• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/DelayedDiagnostic.h"
16 #include "clang/Sema/Initialization.h"
17 #include "clang/Sema/Lookup.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclFriend.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DependentDiagnostic.h"
24 #include "clang/AST/ExprCXX.h"
25 
26 using namespace clang;
27 using namespace sema;
28 
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35 
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47 
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56 
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60 
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64 
FindDeclaringClass(NamedDecl * D)65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67 
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72 
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78 
79 namespace {
80 struct EffectiveContext {
EffectiveContext__anonbeffc5cd0111::EffectiveContext81   EffectiveContext() : Inner(0), Dependent(false) {}
82 
EffectiveContext__anonbeffc5cd0111::EffectiveContext83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86 
87     // C++ [class.access.nest]p1:
88     //   A nested class is a member and as such has the same access
89     //   rights as any other member.
90     // C++ [class.access]p2:
91     //   A member of a class can also access all the names to which
92     //   the class has access.  A local class of a member function
93     //   may access the same names that the member function itself
94     //   may access.
95     // This almost implies that the privileges of nesting are transitive.
96     // Technically it says nothing about the local classes of non-member
97     // functions (which can gain privileges through friendship), but we
98     // take that as an oversight.
99     while (true) {
100       if (isa<CXXRecordDecl>(DC)) {
101         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
102         Records.push_back(Record);
103         DC = Record->getDeclContext();
104       } else if (isa<FunctionDecl>(DC)) {
105         FunctionDecl *Function = cast<FunctionDecl>(DC)->getCanonicalDecl();
106         Functions.push_back(Function);
107 
108         if (Function->getFriendObjectKind())
109           DC = Function->getLexicalDeclContext();
110         else
111           DC = Function->getDeclContext();
112       } else if (DC->isFileContext()) {
113         break;
114       } else {
115         DC = DC->getParent();
116       }
117     }
118   }
119 
isDependent__anonbeffc5cd0111::EffectiveContext120   bool isDependent() const { return Dependent; }
121 
includesClass__anonbeffc5cd0111::EffectiveContext122   bool includesClass(const CXXRecordDecl *R) const {
123     R = R->getCanonicalDecl();
124     return std::find(Records.begin(), Records.end(), R)
125              != Records.end();
126   }
127 
128   /// Retrieves the innermost "useful" context.  Can be null if we're
129   /// doing access-control without privileges.
getInnerContext__anonbeffc5cd0111::EffectiveContext130   DeclContext *getInnerContext() const {
131     return Inner;
132   }
133 
134   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
135 
136   DeclContext *Inner;
137   SmallVector<FunctionDecl*, 4> Functions;
138   SmallVector<CXXRecordDecl*, 4> Records;
139   bool Dependent;
140 };
141 
142 /// Like sema::AccessedEntity, but kindly lets us scribble all over
143 /// it.
144 struct AccessTarget : public AccessedEntity {
AccessTarget__anonbeffc5cd0111::AccessTarget145   AccessTarget(const AccessedEntity &Entity)
146     : AccessedEntity(Entity) {
147     initialize();
148   }
149 
AccessTarget__anonbeffc5cd0111::AccessTarget150   AccessTarget(ASTContext &Context,
151                MemberNonce _,
152                CXXRecordDecl *NamingClass,
153                DeclAccessPair FoundDecl,
154                QualType BaseObjectType)
155     : AccessedEntity(Context, Member, NamingClass, FoundDecl, BaseObjectType) {
156     initialize();
157   }
158 
AccessTarget__anonbeffc5cd0111::AccessTarget159   AccessTarget(ASTContext &Context,
160                BaseNonce _,
161                CXXRecordDecl *BaseClass,
162                CXXRecordDecl *DerivedClass,
163                AccessSpecifier Access)
164     : AccessedEntity(Context, Base, BaseClass, DerivedClass, Access) {
165     initialize();
166   }
167 
isInstanceMember__anonbeffc5cd0111::AccessTarget168   bool isInstanceMember() const {
169     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
170   }
171 
hasInstanceContext__anonbeffc5cd0111::AccessTarget172   bool hasInstanceContext() const {
173     return HasInstanceContext;
174   }
175 
176   class SavedInstanceContext {
177   public:
~SavedInstanceContext()178     ~SavedInstanceContext() {
179       Target.HasInstanceContext = Has;
180     }
181 
182   private:
183     friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)184     explicit SavedInstanceContext(AccessTarget &Target)
185       : Target(Target), Has(Target.HasInstanceContext) {}
186     AccessTarget &Target;
187     bool Has;
188   };
189 
saveInstanceContext__anonbeffc5cd0111::AccessTarget190   SavedInstanceContext saveInstanceContext() {
191     return SavedInstanceContext(*this);
192   }
193 
suppressInstanceContext__anonbeffc5cd0111::AccessTarget194   void suppressInstanceContext() {
195     HasInstanceContext = false;
196   }
197 
resolveInstanceContext__anonbeffc5cd0111::AccessTarget198   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
199     assert(HasInstanceContext);
200     if (CalculatedInstanceContext)
201       return InstanceContext;
202 
203     CalculatedInstanceContext = true;
204     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
205     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
206     return InstanceContext;
207   }
208 
getDeclaringClass__anonbeffc5cd0111::AccessTarget209   const CXXRecordDecl *getDeclaringClass() const {
210     return DeclaringClass;
211   }
212 
213 private:
initialize__anonbeffc5cd0111::AccessTarget214   void initialize() {
215     HasInstanceContext = (isMemberAccess() &&
216                           !getBaseObjectType().isNull() &&
217                           getTargetDecl()->isCXXInstanceMember());
218     CalculatedInstanceContext = false;
219     InstanceContext = 0;
220 
221     if (isMemberAccess())
222       DeclaringClass = FindDeclaringClass(getTargetDecl());
223     else
224       DeclaringClass = getBaseClass();
225     DeclaringClass = DeclaringClass->getCanonicalDecl();
226   }
227 
228   bool HasInstanceContext : 1;
229   mutable bool CalculatedInstanceContext : 1;
230   mutable const CXXRecordDecl *InstanceContext;
231   const CXXRecordDecl *DeclaringClass;
232 };
233 
234 }
235 
236 /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)237 static bool MightInstantiateTo(const CXXRecordDecl *From,
238                                const CXXRecordDecl *To) {
239   // Declaration names are always preserved by instantiation.
240   if (From->getDeclName() != To->getDeclName())
241     return false;
242 
243   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
244   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
245   if (FromDC == ToDC) return true;
246   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
247 
248   // Be conservative.
249   return true;
250 }
251 
252 /// Checks whether one class is derived from another, inclusively.
253 /// Properly indicates when it couldn't be determined due to
254 /// dependence.
255 ///
256 /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)257 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
258                                            const CXXRecordDecl *Target) {
259   assert(Derived->getCanonicalDecl() == Derived);
260   assert(Target->getCanonicalDecl() == Target);
261 
262   if (Derived == Target) return AR_accessible;
263 
264   bool CheckDependent = Derived->isDependentContext();
265   if (CheckDependent && MightInstantiateTo(Derived, Target))
266     return AR_dependent;
267 
268   AccessResult OnFailure = AR_inaccessible;
269   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
270 
271   while (true) {
272     if (Derived->isDependentContext() && !Derived->hasDefinition())
273       return AR_dependent;
274 
275     for (CXXRecordDecl::base_class_const_iterator
276            I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
277 
278       const CXXRecordDecl *RD;
279 
280       QualType T = I->getType();
281       if (const RecordType *RT = T->getAs<RecordType>()) {
282         RD = cast<CXXRecordDecl>(RT->getDecl());
283       } else if (const InjectedClassNameType *IT
284                    = T->getAs<InjectedClassNameType>()) {
285         RD = IT->getDecl();
286       } else {
287         assert(T->isDependentType() && "non-dependent base wasn't a record?");
288         OnFailure = AR_dependent;
289         continue;
290       }
291 
292       RD = RD->getCanonicalDecl();
293       if (RD == Target) return AR_accessible;
294       if (CheckDependent && MightInstantiateTo(RD, Target))
295         OnFailure = AR_dependent;
296 
297       Queue.push_back(RD);
298     }
299 
300     if (Queue.empty()) break;
301 
302     Derived = Queue.back();
303     Queue.pop_back();
304   }
305 
306   return OnFailure;
307 }
308 
309 
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)310 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
311                                DeclContext *Friend) {
312   if (Friend == Context)
313     return true;
314 
315   assert(!Friend->isDependentContext() &&
316          "can't handle friends with dependent contexts here");
317 
318   if (!Context->isDependentContext())
319     return false;
320 
321   if (Friend->isFileContext())
322     return false;
323 
324   // TODO: this is very conservative
325   return true;
326 }
327 
328 // Asks whether the type in 'context' can ever instantiate to the type
329 // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)330 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
331   if (Friend == Context)
332     return true;
333 
334   if (!Friend->isDependentType() && !Context->isDependentType())
335     return false;
336 
337   // TODO: this is very conservative.
338   return true;
339 }
340 
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)341 static bool MightInstantiateTo(Sema &S,
342                                FunctionDecl *Context,
343                                FunctionDecl *Friend) {
344   if (Context->getDeclName() != Friend->getDeclName())
345     return false;
346 
347   if (!MightInstantiateTo(S,
348                           Context->getDeclContext(),
349                           Friend->getDeclContext()))
350     return false;
351 
352   CanQual<FunctionProtoType> FriendTy
353     = S.Context.getCanonicalType(Friend->getType())
354          ->getAs<FunctionProtoType>();
355   CanQual<FunctionProtoType> ContextTy
356     = S.Context.getCanonicalType(Context->getType())
357          ->getAs<FunctionProtoType>();
358 
359   // There isn't any way that I know of to add qualifiers
360   // during instantiation.
361   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
362     return false;
363 
364   if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
365     return false;
366 
367   if (!MightInstantiateTo(S,
368                           ContextTy->getResultType(),
369                           FriendTy->getResultType()))
370     return false;
371 
372   for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
373     if (!MightInstantiateTo(S,
374                             ContextTy->getArgType(I),
375                             FriendTy->getArgType(I)))
376       return false;
377 
378   return true;
379 }
380 
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)381 static bool MightInstantiateTo(Sema &S,
382                                FunctionTemplateDecl *Context,
383                                FunctionTemplateDecl *Friend) {
384   return MightInstantiateTo(S,
385                             Context->getTemplatedDecl(),
386                             Friend->getTemplatedDecl());
387 }
388 
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)389 static AccessResult MatchesFriend(Sema &S,
390                                   const EffectiveContext &EC,
391                                   const CXXRecordDecl *Friend) {
392   if (EC.includesClass(Friend))
393     return AR_accessible;
394 
395   if (EC.isDependent()) {
396     CanQualType FriendTy
397       = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
398 
399     for (EffectiveContext::record_iterator
400            I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
401       CanQualType ContextTy
402         = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
403       if (MightInstantiateTo(S, ContextTy, FriendTy))
404         return AR_dependent;
405     }
406   }
407 
408   return AR_inaccessible;
409 }
410 
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)411 static AccessResult MatchesFriend(Sema &S,
412                                   const EffectiveContext &EC,
413                                   CanQualType Friend) {
414   if (const RecordType *RT = Friend->getAs<RecordType>())
415     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
416 
417   // TODO: we can do better than this
418   if (Friend->isDependentType())
419     return AR_dependent;
420 
421   return AR_inaccessible;
422 }
423 
424 /// Determines whether the given friend class template matches
425 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)426 static AccessResult MatchesFriend(Sema &S,
427                                   const EffectiveContext &EC,
428                                   ClassTemplateDecl *Friend) {
429   AccessResult OnFailure = AR_inaccessible;
430 
431   // Check whether the friend is the template of a class in the
432   // context chain.
433   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
434          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
435     CXXRecordDecl *Record = *I;
436 
437     // Figure out whether the current class has a template:
438     ClassTemplateDecl *CTD;
439 
440     // A specialization of the template...
441     if (isa<ClassTemplateSpecializationDecl>(Record)) {
442       CTD = cast<ClassTemplateSpecializationDecl>(Record)
443         ->getSpecializedTemplate();
444 
445     // ... or the template pattern itself.
446     } else {
447       CTD = Record->getDescribedClassTemplate();
448       if (!CTD) continue;
449     }
450 
451     // It's a match.
452     if (Friend == CTD->getCanonicalDecl())
453       return AR_accessible;
454 
455     // If the context isn't dependent, it can't be a dependent match.
456     if (!EC.isDependent())
457       continue;
458 
459     // If the template names don't match, it can't be a dependent
460     // match.
461     if (CTD->getDeclName() != Friend->getDeclName())
462       continue;
463 
464     // If the class's context can't instantiate to the friend's
465     // context, it can't be a dependent match.
466     if (!MightInstantiateTo(S, CTD->getDeclContext(),
467                             Friend->getDeclContext()))
468       continue;
469 
470     // Otherwise, it's a dependent match.
471     OnFailure = AR_dependent;
472   }
473 
474   return OnFailure;
475 }
476 
477 /// Determines whether the given friend function matches anything in
478 /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)479 static AccessResult MatchesFriend(Sema &S,
480                                   const EffectiveContext &EC,
481                                   FunctionDecl *Friend) {
482   AccessResult OnFailure = AR_inaccessible;
483 
484   for (SmallVectorImpl<FunctionDecl*>::const_iterator
485          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
486     if (Friend == *I)
487       return AR_accessible;
488 
489     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
490       OnFailure = AR_dependent;
491   }
492 
493   return OnFailure;
494 }
495 
496 /// Determines whether the given friend function template matches
497 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)498 static AccessResult MatchesFriend(Sema &S,
499                                   const EffectiveContext &EC,
500                                   FunctionTemplateDecl *Friend) {
501   if (EC.Functions.empty()) return AR_inaccessible;
502 
503   AccessResult OnFailure = AR_inaccessible;
504 
505   for (SmallVectorImpl<FunctionDecl*>::const_iterator
506          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
507 
508     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
509     if (!FTD)
510       FTD = (*I)->getDescribedFunctionTemplate();
511     if (!FTD)
512       continue;
513 
514     FTD = FTD->getCanonicalDecl();
515 
516     if (Friend == FTD)
517       return AR_accessible;
518 
519     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
520       OnFailure = AR_dependent;
521   }
522 
523   return OnFailure;
524 }
525 
526 /// Determines whether the given friend declaration matches anything
527 /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)528 static AccessResult MatchesFriend(Sema &S,
529                                   const EffectiveContext &EC,
530                                   FriendDecl *FriendD) {
531   // Whitelist accesses if there's an invalid or unsupported friend
532   // declaration.
533   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
534     return AR_accessible;
535 
536   if (TypeSourceInfo *T = FriendD->getFriendType())
537     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
538 
539   NamedDecl *Friend
540     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
541 
542   // FIXME: declarations with dependent or templated scope.
543 
544   if (isa<ClassTemplateDecl>(Friend))
545     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
546 
547   if (isa<FunctionTemplateDecl>(Friend))
548     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
549 
550   if (isa<CXXRecordDecl>(Friend))
551     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
552 
553   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
554   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
555 }
556 
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)557 static AccessResult GetFriendKind(Sema &S,
558                                   const EffectiveContext &EC,
559                                   const CXXRecordDecl *Class) {
560   AccessResult OnFailure = AR_inaccessible;
561 
562   // Okay, check friends.
563   for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
564          E = Class->friend_end(); I != E; ++I) {
565     FriendDecl *Friend = *I;
566 
567     switch (MatchesFriend(S, EC, Friend)) {
568     case AR_accessible:
569       return AR_accessible;
570 
571     case AR_inaccessible:
572       continue;
573 
574     case AR_dependent:
575       OnFailure = AR_dependent;
576       break;
577     }
578   }
579 
580   // That's it, give up.
581   return OnFailure;
582 }
583 
584 namespace {
585 
586 /// A helper class for checking for a friend which will grant access
587 /// to a protected instance member.
588 struct ProtectedFriendContext {
589   Sema &S;
590   const EffectiveContext &EC;
591   const CXXRecordDecl *NamingClass;
592   bool CheckDependent;
593   bool EverDependent;
594 
595   /// The path down to the current base class.
596   SmallVector<const CXXRecordDecl*, 20> CurPath;
597 
ProtectedFriendContext__anonbeffc5cd0211::ProtectedFriendContext598   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
599                          const CXXRecordDecl *InstanceContext,
600                          const CXXRecordDecl *NamingClass)
601     : S(S), EC(EC), NamingClass(NamingClass),
602       CheckDependent(InstanceContext->isDependentContext() ||
603                      NamingClass->isDependentContext()),
604       EverDependent(false) {}
605 
606   /// Check classes in the current path for friendship, starting at
607   /// the given index.
checkFriendshipAlongPath__anonbeffc5cd0211::ProtectedFriendContext608   bool checkFriendshipAlongPath(unsigned I) {
609     assert(I < CurPath.size());
610     for (unsigned E = CurPath.size(); I != E; ++I) {
611       switch (GetFriendKind(S, EC, CurPath[I])) {
612       case AR_accessible:   return true;
613       case AR_inaccessible: continue;
614       case AR_dependent:    EverDependent = true; continue;
615       }
616     }
617     return false;
618   }
619 
620   /// Perform a search starting at the given class.
621   ///
622   /// PrivateDepth is the index of the last (least derived) class
623   /// along the current path such that a notional public member of
624   /// the final class in the path would have access in that class.
findFriendship__anonbeffc5cd0211::ProtectedFriendContext625   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
626     // If we ever reach the naming class, check the current path for
627     // friendship.  We can also stop recursing because we obviously
628     // won't find the naming class there again.
629     if (Cur == NamingClass)
630       return checkFriendshipAlongPath(PrivateDepth);
631 
632     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
633       EverDependent = true;
634 
635     // Recurse into the base classes.
636     for (CXXRecordDecl::base_class_const_iterator
637            I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
638 
639       // If this is private inheritance, then a public member of the
640       // base will not have any access in classes derived from Cur.
641       unsigned BasePrivateDepth = PrivateDepth;
642       if (I->getAccessSpecifier() == AS_private)
643         BasePrivateDepth = CurPath.size() - 1;
644 
645       const CXXRecordDecl *RD;
646 
647       QualType T = I->getType();
648       if (const RecordType *RT = T->getAs<RecordType>()) {
649         RD = cast<CXXRecordDecl>(RT->getDecl());
650       } else if (const InjectedClassNameType *IT
651                    = T->getAs<InjectedClassNameType>()) {
652         RD = IT->getDecl();
653       } else {
654         assert(T->isDependentType() && "non-dependent base wasn't a record?");
655         EverDependent = true;
656         continue;
657       }
658 
659       // Recurse.  We don't need to clean up if this returns true.
660       CurPath.push_back(RD);
661       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
662         return true;
663       CurPath.pop_back();
664     }
665 
666     return false;
667   }
668 
findFriendship__anonbeffc5cd0211::ProtectedFriendContext669   bool findFriendship(const CXXRecordDecl *Cur) {
670     assert(CurPath.empty());
671     CurPath.push_back(Cur);
672     return findFriendship(Cur, 0);
673   }
674 };
675 }
676 
677 /// Search for a class P that EC is a friend of, under the constraint
678 ///   InstanceContext <= P
679 /// if InstanceContext exists, or else
680 ///   NamingClass <= P
681 /// and with the additional restriction that a protected member of
682 /// NamingClass would have some natural access in P, which implicitly
683 /// imposes the constraint that P <= NamingClass.
684 ///
685 /// This isn't quite the condition laid out in the standard.
686 /// Instead of saying that a notional protected member of NamingClass
687 /// would have to have some natural access in P, it says the actual
688 /// target has to have some natural access in P, which opens up the
689 /// possibility that the target (which is not necessarily a member
690 /// of NamingClass) might be more accessible along some path not
691 /// passing through it.  That's really a bad idea, though, because it
692 /// introduces two problems:
693 ///   - Most importantly, it breaks encapsulation because you can
694 ///     access a forbidden base class's members by directly subclassing
695 ///     it elsewhere.
696 ///   - It also makes access substantially harder to compute because it
697 ///     breaks the hill-climbing algorithm: knowing that the target is
698 ///     accessible in some base class would no longer let you change
699 ///     the question solely to whether the base class is accessible,
700 ///     because the original target might have been more accessible
701 ///     because of crazy subclassing.
702 /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)703 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
704                                            const CXXRecordDecl *InstanceContext,
705                                            const CXXRecordDecl *NamingClass) {
706   assert(InstanceContext == 0 ||
707          InstanceContext->getCanonicalDecl() == InstanceContext);
708   assert(NamingClass->getCanonicalDecl() == NamingClass);
709 
710   // If we don't have an instance context, our constraints give us
711   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
712   // This is just the usual friendship check.
713   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
714 
715   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
716   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
717   if (PRC.EverDependent) return AR_dependent;
718   return AR_inaccessible;
719 }
720 
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)721 static AccessResult HasAccess(Sema &S,
722                               const EffectiveContext &EC,
723                               const CXXRecordDecl *NamingClass,
724                               AccessSpecifier Access,
725                               const AccessTarget &Target) {
726   assert(NamingClass->getCanonicalDecl() == NamingClass &&
727          "declaration should be canonicalized before being passed here");
728 
729   if (Access == AS_public) return AR_accessible;
730   assert(Access == AS_private || Access == AS_protected);
731 
732   AccessResult OnFailure = AR_inaccessible;
733 
734   for (EffectiveContext::record_iterator
735          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
736     // All the declarations in EC have been canonicalized, so pointer
737     // equality from this point on will work fine.
738     const CXXRecordDecl *ECRecord = *I;
739 
740     // [B2] and [M2]
741     if (Access == AS_private) {
742       if (ECRecord == NamingClass)
743         return AR_accessible;
744 
745       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
746         OnFailure = AR_dependent;
747 
748     // [B3] and [M3]
749     } else {
750       assert(Access == AS_protected);
751       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
752       case AR_accessible: break;
753       case AR_inaccessible: continue;
754       case AR_dependent: OnFailure = AR_dependent; continue;
755       }
756 
757       // C++ [class.protected]p1:
758       //   An additional access check beyond those described earlier in
759       //   [class.access] is applied when a non-static data member or
760       //   non-static member function is a protected member of its naming
761       //   class.  As described earlier, access to a protected member is
762       //   granted because the reference occurs in a friend or member of
763       //   some class C.  If the access is to form a pointer to member,
764       //   the nested-name-specifier shall name C or a class derived from
765       //   C. All other accesses involve a (possibly implicit) object
766       //   expression. In this case, the class of the object expression
767       //   shall be C or a class derived from C.
768       //
769       // We interpret this as a restriction on [M3].
770 
771       // In this part of the code, 'C' is just our context class ECRecord.
772 
773       // These rules are different if we don't have an instance context.
774       if (!Target.hasInstanceContext()) {
775         // If it's not an instance member, these restrictions don't apply.
776         if (!Target.isInstanceMember()) return AR_accessible;
777 
778         // If it's an instance member, use the pointer-to-member rule
779         // that the naming class has to be derived from the effective
780         // context.
781 
782         // Emulate a MSVC bug where the creation of pointer-to-member
783         // to protected member of base class is allowed but only from
784         // a static function member functions.
785         if (S.getLangOpts().MicrosoftMode && !EC.Functions.empty())
786           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
787             if (MD->isStatic()) return AR_accessible;
788 
789         // Despite the standard's confident wording, there is a case
790         // where you can have an instance member that's neither in a
791         // pointer-to-member expression nor in a member access:  when
792         // it names a field in an unevaluated context that can't be an
793         // implicit member.  Pending clarification, we just apply the
794         // same naming-class restriction here.
795         //   FIXME: we're probably not correctly adding the
796         //   protected-member restriction when we retroactively convert
797         //   an expression to being evaluated.
798 
799         // We know that ECRecord derives from NamingClass.  The
800         // restriction says to check whether NamingClass derives from
801         // ECRecord, but that's not really necessary: two distinct
802         // classes can't be recursively derived from each other.  So
803         // along this path, we just need to check whether the classes
804         // are equal.
805         if (NamingClass == ECRecord) return AR_accessible;
806 
807         // Otherwise, this context class tells us nothing;  on to the next.
808         continue;
809       }
810 
811       assert(Target.isInstanceMember());
812 
813       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
814       if (!InstanceContext) {
815         OnFailure = AR_dependent;
816         continue;
817       }
818 
819       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
820       case AR_accessible: return AR_accessible;
821       case AR_inaccessible: continue;
822       case AR_dependent: OnFailure = AR_dependent; continue;
823       }
824     }
825   }
826 
827   // [M3] and [B3] say that, if the target is protected in N, we grant
828   // access if the access occurs in a friend or member of some class P
829   // that's a subclass of N and where the target has some natural
830   // access in P.  The 'member' aspect is easy to handle because P
831   // would necessarily be one of the effective-context records, and we
832   // address that above.  The 'friend' aspect is completely ridiculous
833   // to implement because there are no restrictions at all on P
834   // *unless* the [class.protected] restriction applies.  If it does,
835   // however, we should ignore whether the naming class is a friend,
836   // and instead rely on whether any potential P is a friend.
837   if (Access == AS_protected && Target.isInstanceMember()) {
838     // Compute the instance context if possible.
839     const CXXRecordDecl *InstanceContext = 0;
840     if (Target.hasInstanceContext()) {
841       InstanceContext = Target.resolveInstanceContext(S);
842       if (!InstanceContext) return AR_dependent;
843     }
844 
845     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
846     case AR_accessible: return AR_accessible;
847     case AR_inaccessible: return OnFailure;
848     case AR_dependent: return AR_dependent;
849     }
850     llvm_unreachable("impossible friendship kind");
851   }
852 
853   switch (GetFriendKind(S, EC, NamingClass)) {
854   case AR_accessible: return AR_accessible;
855   case AR_inaccessible: return OnFailure;
856   case AR_dependent: return AR_dependent;
857   }
858 
859   // Silence bogus warnings
860   llvm_unreachable("impossible friendship kind");
861 }
862 
863 /// Finds the best path from the naming class to the declaring class,
864 /// taking friend declarations into account.
865 ///
866 /// C++0x [class.access.base]p5:
867 ///   A member m is accessible at the point R when named in class N if
868 ///   [M1] m as a member of N is public, or
869 ///   [M2] m as a member of N is private, and R occurs in a member or
870 ///        friend of class N, or
871 ///   [M3] m as a member of N is protected, and R occurs in a member or
872 ///        friend of class N, or in a member or friend of a class P
873 ///        derived from N, where m as a member of P is public, private,
874 ///        or protected, or
875 ///   [M4] there exists a base class B of N that is accessible at R, and
876 ///        m is accessible at R when named in class B.
877 ///
878 /// C++0x [class.access.base]p4:
879 ///   A base class B of N is accessible at R, if
880 ///   [B1] an invented public member of B would be a public member of N, or
881 ///   [B2] R occurs in a member or friend of class N, and an invented public
882 ///        member of B would be a private or protected member of N, or
883 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
884 ///        invented public member of B would be a private or protected member
885 ///        of P, or
886 ///   [B4] there exists a class S such that B is a base class of S accessible
887 ///        at R and S is a base class of N accessible at R.
888 ///
889 /// Along a single inheritance path we can restate both of these
890 /// iteratively:
891 ///
892 /// First, we note that M1-4 are equivalent to B1-4 if the member is
893 /// treated as a notional base of its declaring class with inheritance
894 /// access equivalent to the member's access.  Therefore we need only
895 /// ask whether a class B is accessible from a class N in context R.
896 ///
897 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
898 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
899 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
900 /// closest accessible base in the path:
901 ///   Access(a, b) = (* access on the base specifier from a to b *)
902 ///   Merge(a, forbidden) = forbidden
903 ///   Merge(a, private) = forbidden
904 ///   Merge(a, b) = min(a,b)
905 ///   Accessible(c, forbidden) = false
906 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
907 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
908 ///   Accessible(c, public) = true
909 ///   ACAB(n) = public
910 ///   ACAB(i) =
911 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
912 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
913 ///
914 /// B is an accessible base of N at R iff ACAB(1) = public.
915 ///
916 /// \param FinalAccess the access of the "final step", or AS_public if
917 ///   there is no final step.
918 /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)919 static CXXBasePath *FindBestPath(Sema &S,
920                                  const EffectiveContext &EC,
921                                  AccessTarget &Target,
922                                  AccessSpecifier FinalAccess,
923                                  CXXBasePaths &Paths) {
924   // Derive the paths to the desired base.
925   const CXXRecordDecl *Derived = Target.getNamingClass();
926   const CXXRecordDecl *Base = Target.getDeclaringClass();
927 
928   // FIXME: fail correctly when there are dependent paths.
929   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
930                                           Paths);
931   assert(isDerived && "derived class not actually derived from base");
932   (void) isDerived;
933 
934   CXXBasePath *BestPath = 0;
935 
936   assert(FinalAccess != AS_none && "forbidden access after declaring class");
937 
938   bool AnyDependent = false;
939 
940   // Derive the friend-modified access along each path.
941   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
942          PI != PE; ++PI) {
943     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
944 
945     // Walk through the path backwards.
946     AccessSpecifier PathAccess = FinalAccess;
947     CXXBasePath::iterator I = PI->end(), E = PI->begin();
948     while (I != E) {
949       --I;
950 
951       assert(PathAccess != AS_none);
952 
953       // If the declaration is a private member of a base class, there
954       // is no level of friendship in derived classes that can make it
955       // accessible.
956       if (PathAccess == AS_private) {
957         PathAccess = AS_none;
958         break;
959       }
960 
961       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
962 
963       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
964       PathAccess = std::max(PathAccess, BaseAccess);
965 
966       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
967       case AR_inaccessible: break;
968       case AR_accessible:
969         PathAccess = AS_public;
970 
971         // Future tests are not against members and so do not have
972         // instance context.
973         Target.suppressInstanceContext();
974         break;
975       case AR_dependent:
976         AnyDependent = true;
977         goto Next;
978       }
979     }
980 
981     // Note that we modify the path's Access field to the
982     // friend-modified access.
983     if (BestPath == 0 || PathAccess < BestPath->Access) {
984       BestPath = &*PI;
985       BestPath->Access = PathAccess;
986 
987       // Short-circuit if we found a public path.
988       if (BestPath->Access == AS_public)
989         return BestPath;
990     }
991 
992   Next: ;
993   }
994 
995   assert((!BestPath || BestPath->Access != AS_public) &&
996          "fell out of loop with public path");
997 
998   // We didn't find a public path, but at least one path was subject
999   // to dependent friendship, so delay the check.
1000   if (AnyDependent)
1001     return 0;
1002 
1003   return BestPath;
1004 }
1005 
1006 /// Given that an entity has protected natural access, check whether
1007 /// access might be denied because of the protected member access
1008 /// restriction.
1009 ///
1010 /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1011 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1012                                        AccessTarget &Target) {
1013   // Only applies to instance accesses.
1014   if (!Target.isInstanceMember())
1015     return false;
1016 
1017   assert(Target.isMemberAccess());
1018 
1019   const CXXRecordDecl *NamingClass = Target.getNamingClass();
1020   NamingClass = NamingClass->getCanonicalDecl();
1021 
1022   for (EffectiveContext::record_iterator
1023          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1024     const CXXRecordDecl *ECRecord = *I;
1025     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1026     case AR_accessible: break;
1027     case AR_inaccessible: continue;
1028     case AR_dependent: continue;
1029     }
1030 
1031     // The effective context is a subclass of the declaring class.
1032     // Check whether the [class.protected] restriction is limiting
1033     // access.
1034 
1035     // To get this exactly right, this might need to be checked more
1036     // holistically;  it's not necessarily the case that gaining
1037     // access here would grant us access overall.
1038 
1039     NamedDecl *D = Target.getTargetDecl();
1040 
1041     // If we don't have an instance context, [class.protected] says the
1042     // naming class has to equal the context class.
1043     if (!Target.hasInstanceContext()) {
1044       // If it does, the restriction doesn't apply.
1045       if (NamingClass == ECRecord) continue;
1046 
1047       // TODO: it would be great to have a fixit here, since this is
1048       // such an obvious error.
1049       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1050         << S.Context.getTypeDeclType(ECRecord);
1051       return true;
1052     }
1053 
1054     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1055     assert(InstanceContext && "diagnosing dependent access");
1056 
1057     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1058     case AR_accessible: continue;
1059     case AR_dependent: continue;
1060     case AR_inaccessible:
1061       break;
1062     }
1063 
1064     // Okay, the restriction seems to be what's limiting us.
1065 
1066     // Use a special diagnostic for constructors and destructors.
1067     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1068         (isa<FunctionTemplateDecl>(D) &&
1069          isa<CXXConstructorDecl>(
1070                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1071       S.Diag(D->getLocation(), diag::note_access_protected_restricted_ctordtor)
1072         << isa<CXXDestructorDecl>(D);
1073       return true;
1074     }
1075 
1076     // Otherwise, use the generic diagnostic.
1077     S.Diag(D->getLocation(), diag::note_access_protected_restricted_object)
1078       << S.Context.getTypeDeclType(ECRecord);
1079     return true;
1080   }
1081 
1082   return false;
1083 }
1084 
1085 /// Diagnose the path which caused the given declaration or base class
1086 /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1087 static void DiagnoseAccessPath(Sema &S,
1088                                const EffectiveContext &EC,
1089                                AccessTarget &Entity) {
1090   AccessSpecifier Access = Entity.getAccess();
1091 
1092   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1093   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1094 
1095   // Easy case: the decl's natural access determined its path access.
1096   // We have to check against AS_private here in case Access is AS_none,
1097   // indicating a non-public member of a private base class.
1098   if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) {
1099     switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) {
1100     case AR_inaccessible: {
1101       if (Access == AS_protected &&
1102           TryDiagnoseProtectedAccess(S, EC, Entity))
1103         return;
1104 
1105       // Find an original declaration.
1106       while (D->isOutOfLine()) {
1107         NamedDecl *PrevDecl = 0;
1108         if (VarDecl *VD = dyn_cast<VarDecl>(D))
1109           PrevDecl = VD->getPreviousDecl();
1110         else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1111           PrevDecl = FD->getPreviousDecl();
1112         else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1113           PrevDecl = TND->getPreviousDecl();
1114         else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1115           if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1116             break;
1117           PrevDecl = TD->getPreviousDecl();
1118         }
1119         if (!PrevDecl) break;
1120         D = PrevDecl;
1121       }
1122 
1123       CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1124       Decl *ImmediateChild;
1125       if (D->getDeclContext() == DeclaringClass)
1126         ImmediateChild = D;
1127       else {
1128         DeclContext *DC = D->getDeclContext();
1129         while (DC->getParent() != DeclaringClass)
1130           DC = DC->getParent();
1131         ImmediateChild = cast<Decl>(DC);
1132       }
1133 
1134       // Check whether there's an AccessSpecDecl preceding this in the
1135       // chain of the DeclContext.
1136       bool Implicit = true;
1137       for (CXXRecordDecl::decl_iterator
1138              I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1139            I != E; ++I) {
1140         if (*I == ImmediateChild) break;
1141         if (isa<AccessSpecDecl>(*I)) {
1142           Implicit = false;
1143           break;
1144         }
1145       }
1146 
1147       S.Diag(D->getLocation(), diag::note_access_natural)
1148         << (unsigned) (Access == AS_protected)
1149         << Implicit;
1150       return;
1151     }
1152 
1153     case AR_accessible: break;
1154 
1155     case AR_dependent:
1156       llvm_unreachable("can't diagnose dependent access failures");
1157     }
1158   }
1159 
1160   CXXBasePaths Paths;
1161   CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths);
1162 
1163   CXXBasePath::iterator I = Path.end(), E = Path.begin();
1164   while (I != E) {
1165     --I;
1166 
1167     const CXXBaseSpecifier *BS = I->Base;
1168     AccessSpecifier BaseAccess = BS->getAccessSpecifier();
1169 
1170     // If this is public inheritance, or the derived class is a friend,
1171     // skip this step.
1172     if (BaseAccess == AS_public)
1173       continue;
1174 
1175     switch (GetFriendKind(S, EC, I->Class)) {
1176     case AR_accessible: continue;
1177     case AR_inaccessible: break;
1178     case AR_dependent:
1179       llvm_unreachable("can't diagnose dependent access failures");
1180     }
1181 
1182     // Check whether this base specifier is the tighest point
1183     // constraining access.  We have to check against AS_private for
1184     // the same reasons as above.
1185     if (BaseAccess == AS_private || BaseAccess >= Access) {
1186 
1187       // We're constrained by inheritance, but we want to say
1188       // "declared private here" if we're diagnosing a hierarchy
1189       // conversion and this is the final step.
1190       unsigned diagnostic;
1191       if (D) diagnostic = diag::note_access_constrained_by_path;
1192       else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural;
1193       else diagnostic = diag::note_access_constrained_by_path;
1194 
1195       S.Diag(BS->getSourceRange().getBegin(), diagnostic)
1196         << BS->getSourceRange()
1197         << (BaseAccess == AS_protected)
1198         << (BS->getAccessSpecifierAsWritten() == AS_none);
1199 
1200       if (D)
1201         S.Diag(D->getLocation(), diag::note_field_decl);
1202 
1203       return;
1204     }
1205   }
1206 
1207   llvm_unreachable("access not apparently constrained by path");
1208 }
1209 
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1210 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1211                               const EffectiveContext &EC,
1212                               AccessTarget &Entity) {
1213   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1214   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1215   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1216 
1217   S.Diag(Loc, Entity.getDiag())
1218     << (Entity.getAccess() == AS_protected)
1219     << (D ? D->getDeclName() : DeclarationName())
1220     << S.Context.getTypeDeclType(NamingClass)
1221     << S.Context.getTypeDeclType(DeclaringClass);
1222   DiagnoseAccessPath(S, EC, Entity);
1223 }
1224 
1225 /// MSVC has a bug where if during an using declaration name lookup,
1226 /// the declaration found is unaccessible (private) and that declaration
1227 /// was bring into scope via another using declaration whose target
1228 /// declaration is accessible (public) then no error is generated.
1229 /// Example:
1230 ///   class A {
1231 ///   public:
1232 ///     int f();
1233 ///   };
1234 ///   class B : public A {
1235 ///   private:
1236 ///     using A::f;
1237 ///   };
1238 ///   class C : public B {
1239 ///   private:
1240 ///     using B::f;
1241 ///   };
1242 ///
1243 /// Here, B::f is private so this should fail in Standard C++, but
1244 /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1245 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1246                                                  SourceLocation AccessLoc,
1247                                                  AccessTarget &Entity) {
1248   if (UsingShadowDecl *Shadow =
1249                          dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1250     const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1251     if (Entity.getTargetDecl()->getAccess() == AS_private &&
1252         (OrigDecl->getAccess() == AS_public ||
1253          OrigDecl->getAccess() == AS_protected)) {
1254       S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1255         << Shadow->getUsingDecl()->getQualifiedNameAsString()
1256         << OrigDecl->getQualifiedNameAsString();
1257       return true;
1258     }
1259   }
1260   return false;
1261 }
1262 
1263 /// Determines whether the accessed entity is accessible.  Public members
1264 /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1265 static AccessResult IsAccessible(Sema &S,
1266                                  const EffectiveContext &EC,
1267                                  AccessTarget &Entity) {
1268   // Determine the actual naming class.
1269   CXXRecordDecl *NamingClass = Entity.getNamingClass();
1270   while (NamingClass->isAnonymousStructOrUnion())
1271     NamingClass = cast<CXXRecordDecl>(NamingClass->getParent());
1272   NamingClass = NamingClass->getCanonicalDecl();
1273 
1274   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1275   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1276 
1277   // Before we try to recalculate access paths, try to white-list
1278   // accesses which just trade in on the final step, i.e. accesses
1279   // which don't require [M4] or [B4]. These are by far the most
1280   // common forms of privileged access.
1281   if (UnprivilegedAccess != AS_none) {
1282     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1283     case AR_dependent:
1284       // This is actually an interesting policy decision.  We don't
1285       // *have* to delay immediately here: we can do the full access
1286       // calculation in the hope that friendship on some intermediate
1287       // class will make the declaration accessible non-dependently.
1288       // But that's not cheap, and odds are very good (note: assertion
1289       // made without data) that the friend declaration will determine
1290       // access.
1291       return AR_dependent;
1292 
1293     case AR_accessible: return AR_accessible;
1294     case AR_inaccessible: break;
1295     }
1296   }
1297 
1298   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1299 
1300   // We lower member accesses to base accesses by pretending that the
1301   // member is a base class of its declaring class.
1302   AccessSpecifier FinalAccess;
1303 
1304   if (Entity.isMemberAccess()) {
1305     // Determine if the declaration is accessible from EC when named
1306     // in its declaring class.
1307     NamedDecl *Target = Entity.getTargetDecl();
1308     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1309 
1310     FinalAccess = Target->getAccess();
1311     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1312     case AR_accessible:
1313       FinalAccess = AS_public;
1314       break;
1315     case AR_inaccessible: break;
1316     case AR_dependent: return AR_dependent; // see above
1317     }
1318 
1319     if (DeclaringClass == NamingClass)
1320       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1321 
1322     Entity.suppressInstanceContext();
1323   } else {
1324     FinalAccess = AS_public;
1325   }
1326 
1327   assert(Entity.getDeclaringClass() != NamingClass);
1328 
1329   // Append the declaration's access if applicable.
1330   CXXBasePaths Paths;
1331   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1332   if (!Path)
1333     return AR_dependent;
1334 
1335   assert(Path->Access <= UnprivilegedAccess &&
1336          "access along best path worse than direct?");
1337   if (Path->Access == AS_public)
1338     return AR_accessible;
1339   return AR_inaccessible;
1340 }
1341 
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1342 static void DelayDependentAccess(Sema &S,
1343                                  const EffectiveContext &EC,
1344                                  SourceLocation Loc,
1345                                  const AccessTarget &Entity) {
1346   assert(EC.isDependent() && "delaying non-dependent access");
1347   DeclContext *DC = EC.getInnerContext();
1348   assert(DC->isDependentContext() && "delaying non-dependent access");
1349   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1350                               Loc,
1351                               Entity.isMemberAccess(),
1352                               Entity.getAccess(),
1353                               Entity.getTargetDecl(),
1354                               Entity.getNamingClass(),
1355                               Entity.getBaseObjectType(),
1356                               Entity.getDiag());
1357 }
1358 
1359 /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1360 static AccessResult CheckEffectiveAccess(Sema &S,
1361                                          const EffectiveContext &EC,
1362                                          SourceLocation Loc,
1363                                          AccessTarget &Entity) {
1364   assert(Entity.getAccess() != AS_public && "called for public access!");
1365 
1366   if (S.getLangOpts().MicrosoftMode &&
1367       IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1368     return AR_accessible;
1369 
1370   switch (IsAccessible(S, EC, Entity)) {
1371   case AR_dependent:
1372     DelayDependentAccess(S, EC, Loc, Entity);
1373     return AR_dependent;
1374 
1375   case AR_inaccessible:
1376     if (!Entity.isQuiet())
1377       DiagnoseBadAccess(S, Loc, EC, Entity);
1378     return AR_inaccessible;
1379 
1380   case AR_accessible:
1381     return AR_accessible;
1382   }
1383 
1384   // silence unnecessary warning
1385   llvm_unreachable("invalid access result");
1386 }
1387 
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1388 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1389                                       AccessTarget &Entity) {
1390   // If the access path is public, it's accessible everywhere.
1391   if (Entity.getAccess() == AS_public)
1392     return Sema::AR_accessible;
1393 
1394   if (S.SuppressAccessChecking)
1395     return Sema::AR_accessible;
1396 
1397   // If we're currently parsing a declaration, we may need to delay
1398   // access control checking, because our effective context might be
1399   // different based on what the declaration comes out as.
1400   //
1401   // For example, we might be parsing a declaration with a scope
1402   // specifier, like this:
1403   //   A::private_type A::foo() { ... }
1404   //
1405   // Or we might be parsing something that will turn out to be a friend:
1406   //   void foo(A::private_type);
1407   //   void B::foo(A::private_type);
1408   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1409     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1410     return Sema::AR_delayed;
1411   }
1412 
1413   EffectiveContext EC(S.CurContext);
1414   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1415   case AR_accessible: return Sema::AR_accessible;
1416   case AR_inaccessible: return Sema::AR_inaccessible;
1417   case AR_dependent: return Sema::AR_dependent;
1418   }
1419   llvm_unreachable("falling off end");
1420 }
1421 
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * decl)1422 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *decl) {
1423   // Access control for names used in the declarations of functions
1424   // and function templates should normally be evaluated in the context
1425   // of the declaration, just in case it's a friend of something.
1426   // However, this does not apply to local extern declarations.
1427 
1428   DeclContext *DC = decl->getDeclContext();
1429   if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
1430     if (!DC->isFunctionOrMethod()) DC = fn;
1431   } else if (FunctionTemplateDecl *fnt = dyn_cast<FunctionTemplateDecl>(decl)) {
1432     // Never a local declaration.
1433     DC = fnt->getTemplatedDecl();
1434   }
1435 
1436   EffectiveContext EC(DC);
1437 
1438   AccessTarget Target(DD.getAccessData());
1439 
1440   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1441     DD.Triggered = true;
1442 }
1443 
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1444 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1445                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1446   SourceLocation Loc = DD.getAccessLoc();
1447   AccessSpecifier Access = DD.getAccess();
1448 
1449   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1450                                        TemplateArgs);
1451   if (!NamingD) return;
1452   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1453                                        TemplateArgs);
1454   if (!TargetD) return;
1455 
1456   if (DD.isAccessToMember()) {
1457     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1458     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1459     QualType BaseObjectType = DD.getAccessBaseObjectType();
1460     if (!BaseObjectType.isNull()) {
1461       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1462                                  DeclarationName());
1463       if (BaseObjectType.isNull()) return;
1464     }
1465 
1466     AccessTarget Entity(Context,
1467                         AccessTarget::Member,
1468                         NamingClass,
1469                         DeclAccessPair::make(TargetDecl, Access),
1470                         BaseObjectType);
1471     Entity.setDiag(DD.getDiagnostic());
1472     CheckAccess(*this, Loc, Entity);
1473   } else {
1474     AccessTarget Entity(Context,
1475                         AccessTarget::Base,
1476                         cast<CXXRecordDecl>(TargetD),
1477                         cast<CXXRecordDecl>(NamingD),
1478                         Access);
1479     Entity.setDiag(DD.getDiagnostic());
1480     CheckAccess(*this, Loc, Entity);
1481   }
1482 }
1483 
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1484 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1485                                                      DeclAccessPair Found) {
1486   if (!getLangOpts().AccessControl ||
1487       !E->getNamingClass() ||
1488       Found.getAccess() == AS_public)
1489     return AR_accessible;
1490 
1491   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1492                       Found, QualType());
1493   Entity.setDiag(diag::err_access) << E->getSourceRange();
1494 
1495   return CheckAccess(*this, E->getNameLoc(), Entity);
1496 }
1497 
1498 /// Perform access-control checking on a previously-unresolved member
1499 /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1500 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1501                                                      DeclAccessPair Found) {
1502   if (!getLangOpts().AccessControl ||
1503       Found.getAccess() == AS_public)
1504     return AR_accessible;
1505 
1506   QualType BaseType = E->getBaseType();
1507   if (E->isArrow())
1508     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1509 
1510   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1511                       Found, BaseType);
1512   Entity.setDiag(diag::err_access) << E->getSourceRange();
1513 
1514   return CheckAccess(*this, E->getMemberLoc(), Entity);
1515 }
1516 
1517 /// Is the given special member function accessible for the purposes of
1518 /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1519 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1520                                                 AccessSpecifier access,
1521                                                 QualType objectType) {
1522   // Fast path.
1523   if (access == AS_public || !getLangOpts().AccessControl) return true;
1524 
1525   AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1526                       DeclAccessPair::make(decl, access), objectType);
1527 
1528   // Suppress diagnostics.
1529   entity.setDiag(PDiag());
1530 
1531   switch (CheckAccess(*this, SourceLocation(), entity)) {
1532   case AR_accessible: return true;
1533   case AR_inaccessible: return false;
1534   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1535   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1536   }
1537   llvm_unreachable("bad access result");
1538 }
1539 
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1540 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1541                                                CXXDestructorDecl *Dtor,
1542                                                const PartialDiagnostic &PDiag,
1543                                                QualType ObjectTy) {
1544   if (!getLangOpts().AccessControl)
1545     return AR_accessible;
1546 
1547   // There's never a path involved when checking implicit destructor access.
1548   AccessSpecifier Access = Dtor->getAccess();
1549   if (Access == AS_public)
1550     return AR_accessible;
1551 
1552   CXXRecordDecl *NamingClass = Dtor->getParent();
1553   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1554 
1555   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1556                       DeclAccessPair::make(Dtor, Access),
1557                       ObjectTy);
1558   Entity.setDiag(PDiag); // TODO: avoid copy
1559 
1560   return CheckAccess(*this, Loc, Entity);
1561 }
1562 
1563 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,bool IsCopyBindingRefToTemp)1564 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1565                                                 CXXConstructorDecl *Constructor,
1566                                                 const InitializedEntity &Entity,
1567                                                 AccessSpecifier Access,
1568                                                 bool IsCopyBindingRefToTemp) {
1569   if (!getLangOpts().AccessControl || Access == AS_public)
1570     return AR_accessible;
1571 
1572   PartialDiagnostic PD(PDiag());
1573   switch (Entity.getKind()) {
1574   default:
1575     PD = PDiag(IsCopyBindingRefToTemp
1576                  ? diag::ext_rvalue_to_reference_access_ctor
1577                  : diag::err_access_ctor);
1578 
1579     break;
1580 
1581   case InitializedEntity::EK_Base:
1582     PD = PDiag(diag::err_access_base_ctor);
1583     PD << Entity.isInheritedVirtualBase()
1584        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1585     break;
1586 
1587   case InitializedEntity::EK_Member: {
1588     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1589     PD = PDiag(diag::err_access_field_ctor);
1590     PD << Field->getType() << getSpecialMember(Constructor);
1591     break;
1592   }
1593 
1594   case InitializedEntity::EK_LambdaCapture: {
1595     const VarDecl *Var = Entity.getCapturedVar();
1596     PD = PDiag(diag::err_access_lambda_capture);
1597     PD << Var->getName() << Entity.getType() << getSpecialMember(Constructor);
1598     break;
1599   }
1600 
1601   }
1602 
1603   return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1604 }
1605 
1606 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,const PartialDiagnostic & PD)1607 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1608                                                 CXXConstructorDecl *Constructor,
1609                                                 const InitializedEntity &Entity,
1610                                                 AccessSpecifier Access,
1611                                                 const PartialDiagnostic &PD) {
1612   if (!getLangOpts().AccessControl ||
1613       Access == AS_public)
1614     return AR_accessible;
1615 
1616   CXXRecordDecl *NamingClass = Constructor->getParent();
1617 
1618   // Initializing a base sub-object is an instance method call on an
1619   // object of the derived class.  Otherwise, we have an instance method
1620   // call on an object of the constructed type.
1621   CXXRecordDecl *ObjectClass;
1622   if (Entity.getKind() == InitializedEntity::EK_Base) {
1623     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1624   } else {
1625     ObjectClass = NamingClass;
1626   }
1627 
1628   AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1629                             DeclAccessPair::make(Constructor, Access),
1630                             Context.getTypeDeclType(ObjectClass));
1631   AccessEntity.setDiag(PD);
1632 
1633   return CheckAccess(*this, UseLoc, AccessEntity);
1634 }
1635 
1636 /// Checks direct (i.e. non-inherited) access to an arbitrary class
1637 /// member.
CheckDirectMemberAccess(SourceLocation UseLoc,NamedDecl * Target,const PartialDiagnostic & Diag)1638 Sema::AccessResult Sema::CheckDirectMemberAccess(SourceLocation UseLoc,
1639                                                  NamedDecl *Target,
1640                                            const PartialDiagnostic &Diag) {
1641   AccessSpecifier Access = Target->getAccess();
1642   if (!getLangOpts().AccessControl ||
1643       Access == AS_public)
1644     return AR_accessible;
1645 
1646   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Target->getDeclContext());
1647   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1648                       DeclAccessPair::make(Target, Access),
1649                       QualType());
1650   Entity.setDiag(Diag);
1651   return CheckAccess(*this, UseLoc, Entity);
1652 }
1653 
1654 
1655 /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1656 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1657                                                SourceRange PlacementRange,
1658                                                CXXRecordDecl *NamingClass,
1659                                                DeclAccessPair Found,
1660                                                bool Diagnose) {
1661   if (!getLangOpts().AccessControl ||
1662       !NamingClass ||
1663       Found.getAccess() == AS_public)
1664     return AR_accessible;
1665 
1666   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1667                       QualType());
1668   if (Diagnose)
1669     Entity.setDiag(diag::err_access)
1670       << PlacementRange;
1671 
1672   return CheckAccess(*this, OpLoc, Entity);
1673 }
1674 
1675 /// Checks access to an overloaded member operator, including
1676 /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1677 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1678                                                    Expr *ObjectExpr,
1679                                                    Expr *ArgExpr,
1680                                                    DeclAccessPair Found) {
1681   if (!getLangOpts().AccessControl ||
1682       Found.getAccess() == AS_public)
1683     return AR_accessible;
1684 
1685   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1686   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1687 
1688   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1689                       ObjectExpr->getType());
1690   Entity.setDiag(diag::err_access)
1691     << ObjectExpr->getSourceRange()
1692     << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1693 
1694   return CheckAccess(*this, OpLoc, Entity);
1695 }
1696 
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1697 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1698                                                     DeclAccessPair Found) {
1699   if (!getLangOpts().AccessControl ||
1700       Found.getAccess() == AS_none ||
1701       Found.getAccess() == AS_public)
1702     return AR_accessible;
1703 
1704   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1705   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1706 
1707   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1708                       /*no instance context*/ QualType());
1709   Entity.setDiag(diag::err_access)
1710     << Ovl->getSourceRange();
1711 
1712   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1713 }
1714 
1715 /// Checks access for a hierarchy conversion.
1716 ///
1717 /// \param IsBaseToDerived whether this is a base-to-derived conversion (true)
1718 ///     or a derived-to-base conversion (false)
1719 /// \param ForceCheck true if this check should be performed even if access
1720 ///     control is disabled;  some things rely on this for semantics
1721 /// \param ForceUnprivileged true if this check should proceed as if the
1722 ///     context had no special privileges
1723 /// \param ADK controls the kind of diagnostics that are used
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1724 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1725                                               QualType Base,
1726                                               QualType Derived,
1727                                               const CXXBasePath &Path,
1728                                               unsigned DiagID,
1729                                               bool ForceCheck,
1730                                               bool ForceUnprivileged) {
1731   if (!ForceCheck && !getLangOpts().AccessControl)
1732     return AR_accessible;
1733 
1734   if (Path.Access == AS_public)
1735     return AR_accessible;
1736 
1737   CXXRecordDecl *BaseD, *DerivedD;
1738   BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1739   DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1740 
1741   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1742                       Path.Access);
1743   if (DiagID)
1744     Entity.setDiag(DiagID) << Derived << Base;
1745 
1746   if (ForceUnprivileged) {
1747     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1748                                  AccessLoc, Entity)) {
1749     case ::AR_accessible: return Sema::AR_accessible;
1750     case ::AR_inaccessible: return Sema::AR_inaccessible;
1751     case ::AR_dependent: return Sema::AR_dependent;
1752     }
1753     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1754   }
1755   return CheckAccess(*this, AccessLoc, Entity);
1756 }
1757 
1758 /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1759 void Sema::CheckLookupAccess(const LookupResult &R) {
1760   assert(getLangOpts().AccessControl
1761          && "performing access check without access control");
1762   assert(R.getNamingClass() && "performing access check without naming class");
1763 
1764   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1765     if (I.getAccess() != AS_public) {
1766       AccessTarget Entity(Context, AccessedEntity::Member,
1767                           R.getNamingClass(), I.getPair(),
1768                           R.getBaseObjectType());
1769       Entity.setDiag(diag::err_access);
1770       CheckAccess(*this, R.getNameLoc(), Entity);
1771     }
1772   }
1773 }
1774 
1775 /// Checks access to Decl from the given class. The check will take access
1776 /// specifiers into account, but no member access expressions and such.
1777 ///
1778 /// \param Decl the declaration to check if it can be accessed
1779 /// \param Class the class/context from which to start the search
1780 /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1781 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1782   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1783     if (!Decl->isCXXClassMember())
1784       return true;
1785 
1786     QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1787     AccessTarget Entity(Context, AccessedEntity::Member, Class,
1788                         DeclAccessPair::make(Decl, Decl->getAccess()),
1789                         qType);
1790     if (Entity.getAccess() == AS_public)
1791       return true;
1792 
1793     EffectiveContext EC(CurContext);
1794     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1795   }
1796 
1797   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1798     // @public and @package ivars are always accessible.
1799     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1800         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1801       return true;
1802 
1803 
1804 
1805     // If we are inside a class or category implementation, determine the
1806     // interface we're in.
1807     ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1808     if (ObjCMethodDecl *MD = getCurMethodDecl())
1809       ClassOfMethodDecl =  MD->getClassInterface();
1810     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1811       if (ObjCImplDecl *Impl
1812             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1813         if (ObjCImplementationDecl *IMPD
1814               = dyn_cast<ObjCImplementationDecl>(Impl))
1815           ClassOfMethodDecl = IMPD->getClassInterface();
1816         else if (ObjCCategoryImplDecl* CatImplClass
1817                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1818           ClassOfMethodDecl = CatImplClass->getClassInterface();
1819       }
1820     }
1821 
1822     // If we're not in an interface, this ivar is inaccessible.
1823     if (!ClassOfMethodDecl)
1824       return false;
1825 
1826     // If we're inside the same interface that owns the ivar, we're fine.
1827     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1828       return true;
1829 
1830     // If the ivar is private, it's inaccessible.
1831     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1832       return false;
1833 
1834     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1835   }
1836 
1837   return true;
1838 }
1839 
ActOnStartSuppressingAccessChecks()1840 void Sema::ActOnStartSuppressingAccessChecks() {
1841   assert(!SuppressAccessChecking &&
1842          "Tried to start access check suppression when already started.");
1843   SuppressAccessChecking = true;
1844 }
1845 
ActOnStopSuppressingAccessChecks()1846 void Sema::ActOnStopSuppressingAccessChecks() {
1847   assert(SuppressAccessChecking &&
1848          "Tried to stop access check suprression when already stopped.");
1849   SuppressAccessChecking = false;
1850 }
1851