1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Lex/LexDiagnostic.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Basic/ConvertUTF.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/ErrorHandling.h"
22 using namespace clang;
23
24 /// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
25 /// not valid.
HexDigitValue(char C)26 static int HexDigitValue(char C) {
27 if (C >= '0' && C <= '9') return C-'0';
28 if (C >= 'a' && C <= 'f') return C-'a'+10;
29 if (C >= 'A' && C <= 'F') return C-'A'+10;
30 return -1;
31 }
32
getCharWidth(tok::TokenKind kind,const TargetInfo & Target)33 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
34 switch (kind) {
35 default: llvm_unreachable("Unknown token type!");
36 case tok::char_constant:
37 case tok::string_literal:
38 case tok::utf8_string_literal:
39 return Target.getCharWidth();
40 case tok::wide_char_constant:
41 case tok::wide_string_literal:
42 return Target.getWCharWidth();
43 case tok::utf16_char_constant:
44 case tok::utf16_string_literal:
45 return Target.getChar16Width();
46 case tok::utf32_char_constant:
47 case tok::utf32_string_literal:
48 return Target.getChar32Width();
49 }
50 }
51
52 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
53 /// either a character or a string literal.
ProcessCharEscape(const char * & ThisTokBuf,const char * ThisTokEnd,bool & HadError,FullSourceLoc Loc,unsigned CharWidth,DiagnosticsEngine * Diags)54 static unsigned ProcessCharEscape(const char *&ThisTokBuf,
55 const char *ThisTokEnd, bool &HadError,
56 FullSourceLoc Loc, unsigned CharWidth,
57 DiagnosticsEngine *Diags) {
58 // Skip the '\' char.
59 ++ThisTokBuf;
60
61 // We know that this character can't be off the end of the buffer, because
62 // that would have been \", which would not have been the end of string.
63 unsigned ResultChar = *ThisTokBuf++;
64 switch (ResultChar) {
65 // These map to themselves.
66 case '\\': case '\'': case '"': case '?': break;
67
68 // These have fixed mappings.
69 case 'a':
70 // TODO: K&R: the meaning of '\\a' is different in traditional C
71 ResultChar = 7;
72 break;
73 case 'b':
74 ResultChar = 8;
75 break;
76 case 'e':
77 if (Diags)
78 Diags->Report(Loc, diag::ext_nonstandard_escape) << "e";
79 ResultChar = 27;
80 break;
81 case 'E':
82 if (Diags)
83 Diags->Report(Loc, diag::ext_nonstandard_escape) << "E";
84 ResultChar = 27;
85 break;
86 case 'f':
87 ResultChar = 12;
88 break;
89 case 'n':
90 ResultChar = 10;
91 break;
92 case 'r':
93 ResultChar = 13;
94 break;
95 case 't':
96 ResultChar = 9;
97 break;
98 case 'v':
99 ResultChar = 11;
100 break;
101 case 'x': { // Hex escape.
102 ResultChar = 0;
103 if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
104 if (Diags)
105 Diags->Report(Loc, diag::err_hex_escape_no_digits);
106 HadError = 1;
107 break;
108 }
109
110 // Hex escapes are a maximal series of hex digits.
111 bool Overflow = false;
112 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
113 int CharVal = HexDigitValue(ThisTokBuf[0]);
114 if (CharVal == -1) break;
115 // About to shift out a digit?
116 Overflow |= (ResultChar & 0xF0000000) ? true : false;
117 ResultChar <<= 4;
118 ResultChar |= CharVal;
119 }
120
121 // See if any bits will be truncated when evaluated as a character.
122 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
123 Overflow = true;
124 ResultChar &= ~0U >> (32-CharWidth);
125 }
126
127 // Check for overflow.
128 if (Overflow && Diags) // Too many digits to fit in
129 Diags->Report(Loc, diag::warn_hex_escape_too_large);
130 break;
131 }
132 case '0': case '1': case '2': case '3':
133 case '4': case '5': case '6': case '7': {
134 // Octal escapes.
135 --ThisTokBuf;
136 ResultChar = 0;
137
138 // Octal escapes are a series of octal digits with maximum length 3.
139 // "\0123" is a two digit sequence equal to "\012" "3".
140 unsigned NumDigits = 0;
141 do {
142 ResultChar <<= 3;
143 ResultChar |= *ThisTokBuf++ - '0';
144 ++NumDigits;
145 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
146 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
147
148 // Check for overflow. Reject '\777', but not L'\777'.
149 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
150 if (Diags)
151 Diags->Report(Loc, diag::warn_octal_escape_too_large);
152 ResultChar &= ~0U >> (32-CharWidth);
153 }
154 break;
155 }
156
157 // Otherwise, these are not valid escapes.
158 case '(': case '{': case '[': case '%':
159 // GCC accepts these as extensions. We warn about them as such though.
160 if (Diags)
161 Diags->Report(Loc, diag::ext_nonstandard_escape)
162 << std::string()+(char)ResultChar;
163 break;
164 default:
165 if (Diags == 0)
166 break;
167
168 if (isgraph(ResultChar))
169 Diags->Report(Loc, diag::ext_unknown_escape)
170 << std::string()+(char)ResultChar;
171 else
172 Diags->Report(Loc, diag::ext_unknown_escape)
173 << "x"+llvm::utohexstr(ResultChar);
174 break;
175 }
176
177 return ResultChar;
178 }
179
180 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
181 /// return the UTF32.
ProcessUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,uint32_t & UcnVal,unsigned short & UcnLen,FullSourceLoc Loc,DiagnosticsEngine * Diags,const LangOptions & Features,bool in_char_string_literal=false)182 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
183 const char *ThisTokEnd,
184 uint32_t &UcnVal, unsigned short &UcnLen,
185 FullSourceLoc Loc, DiagnosticsEngine *Diags,
186 const LangOptions &Features,
187 bool in_char_string_literal = false) {
188 if (!Features.CPlusPlus && !Features.C99 && Diags)
189 Diags->Report(Loc, diag::warn_ucn_not_valid_in_c89);
190
191 const char *UcnBegin = ThisTokBuf;
192
193 // Skip the '\u' char's.
194 ThisTokBuf += 2;
195
196 if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
197 if (Diags)
198 Diags->Report(Loc, diag::err_ucn_escape_no_digits);
199 return false;
200 }
201 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
202 unsigned short UcnLenSave = UcnLen;
203 for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
204 int CharVal = HexDigitValue(ThisTokBuf[0]);
205 if (CharVal == -1) break;
206 UcnVal <<= 4;
207 UcnVal |= CharVal;
208 }
209 // If we didn't consume the proper number of digits, there is a problem.
210 if (UcnLenSave) {
211 if (Diags) {
212 SourceLocation L =
213 Lexer::AdvanceToTokenCharacter(Loc, UcnBegin - ThisTokBegin,
214 Loc.getManager(), Features);
215 Diags->Report(L, diag::err_ucn_escape_incomplete);
216 }
217 return false;
218 }
219
220 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
221 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
222 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
223 if (Diags)
224 Diags->Report(Loc, diag::err_ucn_escape_invalid);
225 return false;
226 }
227
228 // C++11 allows UCNs that refer to control characters and basic source
229 // characters inside character and string literals
230 if (UcnVal < 0xa0 &&
231 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
232 bool IsError = (!Features.CPlusPlus0x || !in_char_string_literal);
233 if (Diags) {
234 SourceLocation UcnBeginLoc =
235 Lexer::AdvanceToTokenCharacter(Loc, UcnBegin - ThisTokBegin,
236 Loc.getManager(), Features);
237 char BasicSCSChar = UcnVal;
238 if (UcnVal >= 0x20 && UcnVal < 0x7f)
239 Diags->Report(UcnBeginLoc, IsError ? diag::err_ucn_escape_basic_scs :
240 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
241 << StringRef(&BasicSCSChar, 1);
242 else
243 Diags->Report(UcnBeginLoc, IsError ? diag::err_ucn_control_character :
244 diag::warn_cxx98_compat_literal_ucn_control_character);
245 }
246 if (IsError)
247 return false;
248 }
249
250 return true;
251 }
252
253 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
254 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
255 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
256 /// we will likely rework our support for UCN's.
EncodeUCNEscape(const char * ThisTokBegin,const char * & ThisTokBuf,const char * ThisTokEnd,char * & ResultBuf,bool & HadError,FullSourceLoc Loc,unsigned CharByteWidth,DiagnosticsEngine * Diags,const LangOptions & Features)257 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
258 const char *ThisTokEnd,
259 char *&ResultBuf, bool &HadError,
260 FullSourceLoc Loc, unsigned CharByteWidth,
261 DiagnosticsEngine *Diags,
262 const LangOptions &Features) {
263 typedef uint32_t UTF32;
264 UTF32 UcnVal = 0;
265 unsigned short UcnLen = 0;
266 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
267 Loc, Diags, Features, true)) {
268 HadError = 1;
269 return;
270 }
271
272 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth) &&
273 "only character widths of 1, 2, or 4 bytes supported");
274
275 (void)UcnLen;
276 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
277
278 if (CharByteWidth == 4) {
279 // FIXME: Make the type of the result buffer correct instead of
280 // using reinterpret_cast.
281 UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
282 *ResultPtr = UcnVal;
283 ResultBuf += 4;
284 return;
285 }
286
287 if (CharByteWidth == 2) {
288 // FIXME: Make the type of the result buffer correct instead of
289 // using reinterpret_cast.
290 UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
291
292 if (UcnVal < (UTF32)0xFFFF) {
293 *ResultPtr = UcnVal;
294 ResultBuf += 2;
295 return;
296 }
297
298 // Convert to UTF16.
299 UcnVal -= 0x10000;
300 *ResultPtr = 0xD800 + (UcnVal >> 10);
301 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
302 ResultBuf += 4;
303 return;
304 }
305
306 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
307
308 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
309 // The conversion below was inspired by:
310 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
311 // First, we determine how many bytes the result will require.
312 typedef uint8_t UTF8;
313
314 unsigned short bytesToWrite = 0;
315 if (UcnVal < (UTF32)0x80)
316 bytesToWrite = 1;
317 else if (UcnVal < (UTF32)0x800)
318 bytesToWrite = 2;
319 else if (UcnVal < (UTF32)0x10000)
320 bytesToWrite = 3;
321 else
322 bytesToWrite = 4;
323
324 const unsigned byteMask = 0xBF;
325 const unsigned byteMark = 0x80;
326
327 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
328 // into the first byte, depending on how many bytes follow.
329 static const UTF8 firstByteMark[5] = {
330 0x00, 0x00, 0xC0, 0xE0, 0xF0
331 };
332 // Finally, we write the bytes into ResultBuf.
333 ResultBuf += bytesToWrite;
334 switch (bytesToWrite) { // note: everything falls through.
335 case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
336 case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
337 case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
338 case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
339 }
340 // Update the buffer.
341 ResultBuf += bytesToWrite;
342 }
343
344
345 /// integer-constant: [C99 6.4.4.1]
346 /// decimal-constant integer-suffix
347 /// octal-constant integer-suffix
348 /// hexadecimal-constant integer-suffix
349 /// user-defined-integer-literal: [C++11 lex.ext]
350 /// decimal-literal ud-suffix
351 /// octal-literal ud-suffix
352 /// hexadecimal-literal ud-suffix
353 /// decimal-constant:
354 /// nonzero-digit
355 /// decimal-constant digit
356 /// octal-constant:
357 /// 0
358 /// octal-constant octal-digit
359 /// hexadecimal-constant:
360 /// hexadecimal-prefix hexadecimal-digit
361 /// hexadecimal-constant hexadecimal-digit
362 /// hexadecimal-prefix: one of
363 /// 0x 0X
364 /// integer-suffix:
365 /// unsigned-suffix [long-suffix]
366 /// unsigned-suffix [long-long-suffix]
367 /// long-suffix [unsigned-suffix]
368 /// long-long-suffix [unsigned-sufix]
369 /// nonzero-digit:
370 /// 1 2 3 4 5 6 7 8 9
371 /// octal-digit:
372 /// 0 1 2 3 4 5 6 7
373 /// hexadecimal-digit:
374 /// 0 1 2 3 4 5 6 7 8 9
375 /// a b c d e f
376 /// A B C D E F
377 /// unsigned-suffix: one of
378 /// u U
379 /// long-suffix: one of
380 /// l L
381 /// long-long-suffix: one of
382 /// ll LL
383 ///
384 /// floating-constant: [C99 6.4.4.2]
385 /// TODO: add rules...
386 ///
387 NumericLiteralParser::
NumericLiteralParser(const char * begin,const char * end,SourceLocation TokLoc,Preprocessor & pp)388 NumericLiteralParser(const char *begin, const char *end,
389 SourceLocation TokLoc, Preprocessor &pp)
390 : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
391
392 // This routine assumes that the range begin/end matches the regex for integer
393 // and FP constants (specifically, the 'pp-number' regex), and assumes that
394 // the byte at "*end" is both valid and not part of the regex. Because of
395 // this, it doesn't have to check for 'overscan' in various places.
396 assert(!isalnum(*end) && *end != '.' && *end != '_' &&
397 "Lexer didn't maximally munch?");
398
399 s = DigitsBegin = begin;
400 saw_exponent = false;
401 saw_period = false;
402 saw_ud_suffix = false;
403 isLong = false;
404 isUnsigned = false;
405 isLongLong = false;
406 isFloat = false;
407 isImaginary = false;
408 isMicrosoftInteger = false;
409 hadError = false;
410
411 if (*s == '0') { // parse radix
412 ParseNumberStartingWithZero(TokLoc);
413 if (hadError)
414 return;
415 } else { // the first digit is non-zero
416 radix = 10;
417 s = SkipDigits(s);
418 if (s == ThisTokEnd) {
419 // Done.
420 } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
421 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
422 diag::err_invalid_decimal_digit) << StringRef(s, 1);
423 hadError = true;
424 return;
425 } else if (*s == '.') {
426 s++;
427 saw_period = true;
428 s = SkipDigits(s);
429 }
430 if ((*s == 'e' || *s == 'E')) { // exponent
431 const char *Exponent = s;
432 s++;
433 saw_exponent = true;
434 if (*s == '+' || *s == '-') s++; // sign
435 const char *first_non_digit = SkipDigits(s);
436 if (first_non_digit != s) {
437 s = first_non_digit;
438 } else {
439 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
440 diag::err_exponent_has_no_digits);
441 hadError = true;
442 return;
443 }
444 }
445 }
446
447 SuffixBegin = s;
448
449 // Parse the suffix. At this point we can classify whether we have an FP or
450 // integer constant.
451 bool isFPConstant = isFloatingLiteral();
452
453 // Loop over all of the characters of the suffix. If we see something bad,
454 // we break out of the loop.
455 for (; s != ThisTokEnd; ++s) {
456 switch (*s) {
457 case 'f': // FP Suffix for "float"
458 case 'F':
459 if (!isFPConstant) break; // Error for integer constant.
460 if (isFloat || isLong) break; // FF, LF invalid.
461 isFloat = true;
462 continue; // Success.
463 case 'u':
464 case 'U':
465 if (isFPConstant) break; // Error for floating constant.
466 if (isUnsigned) break; // Cannot be repeated.
467 isUnsigned = true;
468 continue; // Success.
469 case 'l':
470 case 'L':
471 if (isLong || isLongLong) break; // Cannot be repeated.
472 if (isFloat) break; // LF invalid.
473
474 // Check for long long. The L's need to be adjacent and the same case.
475 if (s+1 != ThisTokEnd && s[1] == s[0]) {
476 if (isFPConstant) break; // long long invalid for floats.
477 isLongLong = true;
478 ++s; // Eat both of them.
479 } else {
480 isLong = true;
481 }
482 continue; // Success.
483 case 'i':
484 case 'I':
485 if (PP.getLangOpts().MicrosoftExt) {
486 if (isFPConstant || isLong || isLongLong) break;
487
488 // Allow i8, i16, i32, i64, and i128.
489 if (s + 1 != ThisTokEnd) {
490 switch (s[1]) {
491 case '8':
492 s += 2; // i8 suffix
493 isMicrosoftInteger = true;
494 break;
495 case '1':
496 if (s + 2 == ThisTokEnd) break;
497 if (s[2] == '6') {
498 s += 3; // i16 suffix
499 isMicrosoftInteger = true;
500 }
501 else if (s[2] == '2') {
502 if (s + 3 == ThisTokEnd) break;
503 if (s[3] == '8') {
504 s += 4; // i128 suffix
505 isMicrosoftInteger = true;
506 }
507 }
508 break;
509 case '3':
510 if (s + 2 == ThisTokEnd) break;
511 if (s[2] == '2') {
512 s += 3; // i32 suffix
513 isLong = true;
514 isMicrosoftInteger = true;
515 }
516 break;
517 case '6':
518 if (s + 2 == ThisTokEnd) break;
519 if (s[2] == '4') {
520 s += 3; // i64 suffix
521 isLongLong = true;
522 isMicrosoftInteger = true;
523 }
524 break;
525 default:
526 break;
527 }
528 break;
529 }
530 }
531 // fall through.
532 case 'j':
533 case 'J':
534 if (isImaginary) break; // Cannot be repeated.
535 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
536 diag::ext_imaginary_constant);
537 isImaginary = true;
538 continue; // Success.
539 }
540 // If we reached here, there was an error or a ud-suffix.
541 break;
542 }
543
544 if (s != ThisTokEnd) {
545 if (PP.getLangOpts().CPlusPlus0x && s == SuffixBegin && *s == '_') {
546 // We have a ud-suffix! By C++11 [lex.ext]p10, ud-suffixes not starting
547 // with an '_' are ill-formed.
548 saw_ud_suffix = true;
549 return;
550 }
551
552 // Report an error if there are any.
553 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin-begin),
554 isFPConstant ? diag::err_invalid_suffix_float_constant :
555 diag::err_invalid_suffix_integer_constant)
556 << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
557 hadError = true;
558 return;
559 }
560 }
561
562 /// ParseNumberStartingWithZero - This method is called when the first character
563 /// of the number is found to be a zero. This means it is either an octal
564 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
565 /// a floating point number (01239.123e4). Eat the prefix, determining the
566 /// radix etc.
ParseNumberStartingWithZero(SourceLocation TokLoc)567 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
568 assert(s[0] == '0' && "Invalid method call");
569 s++;
570
571 // Handle a hex number like 0x1234.
572 if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
573 s++;
574 radix = 16;
575 DigitsBegin = s;
576 s = SkipHexDigits(s);
577 bool noSignificand = (s == DigitsBegin);
578 if (s == ThisTokEnd) {
579 // Done.
580 } else if (*s == '.') {
581 s++;
582 saw_period = true;
583 const char *floatDigitsBegin = s;
584 s = SkipHexDigits(s);
585 noSignificand &= (floatDigitsBegin == s);
586 }
587
588 if (noSignificand) {
589 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin), \
590 diag::err_hexconstant_requires_digits);
591 hadError = true;
592 return;
593 }
594
595 // A binary exponent can appear with or with a '.'. If dotted, the
596 // binary exponent is required.
597 if (*s == 'p' || *s == 'P') {
598 const char *Exponent = s;
599 s++;
600 saw_exponent = true;
601 if (*s == '+' || *s == '-') s++; // sign
602 const char *first_non_digit = SkipDigits(s);
603 if (first_non_digit == s) {
604 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
605 diag::err_exponent_has_no_digits);
606 hadError = true;
607 return;
608 }
609 s = first_non_digit;
610
611 if (!PP.getLangOpts().HexFloats)
612 PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
613 } else if (saw_period) {
614 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
615 diag::err_hexconstant_requires_exponent);
616 hadError = true;
617 }
618 return;
619 }
620
621 // Handle simple binary numbers 0b01010
622 if (*s == 'b' || *s == 'B') {
623 // 0b101010 is a GCC extension.
624 PP.Diag(TokLoc, diag::ext_binary_literal);
625 ++s;
626 radix = 2;
627 DigitsBegin = s;
628 s = SkipBinaryDigits(s);
629 if (s == ThisTokEnd) {
630 // Done.
631 } else if (isxdigit(*s)) {
632 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
633 diag::err_invalid_binary_digit) << StringRef(s, 1);
634 hadError = true;
635 }
636 // Other suffixes will be diagnosed by the caller.
637 return;
638 }
639
640 // For now, the radix is set to 8. If we discover that we have a
641 // floating point constant, the radix will change to 10. Octal floating
642 // point constants are not permitted (only decimal and hexadecimal).
643 radix = 8;
644 DigitsBegin = s;
645 s = SkipOctalDigits(s);
646 if (s == ThisTokEnd)
647 return; // Done, simple octal number like 01234
648
649 // If we have some other non-octal digit that *is* a decimal digit, see if
650 // this is part of a floating point number like 094.123 or 09e1.
651 if (isdigit(*s)) {
652 const char *EndDecimal = SkipDigits(s);
653 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
654 s = EndDecimal;
655 radix = 10;
656 }
657 }
658
659 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
660 // the code is using an incorrect base.
661 if (isxdigit(*s) && *s != 'e' && *s != 'E') {
662 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
663 diag::err_invalid_octal_digit) << StringRef(s, 1);
664 hadError = true;
665 return;
666 }
667
668 if (*s == '.') {
669 s++;
670 radix = 10;
671 saw_period = true;
672 s = SkipDigits(s); // Skip suffix.
673 }
674 if (*s == 'e' || *s == 'E') { // exponent
675 const char *Exponent = s;
676 s++;
677 radix = 10;
678 saw_exponent = true;
679 if (*s == '+' || *s == '-') s++; // sign
680 const char *first_non_digit = SkipDigits(s);
681 if (first_non_digit != s) {
682 s = first_non_digit;
683 } else {
684 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
685 diag::err_exponent_has_no_digits);
686 hadError = true;
687 return;
688 }
689 }
690 }
691
692
693 /// GetIntegerValue - Convert this numeric literal value to an APInt that
694 /// matches Val's input width. If there is an overflow, set Val to the low bits
695 /// of the result and return true. Otherwise, return false.
GetIntegerValue(llvm::APInt & Val)696 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
697 // Fast path: Compute a conservative bound on the maximum number of
698 // bits per digit in this radix. If we can't possibly overflow a
699 // uint64 based on that bound then do the simple conversion to
700 // integer. This avoids the expensive overflow checking below, and
701 // handles the common cases that matter (small decimal integers and
702 // hex/octal values which don't overflow).
703 unsigned MaxBitsPerDigit = 1;
704 while ((1U << MaxBitsPerDigit) < radix)
705 MaxBitsPerDigit += 1;
706 if ((SuffixBegin - DigitsBegin) * MaxBitsPerDigit <= 64) {
707 uint64_t N = 0;
708 for (s = DigitsBegin; s != SuffixBegin; ++s)
709 N = N*radix + HexDigitValue(*s);
710
711 // This will truncate the value to Val's input width. Simply check
712 // for overflow by comparing.
713 Val = N;
714 return Val.getZExtValue() != N;
715 }
716
717 Val = 0;
718 s = DigitsBegin;
719
720 llvm::APInt RadixVal(Val.getBitWidth(), radix);
721 llvm::APInt CharVal(Val.getBitWidth(), 0);
722 llvm::APInt OldVal = Val;
723
724 bool OverflowOccurred = false;
725 while (s < SuffixBegin) {
726 unsigned C = HexDigitValue(*s++);
727
728 // If this letter is out of bound for this radix, reject it.
729 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
730
731 CharVal = C;
732
733 // Add the digit to the value in the appropriate radix. If adding in digits
734 // made the value smaller, then this overflowed.
735 OldVal = Val;
736
737 // Multiply by radix, did overflow occur on the multiply?
738 Val *= RadixVal;
739 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
740
741 // Add value, did overflow occur on the value?
742 // (a + b) ult b <=> overflow
743 Val += CharVal;
744 OverflowOccurred |= Val.ult(CharVal);
745 }
746 return OverflowOccurred;
747 }
748
749 llvm::APFloat::opStatus
GetFloatValue(llvm::APFloat & Result)750 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
751 using llvm::APFloat;
752
753 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
754 return Result.convertFromString(StringRef(ThisTokBegin, n),
755 APFloat::rmNearestTiesToEven);
756 }
757
758
759 /// user-defined-character-literal: [C++11 lex.ext]
760 /// character-literal ud-suffix
761 /// ud-suffix:
762 /// identifier
763 /// character-literal: [C++11 lex.ccon]
764 /// ' c-char-sequence '
765 /// u' c-char-sequence '
766 /// U' c-char-sequence '
767 /// L' c-char-sequence '
768 /// c-char-sequence:
769 /// c-char
770 /// c-char-sequence c-char
771 /// c-char:
772 /// any member of the source character set except the single-quote ',
773 /// backslash \, or new-line character
774 /// escape-sequence
775 /// universal-character-name
776 /// escape-sequence:
777 /// simple-escape-sequence
778 /// octal-escape-sequence
779 /// hexadecimal-escape-sequence
780 /// simple-escape-sequence:
781 /// one of \' \" \? \\ \a \b \f \n \r \t \v
782 /// octal-escape-sequence:
783 /// \ octal-digit
784 /// \ octal-digit octal-digit
785 /// \ octal-digit octal-digit octal-digit
786 /// hexadecimal-escape-sequence:
787 /// \x hexadecimal-digit
788 /// hexadecimal-escape-sequence hexadecimal-digit
789 /// universal-character-name: [C++11 lex.charset]
790 /// \u hex-quad
791 /// \U hex-quad hex-quad
792 /// hex-quad:
793 /// hex-digit hex-digit hex-digit hex-digit
794 ///
CharLiteralParser(const char * begin,const char * end,SourceLocation Loc,Preprocessor & PP,tok::TokenKind kind)795 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
796 SourceLocation Loc, Preprocessor &PP,
797 tok::TokenKind kind) {
798 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
799 HadError = false;
800
801 Kind = kind;
802
803 const char *TokBegin = begin;
804
805 // Skip over wide character determinant.
806 if (Kind != tok::char_constant) {
807 ++begin;
808 }
809
810 // Skip over the entry quote.
811 assert(begin[0] == '\'' && "Invalid token lexed");
812 ++begin;
813
814 // Remove an optional ud-suffix.
815 if (end[-1] != '\'') {
816 const char *UDSuffixEnd = end;
817 do {
818 --end;
819 } while (end[-1] != '\'');
820 UDSuffixBuf.assign(end, UDSuffixEnd);
821 UDSuffixOffset = end - TokBegin;
822 }
823
824 // Trim the ending quote.
825 assert(end != begin && "Invalid token lexed");
826 --end;
827
828 // FIXME: The "Value" is an uint64_t so we can handle char literals of
829 // up to 64-bits.
830 // FIXME: This extensively assumes that 'char' is 8-bits.
831 assert(PP.getTargetInfo().getCharWidth() == 8 &&
832 "Assumes char is 8 bits");
833 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
834 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
835 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
836 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
837 "Assumes sizeof(wchar) on target is <= 64");
838
839 SmallVector<uint32_t,4> codepoint_buffer;
840 codepoint_buffer.resize(end-begin);
841 uint32_t *buffer_begin = &codepoint_buffer.front();
842 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
843
844 // Unicode escapes representing characters that cannot be correctly
845 // represented in a single code unit are disallowed in character literals
846 // by this implementation.
847 uint32_t largest_character_for_kind;
848 if (tok::wide_char_constant == Kind) {
849 largest_character_for_kind = 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
850 } else if (tok::utf16_char_constant == Kind) {
851 largest_character_for_kind = 0xFFFF;
852 } else if (tok::utf32_char_constant == Kind) {
853 largest_character_for_kind = 0x10FFFF;
854 } else {
855 largest_character_for_kind = 0x7Fu;
856 }
857
858 while (begin!=end) {
859 // Is this a span of non-escape characters?
860 if (begin[0] != '\\') {
861 char const *start = begin;
862 do {
863 ++begin;
864 } while (begin != end && *begin != '\\');
865
866 char const *tmp_in_start = start;
867 uint32_t *tmp_out_start = buffer_begin;
868 ConversionResult res =
869 ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
870 reinterpret_cast<UTF8 const *>(begin),
871 &buffer_begin,buffer_end,strictConversion);
872 if (res!=conversionOK) {
873 // If we see bad encoding for unprefixed character literals, warn and
874 // simply copy the byte values, for compatibility with gcc and
875 // older versions of clang.
876 bool NoErrorOnBadEncoding = isAscii();
877 unsigned Msg = diag::err_bad_character_encoding;
878 if (NoErrorOnBadEncoding)
879 Msg = diag::warn_bad_character_encoding;
880 PP.Diag(Loc, Msg);
881 if (NoErrorOnBadEncoding) {
882 start = tmp_in_start;
883 buffer_begin = tmp_out_start;
884 for ( ; start != begin; ++start, ++buffer_begin)
885 *buffer_begin = static_cast<uint8_t>(*start);
886 } else {
887 HadError = true;
888 }
889 } else {
890 for (; tmp_out_start <buffer_begin; ++tmp_out_start) {
891 if (*tmp_out_start > largest_character_for_kind) {
892 HadError = true;
893 PP.Diag(Loc, diag::err_character_too_large);
894 }
895 }
896 }
897
898 continue;
899 }
900 // Is this a Universal Character Name excape?
901 if (begin[1] == 'u' || begin[1] == 'U') {
902 unsigned short UcnLen = 0;
903 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
904 FullSourceLoc(Loc, PP.getSourceManager()),
905 &PP.getDiagnostics(), PP.getLangOpts(),
906 true))
907 {
908 HadError = true;
909 } else if (*buffer_begin > largest_character_for_kind) {
910 HadError = true;
911 PP.Diag(Loc,diag::err_character_too_large);
912 }
913
914 ++buffer_begin;
915 continue;
916 }
917 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
918 uint64_t result =
919 ProcessCharEscape(begin, end, HadError,
920 FullSourceLoc(Loc,PP.getSourceManager()),
921 CharWidth, &PP.getDiagnostics());
922 *buffer_begin++ = result;
923 }
924
925 unsigned NumCharsSoFar = buffer_begin-&codepoint_buffer.front();
926
927 if (NumCharsSoFar > 1) {
928 if (isWide())
929 PP.Diag(Loc, diag::warn_extraneous_char_constant);
930 else if (isAscii() && NumCharsSoFar == 4)
931 PP.Diag(Loc, diag::ext_four_char_character_literal);
932 else if (isAscii())
933 PP.Diag(Loc, diag::ext_multichar_character_literal);
934 else
935 PP.Diag(Loc, diag::err_multichar_utf_character_literal);
936 IsMultiChar = true;
937 } else
938 IsMultiChar = false;
939
940 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
941
942 // Narrow character literals act as though their value is concatenated
943 // in this implementation, but warn on overflow.
944 bool multi_char_too_long = false;
945 if (isAscii() && isMultiChar()) {
946 LitVal = 0;
947 for (size_t i=0;i<NumCharsSoFar;++i) {
948 // check for enough leading zeros to shift into
949 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
950 LitVal <<= 8;
951 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
952 }
953 } else if (NumCharsSoFar > 0) {
954 // otherwise just take the last character
955 LitVal = buffer_begin[-1];
956 }
957
958 if (!HadError && multi_char_too_long) {
959 PP.Diag(Loc,diag::warn_char_constant_too_large);
960 }
961
962 // Transfer the value from APInt to uint64_t
963 Value = LitVal.getZExtValue();
964
965 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
966 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
967 // character constants are not sign extended in the this implementation:
968 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
969 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
970 PP.getLangOpts().CharIsSigned)
971 Value = (signed char)Value;
972 }
973
974
975 /// string-literal: [C++0x lex.string]
976 /// encoding-prefix " [s-char-sequence] "
977 /// encoding-prefix R raw-string
978 /// encoding-prefix:
979 /// u8
980 /// u
981 /// U
982 /// L
983 /// s-char-sequence:
984 /// s-char
985 /// s-char-sequence s-char
986 /// s-char:
987 /// any member of the source character set except the double-quote ",
988 /// backslash \, or new-line character
989 /// escape-sequence
990 /// universal-character-name
991 /// raw-string:
992 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
993 /// r-char-sequence:
994 /// r-char
995 /// r-char-sequence r-char
996 /// r-char:
997 /// any member of the source character set, except a right parenthesis )
998 /// followed by the initial d-char-sequence (which may be empty)
999 /// followed by a double quote ".
1000 /// d-char-sequence:
1001 /// d-char
1002 /// d-char-sequence d-char
1003 /// d-char:
1004 /// any member of the basic source character set except:
1005 /// space, the left parenthesis (, the right parenthesis ),
1006 /// the backslash \, and the control characters representing horizontal
1007 /// tab, vertical tab, form feed, and newline.
1008 /// escape-sequence: [C++0x lex.ccon]
1009 /// simple-escape-sequence
1010 /// octal-escape-sequence
1011 /// hexadecimal-escape-sequence
1012 /// simple-escape-sequence:
1013 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1014 /// octal-escape-sequence:
1015 /// \ octal-digit
1016 /// \ octal-digit octal-digit
1017 /// \ octal-digit octal-digit octal-digit
1018 /// hexadecimal-escape-sequence:
1019 /// \x hexadecimal-digit
1020 /// hexadecimal-escape-sequence hexadecimal-digit
1021 /// universal-character-name:
1022 /// \u hex-quad
1023 /// \U hex-quad hex-quad
1024 /// hex-quad:
1025 /// hex-digit hex-digit hex-digit hex-digit
1026 ///
1027 StringLiteralParser::
StringLiteralParser(const Token * StringToks,unsigned NumStringToks,Preprocessor & PP,bool Complain)1028 StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
1029 Preprocessor &PP, bool Complain)
1030 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1031 Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
1032 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1033 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1034 init(StringToks, NumStringToks);
1035 }
1036
init(const Token * StringToks,unsigned NumStringToks)1037 void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
1038 // The literal token may have come from an invalid source location (e.g. due
1039 // to a PCH error), in which case the token length will be 0.
1040 if (NumStringToks == 0 || StringToks[0].getLength() < 2) {
1041 hadError = true;
1042 return;
1043 }
1044
1045 // Scan all of the string portions, remember the max individual token length,
1046 // computing a bound on the concatenated string length, and see whether any
1047 // piece is a wide-string. If any of the string portions is a wide-string
1048 // literal, the result is a wide-string literal [C99 6.4.5p4].
1049 assert(NumStringToks && "expected at least one token");
1050 MaxTokenLength = StringToks[0].getLength();
1051 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1052 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1053 Kind = StringToks[0].getKind();
1054
1055 hadError = false;
1056
1057 // Implement Translation Phase #6: concatenation of string literals
1058 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1059 for (unsigned i = 1; i != NumStringToks; ++i) {
1060 if (StringToks[i].getLength() < 2) {
1061 hadError = true;
1062 return;
1063 }
1064
1065 // The string could be shorter than this if it needs cleaning, but this is a
1066 // reasonable bound, which is all we need.
1067 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1068 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1069
1070 // Remember maximum string piece length.
1071 if (StringToks[i].getLength() > MaxTokenLength)
1072 MaxTokenLength = StringToks[i].getLength();
1073
1074 // Remember if we see any wide or utf-8/16/32 strings.
1075 // Also check for illegal concatenations.
1076 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1077 if (isAscii()) {
1078 Kind = StringToks[i].getKind();
1079 } else {
1080 if (Diags)
1081 Diags->Report(FullSourceLoc(StringToks[i].getLocation(), SM),
1082 diag::err_unsupported_string_concat);
1083 hadError = true;
1084 }
1085 }
1086 }
1087
1088 // Include space for the null terminator.
1089 ++SizeBound;
1090
1091 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1092
1093 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1094 CharByteWidth = getCharWidth(Kind, Target);
1095 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1096 CharByteWidth /= 8;
1097
1098 // The output buffer size needs to be large enough to hold wide characters.
1099 // This is a worst-case assumption which basically corresponds to L"" "long".
1100 SizeBound *= CharByteWidth;
1101
1102 // Size the temporary buffer to hold the result string data.
1103 ResultBuf.resize(SizeBound);
1104
1105 // Likewise, but for each string piece.
1106 SmallString<512> TokenBuf;
1107 TokenBuf.resize(MaxTokenLength);
1108
1109 // Loop over all the strings, getting their spelling, and expanding them to
1110 // wide strings as appropriate.
1111 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1112
1113 Pascal = false;
1114
1115 SourceLocation UDSuffixTokLoc;
1116
1117 for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
1118 const char *ThisTokBuf = &TokenBuf[0];
1119 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1120 // that ThisTokBuf points to a buffer that is big enough for the whole token
1121 // and 'spelled' tokens can only shrink.
1122 bool StringInvalid = false;
1123 unsigned ThisTokLen =
1124 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1125 &StringInvalid);
1126 if (StringInvalid) {
1127 hadError = true;
1128 continue;
1129 }
1130
1131 const char *ThisTokBegin = ThisTokBuf;
1132 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1133
1134 // Remove an optional ud-suffix.
1135 if (ThisTokEnd[-1] != '"') {
1136 const char *UDSuffixEnd = ThisTokEnd;
1137 do {
1138 --ThisTokEnd;
1139 } while (ThisTokEnd[-1] != '"');
1140
1141 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1142
1143 if (UDSuffixBuf.empty()) {
1144 UDSuffixBuf.assign(UDSuffix);
1145 UDSuffixToken = i;
1146 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1147 UDSuffixTokLoc = StringToks[i].getLocation();
1148 } else if (!UDSuffixBuf.equals(UDSuffix)) {
1149 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1150 // result of a concatenation involving at least one user-defined-string-
1151 // literal, all the participating user-defined-string-literals shall
1152 // have the same ud-suffix.
1153 if (Diags) {
1154 SourceLocation TokLoc = StringToks[i].getLocation();
1155 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1156 << UDSuffixBuf << UDSuffix
1157 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1158 << SourceRange(TokLoc, TokLoc);
1159 }
1160 hadError = true;
1161 }
1162 }
1163
1164 // Strip the end quote.
1165 --ThisTokEnd;
1166
1167 // TODO: Input character set mapping support.
1168
1169 // Skip marker for wide or unicode strings.
1170 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1171 ++ThisTokBuf;
1172 // Skip 8 of u8 marker for utf8 strings.
1173 if (ThisTokBuf[0] == '8')
1174 ++ThisTokBuf;
1175 }
1176
1177 // Check for raw string
1178 if (ThisTokBuf[0] == 'R') {
1179 ThisTokBuf += 2; // skip R"
1180
1181 const char *Prefix = ThisTokBuf;
1182 while (ThisTokBuf[0] != '(')
1183 ++ThisTokBuf;
1184 ++ThisTokBuf; // skip '('
1185
1186 // Remove same number of characters from the end
1187 ThisTokEnd -= ThisTokBuf - Prefix;
1188 assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1189
1190 // Copy the string over
1191 if (CopyStringFragment(StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1192 if (DiagnoseBadString(StringToks[i]))
1193 hadError = true;
1194 } else {
1195 assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
1196 ++ThisTokBuf; // skip "
1197
1198 // Check if this is a pascal string
1199 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1200 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1201
1202 // If the \p sequence is found in the first token, we have a pascal string
1203 // Otherwise, if we already have a pascal string, ignore the first \p
1204 if (i == 0) {
1205 ++ThisTokBuf;
1206 Pascal = true;
1207 } else if (Pascal)
1208 ThisTokBuf += 2;
1209 }
1210
1211 while (ThisTokBuf != ThisTokEnd) {
1212 // Is this a span of non-escape characters?
1213 if (ThisTokBuf[0] != '\\') {
1214 const char *InStart = ThisTokBuf;
1215 do {
1216 ++ThisTokBuf;
1217 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1218
1219 // Copy the character span over.
1220 if (CopyStringFragment(StringRef(InStart, ThisTokBuf - InStart)))
1221 if (DiagnoseBadString(StringToks[i]))
1222 hadError = true;
1223 continue;
1224 }
1225 // Is this a Universal Character Name escape?
1226 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1227 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1228 ResultPtr, hadError,
1229 FullSourceLoc(StringToks[i].getLocation(), SM),
1230 CharByteWidth, Diags, Features);
1231 continue;
1232 }
1233 // Otherwise, this is a non-UCN escape character. Process it.
1234 unsigned ResultChar =
1235 ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
1236 FullSourceLoc(StringToks[i].getLocation(), SM),
1237 CharByteWidth*8, Diags);
1238
1239 if (CharByteWidth == 4) {
1240 // FIXME: Make the type of the result buffer correct instead of
1241 // using reinterpret_cast.
1242 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1243 *ResultWidePtr = ResultChar;
1244 ResultPtr += 4;
1245 } else if (CharByteWidth == 2) {
1246 // FIXME: Make the type of the result buffer correct instead of
1247 // using reinterpret_cast.
1248 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1249 *ResultWidePtr = ResultChar & 0xFFFF;
1250 ResultPtr += 2;
1251 } else {
1252 assert(CharByteWidth == 1 && "Unexpected char width");
1253 *ResultPtr++ = ResultChar & 0xFF;
1254 }
1255 }
1256 }
1257 }
1258
1259 if (Pascal) {
1260 if (CharByteWidth == 4) {
1261 // FIXME: Make the type of the result buffer correct instead of
1262 // using reinterpret_cast.
1263 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1264 ResultWidePtr[0] = GetNumStringChars() - 1;
1265 } else if (CharByteWidth == 2) {
1266 // FIXME: Make the type of the result buffer correct instead of
1267 // using reinterpret_cast.
1268 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1269 ResultWidePtr[0] = GetNumStringChars() - 1;
1270 } else {
1271 assert(CharByteWidth == 1 && "Unexpected char width");
1272 ResultBuf[0] = GetNumStringChars() - 1;
1273 }
1274
1275 // Verify that pascal strings aren't too large.
1276 if (GetStringLength() > 256) {
1277 if (Diags)
1278 Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
1279 diag::err_pascal_string_too_long)
1280 << SourceRange(StringToks[0].getLocation(),
1281 StringToks[NumStringToks-1].getLocation());
1282 hadError = true;
1283 return;
1284 }
1285 } else if (Diags) {
1286 // Complain if this string literal has too many characters.
1287 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1288
1289 if (GetNumStringChars() > MaxChars)
1290 Diags->Report(FullSourceLoc(StringToks[0].getLocation(), SM),
1291 diag::ext_string_too_long)
1292 << GetNumStringChars() << MaxChars
1293 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1294 << SourceRange(StringToks[0].getLocation(),
1295 StringToks[NumStringToks-1].getLocation());
1296 }
1297 }
1298
1299
1300 /// copyStringFragment - This function copies from Start to End into ResultPtr.
1301 /// Performs widening for multi-byte characters.
CopyStringFragment(StringRef Fragment)1302 bool StringLiteralParser::CopyStringFragment(StringRef Fragment) {
1303 assert(CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4);
1304 ConversionResult result = conversionOK;
1305 // Copy the character span over.
1306 if (CharByteWidth == 1) {
1307 if (!isLegalUTF8String(reinterpret_cast<const UTF8*>(Fragment.begin()),
1308 reinterpret_cast<const UTF8*>(Fragment.end())))
1309 result = sourceIllegal;
1310 memcpy(ResultPtr, Fragment.data(), Fragment.size());
1311 ResultPtr += Fragment.size();
1312 } else if (CharByteWidth == 2) {
1313 UTF8 const *sourceStart = (UTF8 const *)Fragment.data();
1314 // FIXME: Make the type of the result buffer correct instead of
1315 // using reinterpret_cast.
1316 UTF16 *targetStart = reinterpret_cast<UTF16*>(ResultPtr);
1317 ConversionFlags flags = strictConversion;
1318 result = ConvertUTF8toUTF16(
1319 &sourceStart,sourceStart + Fragment.size(),
1320 &targetStart,targetStart + 2*Fragment.size(),flags);
1321 if (result==conversionOK)
1322 ResultPtr = reinterpret_cast<char*>(targetStart);
1323 } else if (CharByteWidth == 4) {
1324 UTF8 const *sourceStart = (UTF8 const *)Fragment.data();
1325 // FIXME: Make the type of the result buffer correct instead of
1326 // using reinterpret_cast.
1327 UTF32 *targetStart = reinterpret_cast<UTF32*>(ResultPtr);
1328 ConversionFlags flags = strictConversion;
1329 result = ConvertUTF8toUTF32(
1330 &sourceStart,sourceStart + Fragment.size(),
1331 &targetStart,targetStart + 4*Fragment.size(),flags);
1332 if (result==conversionOK)
1333 ResultPtr = reinterpret_cast<char*>(targetStart);
1334 }
1335 assert((result != targetExhausted)
1336 && "ConvertUTF8toUTFXX exhausted target buffer");
1337 return result != conversionOK;
1338 }
1339
DiagnoseBadString(const Token & Tok)1340 bool StringLiteralParser::DiagnoseBadString(const Token &Tok) {
1341 // If we see bad encoding for unprefixed string literals, warn and
1342 // simply copy the byte values, for compatibility with gcc and older
1343 // versions of clang.
1344 bool NoErrorOnBadEncoding = isAscii();
1345 unsigned Msg = NoErrorOnBadEncoding ? diag::warn_bad_string_encoding :
1346 diag::err_bad_string_encoding;
1347 if (Diags)
1348 Diags->Report(FullSourceLoc(Tok.getLocation(), SM), Msg);
1349 return !NoErrorOnBadEncoding;
1350 }
1351
1352 /// getOffsetOfStringByte - This function returns the offset of the
1353 /// specified byte of the string data represented by Token. This handles
1354 /// advancing over escape sequences in the string.
getOffsetOfStringByte(const Token & Tok,unsigned ByteNo) const1355 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1356 unsigned ByteNo) const {
1357 // Get the spelling of the token.
1358 SmallString<32> SpellingBuffer;
1359 SpellingBuffer.resize(Tok.getLength());
1360
1361 bool StringInvalid = false;
1362 const char *SpellingPtr = &SpellingBuffer[0];
1363 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1364 &StringInvalid);
1365 if (StringInvalid)
1366 return 0;
1367
1368 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1369 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1370
1371
1372 const char *SpellingStart = SpellingPtr;
1373 const char *SpellingEnd = SpellingPtr+TokLen;
1374
1375 // Skip over the leading quote.
1376 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1377 ++SpellingPtr;
1378
1379 // Skip over bytes until we find the offset we're looking for.
1380 while (ByteNo) {
1381 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1382
1383 // Step over non-escapes simply.
1384 if (*SpellingPtr != '\\') {
1385 ++SpellingPtr;
1386 --ByteNo;
1387 continue;
1388 }
1389
1390 // Otherwise, this is an escape character. Advance over it.
1391 bool HadError = false;
1392 ProcessCharEscape(SpellingPtr, SpellingEnd, HadError,
1393 FullSourceLoc(Tok.getLocation(), SM),
1394 CharByteWidth*8, Diags);
1395 assert(!HadError && "This method isn't valid on erroneous strings");
1396 --ByteNo;
1397 }
1398
1399 return SpellingPtr-SpellingStart;
1400 }
1401