388 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
389
390 // Get the type of a ctor entry, { i32, void ()* }.
391 llvm::StructType *CtorStructTy =
392 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
393
394 // Construct the constructor and destructor arrays.
395 SmallVector<llvm::Constant*, 8> Ctors;
396 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
397 llvm::Constant *S[] = {
398 llvm::ConstantInt::get(Int32Ty, I->second, false),
399 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
400 };
401 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
402 }
403
404 if (!Ctors.empty()) {
405 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
406 new llvm::GlobalVariable(TheModule, AT, false,
407 llvm::GlobalValue::AppendingLinkage,
408 llvm::ConstantArray::get(AT, Ctors),
409 GlobalName);
410 }
411 }
412
413 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(const FunctionDecl * D)414 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
415 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
416
417 if (Linkage == GVA_Internal)
418 return llvm::Function::InternalLinkage;
419
420 if (D->hasAttr<DLLExportAttr>())
421 return llvm::Function::DLLExportLinkage;
422
423 if (D->hasAttr<WeakAttr>())
424 return llvm::Function::WeakAnyLinkage;
425
426 // In C99 mode, 'inline' functions are guaranteed to have a strong
427 // definition somewhere else, so we can use available_externally linkage.
428 if (Linkage == GVA_C99Inline)
429 return llvm::Function::AvailableExternallyLinkage;
430
431 // Note that Apple's kernel linker doesn't support symbol
432 // coalescing, so we need to avoid linkonce and weak linkages there.
433 // Normally, this means we just map to internal, but for explicit
434 // instantiations we'll map to external.
435
436 // In C++, the compiler has to emit a definition in every translation unit
437 // that references the function. We should use linkonce_odr because
438 // a) if all references in this translation unit are optimized away, we
439 // don't need to codegen it. b) if the function persists, it needs to be
440 // merged with other definitions. c) C++ has the ODR, so we know the
441 // definition is dependable.
442 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
443 return !Context.getLangOpts().AppleKext
444 ? llvm::Function::LinkOnceODRLinkage
445 : llvm::Function::InternalLinkage;
446
447 // An explicit instantiation of a template has weak linkage, since
448 // explicit instantiations can occur in multiple translation units
449 // and must all be equivalent. However, we are not allowed to
450 // throw away these explicit instantiations.
451 if (Linkage == GVA_ExplicitTemplateInstantiation)
452 return !Context.getLangOpts().AppleKext
453 ? llvm::Function::WeakODRLinkage
454 : llvm::Function::ExternalLinkage;
455
456 // Otherwise, we have strong external linkage.
457 assert(Linkage == GVA_StrongExternal);
458 return llvm::Function::ExternalLinkage;
459 }
460
461
462 /// SetFunctionDefinitionAttributes - Set attributes for a global.
463 ///
464 /// FIXME: This is currently only done for aliases and functions, but not for
465 /// variables (these details are set in EmitGlobalVarDefinition for variables).
SetFunctionDefinitionAttributes(const FunctionDecl * D,llvm::GlobalValue * GV)466 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
467 llvm::GlobalValue *GV) {
468 SetCommonAttributes(D, GV);
469 }
470
SetLLVMFunctionAttributes(const Decl * D,const CGFunctionInfo & Info,llvm::Function * F)471 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
472 const CGFunctionInfo &Info,
473 llvm::Function *F) {
474 unsigned CallingConv;
475 AttributeListType AttributeList;
476 ConstructAttributeList(Info, D, AttributeList, CallingConv);
477 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
478 AttributeList.size()));
479 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
480 }
481
482 /// Determines whether the language options require us to model
483 /// unwind exceptions. We treat -fexceptions as mandating this
484 /// except under the fragile ObjC ABI with only ObjC exceptions
485 /// enabled. This means, for example, that C with -fexceptions
486 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)487 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
488 // If exceptions are completely disabled, obviously this is false.
489 if (!LangOpts.Exceptions) return false;
490
491 // If C++ exceptions are enabled, this is true.
492 if (LangOpts.CXXExceptions) return true;
493
494 // If ObjC exceptions are enabled, this depends on the ABI.
495 if (LangOpts.ObjCExceptions) {
496 if (!LangOpts.ObjCNonFragileABI) return false;
497 }
498
499 return true;
500 }
501
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)502 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
503 llvm::Function *F) {
504 if (CodeGenOpts.UnwindTables)
505 F->setHasUWTable();
506
507 if (!hasUnwindExceptions(LangOpts))
508 F->addFnAttr(llvm::Attribute::NoUnwind);
509
510 if (D->hasAttr<NakedAttr>()) {
511 // Naked implies noinline: we should not be inlining such functions.
512 F->addFnAttr(llvm::Attribute::Naked);
513 F->addFnAttr(llvm::Attribute::NoInline);
514 }
515
516 if (D->hasAttr<NoInlineAttr>())
517 F->addFnAttr(llvm::Attribute::NoInline);
518
519 // (noinline wins over always_inline, and we can't specify both in IR)
520 if (D->hasAttr<AlwaysInlineAttr>() &&
521 !F->hasFnAttr(llvm::Attribute::NoInline))
522 F->addFnAttr(llvm::Attribute::AlwaysInline);
523
524 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
525 F->setUnnamedAddr(true);
526
527 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
528 F->addFnAttr(llvm::Attribute::StackProtect);
529 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
530 F->addFnAttr(llvm::Attribute::StackProtectReq);
531
532 if (LangOpts.AddressSanitizer) {
533 // When AddressSanitizer is enabled, set AddressSafety attribute
534 // unless __attribute__((no_address_safety_analysis)) is used.
535 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
536 F->addFnAttr(llvm::Attribute::AddressSafety);
537 }
538
539 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
540 if (alignment)
541 F->setAlignment(alignment);
542
543 // C++ ABI requires 2-byte alignment for member functions.
544 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
545 F->setAlignment(2);
546 }
547
SetCommonAttributes(const Decl * D,llvm::GlobalValue * GV)548 void CodeGenModule::SetCommonAttributes(const Decl *D,
549 llvm::GlobalValue *GV) {
550 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
551 setGlobalVisibility(GV, ND);
552 else
553 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
554
555 if (D->hasAttr<UsedAttr>())
556 AddUsedGlobal(GV);
557
558 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
559 GV->setSection(SA->getName());
560
561 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
562 }
563
SetInternalFunctionAttributes(const Decl * D,llvm::Function * F,const CGFunctionInfo & FI)564 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
565 llvm::Function *F,
566 const CGFunctionInfo &FI) {
567 SetLLVMFunctionAttributes(D, FI, F);
568 SetLLVMFunctionAttributesForDefinition(D, F);
569
570 F->setLinkage(llvm::Function::InternalLinkage);
571
572 SetCommonAttributes(D, F);
573 }
574
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction)575 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
576 llvm::Function *F,
577 bool IsIncompleteFunction) {
578 if (unsigned IID = F->getIntrinsicID()) {
579 // If this is an intrinsic function, set the function's attributes
580 // to the intrinsic's attributes.
581 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
582 return;
583 }
584
585 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
586
587 if (!IsIncompleteFunction)
588 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
589
590 // Only a few attributes are set on declarations; these may later be
591 // overridden by a definition.
592
593 if (FD->hasAttr<DLLImportAttr>()) {
594 F->setLinkage(llvm::Function::DLLImportLinkage);
595 } else if (FD->hasAttr<WeakAttr>() ||
596 FD->isWeakImported()) {
597 // "extern_weak" is overloaded in LLVM; we probably should have
598 // separate linkage types for this.
599 F->setLinkage(llvm::Function::ExternalWeakLinkage);
600 } else {
601 F->setLinkage(llvm::Function::ExternalLinkage);
602
603 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
604 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
605 F->setVisibility(GetLLVMVisibility(LV.visibility()));
606 }
607 }
608
609 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
610 F->setSection(SA->getName());
611 }
612
AddUsedGlobal(llvm::GlobalValue * GV)613 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
614 assert(!GV->isDeclaration() &&
615 "Only globals with definition can force usage.");
616 LLVMUsed.push_back(GV);
617 }
618
EmitLLVMUsed()619 void CodeGenModule::EmitLLVMUsed() {
620 // Don't create llvm.used if there is no need.
621 if (LLVMUsed.empty())
622 return;
623
624 // Convert LLVMUsed to what ConstantArray needs.
625 SmallVector<llvm::Constant*, 8> UsedArray;
626 UsedArray.resize(LLVMUsed.size());
627 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
628 UsedArray[i] =
629 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
630 Int8PtrTy);
631 }
632
633 if (UsedArray.empty())
634 return;
635 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
636
637 llvm::GlobalVariable *GV =
638 new llvm::GlobalVariable(getModule(), ATy, false,
639 llvm::GlobalValue::AppendingLinkage,
640 llvm::ConstantArray::get(ATy, UsedArray),
641 "llvm.used");
642
643 GV->setSection("llvm.metadata");
644 }
645
EmitDeferred()646 void CodeGenModule::EmitDeferred() {
647 // Emit code for any potentially referenced deferred decls. Since a
648 // previously unused static decl may become used during the generation of code
649 // for a static function, iterate until no changes are made.
650
651 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
652 if (!DeferredVTables.empty()) {
653 const CXXRecordDecl *RD = DeferredVTables.back();
654 DeferredVTables.pop_back();
655 getVTables().GenerateClassData(getVTableLinkage(RD), RD);
656 continue;
657 }
658
659 GlobalDecl D = DeferredDeclsToEmit.back();
660 DeferredDeclsToEmit.pop_back();
661
662 // Check to see if we've already emitted this. This is necessary
663 // for a couple of reasons: first, decls can end up in the
664 // deferred-decls queue multiple times, and second, decls can end
665 // up with definitions in unusual ways (e.g. by an extern inline
666 // function acquiring a strong function redefinition). Just
667 // ignore these cases.
668 //
669 // TODO: That said, looking this up multiple times is very wasteful.
670 StringRef Name = getMangledName(D);
671 llvm::GlobalValue *CGRef = GetGlobalValue(Name);
672 assert(CGRef && "Deferred decl wasn't referenced?");
673
674 if (!CGRef->isDeclaration())
675 continue;
676
677 // GlobalAlias::isDeclaration() defers to the aliasee, but for our
678 // purposes an alias counts as a definition.
679 if (isa<llvm::GlobalAlias>(CGRef))
680 continue;
681
682 // Otherwise, emit the definition and move on to the next one.
683 EmitGlobalDefinition(D);
684 }
685 }
686
EmitGlobalAnnotations()687 void CodeGenModule::EmitGlobalAnnotations() {
688 if (Annotations.empty())
689 return;
690
691 // Create a new global variable for the ConstantStruct in the Module.
692 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
693 Annotations[0]->getType(), Annotations.size()), Annotations);
694 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
695 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
696 "llvm.global.annotations");
697 gv->setSection(AnnotationSection);
698 }
699
EmitAnnotationString(llvm::StringRef Str)700 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
701 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
702 if (i != AnnotationStrings.end())
703 return i->second;
704
705 // Not found yet, create a new global.
706 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
707 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
708 true, llvm::GlobalValue::PrivateLinkage, s, ".str");
709 gv->setSection(AnnotationSection);
710 gv->setUnnamedAddr(true);
711 AnnotationStrings[Str] = gv;
712 return gv;
713 }
714
EmitAnnotationUnit(SourceLocation Loc)715 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
716 SourceManager &SM = getContext().getSourceManager();
717 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
718 if (PLoc.isValid())
719 return EmitAnnotationString(PLoc.getFilename());
720 return EmitAnnotationString(SM.getBufferName(Loc));
721 }
722
EmitAnnotationLineNo(SourceLocation L)723 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
724 SourceManager &SM = getContext().getSourceManager();
725 PresumedLoc PLoc = SM.getPresumedLoc(L);
726 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
727 SM.getExpansionLineNumber(L);
728 return llvm::ConstantInt::get(Int32Ty, LineNo);
729 }
730
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)731 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
732 const AnnotateAttr *AA,
733 SourceLocation L) {
734 // Get the globals for file name, annotation, and the line number.
735 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
736 *UnitGV = EmitAnnotationUnit(L),
737 *LineNoCst = EmitAnnotationLineNo(L);
738
739 // Create the ConstantStruct for the global annotation.
740 llvm::Constant *Fields[4] = {
741 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
742 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
743 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
744 LineNoCst
745 };
746 return llvm::ConstantStruct::getAnon(Fields);
747 }
748
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)749 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
750 llvm::GlobalValue *GV) {
751 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
752 // Get the struct elements for these annotations.
753 for (specific_attr_iterator<AnnotateAttr>
754 ai = D->specific_attr_begin<AnnotateAttr>(),
755 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
756 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
757 }
758
MayDeferGeneration(const ValueDecl * Global)759 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
760 // Never defer when EmitAllDecls is specified.
761 if (LangOpts.EmitAllDecls)
762 return false;
763
764 return !getContext().DeclMustBeEmitted(Global);
765 }
766
GetWeakRefReference(const ValueDecl * VD)767 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
768 const AliasAttr *AA = VD->getAttr<AliasAttr>();
769 assert(AA && "No alias?");
770
771 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
772
773 // See if there is already something with the target's name in the module.
774 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
775
776 llvm::Constant *Aliasee;
777 if (isa<llvm::FunctionType>(DeclTy))
778 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
779 /*ForVTable=*/false);
780 else
781 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
782 llvm::PointerType::getUnqual(DeclTy), 0);
783 if (!Entry) {
784 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
785 F->setLinkage(llvm::Function::ExternalWeakLinkage);
786 WeakRefReferences.insert(F);
787 }
788
789 return Aliasee;
790 }
791
EmitGlobal(GlobalDecl GD)792 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
793 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
794
795 // Weak references don't produce any output by themselves.
796 if (Global->hasAttr<WeakRefAttr>())
797 return;
798
799 // If this is an alias definition (which otherwise looks like a declaration)
800 // emit it now.
801 if (Global->hasAttr<AliasAttr>())
802 return EmitAliasDefinition(GD);
803
804 // If this is CUDA, be selective about which declarations we emit.
805 if (LangOpts.CUDA) {
806 if (CodeGenOpts.CUDAIsDevice) {
807 if (!Global->hasAttr<CUDADeviceAttr>() &&
808 !Global->hasAttr<CUDAGlobalAttr>() &&
809 !Global->hasAttr<CUDAConstantAttr>() &&
810 !Global->hasAttr<CUDASharedAttr>())
811 return;
812 } else {
813 if (!Global->hasAttr<CUDAHostAttr>() && (
814 Global->hasAttr<CUDADeviceAttr>() ||
815 Global->hasAttr<CUDAConstantAttr>() ||
816 Global->hasAttr<CUDASharedAttr>()))
817 return;
818 }
819 }
820
821 // Ignore declarations, they will be emitted on their first use.
822 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
823 // Forward declarations are emitted lazily on first use.
824 if (!FD->doesThisDeclarationHaveABody()) {
825 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
826 return;
827
828 const FunctionDecl *InlineDefinition = 0;
829 FD->getBody(InlineDefinition);
830
831 StringRef MangledName = getMangledName(GD);
832 DeferredDecls.erase(MangledName);
833 EmitGlobalDefinition(InlineDefinition);
834 return;
835 }
836 } else {
837 const VarDecl *VD = cast<VarDecl>(Global);
838 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
839
840 if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
841 return;
842 }
843
844 // Defer code generation when possible if this is a static definition, inline
845 // function etc. These we only want to emit if they are used.
846 if (!MayDeferGeneration(Global)) {
847 // Emit the definition if it can't be deferred.
848 EmitGlobalDefinition(GD);
849 return;
850 }
851
852 // If we're deferring emission of a C++ variable with an
853 // initializer, remember the order in which it appeared in the file.
854 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
855 cast<VarDecl>(Global)->hasInit()) {
856 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
857 CXXGlobalInits.push_back(0);
858 }
859
860 // If the value has already been used, add it directly to the
861 // DeferredDeclsToEmit list.
862 StringRef MangledName = getMangledName(GD);
863 if (GetGlobalValue(MangledName))
864 DeferredDeclsToEmit.push_back(GD);
865 else {
866 // Otherwise, remember that we saw a deferred decl with this name. The
867 // first use of the mangled name will cause it to move into
868 // DeferredDeclsToEmit.
869 DeferredDecls[MangledName] = GD;
870 }
871 }
872
873 namespace {
874 struct FunctionIsDirectlyRecursive :
875 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
876 const StringRef Name;
877 const Builtin::Context &BI;
878 bool Result;
FunctionIsDirectlyRecursive__anon72b48a5f0111::FunctionIsDirectlyRecursive879 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
880 Name(N), BI(C), Result(false) {
881 }
882 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
883
TraverseCallExpr__anon72b48a5f0111::FunctionIsDirectlyRecursive884 bool TraverseCallExpr(CallExpr *E) {
885 const FunctionDecl *FD = E->getDirectCallee();
886 if (!FD)
887 return true;
888 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
889 if (Attr && Name == Attr->getLabel()) {
890 Result = true;
891 return false;
892 }
893 unsigned BuiltinID = FD->getBuiltinID();
894 if (!BuiltinID)
895 return true;
896 StringRef BuiltinName = BI.GetName(BuiltinID);
897 if (BuiltinName.startswith("__builtin_") &&
898 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
899 Result = true;
900 return false;
901 }
902 return true;
903 }
904 };
905 }
906
907 // isTriviallyRecursive - Check if this function calls another
908 // decl that, because of the asm attribute or the other decl being a builtin,
909 // ends up pointing to itself.
910 bool
isTriviallyRecursive(const FunctionDecl * FD)911 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
912 StringRef Name;
913 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
914 // asm labels are a special kind of mangling we have to support.
915 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
916 if (!Attr)
917 return false;
918 Name = Attr->getLabel();
919 } else {
920 Name = FD->getName();
921 }
922
923 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
924 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
925 return Walker.Result;
926 }
927
928 bool
shouldEmitFunction(const FunctionDecl * F)929 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
930 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
931 return true;
932 if (CodeGenOpts.OptimizationLevel == 0 &&
933 !F->hasAttr<AlwaysInlineAttr>())
934 return false;
935 // PR9614. Avoid cases where the source code is lying to us. An available
936 // externally function should have an equivalent function somewhere else,
937 // but a function that calls itself is clearly not equivalent to the real
938 // implementation.
939 // This happens in glibc's btowc and in some configure checks.
940 return !isTriviallyRecursive(F);
941 }
942
EmitGlobalDefinition(GlobalDecl GD)943 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
944 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
945
946 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
947 Context.getSourceManager(),
948 "Generating code for declaration");
949
950 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
951 // At -O0, don't generate IR for functions with available_externally
952 // linkage.
953 if (!shouldEmitFunction(Function))
954 return;
955
956 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
957 // Make sure to emit the definition(s) before we emit the thunks.
958 // This is necessary for the generation of certain thunks.
959 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
960 EmitCXXConstructor(CD, GD.getCtorType());
961 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
962 EmitCXXDestructor(DD, GD.getDtorType());
963 else
964 EmitGlobalFunctionDefinition(GD);
965
966 if (Method->isVirtual())
967 getVTables().EmitThunks(GD);
968
969 return;
970 }
971
972 return EmitGlobalFunctionDefinition(GD);
973 }
974
975 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
976 return EmitGlobalVarDefinition(VD);
977
978 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
979 }
980
981 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
982 /// module, create and return an llvm Function with the specified type. If there
983 /// is something in the module with the specified name, return it potentially
984 /// bitcasted to the right type.
985 ///
986 /// If D is non-null, it specifies a decl that correspond to this. This is used
987 /// to set the attributes on the function when it is first created.
988 llvm::Constant *
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl D,bool ForVTable,llvm::Attributes ExtraAttrs)989 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
990 llvm::Type *Ty,
991 GlobalDecl D, bool ForVTable,
992 llvm::Attributes ExtraAttrs) {
993 // Lookup the entry, lazily creating it if necessary.
994 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
995 if (Entry) {
996 if (WeakRefReferences.count(Entry)) {
997 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
998 if (FD && !FD->hasAttr<WeakAttr>())
999 Entry->setLinkage(llvm::Function::ExternalLinkage);
1000
1001 WeakRefReferences.erase(Entry);
1002 }
1003
1004 if (Entry->getType()->getElementType() == Ty)
1005 return Entry;
1006
1007 // Make sure the result is of the correct type.
1008 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1009 }
1010
1011 // This function doesn't have a complete type (for example, the return
1012 // type is an incomplete struct). Use a fake type instead, and make
1013 // sure not to try to set attributes.
1014 bool IsIncompleteFunction = false;
1015
1016 llvm::FunctionType *FTy;
1017 if (isa<llvm::FunctionType>(Ty)) {
1018 FTy = cast<llvm::FunctionType>(Ty);
1019 } else {
1020 FTy = llvm::FunctionType::get(VoidTy, false);
1021 IsIncompleteFunction = true;
1022 }
1023
1024 llvm::Function *F = llvm::Function::Create(FTy,
1025 llvm::Function::ExternalLinkage,
1026 MangledName, &getModule());
1027 assert(F->getName() == MangledName && "name was uniqued!");
1028 if (D.getDecl())
1029 SetFunctionAttributes(D, F, IsIncompleteFunction);
1030 if (ExtraAttrs != llvm::Attribute::None)
1031 F->addFnAttr(ExtraAttrs);
1032
1033 // This is the first use or definition of a mangled name. If there is a
1034 // deferred decl with this name, remember that we need to emit it at the end
1035 // of the file.
1036 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1037 if (DDI != DeferredDecls.end()) {
1038 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1039 // list, and remove it from DeferredDecls (since we don't need it anymore).
1040 DeferredDeclsToEmit.push_back(DDI->second);
1041 DeferredDecls.erase(DDI);
1042
1043 // Otherwise, there are cases we have to worry about where we're
1044 // using a declaration for which we must emit a definition but where
1045 // we might not find a top-level definition:
1046 // - member functions defined inline in their classes
1047 // - friend functions defined inline in some class
1048 // - special member functions with implicit definitions
1049 // If we ever change our AST traversal to walk into class methods,
1050 // this will be unnecessary.
1051 //
1052 // We also don't emit a definition for a function if it's going to be an entry
1053 // in a vtable, unless it's already marked as used.
1054 } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1055 // Look for a declaration that's lexically in a record.
1056 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1057 do {
1058 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1059 if (FD->isImplicit() && !ForVTable) {
1060 assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1061 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1062 break;
1063 } else if (FD->doesThisDeclarationHaveABody()) {
1064 DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1065 break;
1066 }
1067 }
1068 FD = FD->getPreviousDecl();
1069 } while (FD);
1070 }
1071
1072 // Make sure the result is of the requested type.
1073 if (!IsIncompleteFunction) {
1074 assert(F->getType()->getElementType() == Ty);
1075 return F;
1076 }
1077
1078 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1079 return llvm::ConstantExpr::getBitCast(F, PTy);
1080 }
1081
1082 /// GetAddrOfFunction - Return the address of the given function. If Ty is
1083 /// non-null, then this function will use the specified type if it has to
1084 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable)1085 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1086 llvm::Type *Ty,
1087 bool ForVTable) {
1088 // If there was no specific requested type, just convert it now.
1089 if (!Ty)
1090 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1091
1092 StringRef MangledName = getMangledName(GD);
1093 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1094 }
1095
1096 /// CreateRuntimeFunction - Create a new runtime function with the specified
1097 /// type and name.
1098 llvm::Constant *
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::Attributes ExtraAttrs)1099 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1100 StringRef Name,
1101 llvm::Attributes ExtraAttrs) {
1102 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1103 ExtraAttrs);
1104 }
1105
1106 /// isTypeConstant - Determine whether an object of this type can be emitted
1107 /// as a constant.
1108 ///
1109 /// If ExcludeCtor is true, the duration when the object's constructor runs
1110 /// will not be considered. The caller will need to verify that the object is
1111 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)1112 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1113 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1114 return false;
1115
1116 if (Context.getLangOpts().CPlusPlus) {
1117 if (const CXXRecordDecl *Record
1118 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1119 return ExcludeCtor && !Record->hasMutableFields() &&
1120 Record->hasTrivialDestructor();
1121 }
1122
1123 return true;
1124 }
1125
1126 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1127 /// create and return an llvm GlobalVariable with the specified type. If there
1128 /// is something in the module with the specified name, return it potentially
1129 /// bitcasted to the right type.
1130 ///
1131 /// If D is non-null, it specifies a decl that correspond to this. This is used
1132 /// to set the attributes on the global when it is first created.
1133 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::PointerType * Ty,const VarDecl * D,bool UnnamedAddr)1134 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1135 llvm::PointerType *Ty,
1136 const VarDecl *D,
1137 bool UnnamedAddr) {
1138 // Lookup the entry, lazily creating it if necessary.
1139 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1140 if (Entry) {
1141 if (WeakRefReferences.count(Entry)) {
1142 if (D && !D->hasAttr<WeakAttr>())
1143 Entry->setLinkage(llvm::Function::ExternalLinkage);
1144
1145 WeakRefReferences.erase(Entry);
1146 }
1147
1148 if (UnnamedAddr)
1149 Entry->setUnnamedAddr(true);
1150
1151 if (Entry->getType() == Ty)
1152 return Entry;
1153
1154 // Make sure the result is of the correct type.
1155 return llvm::ConstantExpr::getBitCast(Entry, Ty);
1156 }
1157
1158 // This is the first use or definition of a mangled name. If there is a
1159 // deferred decl with this name, remember that we need to emit it at the end
1160 // of the file.
1161 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1162 if (DDI != DeferredDecls.end()) {
1163 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1164 // list, and remove it from DeferredDecls (since we don't need it anymore).
1165 DeferredDeclsToEmit.push_back(DDI->second);
1166 DeferredDecls.erase(DDI);
1167 }
1168
1169 llvm::GlobalVariable *GV =
1170 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1171 llvm::GlobalValue::ExternalLinkage,
1172 0, MangledName, 0,
1173 false, Ty->getAddressSpace());
1174
1175 // Handle things which are present even on external declarations.
1176 if (D) {
1177 // FIXME: This code is overly simple and should be merged with other global
1178 // handling.
1179 GV->setConstant(isTypeConstant(D->getType(), false));
1180
1181 // Set linkage and visibility in case we never see a definition.
1182 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1183 if (LV.linkage() != ExternalLinkage) {
1184 // Don't set internal linkage on declarations.
1185 } else {
1186 if (D->hasAttr<DLLImportAttr>())
1187 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1188 else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1189 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1190
1191 // Set visibility on a declaration only if it's explicit.
1192 if (LV.visibilityExplicit())
1193 GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1194 }
1195
1196 GV->setThreadLocal(D->isThreadSpecified());
1197 }
1198
1199 return GV;
1200 }
1201
1202
1203 llvm::GlobalVariable *
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage)1204 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1205 llvm::Type *Ty,
1206 llvm::GlobalValue::LinkageTypes Linkage) {
1207 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1208 llvm::GlobalVariable *OldGV = 0;
1209
1210
1211 if (GV) {
1212 // Check if the variable has the right type.
1213 if (GV->getType()->getElementType() == Ty)
1214 return GV;
1215
1216 // Because C++ name mangling, the only way we can end up with an already
1217 // existing global with the same name is if it has been declared extern "C".
1218 assert(GV->isDeclaration() && "Declaration has wrong type!");
1219 OldGV = GV;
1220 }
1221
1222 // Create a new variable.
1223 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1224 Linkage, 0, Name);
1225
1226 if (OldGV) {
1227 // Replace occurrences of the old variable if needed.
1228 GV->takeName(OldGV);
1229
1230 if (!OldGV->use_empty()) {
1231 llvm::Constant *NewPtrForOldDecl =
1232 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1233 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1234 }
1235
1236 OldGV->eraseFromParent();
1237 }
1238
1239 return GV;
1240 }
1241
1242 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1243 /// given global variable. If Ty is non-null and if the global doesn't exist,
1244 /// then it will be created with the specified type instead of whatever the
1245 /// normal requested type would be.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty)1246 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1247 llvm::Type *Ty) {
1248 assert(D->hasGlobalStorage() && "Not a global variable");
1249 QualType ASTTy = D->getType();
1250 if (Ty == 0)
1251 Ty = getTypes().ConvertTypeForMem(ASTTy);
1252
1253 llvm::PointerType *PTy =
1254 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1255
1256 StringRef MangledName = getMangledName(D);
1257 return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1258 }
1259
1260 /// CreateRuntimeVariable - Create a new runtime global variable with the
1261 /// specified type and name.
1262 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)1263 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1264 StringRef Name) {
1265 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1266 true);
1267 }
1268
EmitTentativeDefinition(const VarDecl * D)1269 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1270 assert(!D->getInit() && "Cannot emit definite definitions here!");
1271
1272 if (MayDeferGeneration(D)) {
1273 // If we have not seen a reference to this variable yet, place it
1274 // into the deferred declarations table to be emitted if needed
1275 // later.
1276 StringRef MangledName = getMangledName(D);
1277 if (!GetGlobalValue(MangledName)) {
1278 DeferredDecls[MangledName] = D;
1279 return;
1280 }
1281 }
1282
1283 // The tentative definition is the only definition.
1284 EmitGlobalVarDefinition(D);
1285 }
1286
EmitVTable(CXXRecordDecl * Class,bool DefinitionRequired)1287 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1288 if (DefinitionRequired)
1289 getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1290 }
1291
1292 llvm::GlobalVariable::LinkageTypes
getVTableLinkage(const CXXRecordDecl * RD)1293 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1294 if (RD->getLinkage() != ExternalLinkage)
1295 return llvm::GlobalVariable::InternalLinkage;
1296
1297 if (const CXXMethodDecl *KeyFunction
1298 = RD->getASTContext().getKeyFunction(RD)) {
1299 // If this class has a key function, use that to determine the linkage of
1300 // the vtable.
1301 const FunctionDecl *Def = 0;
1302 if (KeyFunction->hasBody(Def))
1303 KeyFunction = cast<CXXMethodDecl>(Def);
1304
1305 switch (KeyFunction->getTemplateSpecializationKind()) {
1306 case TSK_Undeclared:
1307 case TSK_ExplicitSpecialization:
1308 // When compiling with optimizations turned on, we emit all vtables,
1309 // even if the key function is not defined in the current translation
1310 // unit. If this is the case, use available_externally linkage.
1311 if (!Def && CodeGenOpts.OptimizationLevel)
1312 return llvm::GlobalVariable::AvailableExternallyLinkage;
1313
1314 if (KeyFunction->isInlined())
1315 return !Context.getLangOpts().AppleKext ?
1316 llvm::GlobalVariable::LinkOnceODRLinkage :
1317 llvm::Function::InternalLinkage;
1318
1319 return llvm::GlobalVariable::ExternalLinkage;
1320
1321 case TSK_ImplicitInstantiation:
1322 return !Context.getLangOpts().AppleKext ?
1323 llvm::GlobalVariable::LinkOnceODRLinkage :
1324 llvm::Function::InternalLinkage;
1325
1326 case TSK_ExplicitInstantiationDefinition:
1327 return !Context.getLangOpts().AppleKext ?
1328 llvm::GlobalVariable::WeakODRLinkage :
1329 llvm::Function::InternalLinkage;
1330
1331 case TSK_ExplicitInstantiationDeclaration:
1332 // FIXME: Use available_externally linkage. However, this currently
1333 // breaks LLVM's build due to undefined symbols.
1334 // return llvm::GlobalVariable::AvailableExternallyLinkage;
1335 return !Context.getLangOpts().AppleKext ?
1336 llvm::GlobalVariable::LinkOnceODRLinkage :
1337 llvm::Function::InternalLinkage;
1338 }
1339 }
1340
1341 if (Context.getLangOpts().AppleKext)
1342 return llvm::Function::InternalLinkage;
1343
1344 switch (RD->getTemplateSpecializationKind()) {
1345 case TSK_Undeclared:
1346 case TSK_ExplicitSpecialization:
1347 case TSK_ImplicitInstantiation:
1348 // FIXME: Use available_externally linkage. However, this currently
1349 // breaks LLVM's build due to undefined symbols.
1350 // return llvm::GlobalVariable::AvailableExternallyLinkage;
1351 case TSK_ExplicitInstantiationDeclaration:
1352 return llvm::GlobalVariable::LinkOnceODRLinkage;
1353
1354 case TSK_ExplicitInstantiationDefinition:
1355 return llvm::GlobalVariable::WeakODRLinkage;
1356 }
1357
1358 llvm_unreachable("Invalid TemplateSpecializationKind!");
1359 }
1360
GetTargetTypeStoreSize(llvm::Type * Ty) const1361 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1362 return Context.toCharUnitsFromBits(
1363 TheTargetData.getTypeStoreSizeInBits(Ty));
1364 }
1365
1366 llvm::Constant *
MaybeEmitGlobalStdInitializerListInitializer(const VarDecl * D,const Expr * rawInit)1367 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1368 const Expr *rawInit) {
1369 ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1370 if (const ExprWithCleanups *withCleanups =
1371 dyn_cast<ExprWithCleanups>(rawInit)) {
1372 cleanups = withCleanups->getObjects();
1373 rawInit = withCleanups->getSubExpr();
1374 }
1375
1376 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1377 if (!init || !init->initializesStdInitializerList() ||
1378 init->getNumInits() == 0)
1379 return 0;
1380
1381 ASTContext &ctx = getContext();
1382 unsigned numInits = init->getNumInits();
1383 // FIXME: This check is here because we would otherwise silently miscompile
1384 // nested global std::initializer_lists. Better would be to have a real
1385 // implementation.
1386 for (unsigned i = 0; i < numInits; ++i) {
1387 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1388 if (inner && inner->initializesStdInitializerList()) {
1389 ErrorUnsupported(inner, "nested global std::initializer_list");
1390 return 0;
1391 }
1392 }
1393
1394 // Synthesize a fake VarDecl for the array and initialize that.
1395 QualType elementType = init->getInit(0)->getType();
1396 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1397 QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1398 ArrayType::Normal, 0);
1399
1400 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1401 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1402 arrayType, D->getLocation());
1403 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1404 D->getDeclContext()),
1405 D->getLocStart(), D->getLocation(),
1406 name, arrayType, sourceInfo,
1407 SC_Static, SC_Static);
1408
1409 // Now clone the InitListExpr to initialize the array instead.
1410 // Incredible hack: we want to use the existing InitListExpr here, so we need
1411 // to tell it that it no longer initializes a std::initializer_list.
1412 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1413 const_cast<InitListExpr*>(init)->getInits(),
1414 init->getNumInits(),
1415 init->getRBraceLoc());
1416 arrayInit->setType(arrayType);
1417
1418 if (!cleanups.empty())
1419 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1420
1421 backingArray->setInit(arrayInit);
1422
1423 // Emit the definition of the array.
1424 EmitGlobalVarDefinition(backingArray);
1425
1426 // Inspect the initializer list to validate it and determine its type.
1427 // FIXME: doing this every time is probably inefficient; caching would be nice
1428 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1429 RecordDecl::field_iterator field = record->field_begin();
1430 if (field == record->field_end()) {
1431 ErrorUnsupported(D, "weird std::initializer_list");
1432 return 0;
1433 }
1434 QualType elementPtr = ctx.getPointerType(elementType.withConst());
1435 // Start pointer.
1436 if (!ctx.hasSameType(field->getType(), elementPtr)) {
1437 ErrorUnsupported(D, "weird std::initializer_list");
1438 return 0;
1439 }
1440 ++field;
1441 if (field == record->field_end()) {
1442 ErrorUnsupported(D, "weird std::initializer_list");
1443 return 0;
1444 }
1445 bool isStartEnd = false;
1446 if (ctx.hasSameType(field->getType(), elementPtr)) {
1447 // End pointer.
1448 isStartEnd = true;
1449 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1450 ErrorUnsupported(D, "weird std::initializer_list");
1451 return 0;
1452 }
1453
1454 // Now build an APValue representing the std::initializer_list.
1455 APValue initListValue(APValue::UninitStruct(), 0, 2);
1456 APValue &startField = initListValue.getStructField(0);
1457 APValue::LValuePathEntry startOffsetPathEntry;
1458 startOffsetPathEntry.ArrayIndex = 0;
1459 startField = APValue(APValue::LValueBase(backingArray),
1460 CharUnits::fromQuantity(0),
1461 llvm::makeArrayRef(startOffsetPathEntry),
1462 /*IsOnePastTheEnd=*/false, 0);
1463
1464 if (isStartEnd) {
1465 APValue &endField = initListValue.getStructField(1);
1466 APValue::LValuePathEntry endOffsetPathEntry;
1467 endOffsetPathEntry.ArrayIndex = numInits;
1468 endField = APValue(APValue::LValueBase(backingArray),
1469 ctx.getTypeSizeInChars(elementType) * numInits,
1470 llvm::makeArrayRef(endOffsetPathEntry),
1471 /*IsOnePastTheEnd=*/true, 0);
1472 } else {
1473 APValue &sizeField = initListValue.getStructField(1);
1474 sizeField = APValue(llvm::APSInt(numElements));
1475 }
1476
1477 // Emit the constant for the initializer_list.
1478 llvm::Constant *llvmInit =
1479 EmitConstantValueForMemory(initListValue, D->getType());
1480 assert(llvmInit && "failed to initialize as constant");
1481 return llvmInit;
1482 }
1483
EmitGlobalVarDefinition(const VarDecl * D)1484 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1485 llvm::Constant *Init = 0;
1486 QualType ASTTy = D->getType();
1487 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1488 bool NeedsGlobalCtor = false;
1489 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1490
1491 const VarDecl *InitDecl;
1492 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1493
1494 if (!InitExpr) {
1495 // This is a tentative definition; tentative definitions are
1496 // implicitly initialized with { 0 }.
1497 //
1498 // Note that tentative definitions are only emitted at the end of
1499 // a translation unit, so they should never have incomplete
1500 // type. In addition, EmitTentativeDefinition makes sure that we
1501 // never attempt to emit a tentative definition if a real one
1502 // exists. A use may still exists, however, so we still may need
1503 // to do a RAUW.
1504 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1505 Init = EmitNullConstant(D->getType());
1506 } else {
1507 // If this is a std::initializer_list, emit the special initializer.
1508 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1509 // An empty init list will perform zero-initialization, which happens
1510 // to be exactly what we want.
1511 // FIXME: It does so in a global constructor, which is *not* what we
1512 // want.
1513
1514 if (!Init)
1515 Init = EmitConstantInit(*InitDecl);
1516 if (!Init) {
1517 QualType T = InitExpr->getType();
1518 if (D->getType()->isReferenceType())
1519 T = D->getType();
1520
1521 if (getLangOpts().CPlusPlus) {
1522 Init = EmitNullConstant(T);
1523 NeedsGlobalCtor = true;
1524 } else {
1525 ErrorUnsupported(D, "static initializer");
1526 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1527 }
1528 } else {
1529 // We don't need an initializer, so remove the entry for the delayed
1530 // initializer position (just in case this entry was delayed) if we
1531 // also don't need to register a destructor.
1532 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1533 DelayedCXXInitPosition.erase(D);
1534 }
1535 }
1536
1537 llvm::Type* InitType = Init->getType();
1538 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1539
1540 // Strip off a bitcast if we got one back.
1541 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1542 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1543 // all zero index gep.
1544 CE->getOpcode() == llvm::Instruction::GetElementPtr);
1545 Entry = CE->getOperand(0);
1546 }
1547
1548 // Entry is now either a Function or GlobalVariable.
1549 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1550
1551 // We have a definition after a declaration with the wrong type.
1552 // We must make a new GlobalVariable* and update everything that used OldGV
1553 // (a declaration or tentative definition) with the new GlobalVariable*
1554 // (which will be a definition).
1555 //
1556 // This happens if there is a prototype for a global (e.g.
1557 // "extern int x[];") and then a definition of a different type (e.g.
1558 // "int x[10];"). This also happens when an initializer has a different type
1559 // from the type of the global (this happens with unions).
1560 if (GV == 0 ||
1561 GV->getType()->getElementType() != InitType ||
1562 GV->getType()->getAddressSpace() !=
1563 getContext().getTargetAddressSpace(ASTTy)) {
1564
1565 // Move the old entry aside so that we'll create a new one.
1566 Entry->setName(StringRef());
1567
1568 // Make a new global with the correct type, this is now guaranteed to work.
1569 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1570
1571 // Replace all uses of the old global with the new global
1572 llvm::Constant *NewPtrForOldDecl =
1573 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1574 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1575
1576 // Erase the old global, since it is no longer used.
1577 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1578 }
1579
1580 if (D->hasAttr<AnnotateAttr>())
1581 AddGlobalAnnotations(D, GV);
1582
1583 GV->setInitializer(Init);
1584
1585 // If it is safe to mark the global 'constant', do so now.
1586 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1587 isTypeConstant(D->getType(), true));
1588
1589 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1590
1591 // Set the llvm linkage type as appropriate.
1592 llvm::GlobalValue::LinkageTypes Linkage =
1593 GetLLVMLinkageVarDefinition(D, GV);
1594 GV->setLinkage(Linkage);
1595 if (Linkage == llvm::GlobalVariable::CommonLinkage)
1596 // common vars aren't constant even if declared const.
1597 GV->setConstant(false);
1598
1599 SetCommonAttributes(D, GV);
1600
1601 // Emit the initializer function if necessary.
1602 if (NeedsGlobalCtor || NeedsGlobalDtor)
1603 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1604
1605 // Emit global variable debug information.
1606 if (CGDebugInfo *DI = getModuleDebugInfo())
1607 DI->EmitGlobalVariable(GV, D);
1608 }
1609
1610 llvm::GlobalValue::LinkageTypes
GetLLVMLinkageVarDefinition(const VarDecl * D,llvm::GlobalVariable * GV)1611 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1612 llvm::GlobalVariable *GV) {
1613 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1614 if (Linkage == GVA_Internal)
1615 return llvm::Function::InternalLinkage;
1616 else if (D->hasAttr<DLLImportAttr>())
1617 return llvm::Function::DLLImportLinkage;
1618 else if (D->hasAttr<DLLExportAttr>())
1619 return llvm::Function::DLLExportLinkage;
1620 else if (D->hasAttr<WeakAttr>()) {
1621 if (GV->isConstant())
1622 return llvm::GlobalVariable::WeakODRLinkage;
1623 else
1624 return llvm::GlobalVariable::WeakAnyLinkage;
1625 } else if (Linkage == GVA_TemplateInstantiation ||
1626 Linkage == GVA_ExplicitTemplateInstantiation)
1627 return llvm::GlobalVariable::WeakODRLinkage;
1628 else if (!getLangOpts().CPlusPlus &&
1629 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1630 D->getAttr<CommonAttr>()) &&
1631 !D->hasExternalStorage() && !D->getInit() &&
1632 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1633 !D->getAttr<WeakImportAttr>()) {
1634 // Thread local vars aren't considered common linkage.
1635 return llvm::GlobalVariable::CommonLinkage;
1636 }
1637 return llvm::GlobalVariable::ExternalLinkage;
1638 }
1639
1640 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1641 /// implement a function with no prototype, e.g. "int foo() {}". If there are
1642 /// existing call uses of the old function in the module, this adjusts them to
1643 /// call the new function directly.
1644 ///
1645 /// This is not just a cleanup: the always_inline pass requires direct calls to
1646 /// functions to be able to inline them. If there is a bitcast in the way, it
1647 /// won't inline them. Instcombine normally deletes these calls, but it isn't
1648 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)1649 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1650 llvm::Function *NewFn) {
1651 // If we're redefining a global as a function, don't transform it.
1652 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1653 if (OldFn == 0) return;
1654
1655 llvm::Type *NewRetTy = NewFn->getReturnType();
1656 SmallVector<llvm::Value*, 4> ArgList;
1657
1658 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1659 UI != E; ) {
1660 // TODO: Do invokes ever occur in C code? If so, we should handle them too.
1661 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1662 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1663 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1664 llvm::CallSite CS(CI);
1665 if (!CI || !CS.isCallee(I)) continue;
1666
1667 // If the return types don't match exactly, and if the call isn't dead, then
1668 // we can't transform this call.
1669 if (CI->getType() != NewRetTy && !CI->use_empty())
1670 continue;
1671
1672 // Get the attribute list.
1673 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1674 llvm::AttrListPtr AttrList = CI->getAttributes();
1675
1676 // Get any return attributes.
1677 llvm::Attributes RAttrs = AttrList.getRetAttributes();
1678
1679 // Add the return attributes.
1680 if (RAttrs)
1681 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1682
1683 // If the function was passed too few arguments, don't transform. If extra
1684 // arguments were passed, we silently drop them. If any of the types
1685 // mismatch, we don't transform.
1686 unsigned ArgNo = 0;
1687 bool DontTransform = false;
1688 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1689 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1690 if (CS.arg_size() == ArgNo ||
1691 CS.getArgument(ArgNo)->getType() != AI->getType()) {
1692 DontTransform = true;
1693 break;
1694 }
1695
1696 // Add any parameter attributes.
1697 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1698 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1699 }
1700 if (DontTransform)
1701 continue;
1702
1703 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes())
1704 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1705
1706 // Okay, we can transform this. Create the new call instruction and copy
1707 // over the required information.
1708 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1709 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1710 ArgList.clear();
1711 if (!NewCall->getType()->isVoidTy())
1712 NewCall->takeName(CI);
1713 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1714 AttrVec.end()));
1715 NewCall->setCallingConv(CI->getCallingConv());
1716
1717 // Finally, remove the old call, replacing any uses with the new one.
1718 if (!CI->use_empty())
1719 CI->replaceAllUsesWith(NewCall);
1720
1721 // Copy debug location attached to CI.
1722 if (!CI->getDebugLoc().isUnknown())
1723 NewCall->setDebugLoc(CI->getDebugLoc());
1724 CI->eraseFromParent();
1725 }
1726 }
1727
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)1728 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1729 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1730 // If we have a definition, this might be a deferred decl. If the
1731 // instantiation is explicit, make sure we emit it at the end.
1732 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1733 GetAddrOfGlobalVar(VD);
1734 }
1735
EmitGlobalFunctionDefinition(GlobalDecl GD)1736 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1737 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1738
1739 // Compute the function info and LLVM type.
1740 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1741 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1742
1743 // Get or create the prototype for the function.
1744 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1745
1746 // Strip off a bitcast if we got one back.
1747 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1748 assert(CE->getOpcode() == llvm::Instruction::BitCast);
1749 Entry = CE->getOperand(0);
1750 }
1751
1752
1753 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1754 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1755
1756 // If the types mismatch then we have to rewrite the definition.
1757 assert(OldFn->isDeclaration() &&
1758 "Shouldn't replace non-declaration");
1759
1760 // F is the Function* for the one with the wrong type, we must make a new
1761 // Function* and update everything that used F (a declaration) with the new
1762 // Function* (which will be a definition).
1763 //
1764 // This happens if there is a prototype for a function
1765 // (e.g. "int f()") and then a definition of a different type
1766 // (e.g. "int f(int x)"). Move the old function aside so that it
1767 // doesn't interfere with GetAddrOfFunction.
1768 OldFn->setName(StringRef());
1769 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1770
1771 // If this is an implementation of a function without a prototype, try to
1772 // replace any existing uses of the function (which may be calls) with uses
1773 // of the new function
1774 if (D->getType()->isFunctionNoProtoType()) {
1775 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1776 OldFn->removeDeadConstantUsers();
1777 }
1778
1779 // Replace uses of F with the Function we will endow with a body.
1780 if (!Entry->use_empty()) {
1781 llvm::Constant *NewPtrForOldDecl =
1782 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1783 Entry->replaceAllUsesWith(NewPtrForOldDecl);
1784 }
1785
1786 // Ok, delete the old function now, which is dead.
1787 OldFn->eraseFromParent();
1788
1789 Entry = NewFn;
1790 }
1791
1792 // We need to set linkage and visibility on the function before
1793 // generating code for it because various parts of IR generation
1794 // want to propagate this information down (e.g. to local static
1795 // declarations).
1796 llvm::Function *Fn = cast<llvm::Function>(Entry);
1797 setFunctionLinkage(D, Fn);
1798
1799 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1800 setGlobalVisibility(Fn, D);
1801
1802 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1803
1804 SetFunctionDefinitionAttributes(D, Fn);
1805 SetLLVMFunctionAttributesForDefinition(D, Fn);
1806
1807 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1808 AddGlobalCtor(Fn, CA->getPriority());
1809 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1810 AddGlobalDtor(Fn, DA->getPriority());
1811 if (D->hasAttr<AnnotateAttr>())
1812 AddGlobalAnnotations(D, Fn);
1813 }
1814
EmitAliasDefinition(GlobalDecl GD)1815 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1816 const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1817 const AliasAttr *AA = D->getAttr<AliasAttr>();
1818 assert(AA && "Not an alias?");
1819
1820 StringRef MangledName = getMangledName(GD);
1821
1822 // If there is a definition in the module, then it wins over the alias.
1823 // This is dubious, but allow it to be safe. Just ignore the alias.
1824 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1825 if (Entry && !Entry->isDeclaration())
1826 return;
1827
1828 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1829
1830 // Create a reference to the named value. This ensures that it is emitted
1831 // if a deferred decl.
1832 llvm::Constant *Aliasee;
1833 if (isa<llvm::FunctionType>(DeclTy))
1834 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1835 /*ForVTable=*/false);
1836 else
1837 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1838 llvm::PointerType::getUnqual(DeclTy), 0);
1839
1840 // Create the new alias itself, but don't set a name yet.
1841 llvm::GlobalValue *GA =
1842 new llvm::GlobalAlias(Aliasee->getType(),
1843 llvm::Function::ExternalLinkage,
1844 "", Aliasee, &getModule());
1845
1846 if (Entry) {
1847 assert(Entry->isDeclaration());
1848
1849 // If there is a declaration in the module, then we had an extern followed
1850 // by the alias, as in:
1851 // extern int test6();
1852 // ...
1853 // int test6() __attribute__((alias("test7")));
1854 //
1855 // Remove it and replace uses of it with the alias.
1856 GA->takeName(Entry);
1857
1858 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1859 Entry->getType()));
1860 Entry->eraseFromParent();
1861 } else {
1862 GA->setName(MangledName);
1863 }
1864
1865 // Set attributes which are particular to an alias; this is a
1866 // specialization of the attributes which may be set on a global
1867 // variable/function.
1868 if (D->hasAttr<DLLExportAttr>()) {
1869 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1870 // The dllexport attribute is ignored for undefined symbols.
1871 if (FD->hasBody())
1872 GA->setLinkage(llvm::Function::DLLExportLinkage);
1873 } else {
1874 GA->setLinkage(llvm::Function::DLLExportLinkage);
1875 }
1876 } else if (D->hasAttr<WeakAttr>() ||
1877 D->hasAttr<WeakRefAttr>() ||
1878 D->isWeakImported()) {
1879 GA->setLinkage(llvm::Function::WeakAnyLinkage);
1880 }
1881
1882 SetCommonAttributes(D, GA);
1883 }
1884
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)1885 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1886 ArrayRef<llvm::Type*> Tys) {
1887 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1888 Tys);
1889 }
1890
1891 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)1892 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1893 const StringLiteral *Literal,
1894 bool TargetIsLSB,
1895 bool &IsUTF16,
1896 unsigned &StringLength) {
1897 StringRef String = Literal->getString();
1898 unsigned NumBytes = String.size();
1899
1900 // Check for simple case.
1901 if (!Literal->containsNonAsciiOrNull()) {
1902 StringLength = NumBytes;
1903 return Map.GetOrCreateValue(String);
1904 }
1905
1906 // Otherwise, convert the UTF8 literals into a string of shorts.
1907 IsUTF16 = true;
1908
1909 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
1910 const UTF8 *FromPtr = (UTF8 *)String.data();
1911 UTF16 *ToPtr = &ToBuf[0];
1912
1913 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1914 &ToPtr, ToPtr + NumBytes,
1915 strictConversion);
1916
1917 // ConvertUTF8toUTF16 returns the length in ToPtr.
1918 StringLength = ToPtr - &ToBuf[0];
1919
1920 // Add an explicit null.
1921 *ToPtr = 0;
1922 return Map.
1923 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
1924 (StringLength + 1) * 2));
1925 }
1926
1927 static llvm::StringMapEntry<llvm::Constant*> &
GetConstantStringEntry(llvm::StringMap<llvm::Constant * > & Map,const StringLiteral * Literal,unsigned & StringLength)1928 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1929 const StringLiteral *Literal,
1930 unsigned &StringLength) {
1931 StringRef String = Literal->getString();
1932 StringLength = String.size();
1933 return Map.GetOrCreateValue(String);
1934 }
1935
1936 llvm::Constant *
GetAddrOfConstantCFString(const StringLiteral * Literal)1937 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1938 unsigned StringLength = 0;
1939 bool isUTF16 = false;
1940 llvm::StringMapEntry<llvm::Constant*> &Entry =
1941 GetConstantCFStringEntry(CFConstantStringMap, Literal,
1942 getTargetData().isLittleEndian(),
1943 isUTF16, StringLength);
1944
1945 if (llvm::Constant *C = Entry.getValue())
1946 return C;
1947
1948 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1949 llvm::Constant *Zeros[] = { Zero, Zero };
1950
1951 // If we don't already have it, get __CFConstantStringClassReference.
1952 if (!CFConstantStringClassRef) {
1953 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1954 Ty = llvm::ArrayType::get(Ty, 0);
1955 llvm::Constant *GV = CreateRuntimeVariable(Ty,
1956 "__CFConstantStringClassReference");
1957 // Decay array -> ptr
1958 CFConstantStringClassRef =
1959 llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1960 }
1961
1962 QualType CFTy = getContext().getCFConstantStringType();
1963
1964 llvm::StructType *STy =
1965 cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1966
1967 llvm::Constant *Fields[4];
1968
1969 // Class pointer.
1970 Fields[0] = CFConstantStringClassRef;
1971
1972 // Flags.
1973 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1974 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1975 llvm::ConstantInt::get(Ty, 0x07C8);
1976
1977 // String pointer.
1978 llvm::Constant *C = 0;
1979 if (isUTF16) {
1980 ArrayRef<uint16_t> Arr =
1981 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
1982 Entry.getKey().size() / 2);
1983 C = llvm::ConstantDataArray::get(VMContext, Arr);
1984 } else {
1985 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1986 }
1987
1988 llvm::GlobalValue::LinkageTypes Linkage;
1989 if (isUTF16)
1990 // FIXME: why do utf strings get "_" labels instead of "L" labels?
1991 Linkage = llvm::GlobalValue::InternalLinkage;
1992 else
1993 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1994 // when using private linkage. It is not clear if this is a bug in ld
1995 // or a reasonable new restriction.
1996 Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1997
1998 // Note: -fwritable-strings doesn't make the backing store strings of
1999 // CFStrings writable. (See <rdar://problem/10657500>)
2000 llvm::GlobalVariable *GV =
2001 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2002 Linkage, C, ".str");
2003 GV->setUnnamedAddr(true);
2004 if (isUTF16) {
2005 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2006 GV->setAlignment(Align.getQuantity());
2007 } else {
2008 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2009 GV->setAlignment(Align.getQuantity());
2010 }
2011
2012 // String.
2013 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2014
2015 if (isUTF16)
2016 // Cast the UTF16 string to the correct type.
2017 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2018
2019 // String length.
2020 Ty = getTypes().ConvertType(getContext().LongTy);
2021 Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2022
2023 // The struct.
2024 C = llvm::ConstantStruct::get(STy, Fields);
2025 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2026 llvm::GlobalVariable::PrivateLinkage, C,
2027 "_unnamed_cfstring_");
2028 if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2029 GV->setSection(Sect);
2030 Entry.setValue(GV);
2031
2032 return GV;
2033 }
2034
2035 static RecordDecl *
CreateRecordDecl(const ASTContext & Ctx,RecordDecl::TagKind TK,DeclContext * DC,IdentifierInfo * Id)2036 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2037 DeclContext *DC, IdentifierInfo *Id) {
2038 SourceLocation Loc;
2039 if (Ctx.getLangOpts().CPlusPlus)
2040 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2041 else
2042 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2043 }
2044
2045 llvm::Constant *
GetAddrOfConstantString(const StringLiteral * Literal)2046 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2047 unsigned StringLength = 0;
2048 llvm::StringMapEntry<llvm::Constant*> &Entry =
2049 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2050
2051 if (llvm::Constant *C = Entry.getValue())
2052 return C;
2053
2054 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2055 llvm::Constant *Zeros[] = { Zero, Zero };
2056
2057 // If we don't already have it, get _NSConstantStringClassReference.
2058 if (!ConstantStringClassRef) {
2059 std::string StringClass(getLangOpts().ObjCConstantStringClass);
2060 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2061 llvm::Constant *GV;
2062 if (LangOpts.ObjCNonFragileABI) {
2063 std::string str =
2064 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2065 : "OBJC_CLASS_$_" + StringClass;
2066 GV = getObjCRuntime().GetClassGlobal(str);
2067 // Make sure the result is of the correct type.
2068 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2069 ConstantStringClassRef =
2070 llvm::ConstantExpr::getBitCast(GV, PTy);
2071 } else {
2072 std::string str =
2073 StringClass.empty() ? "_NSConstantStringClassReference"
2074 : "_" + StringClass + "ClassReference";
2075 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2076 GV = CreateRuntimeVariable(PTy, str);
2077 // Decay array -> ptr
2078 ConstantStringClassRef =
2079 llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2080 }
2081 }
2082
2083 if (!NSConstantStringType) {
2084 // Construct the type for a constant NSString.
2085 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2086 Context.getTranslationUnitDecl(),
2087 &Context.Idents.get("__builtin_NSString"));
2088 D->startDefinition();
2089
2090 QualType FieldTypes[3];
2091
2092 // const int *isa;
2093 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2094 // const char *str;
2095 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2096 // unsigned int length;
2097 FieldTypes[2] = Context.UnsignedIntTy;
2098
2099 // Create fields
2100 for (unsigned i = 0; i < 3; ++i) {
2101 FieldDecl *Field = FieldDecl::Create(Context, D,
2102 SourceLocation(),
2103 SourceLocation(), 0,
2104 FieldTypes[i], /*TInfo=*/0,
2105 /*BitWidth=*/0,
2106 /*Mutable=*/false,
2107 /*HasInit=*/false);
2108 Field->setAccess(AS_public);
2109 D->addDecl(Field);
2110 }
2111
2112 D->completeDefinition();
2113 QualType NSTy = Context.getTagDeclType(D);
2114 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2115 }
2116
2117 llvm::Constant *Fields[3];
2118
2119 // Class pointer.
2120 Fields[0] = ConstantStringClassRef;
2121
2122 // String pointer.
2123 llvm::Constant *C =
2124 llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2125
2126 llvm::GlobalValue::LinkageTypes Linkage;
2127 bool isConstant;
2128 Linkage = llvm::GlobalValue::PrivateLinkage;
2129 isConstant = !LangOpts.WritableStrings;
2130
2131 llvm::GlobalVariable *GV =
2132 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2133 ".str");
2134 GV->setUnnamedAddr(true);
2135 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2136 GV->setAlignment(Align.getQuantity());
2137 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2138
2139 // String length.
2140 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2141 Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2142
2143 // The struct.
2144 C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2145 GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2146 llvm::GlobalVariable::PrivateLinkage, C,
2147 "_unnamed_nsstring_");
2148 // FIXME. Fix section.
2149 if (const char *Sect =
2150 LangOpts.ObjCNonFragileABI
2151 ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2152 : getContext().getTargetInfo().getNSStringSection())
2153 GV->setSection(Sect);
2154 Entry.setValue(GV);
2155
2156 return GV;
2157 }
2158
getObjCFastEnumerationStateType()2159 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2160 if (ObjCFastEnumerationStateType.isNull()) {
2161 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2162 Context.getTranslationUnitDecl(),
2163 &Context.Idents.get("__objcFastEnumerationState"));
2164 D->startDefinition();
2165
2166 QualType FieldTypes[] = {
2167 Context.UnsignedLongTy,
2168 Context.getPointerType(Context.getObjCIdType()),
2169 Context.getPointerType(Context.UnsignedLongTy),
2170 Context.getConstantArrayType(Context.UnsignedLongTy,
2171 llvm::APInt(32, 5), ArrayType::Normal, 0)
2172 };
2173
2174 for (size_t i = 0; i < 4; ++i) {
2175 FieldDecl *Field = FieldDecl::Create(Context,
2176 D,
2177 SourceLocation(),
2178 SourceLocation(), 0,
2179 FieldTypes[i], /*TInfo=*/0,
2180 /*BitWidth=*/0,
2181 /*Mutable=*/false,
2182 /*HasInit=*/false);
2183 Field->setAccess(AS_public);
2184 D->addDecl(Field);
2185 }
2186
2187 D->completeDefinition();
2188 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2189 }
2190
2191 return ObjCFastEnumerationStateType;
2192 }
2193
2194 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)2195 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2196 assert(!E->getType()->isPointerType() && "Strings are always arrays");
2197
2198 // Don't emit it as the address of the string, emit the string data itself
2199 // as an inline array.
2200 if (E->getCharByteWidth() == 1) {
2201 SmallString<64> Str(E->getString());
2202
2203 // Resize the string to the right size, which is indicated by its type.
2204 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2205 Str.resize(CAT->getSize().getZExtValue());
2206 return llvm::ConstantDataArray::getString(VMContext, Str, false);
2207 }
2208
2209 llvm::ArrayType *AType =
2210 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2211 llvm::Type *ElemTy = AType->getElementType();
2212 unsigned NumElements = AType->getNumElements();
2213
2214 // Wide strings have either 2-byte or 4-byte elements.
2215 if (ElemTy->getPrimitiveSizeInBits() == 16) {
2216 SmallVector<uint16_t, 32> Elements;
2217 Elements.reserve(NumElements);
2218
2219 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2220 Elements.push_back(E->getCodeUnit(i));
2221 Elements.resize(NumElements);
2222 return llvm::ConstantDataArray::get(VMContext, Elements);
2223 }
2224
2225 assert(ElemTy->getPrimitiveSizeInBits() == 32);
2226 SmallVector<uint32_t, 32> Elements;
2227 Elements.reserve(NumElements);
2228
2229 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2230 Elements.push_back(E->getCodeUnit(i));
2231 Elements.resize(NumElements);
2232 return llvm::ConstantDataArray::get(VMContext, Elements);
2233 }
2234
2235 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2236 /// constant array for the given string literal.
2237 llvm::Constant *
GetAddrOfConstantStringFromLiteral(const StringLiteral * S)2238 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2239 CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2240 if (S->isAscii() || S->isUTF8()) {
2241 SmallString<64> Str(S->getString());
2242
2243 // Resize the string to the right size, which is indicated by its type.
2244 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2245 Str.resize(CAT->getSize().getZExtValue());
2246 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2247 }
2248
2249 // FIXME: the following does not memoize wide strings.
2250 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2251 llvm::GlobalVariable *GV =
2252 new llvm::GlobalVariable(getModule(),C->getType(),
2253 !LangOpts.WritableStrings,
2254 llvm::GlobalValue::PrivateLinkage,
2255 C,".str");
2256
2257 GV->setAlignment(Align.getQuantity());
2258 GV->setUnnamedAddr(true);
2259 return GV;
2260 }
2261
2262 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2263 /// array for the given ObjCEncodeExpr node.
2264 llvm::Constant *
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)2265 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2266 std::string Str;
2267 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2268
2269 return GetAddrOfConstantCString(Str);
2270 }
2271
2272
2273 /// GenerateWritableString -- Creates storage for a string literal.
GenerateStringLiteral(StringRef str,bool constant,CodeGenModule & CGM,const char * GlobalName,unsigned Alignment)2274 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2275 bool constant,
2276 CodeGenModule &CGM,
2277 const char *GlobalName,
2278 unsigned Alignment) {
2279 // Create Constant for this string literal. Don't add a '\0'.
2280 llvm::Constant *C =
2281 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2282
2283 // Create a global variable for this string
2284 llvm::GlobalVariable *GV =
2285 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2286 llvm::GlobalValue::PrivateLinkage,
2287 C, GlobalName);
2288 GV->setAlignment(Alignment);
2289 GV->setUnnamedAddr(true);
2290 return GV;
2291 }
2292
2293 /// GetAddrOfConstantString - Returns a pointer to a character array
2294 /// containing the literal. This contents are exactly that of the
2295 /// given string, i.e. it will not be null terminated automatically;
2296 /// see GetAddrOfConstantCString. Note that whether the result is
2297 /// actually a pointer to an LLVM constant depends on
2298 /// Feature.WriteableStrings.
2299 ///
2300 /// The result has pointer to array type.
GetAddrOfConstantString(StringRef Str,const char * GlobalName,unsigned Alignment)2301 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2302 const char *GlobalName,
2303 unsigned Alignment) {
2304 // Get the default prefix if a name wasn't specified.
2305 if (!GlobalName)
2306 GlobalName = ".str";
2307
2308 // Don't share any string literals if strings aren't constant.
2309 if (LangOpts.WritableStrings)
2310 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2311
2312 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2313 ConstantStringMap.GetOrCreateValue(Str);
2314
2315 if (llvm::GlobalVariable *GV = Entry.getValue()) {
2316 if (Alignment > GV->getAlignment()) {
2317 GV->setAlignment(Alignment);
2318 }
2319 return GV;
2320 }
2321
2322 // Create a global variable for this.
2323 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2324 Alignment);
2325 Entry.setValue(GV);
2326 return GV;
2327 }
2328
2329 /// GetAddrOfConstantCString - Returns a pointer to a character
2330 /// array containing the literal and a terminating '\0'
2331 /// character. The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName,unsigned Alignment)2332 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2333 const char *GlobalName,
2334 unsigned Alignment) {
2335 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2336 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2337 }
2338
2339 /// EmitObjCPropertyImplementations - Emit information for synthesized
2340 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)2341 void CodeGenModule::EmitObjCPropertyImplementations(const
2342 ObjCImplementationDecl *D) {
2343 for (ObjCImplementationDecl::propimpl_iterator
2344 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2345 ObjCPropertyImplDecl *PID = *i;
2346
2347 // Dynamic is just for type-checking.
2348 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2349 ObjCPropertyDecl *PD = PID->getPropertyDecl();
2350
2351 // Determine which methods need to be implemented, some may have
2352 // been overridden. Note that ::isSynthesized is not the method
2353 // we want, that just indicates if the decl came from a
2354 // property. What we want to know is if the method is defined in
2355 // this implementation.
2356 if (!D->getInstanceMethod(PD->getGetterName()))
2357 CodeGenFunction(*this).GenerateObjCGetter(
2358 const_cast<ObjCImplementationDecl *>(D), PID);
2359 if (!PD->isReadOnly() &&
2360 !D->getInstanceMethod(PD->getSetterName()))
2361 CodeGenFunction(*this).GenerateObjCSetter(
2362 const_cast<ObjCImplementationDecl *>(D), PID);
2363 }
2364 }
2365 }
2366
needsDestructMethod(ObjCImplementationDecl * impl)2367 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2368 const ObjCInterfaceDecl *iface = impl->getClassInterface();
2369 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2370 ivar; ivar = ivar->getNextIvar())
2371 if (ivar->getType().isDestructedType())
2372 return true;
2373
2374 return false;
2375 }
2376
2377 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2378 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)2379 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2380 // We might need a .cxx_destruct even if we don't have any ivar initializers.
2381 if (needsDestructMethod(D)) {
2382 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2383 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2384 ObjCMethodDecl *DTORMethod =
2385 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2386 cxxSelector, getContext().VoidTy, 0, D,
2387 /*isInstance=*/true, /*isVariadic=*/false,
2388 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2389 /*isDefined=*/false, ObjCMethodDecl::Required);
2390 D->addInstanceMethod(DTORMethod);
2391 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2392 D->setHasCXXStructors(true);
2393 }
2394
2395 // If the implementation doesn't have any ivar initializers, we don't need
2396 // a .cxx_construct.
2397 if (D->getNumIvarInitializers() == 0)
2398 return;
2399
2400 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2401 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2402 // The constructor returns 'self'.
2403 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2404 D->getLocation(),
2405 D->getLocation(),
2406 cxxSelector,
2407 getContext().getObjCIdType(), 0,
2408 D, /*isInstance=*/true,
2409 /*isVariadic=*/false,
2410 /*isSynthesized=*/true,
2411 /*isImplicitlyDeclared=*/true,
2412 /*isDefined=*/false,
2413 ObjCMethodDecl::Required);
2414 D->addInstanceMethod(CTORMethod);
2415 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2416 D->setHasCXXStructors(true);
2417 }
2418
2419 /// EmitNamespace - Emit all declarations in a namespace.
EmitNamespace(const NamespaceDecl * ND)2420 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2421 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2422 I != E; ++I)
2423 EmitTopLevelDecl(*I);
2424 }
2425
2426 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)2427 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2428 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2429 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2430 ErrorUnsupported(LSD, "linkage spec");
2431 return;
2432 }
2433
2434 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2435 I != E; ++I)
2436 EmitTopLevelDecl(*I);
2437 }
2438
2439 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)2440 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2441 // If an error has occurred, stop code generation, but continue
2442 // parsing and semantic analysis (to ensure all warnings and errors
2443 // are emitted).
2444 if (Diags.hasErrorOccurred())
2445 return;
2446
2447 // Ignore dependent declarations.
2448 if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2449 return;
2450
2451 switch (D->getKind()) {
2452 case Decl::CXXConversion:
2453 case Decl::CXXMethod:
2454 case Decl::Function:
2455 // Skip function templates
2456 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2457 cast<FunctionDecl>(D)->isLateTemplateParsed())
2458 return;
2459
2460 EmitGlobal(cast<FunctionDecl>(D));
2461 break;
2462
2463 case Decl::Var:
2464 EmitGlobal(cast<VarDecl>(D));
2465 break;
2466
2467 // Indirect fields from global anonymous structs and unions can be
2468 // ignored; only the actual variable requires IR gen support.
2469 case Decl::IndirectField:
2470 break;
2471
2472 // C++ Decls
2473 case Decl::Namespace:
2474 EmitNamespace(cast<NamespaceDecl>(D));
2475 break;
2476 // No code generation needed.
2477 case Decl::UsingShadow:
2478 case Decl::Using:
2479 case Decl::UsingDirective:
2480 case Decl::ClassTemplate:
2481 case Decl::FunctionTemplate:
2482 case Decl::TypeAliasTemplate:
2483 case Decl::NamespaceAlias:
2484 case Decl::Block:
2485 case Decl::Import:
2486 break;
2487 case Decl::CXXConstructor:
2488 // Skip function templates
2489 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2490 cast<FunctionDecl>(D)->isLateTemplateParsed())
2491 return;
2492
2493 EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2494 break;
2495 case Decl::CXXDestructor:
2496 if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2497 return;
2498 EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2499 break;
2500
2501 case Decl::StaticAssert:
2502 // Nothing to do.
2503 break;
2504
2505 // Objective-C Decls
2506
2507 // Forward declarations, no (immediate) code generation.
2508 case Decl::ObjCInterface:
2509 break;
2510
2511 case Decl::ObjCCategory: {
2512 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2513 if (CD->IsClassExtension() && CD->hasSynthBitfield())
2514 Context.ResetObjCLayout(CD->getClassInterface());
2515 break;
2516 }
2517
2518 case Decl::ObjCProtocol: {
2519 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2520 if (Proto->isThisDeclarationADefinition())
2521 ObjCRuntime->GenerateProtocol(Proto);
2522 break;
2523 }
2524
2525 case Decl::ObjCCategoryImpl:
2526 // Categories have properties but don't support synthesize so we
2527 // can ignore them here.
2528 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2529 break;
2530
2531 case Decl::ObjCImplementation: {
2532 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2533 if (LangOpts.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2534 Context.ResetObjCLayout(OMD->getClassInterface());
2535 EmitObjCPropertyImplementations(OMD);
2536 EmitObjCIvarInitializations(OMD);
2537 ObjCRuntime->GenerateClass(OMD);
2538 // Emit global variable debug information.
2539 if (CGDebugInfo *DI = getModuleDebugInfo())
2540 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2541 OMD->getLocation());
2542
2543 break;
2544 }
2545 case Decl::ObjCMethod: {
2546 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2547 // If this is not a prototype, emit the body.
2548 if (OMD->getBody())
2549 CodeGenFunction(*this).GenerateObjCMethod(OMD);
2550 break;
2551 }
2552 case Decl::ObjCCompatibleAlias:
2553 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2554 break;
2555
2556 case Decl::LinkageSpec:
2557 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2558 break;
2559
2560 case Decl::FileScopeAsm: {
2561 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2562 StringRef AsmString = AD->getAsmString()->getString();
2563
2564 const std::string &S = getModule().getModuleInlineAsm();
2565 if (S.empty())
2566 getModule().setModuleInlineAsm(AsmString);
2567 else if (*--S.end() == '\n')
2568 getModule().setModuleInlineAsm(S + AsmString.str());
2569 else
2570 getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2571 break;
2572 }
2573
2574 default:
2575 // Make sure we handled everything we should, every other kind is a
2576 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
2577 // function. Need to recode Decl::Kind to do that easily.
2578 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2579 }
2580 }
2581
2582 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)2583 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2584 const void *Ptr) {
2585 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2586 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2587 return llvm::ConstantInt::get(i64, PtrInt);
2588 }
2589
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)2590 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2591 llvm::NamedMDNode *&GlobalMetadata,
2592 GlobalDecl D,
2593 llvm::GlobalValue *Addr) {
2594 if (!GlobalMetadata)
2595 GlobalMetadata =
2596 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2597
2598 // TODO: should we report variant information for ctors/dtors?
2599 llvm::Value *Ops[] = {
2600 Addr,
2601 GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2602 };
2603 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2604 }
2605
2606 /// Emits metadata nodes associating all the global values in the
2607 /// current module with the Decls they came from. This is useful for
2608 /// projects using IR gen as a subroutine.
2609 ///
2610 /// Since there's currently no way to associate an MDNode directly
2611 /// with an llvm::GlobalValue, we create a global named metadata
2612 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()2613 void CodeGenModule::EmitDeclMetadata() {
2614 llvm::NamedMDNode *GlobalMetadata = 0;
2615
2616 // StaticLocalDeclMap
2617 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2618 I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2619 I != E; ++I) {
2620 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2621 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2622 }
2623 }
2624
2625 /// Emits metadata nodes for all the local variables in the current
2626 /// function.
EmitDeclMetadata()2627 void CodeGenFunction::EmitDeclMetadata() {
2628 if (LocalDeclMap.empty()) return;
2629
2630 llvm::LLVMContext &Context = getLLVMContext();
2631
2632 // Find the unique metadata ID for this name.
2633 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2634
2635 llvm::NamedMDNode *GlobalMetadata = 0;
2636
2637 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2638 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2639 const Decl *D = I->first;
2640 llvm::Value *Addr = I->second;
2641
2642 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2643 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2644 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2645 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2646 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2647 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2648 }
2649 }
2650 }
2651
EmitCoverageFile()2652 void CodeGenModule::EmitCoverageFile() {
2653 if (!getCodeGenOpts().CoverageFile.empty()) {
2654 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2655 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2656 llvm::LLVMContext &Ctx = TheModule.getContext();
2657 llvm::MDString *CoverageFile =
2658 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2659 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2660 llvm::MDNode *CU = CUNode->getOperand(i);
2661 llvm::Value *node[] = { CoverageFile, CU };
2662 llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2663 GCov->addOperand(N);
2664 }
2665 }
2666 }
2667 }
2668