1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/CXXFieldCollector.h"
18 #include "clang/Sema/Scope.h"
19 #include "clang/Sema/ScopeInfo.h"
20 #include "TypeLocBuilder.h"
21 #include "clang/AST/ASTConsumer.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CXXInheritance.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/EvaluatedExprVisitor.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/ParsedTemplate.h"
33 #include "clang/Parse/ParseDiagnostic.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Lex/HeaderSearch.h"
41 #include "clang/Lex/ModuleLoader.h"
42 #include "llvm/ADT/SmallString.h"
43 #include "llvm/ADT/Triple.h"
44 #include <algorithm>
45 #include <cstring>
46 #include <functional>
47 using namespace clang;
48 using namespace sema;
49
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)50 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51 if (OwnedType) {
52 Decl *Group[2] = { OwnedType, Ptr };
53 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54 }
55
56 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57 }
58
59 namespace {
60
61 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
TypeNameValidatorCCC(bool AllowInvalid)63 TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64 WantExpressionKeywords = false;
65 WantCXXNamedCasts = false;
66 WantRemainingKeywords = false;
67 }
68
ValidateCandidate(const TypoCorrection & candidate)69 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70 if (NamedDecl *ND = candidate.getCorrectionDecl())
71 return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72 (AllowInvalidDecl || !ND->isInvalidDecl());
73 else
74 return candidate.isKeyword();
75 }
76
77 private:
78 bool AllowInvalidDecl;
79 };
80
81 }
82
83 /// \brief If the identifier refers to a type name within this scope,
84 /// return the declaration of that type.
85 ///
86 /// This routine performs ordinary name lookup of the identifier II
87 /// within the given scope, with optional C++ scope specifier SS, to
88 /// determine whether the name refers to a type. If so, returns an
89 /// opaque pointer (actually a QualType) corresponding to that
90 /// type. Otherwise, returns NULL.
91 ///
92 /// If name lookup results in an ambiguity, this routine will complain
93 /// and then return NULL.
getTypeName(IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)94 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95 Scope *S, CXXScopeSpec *SS,
96 bool isClassName, bool HasTrailingDot,
97 ParsedType ObjectTypePtr,
98 bool IsCtorOrDtorName,
99 bool WantNontrivialTypeSourceInfo,
100 IdentifierInfo **CorrectedII) {
101 // Determine where we will perform name lookup.
102 DeclContext *LookupCtx = 0;
103 if (ObjectTypePtr) {
104 QualType ObjectType = ObjectTypePtr.get();
105 if (ObjectType->isRecordType())
106 LookupCtx = computeDeclContext(ObjectType);
107 } else if (SS && SS->isNotEmpty()) {
108 LookupCtx = computeDeclContext(*SS, false);
109
110 if (!LookupCtx) {
111 if (isDependentScopeSpecifier(*SS)) {
112 // C++ [temp.res]p3:
113 // A qualified-id that refers to a type and in which the
114 // nested-name-specifier depends on a template-parameter (14.6.2)
115 // shall be prefixed by the keyword typename to indicate that the
116 // qualified-id denotes a type, forming an
117 // elaborated-type-specifier (7.1.5.3).
118 //
119 // We therefore do not perform any name lookup if the result would
120 // refer to a member of an unknown specialization.
121 if (!isClassName && !IsCtorOrDtorName)
122 return ParsedType();
123
124 // We know from the grammar that this name refers to a type,
125 // so build a dependent node to describe the type.
126 if (WantNontrivialTypeSourceInfo)
127 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130 QualType T =
131 CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132 II, NameLoc);
133
134 return ParsedType::make(T);
135 }
136
137 return ParsedType();
138 }
139
140 if (!LookupCtx->isDependentContext() &&
141 RequireCompleteDeclContext(*SS, LookupCtx))
142 return ParsedType();
143 }
144
145 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146 // lookup for class-names.
147 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148 LookupOrdinaryName;
149 LookupResult Result(*this, &II, NameLoc, Kind);
150 if (LookupCtx) {
151 // Perform "qualified" name lookup into the declaration context we
152 // computed, which is either the type of the base of a member access
153 // expression or the declaration context associated with a prior
154 // nested-name-specifier.
155 LookupQualifiedName(Result, LookupCtx);
156
157 if (ObjectTypePtr && Result.empty()) {
158 // C++ [basic.lookup.classref]p3:
159 // If the unqualified-id is ~type-name, the type-name is looked up
160 // in the context of the entire postfix-expression. If the type T of
161 // the object expression is of a class type C, the type-name is also
162 // looked up in the scope of class C. At least one of the lookups shall
163 // find a name that refers to (possibly cv-qualified) T.
164 LookupName(Result, S);
165 }
166 } else {
167 // Perform unqualified name lookup.
168 LookupName(Result, S);
169 }
170
171 NamedDecl *IIDecl = 0;
172 switch (Result.getResultKind()) {
173 case LookupResult::NotFound:
174 case LookupResult::NotFoundInCurrentInstantiation:
175 if (CorrectedII) {
176 TypeNameValidatorCCC Validator(true);
177 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178 Kind, S, SS, Validator);
179 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180 TemplateTy Template;
181 bool MemberOfUnknownSpecialization;
182 UnqualifiedId TemplateName;
183 TemplateName.setIdentifier(NewII, NameLoc);
184 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185 CXXScopeSpec NewSS, *NewSSPtr = SS;
186 if (SS && NNS) {
187 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188 NewSSPtr = &NewSS;
189 }
190 if (Correction && (NNS || NewII != &II) &&
191 // Ignore a correction to a template type as the to-be-corrected
192 // identifier is not a template (typo correction for template names
193 // is handled elsewhere).
194 !(getLangOpts().CPlusPlus && NewSSPtr &&
195 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196 false, Template, MemberOfUnknownSpecialization))) {
197 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198 isClassName, HasTrailingDot, ObjectTypePtr,
199 IsCtorOrDtorName,
200 WantNontrivialTypeSourceInfo);
201 if (Ty) {
202 std::string CorrectedStr(Correction.getAsString(getLangOpts()));
203 std::string CorrectedQuotedStr(
204 Correction.getQuoted(getLangOpts()));
205 Diag(NameLoc, diag::err_unknown_typename_suggest)
206 << Result.getLookupName() << CorrectedQuotedStr
207 << FixItHint::CreateReplacement(SourceRange(NameLoc),
208 CorrectedStr);
209 if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210 Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211 << CorrectedQuotedStr;
212
213 if (SS && NNS)
214 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215 *CorrectedII = NewII;
216 return Ty;
217 }
218 }
219 }
220 // If typo correction failed or was not performed, fall through
221 case LookupResult::FoundOverloaded:
222 case LookupResult::FoundUnresolvedValue:
223 Result.suppressDiagnostics();
224 return ParsedType();
225
226 case LookupResult::Ambiguous:
227 // Recover from type-hiding ambiguities by hiding the type. We'll
228 // do the lookup again when looking for an object, and we can
229 // diagnose the error then. If we don't do this, then the error
230 // about hiding the type will be immediately followed by an error
231 // that only makes sense if the identifier was treated like a type.
232 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233 Result.suppressDiagnostics();
234 return ParsedType();
235 }
236
237 // Look to see if we have a type anywhere in the list of results.
238 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239 Res != ResEnd; ++Res) {
240 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241 if (!IIDecl ||
242 (*Res)->getLocation().getRawEncoding() <
243 IIDecl->getLocation().getRawEncoding())
244 IIDecl = *Res;
245 }
246 }
247
248 if (!IIDecl) {
249 // None of the entities we found is a type, so there is no way
250 // to even assume that the result is a type. In this case, don't
251 // complain about the ambiguity. The parser will either try to
252 // perform this lookup again (e.g., as an object name), which
253 // will produce the ambiguity, or will complain that it expected
254 // a type name.
255 Result.suppressDiagnostics();
256 return ParsedType();
257 }
258
259 // We found a type within the ambiguous lookup; diagnose the
260 // ambiguity and then return that type. This might be the right
261 // answer, or it might not be, but it suppresses any attempt to
262 // perform the name lookup again.
263 break;
264
265 case LookupResult::Found:
266 IIDecl = Result.getFoundDecl();
267 break;
268 }
269
270 assert(IIDecl && "Didn't find decl");
271
272 QualType T;
273 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274 DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276 if (T.isNull())
277 T = Context.getTypeDeclType(TD);
278
279 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280 // constructor or destructor name (in such a case, the scope specifier
281 // will be attached to the enclosing Expr or Decl node).
282 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283 if (WantNontrivialTypeSourceInfo) {
284 // Construct a type with type-source information.
285 TypeLocBuilder Builder;
286 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288 T = getElaboratedType(ETK_None, *SS, T);
289 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290 ElabTL.setElaboratedKeywordLoc(SourceLocation());
291 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293 } else {
294 T = getElaboratedType(ETK_None, *SS, T);
295 }
296 }
297 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299 if (!HasTrailingDot)
300 T = Context.getObjCInterfaceType(IDecl);
301 }
302
303 if (T.isNull()) {
304 // If it's not plausibly a type, suppress diagnostics.
305 Result.suppressDiagnostics();
306 return ParsedType();
307 }
308 return ParsedType::make(T);
309 }
310
311 /// isTagName() - This method is called *for error recovery purposes only*
312 /// to determine if the specified name is a valid tag name ("struct foo"). If
313 /// so, this returns the TST for the tag corresponding to it (TST_enum,
314 /// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
315 /// where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)316 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317 // Do a tag name lookup in this scope.
318 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319 LookupName(R, S, false);
320 R.suppressDiagnostics();
321 if (R.getResultKind() == LookupResult::Found)
322 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323 switch (TD->getTagKind()) {
324 case TTK_Struct: return DeclSpec::TST_struct;
325 case TTK_Union: return DeclSpec::TST_union;
326 case TTK_Class: return DeclSpec::TST_class;
327 case TTK_Enum: return DeclSpec::TST_enum;
328 }
329 }
330
331 return DeclSpec::TST_unspecified;
332 }
333
334 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
336 /// then downgrade the missing typename error to a warning.
337 /// This is needed for MSVC compatibility; Example:
338 /// @code
339 /// template<class T> class A {
340 /// public:
341 /// typedef int TYPE;
342 /// };
343 /// template<class T> class B : public A<T> {
344 /// public:
345 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
346 /// };
347 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)348 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349 if (CurContext->isRecord()) {
350 const Type *Ty = SS->getScopeRep()->getAsType();
351
352 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353 for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354 BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356 return true;
357 return S->isFunctionPrototypeScope();
358 }
359 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360 }
361
DiagnoseUnknownTypeName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType)362 bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363 SourceLocation IILoc,
364 Scope *S,
365 CXXScopeSpec *SS,
366 ParsedType &SuggestedType) {
367 // We don't have anything to suggest (yet).
368 SuggestedType = ParsedType();
369
370 // There may have been a typo in the name of the type. Look up typo
371 // results, in case we have something that we can suggest.
372 TypeNameValidatorCCC Validator(false);
373 if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374 LookupOrdinaryName, S, SS,
375 Validator)) {
376 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
377 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
378
379 if (Corrected.isKeyword()) {
380 // We corrected to a keyword.
381 // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382 Diag(IILoc, diag::err_unknown_typename_suggest)
383 << &II << CorrectedQuotedStr;
384 } else {
385 NamedDecl *Result = Corrected.getCorrectionDecl();
386 // We found a similarly-named type or interface; suggest that.
387 if (!SS || !SS->isSet())
388 Diag(IILoc, diag::err_unknown_typename_suggest)
389 << &II << CorrectedQuotedStr
390 << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391 else if (DeclContext *DC = computeDeclContext(*SS, false))
392 Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393 << &II << DC << CorrectedQuotedStr << SS->getRange()
394 << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395 else
396 llvm_unreachable("could not have corrected a typo here");
397
398 Diag(Result->getLocation(), diag::note_previous_decl)
399 << CorrectedQuotedStr;
400
401 SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402 false, false, ParsedType(),
403 /*IsCtorOrDtorName=*/false,
404 /*NonTrivialTypeSourceInfo=*/true);
405 }
406 return true;
407 }
408
409 if (getLangOpts().CPlusPlus) {
410 // See if II is a class template that the user forgot to pass arguments to.
411 UnqualifiedId Name;
412 Name.setIdentifier(&II, IILoc);
413 CXXScopeSpec EmptySS;
414 TemplateTy TemplateResult;
415 bool MemberOfUnknownSpecialization;
416 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417 Name, ParsedType(), true, TemplateResult,
418 MemberOfUnknownSpecialization) == TNK_Type_template) {
419 TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420 Diag(IILoc, diag::err_template_missing_args) << TplName;
421 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423 << TplDecl->getTemplateParameters()->getSourceRange();
424 }
425 return true;
426 }
427 }
428
429 // FIXME: Should we move the logic that tries to recover from a missing tag
430 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432 if (!SS || (!SS->isSet() && !SS->isInvalid()))
433 Diag(IILoc, diag::err_unknown_typename) << &II;
434 else if (DeclContext *DC = computeDeclContext(*SS, false))
435 Diag(IILoc, diag::err_typename_nested_not_found)
436 << &II << DC << SS->getRange();
437 else if (isDependentScopeSpecifier(*SS)) {
438 unsigned DiagID = diag::err_typename_missing;
439 if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440 DiagID = diag::warn_typename_missing;
441
442 Diag(SS->getRange().getBegin(), DiagID)
443 << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444 << SourceRange(SS->getRange().getBegin(), IILoc)
445 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446 SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447 .get();
448 } else {
449 assert(SS && SS->isInvalid() &&
450 "Invalid scope specifier has already been diagnosed");
451 }
452
453 return true;
454 }
455
456 /// \brief Determine whether the given result set contains either a type name
457 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)458 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
460 NextToken.is(tok::less);
461
462 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464 return true;
465
466 if (CheckTemplate && isa<TemplateDecl>(*I))
467 return true;
468 }
469
470 return false;
471 }
472
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken)473 Sema::NameClassification Sema::ClassifyName(Scope *S,
474 CXXScopeSpec &SS,
475 IdentifierInfo *&Name,
476 SourceLocation NameLoc,
477 const Token &NextToken) {
478 DeclarationNameInfo NameInfo(Name, NameLoc);
479 ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481 if (NextToken.is(tok::coloncolon)) {
482 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483 QualType(), false, SS, 0, false);
484
485 }
486
487 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488 LookupParsedName(Result, S, &SS, !CurMethod);
489
490 // Perform lookup for Objective-C instance variables (including automatically
491 // synthesized instance variables), if we're in an Objective-C method.
492 // FIXME: This lookup really, really needs to be folded in to the normal
493 // unqualified lookup mechanism.
494 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496 if (E.get() || E.isInvalid())
497 return E;
498 }
499
500 bool SecondTry = false;
501 bool IsFilteredTemplateName = false;
502
503 Corrected:
504 switch (Result.getResultKind()) {
505 case LookupResult::NotFound:
506 // If an unqualified-id is followed by a '(', then we have a function
507 // call.
508 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509 // In C++, this is an ADL-only call.
510 // FIXME: Reference?
511 if (getLangOpts().CPlusPlus)
512 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514 // C90 6.3.2.2:
515 // If the expression that precedes the parenthesized argument list in a
516 // function call consists solely of an identifier, and if no
517 // declaration is visible for this identifier, the identifier is
518 // implicitly declared exactly as if, in the innermost block containing
519 // the function call, the declaration
520 //
521 // extern int identifier ();
522 //
523 // appeared.
524 //
525 // We also allow this in C99 as an extension.
526 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527 Result.addDecl(D);
528 Result.resolveKind();
529 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530 }
531 }
532
533 // In C, we first see whether there is a tag type by the same name, in
534 // which case it's likely that the user just forget to write "enum",
535 // "struct", or "union".
536 if (!getLangOpts().CPlusPlus && !SecondTry) {
537 Result.clear(LookupTagName);
538 LookupParsedName(Result, S, &SS);
539 if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540 const char *TagName = 0;
541 const char *FixItTagName = 0;
542 switch (Tag->getTagKind()) {
543 case TTK_Class:
544 TagName = "class";
545 FixItTagName = "class ";
546 break;
547
548 case TTK_Enum:
549 TagName = "enum";
550 FixItTagName = "enum ";
551 break;
552
553 case TTK_Struct:
554 TagName = "struct";
555 FixItTagName = "struct ";
556 break;
557
558 case TTK_Union:
559 TagName = "union";
560 FixItTagName = "union ";
561 break;
562 }
563
564 Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565 << Name << TagName << getLangOpts().CPlusPlus
566 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567 break;
568 }
569
570 Result.clear(LookupOrdinaryName);
571 }
572
573 // Perform typo correction to determine if there is another name that is
574 // close to this name.
575 if (!SecondTry) {
576 SecondTry = true;
577 CorrectionCandidateCallback DefaultValidator;
578 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579 Result.getLookupKind(), S,
580 &SS, DefaultValidator)) {
581 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582 unsigned QualifiedDiag = diag::err_no_member_suggest;
583 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
584 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
585
586 NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587 NamedDecl *UnderlyingFirstDecl
588 = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
590 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591 UnqualifiedDiag = diag::err_no_template_suggest;
592 QualifiedDiag = diag::err_no_member_template_suggest;
593 } else if (UnderlyingFirstDecl &&
594 (isa<TypeDecl>(UnderlyingFirstDecl) ||
595 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597 UnqualifiedDiag = diag::err_unknown_typename_suggest;
598 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599 }
600
601 if (SS.isEmpty())
602 Diag(NameLoc, UnqualifiedDiag)
603 << Name << CorrectedQuotedStr
604 << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605 else
606 Diag(NameLoc, QualifiedDiag)
607 << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608 << SS.getRange()
609 << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611 // Update the name, so that the caller has the new name.
612 Name = Corrected.getCorrectionAsIdentifierInfo();
613
614 // Typo correction corrected to a keyword.
615 if (Corrected.isKeyword())
616 return Corrected.getCorrectionAsIdentifierInfo();
617
618 // Also update the LookupResult...
619 // FIXME: This should probably go away at some point
620 Result.clear();
621 Result.setLookupName(Corrected.getCorrection());
622 if (FirstDecl) {
623 Result.addDecl(FirstDecl);
624 Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625 << CorrectedQuotedStr;
626 }
627
628 // If we found an Objective-C instance variable, let
629 // LookupInObjCMethod build the appropriate expression to
630 // reference the ivar.
631 // FIXME: This is a gross hack.
632 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633 Result.clear();
634 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635 return move(E);
636 }
637
638 goto Corrected;
639 }
640 }
641
642 // We failed to correct; just fall through and let the parser deal with it.
643 Result.suppressDiagnostics();
644 return NameClassification::Unknown();
645
646 case LookupResult::NotFoundInCurrentInstantiation: {
647 // We performed name lookup into the current instantiation, and there were
648 // dependent bases, so we treat this result the same way as any other
649 // dependent nested-name-specifier.
650
651 // C++ [temp.res]p2:
652 // A name used in a template declaration or definition and that is
653 // dependent on a template-parameter is assumed not to name a type
654 // unless the applicable name lookup finds a type name or the name is
655 // qualified by the keyword typename.
656 //
657 // FIXME: If the next token is '<', we might want to ask the parser to
658 // perform some heroics to see if we actually have a
659 // template-argument-list, which would indicate a missing 'template'
660 // keyword here.
661 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662 NameInfo, /*TemplateArgs=*/0);
663 }
664
665 case LookupResult::Found:
666 case LookupResult::FoundOverloaded:
667 case LookupResult::FoundUnresolvedValue:
668 break;
669
670 case LookupResult::Ambiguous:
671 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672 hasAnyAcceptableTemplateNames(Result)) {
673 // C++ [temp.local]p3:
674 // A lookup that finds an injected-class-name (10.2) can result in an
675 // ambiguity in certain cases (for example, if it is found in more than
676 // one base class). If all of the injected-class-names that are found
677 // refer to specializations of the same class template, and if the name
678 // is followed by a template-argument-list, the reference refers to the
679 // class template itself and not a specialization thereof, and is not
680 // ambiguous.
681 //
682 // This filtering can make an ambiguous result into an unambiguous one,
683 // so try again after filtering out template names.
684 FilterAcceptableTemplateNames(Result);
685 if (!Result.isAmbiguous()) {
686 IsFilteredTemplateName = true;
687 break;
688 }
689 }
690
691 // Diagnose the ambiguity and return an error.
692 return NameClassification::Error();
693 }
694
695 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
696 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697 // C++ [temp.names]p3:
698 // After name lookup (3.4) finds that a name is a template-name or that
699 // an operator-function-id or a literal- operator-id refers to a set of
700 // overloaded functions any member of which is a function template if
701 // this is followed by a <, the < is always taken as the delimiter of a
702 // template-argument-list and never as the less-than operator.
703 if (!IsFilteredTemplateName)
704 FilterAcceptableTemplateNames(Result);
705
706 if (!Result.empty()) {
707 bool IsFunctionTemplate;
708 TemplateName Template;
709 if (Result.end() - Result.begin() > 1) {
710 IsFunctionTemplate = true;
711 Template = Context.getOverloadedTemplateName(Result.begin(),
712 Result.end());
713 } else {
714 TemplateDecl *TD
715 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718 if (SS.isSet() && !SS.isInvalid())
719 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720 /*TemplateKeyword=*/false,
721 TD);
722 else
723 Template = TemplateName(TD);
724 }
725
726 if (IsFunctionTemplate) {
727 // Function templates always go through overload resolution, at which
728 // point we'll perform the various checks (e.g., accessibility) we need
729 // to based on which function we selected.
730 Result.suppressDiagnostics();
731
732 return NameClassification::FunctionTemplate(Template);
733 }
734
735 return NameClassification::TypeTemplate(Template);
736 }
737 }
738
739 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741 DiagnoseUseOfDecl(Type, NameLoc);
742 QualType T = Context.getTypeDeclType(Type);
743 return ParsedType::make(T);
744 }
745
746 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747 if (!Class) {
748 // FIXME: It's unfortunate that we don't have a Type node for handling this.
749 if (ObjCCompatibleAliasDecl *Alias
750 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751 Class = Alias->getClassInterface();
752 }
753
754 if (Class) {
755 DiagnoseUseOfDecl(Class, NameLoc);
756
757 if (NextToken.is(tok::period)) {
758 // Interface. <something> is parsed as a property reference expression.
759 // Just return "unknown" as a fall-through for now.
760 Result.suppressDiagnostics();
761 return NameClassification::Unknown();
762 }
763
764 QualType T = Context.getObjCInterfaceType(Class);
765 return ParsedType::make(T);
766 }
767
768 if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772 return BuildDeclarationNameExpr(SS, Result, ADL);
773 }
774
775 // Determines the context to return to after temporarily entering a
776 // context. This depends in an unnecessarily complicated way on the
777 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)778 DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780 // Functions defined inline within classes aren't parsed until we've
781 // finished parsing the top-level class, so the top-level class is
782 // the context we'll need to return to.
783 if (isa<FunctionDecl>(DC)) {
784 DC = DC->getLexicalParent();
785
786 // A function not defined within a class will always return to its
787 // lexical context.
788 if (!isa<CXXRecordDecl>(DC))
789 return DC;
790
791 // A C++ inline method/friend is parsed *after* the topmost class
792 // it was declared in is fully parsed ("complete"); the topmost
793 // class is the context we need to return to.
794 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795 DC = RD;
796
797 // Return the declaration context of the topmost class the inline method is
798 // declared in.
799 return DC;
800 }
801
802 return DC->getLexicalParent();
803 }
804
PushDeclContext(Scope * S,DeclContext * DC)805 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806 assert(getContainingDC(DC) == CurContext &&
807 "The next DeclContext should be lexically contained in the current one.");
808 CurContext = DC;
809 S->setEntity(DC);
810 }
811
PopDeclContext()812 void Sema::PopDeclContext() {
813 assert(CurContext && "DeclContext imbalance!");
814
815 CurContext = getContainingDC(CurContext);
816 assert(CurContext && "Popped translation unit!");
817 }
818
819 /// EnterDeclaratorContext - Used when we must lookup names in the context
820 /// of a declarator's nested name specifier.
821 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)822 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823 // C++0x [basic.lookup.unqual]p13:
824 // A name used in the definition of a static data member of class
825 // X (after the qualified-id of the static member) is looked up as
826 // if the name was used in a member function of X.
827 // C++0x [basic.lookup.unqual]p14:
828 // If a variable member of a namespace is defined outside of the
829 // scope of its namespace then any name used in the definition of
830 // the variable member (after the declarator-id) is looked up as
831 // if the definition of the variable member occurred in its
832 // namespace.
833 // Both of these imply that we should push a scope whose context
834 // is the semantic context of the declaration. We can't use
835 // PushDeclContext here because that context is not necessarily
836 // lexically contained in the current context. Fortunately,
837 // the containing scope should have the appropriate information.
838
839 assert(!S->getEntity() && "scope already has entity");
840
841 #ifndef NDEBUG
842 Scope *Ancestor = S->getParent();
843 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845 #endif
846
847 CurContext = DC;
848 S->setEntity(DC);
849 }
850
ExitDeclaratorContext(Scope * S)851 void Sema::ExitDeclaratorContext(Scope *S) {
852 assert(S->getEntity() == CurContext && "Context imbalance!");
853
854 // Switch back to the lexical context. The safety of this is
855 // enforced by an assert in EnterDeclaratorContext.
856 Scope *Ancestor = S->getParent();
857 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858 CurContext = (DeclContext*) Ancestor->getEntity();
859
860 // We don't need to do anything with the scope, which is going to
861 // disappear.
862 }
863
864
ActOnReenterFunctionContext(Scope * S,Decl * D)865 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867 if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868 // We assume that the caller has already called
869 // ActOnReenterTemplateScope
870 FD = TFD->getTemplatedDecl();
871 }
872 if (!FD)
873 return;
874
875 // Same implementation as PushDeclContext, but enters the context
876 // from the lexical parent, rather than the top-level class.
877 assert(CurContext == FD->getLexicalParent() &&
878 "The next DeclContext should be lexically contained in the current one.");
879 CurContext = FD;
880 S->setEntity(CurContext);
881
882 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
883 ParmVarDecl *Param = FD->getParamDecl(P);
884 // If the parameter has an identifier, then add it to the scope
885 if (Param->getIdentifier()) {
886 S->AddDecl(Param);
887 IdResolver.AddDecl(Param);
888 }
889 }
890 }
891
892
ActOnExitFunctionContext()893 void Sema::ActOnExitFunctionContext() {
894 // Same implementation as PopDeclContext, but returns to the lexical parent,
895 // rather than the top-level class.
896 assert(CurContext && "DeclContext imbalance!");
897 CurContext = CurContext->getLexicalParent();
898 assert(CurContext && "Popped translation unit!");
899 }
900
901
902 /// \brief Determine whether we allow overloading of the function
903 /// PrevDecl with another declaration.
904 ///
905 /// This routine determines whether overloading is possible, not
906 /// whether some new function is actually an overload. It will return
907 /// true in C++ (where we can always provide overloads) or, as an
908 /// extension, in C when the previous function is already an
909 /// overloaded function declaration or has the "overloadable"
910 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)911 static bool AllowOverloadingOfFunction(LookupResult &Previous,
912 ASTContext &Context) {
913 if (Context.getLangOpts().CPlusPlus)
914 return true;
915
916 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
917 return true;
918
919 return (Previous.getResultKind() == LookupResult::Found
920 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
921 }
922
923 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)924 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
925 // Move up the scope chain until we find the nearest enclosing
926 // non-transparent context. The declaration will be introduced into this
927 // scope.
928 while (S->getEntity() &&
929 ((DeclContext *)S->getEntity())->isTransparentContext())
930 S = S->getParent();
931
932 // Add scoped declarations into their context, so that they can be
933 // found later. Declarations without a context won't be inserted
934 // into any context.
935 if (AddToContext)
936 CurContext->addDecl(D);
937
938 // Out-of-line definitions shouldn't be pushed into scope in C++.
939 // Out-of-line variable and function definitions shouldn't even in C.
940 if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
941 D->isOutOfLine() &&
942 !D->getDeclContext()->getRedeclContext()->Equals(
943 D->getLexicalDeclContext()->getRedeclContext()))
944 return;
945
946 // Template instantiations should also not be pushed into scope.
947 if (isa<FunctionDecl>(D) &&
948 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
949 return;
950
951 // If this replaces anything in the current scope,
952 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
953 IEnd = IdResolver.end();
954 for (; I != IEnd; ++I) {
955 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
956 S->RemoveDecl(*I);
957 IdResolver.RemoveDecl(*I);
958
959 // Should only need to replace one decl.
960 break;
961 }
962 }
963
964 S->AddDecl(D);
965
966 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
967 // Implicitly-generated labels may end up getting generated in an order that
968 // isn't strictly lexical, which breaks name lookup. Be careful to insert
969 // the label at the appropriate place in the identifier chain.
970 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
971 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
972 if (IDC == CurContext) {
973 if (!S->isDeclScope(*I))
974 continue;
975 } else if (IDC->Encloses(CurContext))
976 break;
977 }
978
979 IdResolver.InsertDeclAfter(I, D);
980 } else {
981 IdResolver.AddDecl(D);
982 }
983 }
984
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)985 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
986 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
987 TUScope->AddDecl(D);
988 }
989
isDeclInScope(NamedDecl * & D,DeclContext * Ctx,Scope * S,bool ExplicitInstantiationOrSpecialization)990 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
991 bool ExplicitInstantiationOrSpecialization) {
992 return IdResolver.isDeclInScope(D, Ctx, Context, S,
993 ExplicitInstantiationOrSpecialization);
994 }
995
getScopeForDeclContext(Scope * S,DeclContext * DC)996 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
997 DeclContext *TargetDC = DC->getPrimaryContext();
998 do {
999 if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1000 if (ScopeDC->getPrimaryContext() == TargetDC)
1001 return S;
1002 } while ((S = S->getParent()));
1003
1004 return 0;
1005 }
1006
1007 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1008 DeclContext*,
1009 ASTContext&);
1010
1011 /// Filters out lookup results that don't fall within the given scope
1012 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool ExplicitInstantiationOrSpecialization)1013 void Sema::FilterLookupForScope(LookupResult &R,
1014 DeclContext *Ctx, Scope *S,
1015 bool ConsiderLinkage,
1016 bool ExplicitInstantiationOrSpecialization) {
1017 LookupResult::Filter F = R.makeFilter();
1018 while (F.hasNext()) {
1019 NamedDecl *D = F.next();
1020
1021 if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1022 continue;
1023
1024 if (ConsiderLinkage &&
1025 isOutOfScopePreviousDeclaration(D, Ctx, Context))
1026 continue;
1027
1028 F.erase();
1029 }
1030
1031 F.done();
1032 }
1033
isUsingDecl(NamedDecl * D)1034 static bool isUsingDecl(NamedDecl *D) {
1035 return isa<UsingShadowDecl>(D) ||
1036 isa<UnresolvedUsingTypenameDecl>(D) ||
1037 isa<UnresolvedUsingValueDecl>(D);
1038 }
1039
1040 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1041 static void RemoveUsingDecls(LookupResult &R) {
1042 LookupResult::Filter F = R.makeFilter();
1043 while (F.hasNext())
1044 if (isUsingDecl(F.next()))
1045 F.erase();
1046
1047 F.done();
1048 }
1049
1050 /// \brief Check for this common pattern:
1051 /// @code
1052 /// class S {
1053 /// S(const S&); // DO NOT IMPLEMENT
1054 /// void operator=(const S&); // DO NOT IMPLEMENT
1055 /// };
1056 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1057 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1058 // FIXME: Should check for private access too but access is set after we get
1059 // the decl here.
1060 if (D->doesThisDeclarationHaveABody())
1061 return false;
1062
1063 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1064 return CD->isCopyConstructor();
1065 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1066 return Method->isCopyAssignmentOperator();
1067 return false;
1068 }
1069
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1070 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1071 assert(D);
1072
1073 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1074 return false;
1075
1076 // Ignore class templates.
1077 if (D->getDeclContext()->isDependentContext() ||
1078 D->getLexicalDeclContext()->isDependentContext())
1079 return false;
1080
1081 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1082 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1083 return false;
1084
1085 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1086 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1087 return false;
1088 } else {
1089 // 'static inline' functions are used in headers; don't warn.
1090 if (FD->getStorageClass() == SC_Static &&
1091 FD->isInlineSpecified())
1092 return false;
1093 }
1094
1095 if (FD->doesThisDeclarationHaveABody() &&
1096 Context.DeclMustBeEmitted(FD))
1097 return false;
1098 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1099 if (!VD->isFileVarDecl() ||
1100 VD->getType().isConstant(Context) ||
1101 Context.DeclMustBeEmitted(VD))
1102 return false;
1103
1104 if (VD->isStaticDataMember() &&
1105 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1106 return false;
1107
1108 } else {
1109 return false;
1110 }
1111
1112 // Only warn for unused decls internal to the translation unit.
1113 if (D->getLinkage() == ExternalLinkage)
1114 return false;
1115
1116 return true;
1117 }
1118
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1119 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1120 if (!D)
1121 return;
1122
1123 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1124 const FunctionDecl *First = FD->getFirstDeclaration();
1125 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1126 return; // First should already be in the vector.
1127 }
1128
1129 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1130 const VarDecl *First = VD->getFirstDeclaration();
1131 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1132 return; // First should already be in the vector.
1133 }
1134
1135 if (ShouldWarnIfUnusedFileScopedDecl(D))
1136 UnusedFileScopedDecls.push_back(D);
1137 }
1138
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1139 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1140 if (D->isInvalidDecl())
1141 return false;
1142
1143 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1144 return false;
1145
1146 if (isa<LabelDecl>(D))
1147 return true;
1148
1149 // White-list anything that isn't a local variable.
1150 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1151 !D->getDeclContext()->isFunctionOrMethod())
1152 return false;
1153
1154 // Types of valid local variables should be complete, so this should succeed.
1155 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1156
1157 // White-list anything with an __attribute__((unused)) type.
1158 QualType Ty = VD->getType();
1159
1160 // Only look at the outermost level of typedef.
1161 if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1162 if (TT->getDecl()->hasAttr<UnusedAttr>())
1163 return false;
1164 }
1165
1166 // If we failed to complete the type for some reason, or if the type is
1167 // dependent, don't diagnose the variable.
1168 if (Ty->isIncompleteType() || Ty->isDependentType())
1169 return false;
1170
1171 if (const TagType *TT = Ty->getAs<TagType>()) {
1172 const TagDecl *Tag = TT->getDecl();
1173 if (Tag->hasAttr<UnusedAttr>())
1174 return false;
1175
1176 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1177 if (!RD->hasTrivialDestructor())
1178 return false;
1179
1180 if (const Expr *Init = VD->getInit()) {
1181 const CXXConstructExpr *Construct =
1182 dyn_cast<CXXConstructExpr>(Init);
1183 if (Construct && !Construct->isElidable()) {
1184 CXXConstructorDecl *CD = Construct->getConstructor();
1185 if (!CD->isTrivial())
1186 return false;
1187 }
1188 }
1189 }
1190 }
1191
1192 // TODO: __attribute__((unused)) templates?
1193 }
1194
1195 return true;
1196 }
1197
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1198 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1199 FixItHint &Hint) {
1200 if (isa<LabelDecl>(D)) {
1201 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1202 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1203 if (AfterColon.isInvalid())
1204 return;
1205 Hint = FixItHint::CreateRemoval(CharSourceRange::
1206 getCharRange(D->getLocStart(), AfterColon));
1207 }
1208 return;
1209 }
1210
1211 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1212 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1213 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1214 FixItHint Hint;
1215 if (!ShouldDiagnoseUnusedDecl(D))
1216 return;
1217
1218 GenerateFixForUnusedDecl(D, Context, Hint);
1219
1220 unsigned DiagID;
1221 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1222 DiagID = diag::warn_unused_exception_param;
1223 else if (isa<LabelDecl>(D))
1224 DiagID = diag::warn_unused_label;
1225 else
1226 DiagID = diag::warn_unused_variable;
1227
1228 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1229 }
1230
CheckPoppedLabel(LabelDecl * L,Sema & S)1231 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1232 // Verify that we have no forward references left. If so, there was a goto
1233 // or address of a label taken, but no definition of it. Label fwd
1234 // definitions are indicated with a null substmt.
1235 if (L->getStmt() == 0)
1236 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1237 }
1238
ActOnPopScope(SourceLocation Loc,Scope * S)1239 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1240 if (S->decl_empty()) return;
1241 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1242 "Scope shouldn't contain decls!");
1243
1244 for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1245 I != E; ++I) {
1246 Decl *TmpD = (*I);
1247 assert(TmpD && "This decl didn't get pushed??");
1248
1249 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1250 NamedDecl *D = cast<NamedDecl>(TmpD);
1251
1252 if (!D->getDeclName()) continue;
1253
1254 // Diagnose unused variables in this scope.
1255 if (!S->hasErrorOccurred())
1256 DiagnoseUnusedDecl(D);
1257
1258 // If this was a forward reference to a label, verify it was defined.
1259 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1260 CheckPoppedLabel(LD, *this);
1261
1262 // Remove this name from our lexical scope.
1263 IdResolver.RemoveDecl(D);
1264 }
1265 }
1266
ActOnStartFunctionDeclarator()1267 void Sema::ActOnStartFunctionDeclarator() {
1268 ++InFunctionDeclarator;
1269 }
1270
ActOnEndFunctionDeclarator()1271 void Sema::ActOnEndFunctionDeclarator() {
1272 assert(InFunctionDeclarator);
1273 --InFunctionDeclarator;
1274 }
1275
1276 /// \brief Look for an Objective-C class in the translation unit.
1277 ///
1278 /// \param Id The name of the Objective-C class we're looking for. If
1279 /// typo-correction fixes this name, the Id will be updated
1280 /// to the fixed name.
1281 ///
1282 /// \param IdLoc The location of the name in the translation unit.
1283 ///
1284 /// \param TypoCorrection If true, this routine will attempt typo correction
1285 /// if there is no class with the given name.
1286 ///
1287 /// \returns The declaration of the named Objective-C class, or NULL if the
1288 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1289 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1290 SourceLocation IdLoc,
1291 bool DoTypoCorrection) {
1292 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1293 // creation from this context.
1294 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1295
1296 if (!IDecl && DoTypoCorrection) {
1297 // Perform typo correction at the given location, but only if we
1298 // find an Objective-C class name.
1299 DeclFilterCCC<ObjCInterfaceDecl> Validator;
1300 if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1301 LookupOrdinaryName, TUScope, NULL,
1302 Validator)) {
1303 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1304 Diag(IdLoc, diag::err_undef_interface_suggest)
1305 << Id << IDecl->getDeclName()
1306 << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1307 Diag(IDecl->getLocation(), diag::note_previous_decl)
1308 << IDecl->getDeclName();
1309
1310 Id = IDecl->getIdentifier();
1311 }
1312 }
1313 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1314 // This routine must always return a class definition, if any.
1315 if (Def && Def->getDefinition())
1316 Def = Def->getDefinition();
1317 return Def;
1318 }
1319
1320 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1321 /// from S, where a non-field would be declared. This routine copes
1322 /// with the difference between C and C++ scoping rules in structs and
1323 /// unions. For example, the following code is well-formed in C but
1324 /// ill-formed in C++:
1325 /// @code
1326 /// struct S6 {
1327 /// enum { BAR } e;
1328 /// };
1329 ///
1330 /// void test_S6() {
1331 /// struct S6 a;
1332 /// a.e = BAR;
1333 /// }
1334 /// @endcode
1335 /// For the declaration of BAR, this routine will return a different
1336 /// scope. The scope S will be the scope of the unnamed enumeration
1337 /// within S6. In C++, this routine will return the scope associated
1338 /// with S6, because the enumeration's scope is a transparent
1339 /// context but structures can contain non-field names. In C, this
1340 /// routine will return the translation unit scope, since the
1341 /// enumeration's scope is a transparent context and structures cannot
1342 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1343 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1344 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1345 (S->getEntity() &&
1346 ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1347 (S->isClassScope() && !getLangOpts().CPlusPlus))
1348 S = S->getParent();
1349 return S;
1350 }
1351
1352 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1353 /// file scope. lazily create a decl for it. ForRedeclaration is true
1354 /// if we're creating this built-in in anticipation of redeclaring the
1355 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1356 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1357 Scope *S, bool ForRedeclaration,
1358 SourceLocation Loc) {
1359 Builtin::ID BID = (Builtin::ID)bid;
1360
1361 ASTContext::GetBuiltinTypeError Error;
1362 QualType R = Context.GetBuiltinType(BID, Error);
1363 switch (Error) {
1364 case ASTContext::GE_None:
1365 // Okay
1366 break;
1367
1368 case ASTContext::GE_Missing_stdio:
1369 if (ForRedeclaration)
1370 Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1371 << Context.BuiltinInfo.GetName(BID);
1372 return 0;
1373
1374 case ASTContext::GE_Missing_setjmp:
1375 if (ForRedeclaration)
1376 Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1377 << Context.BuiltinInfo.GetName(BID);
1378 return 0;
1379
1380 case ASTContext::GE_Missing_ucontext:
1381 if (ForRedeclaration)
1382 Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1383 << Context.BuiltinInfo.GetName(BID);
1384 return 0;
1385 }
1386
1387 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1388 Diag(Loc, diag::ext_implicit_lib_function_decl)
1389 << Context.BuiltinInfo.GetName(BID)
1390 << R;
1391 if (Context.BuiltinInfo.getHeaderName(BID) &&
1392 Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1393 != DiagnosticsEngine::Ignored)
1394 Diag(Loc, diag::note_please_include_header)
1395 << Context.BuiltinInfo.getHeaderName(BID)
1396 << Context.BuiltinInfo.GetName(BID);
1397 }
1398
1399 FunctionDecl *New = FunctionDecl::Create(Context,
1400 Context.getTranslationUnitDecl(),
1401 Loc, Loc, II, R, /*TInfo=*/0,
1402 SC_Extern,
1403 SC_None, false,
1404 /*hasPrototype=*/true);
1405 New->setImplicit();
1406
1407 // Create Decl objects for each parameter, adding them to the
1408 // FunctionDecl.
1409 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1410 SmallVector<ParmVarDecl*, 16> Params;
1411 for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1412 ParmVarDecl *parm =
1413 ParmVarDecl::Create(Context, New, SourceLocation(),
1414 SourceLocation(), 0,
1415 FT->getArgType(i), /*TInfo=*/0,
1416 SC_None, SC_None, 0);
1417 parm->setScopeInfo(0, i);
1418 Params.push_back(parm);
1419 }
1420 New->setParams(Params);
1421 }
1422
1423 AddKnownFunctionAttributes(New);
1424
1425 // TUScope is the translation-unit scope to insert this function into.
1426 // FIXME: This is hideous. We need to teach PushOnScopeChains to
1427 // relate Scopes to DeclContexts, and probably eliminate CurContext
1428 // entirely, but we're not there yet.
1429 DeclContext *SavedContext = CurContext;
1430 CurContext = Context.getTranslationUnitDecl();
1431 PushOnScopeChains(New, TUScope);
1432 CurContext = SavedContext;
1433 return New;
1434 }
1435
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1436 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1437 QualType OldType;
1438 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1439 OldType = OldTypedef->getUnderlyingType();
1440 else
1441 OldType = Context.getTypeDeclType(Old);
1442 QualType NewType = New->getUnderlyingType();
1443
1444 if (NewType->isVariablyModifiedType()) {
1445 // Must not redefine a typedef with a variably-modified type.
1446 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1447 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1448 << Kind << NewType;
1449 if (Old->getLocation().isValid())
1450 Diag(Old->getLocation(), diag::note_previous_definition);
1451 New->setInvalidDecl();
1452 return true;
1453 }
1454
1455 if (OldType != NewType &&
1456 !OldType->isDependentType() &&
1457 !NewType->isDependentType() &&
1458 !Context.hasSameType(OldType, NewType)) {
1459 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1460 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1461 << Kind << NewType << OldType;
1462 if (Old->getLocation().isValid())
1463 Diag(Old->getLocation(), diag::note_previous_definition);
1464 New->setInvalidDecl();
1465 return true;
1466 }
1467 return false;
1468 }
1469
1470 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1471 /// same name and scope as a previous declaration 'Old'. Figure out
1472 /// how to resolve this situation, merging decls or emitting
1473 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1474 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1475 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1476 // If the new decl is known invalid already, don't bother doing any
1477 // merging checks.
1478 if (New->isInvalidDecl()) return;
1479
1480 // Allow multiple definitions for ObjC built-in typedefs.
1481 // FIXME: Verify the underlying types are equivalent!
1482 if (getLangOpts().ObjC1) {
1483 const IdentifierInfo *TypeID = New->getIdentifier();
1484 switch (TypeID->getLength()) {
1485 default: break;
1486 case 2:
1487 if (!TypeID->isStr("id"))
1488 break;
1489 Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1490 // Install the built-in type for 'id', ignoring the current definition.
1491 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1492 return;
1493 case 5:
1494 if (!TypeID->isStr("Class"))
1495 break;
1496 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1497 // Install the built-in type for 'Class', ignoring the current definition.
1498 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1499 return;
1500 case 3:
1501 if (!TypeID->isStr("SEL"))
1502 break;
1503 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1504 // Install the built-in type for 'SEL', ignoring the current definition.
1505 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1506 return;
1507 }
1508 // Fall through - the typedef name was not a builtin type.
1509 }
1510
1511 // Verify the old decl was also a type.
1512 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1513 if (!Old) {
1514 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1515 << New->getDeclName();
1516
1517 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1518 if (OldD->getLocation().isValid())
1519 Diag(OldD->getLocation(), diag::note_previous_definition);
1520
1521 return New->setInvalidDecl();
1522 }
1523
1524 // If the old declaration is invalid, just give up here.
1525 if (Old->isInvalidDecl())
1526 return New->setInvalidDecl();
1527
1528 // If the typedef types are not identical, reject them in all languages and
1529 // with any extensions enabled.
1530 if (isIncompatibleTypedef(Old, New))
1531 return;
1532
1533 // The types match. Link up the redeclaration chain if the old
1534 // declaration was a typedef.
1535 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1536 New->setPreviousDeclaration(Typedef);
1537
1538 if (getLangOpts().MicrosoftExt)
1539 return;
1540
1541 if (getLangOpts().CPlusPlus) {
1542 // C++ [dcl.typedef]p2:
1543 // In a given non-class scope, a typedef specifier can be used to
1544 // redefine the name of any type declared in that scope to refer
1545 // to the type to which it already refers.
1546 if (!isa<CXXRecordDecl>(CurContext))
1547 return;
1548
1549 // C++0x [dcl.typedef]p4:
1550 // In a given class scope, a typedef specifier can be used to redefine
1551 // any class-name declared in that scope that is not also a typedef-name
1552 // to refer to the type to which it already refers.
1553 //
1554 // This wording came in via DR424, which was a correction to the
1555 // wording in DR56, which accidentally banned code like:
1556 //
1557 // struct S {
1558 // typedef struct A { } A;
1559 // };
1560 //
1561 // in the C++03 standard. We implement the C++0x semantics, which
1562 // allow the above but disallow
1563 //
1564 // struct S {
1565 // typedef int I;
1566 // typedef int I;
1567 // };
1568 //
1569 // since that was the intent of DR56.
1570 if (!isa<TypedefNameDecl>(Old))
1571 return;
1572
1573 Diag(New->getLocation(), diag::err_redefinition)
1574 << New->getDeclName();
1575 Diag(Old->getLocation(), diag::note_previous_definition);
1576 return New->setInvalidDecl();
1577 }
1578
1579 // Modules always permit redefinition of typedefs, as does C11.
1580 if (getLangOpts().Modules || getLangOpts().C11)
1581 return;
1582
1583 // If we have a redefinition of a typedef in C, emit a warning. This warning
1584 // is normally mapped to an error, but can be controlled with
1585 // -Wtypedef-redefinition. If either the original or the redefinition is
1586 // in a system header, don't emit this for compatibility with GCC.
1587 if (getDiagnostics().getSuppressSystemWarnings() &&
1588 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1589 Context.getSourceManager().isInSystemHeader(New->getLocation())))
1590 return;
1591
1592 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1593 << New->getDeclName();
1594 Diag(Old->getLocation(), diag::note_previous_definition);
1595 return;
1596 }
1597
1598 /// DeclhasAttr - returns true if decl Declaration already has the target
1599 /// attribute.
1600 static bool
DeclHasAttr(const Decl * D,const Attr * A)1601 DeclHasAttr(const Decl *D, const Attr *A) {
1602 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1603 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1604 for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1605 if ((*i)->getKind() == A->getKind()) {
1606 if (Ann) {
1607 if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1608 return true;
1609 continue;
1610 }
1611 // FIXME: Don't hardcode this check
1612 if (OA && isa<OwnershipAttr>(*i))
1613 return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1614 return true;
1615 }
1616
1617 return false;
1618 }
1619
1620 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(Decl * New,Decl * Old,bool MergeDeprecation)1621 void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1622 bool MergeDeprecation) {
1623 if (!Old->hasAttrs())
1624 return;
1625
1626 bool foundAny = New->hasAttrs();
1627
1628 // Ensure that any moving of objects within the allocated map is done before
1629 // we process them.
1630 if (!foundAny) New->setAttrs(AttrVec());
1631
1632 for (specific_attr_iterator<InheritableAttr>
1633 i = Old->specific_attr_begin<InheritableAttr>(),
1634 e = Old->specific_attr_end<InheritableAttr>();
1635 i != e; ++i) {
1636 // Ignore deprecated/unavailable/availability attributes if requested.
1637 if (!MergeDeprecation &&
1638 (isa<DeprecatedAttr>(*i) ||
1639 isa<UnavailableAttr>(*i) ||
1640 isa<AvailabilityAttr>(*i)))
1641 continue;
1642
1643 if (!DeclHasAttr(New, *i)) {
1644 InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1645 newAttr->setInherited(true);
1646 New->addAttr(newAttr);
1647 foundAny = true;
1648 }
1649 }
1650
1651 if (!foundAny) New->dropAttrs();
1652 }
1653
1654 /// mergeParamDeclAttributes - Copy attributes from the old parameter
1655 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,ASTContext & C)1656 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1657 const ParmVarDecl *oldDecl,
1658 ASTContext &C) {
1659 if (!oldDecl->hasAttrs())
1660 return;
1661
1662 bool foundAny = newDecl->hasAttrs();
1663
1664 // Ensure that any moving of objects within the allocated map is
1665 // done before we process them.
1666 if (!foundAny) newDecl->setAttrs(AttrVec());
1667
1668 for (specific_attr_iterator<InheritableParamAttr>
1669 i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1670 e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1671 if (!DeclHasAttr(newDecl, *i)) {
1672 InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1673 newAttr->setInherited(true);
1674 newDecl->addAttr(newAttr);
1675 foundAny = true;
1676 }
1677 }
1678
1679 if (!foundAny) newDecl->dropAttrs();
1680 }
1681
1682 namespace {
1683
1684 /// Used in MergeFunctionDecl to keep track of function parameters in
1685 /// C.
1686 struct GNUCompatibleParamWarning {
1687 ParmVarDecl *OldParm;
1688 ParmVarDecl *NewParm;
1689 QualType PromotedType;
1690 };
1691
1692 }
1693
1694 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)1695 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1696 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1697 if (Ctor->isDefaultConstructor())
1698 return Sema::CXXDefaultConstructor;
1699
1700 if (Ctor->isCopyConstructor())
1701 return Sema::CXXCopyConstructor;
1702
1703 if (Ctor->isMoveConstructor())
1704 return Sema::CXXMoveConstructor;
1705 } else if (isa<CXXDestructorDecl>(MD)) {
1706 return Sema::CXXDestructor;
1707 } else if (MD->isCopyAssignmentOperator()) {
1708 return Sema::CXXCopyAssignment;
1709 } else if (MD->isMoveAssignmentOperator()) {
1710 return Sema::CXXMoveAssignment;
1711 }
1712
1713 return Sema::CXXInvalid;
1714 }
1715
1716 /// canRedefineFunction - checks if a function can be redefined. Currently,
1717 /// only extern inline functions can be redefined, and even then only in
1718 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)1719 static bool canRedefineFunction(const FunctionDecl *FD,
1720 const LangOptions& LangOpts) {
1721 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1722 !LangOpts.CPlusPlus &&
1723 FD->isInlineSpecified() &&
1724 FD->getStorageClass() == SC_Extern);
1725 }
1726
1727 /// MergeFunctionDecl - We just parsed a function 'New' from
1728 /// declarator D which has the same name and scope as a previous
1729 /// declaration 'Old'. Figure out how to resolve this situation,
1730 /// merging decls or emitting diagnostics as appropriate.
1731 ///
1732 /// In C++, New and Old must be declarations that are not
1733 /// overloaded. Use IsOverload to determine whether New and Old are
1734 /// overloaded, and to select the Old declaration that New should be
1735 /// merged with.
1736 ///
1737 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,Decl * OldD,Scope * S)1738 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1739 // Verify the old decl was also a function.
1740 FunctionDecl *Old = 0;
1741 if (FunctionTemplateDecl *OldFunctionTemplate
1742 = dyn_cast<FunctionTemplateDecl>(OldD))
1743 Old = OldFunctionTemplate->getTemplatedDecl();
1744 else
1745 Old = dyn_cast<FunctionDecl>(OldD);
1746 if (!Old) {
1747 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1748 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1749 Diag(Shadow->getTargetDecl()->getLocation(),
1750 diag::note_using_decl_target);
1751 Diag(Shadow->getUsingDecl()->getLocation(),
1752 diag::note_using_decl) << 0;
1753 return true;
1754 }
1755
1756 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1757 << New->getDeclName();
1758 Diag(OldD->getLocation(), diag::note_previous_definition);
1759 return true;
1760 }
1761
1762 // Determine whether the previous declaration was a definition,
1763 // implicit declaration, or a declaration.
1764 diag::kind PrevDiag;
1765 if (Old->isThisDeclarationADefinition())
1766 PrevDiag = diag::note_previous_definition;
1767 else if (Old->isImplicit())
1768 PrevDiag = diag::note_previous_implicit_declaration;
1769 else
1770 PrevDiag = diag::note_previous_declaration;
1771
1772 QualType OldQType = Context.getCanonicalType(Old->getType());
1773 QualType NewQType = Context.getCanonicalType(New->getType());
1774
1775 // Don't complain about this if we're in GNU89 mode and the old function
1776 // is an extern inline function.
1777 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1778 New->getStorageClass() == SC_Static &&
1779 Old->getStorageClass() != SC_Static &&
1780 !canRedefineFunction(Old, getLangOpts())) {
1781 if (getLangOpts().MicrosoftExt) {
1782 Diag(New->getLocation(), diag::warn_static_non_static) << New;
1783 Diag(Old->getLocation(), PrevDiag);
1784 } else {
1785 Diag(New->getLocation(), diag::err_static_non_static) << New;
1786 Diag(Old->getLocation(), PrevDiag);
1787 return true;
1788 }
1789 }
1790
1791 // If a function is first declared with a calling convention, but is
1792 // later declared or defined without one, the second decl assumes the
1793 // calling convention of the first.
1794 //
1795 // For the new decl, we have to look at the NON-canonical type to tell the
1796 // difference between a function that really doesn't have a calling
1797 // convention and one that is declared cdecl. That's because in
1798 // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1799 // because it is the default calling convention.
1800 //
1801 // Note also that we DO NOT return at this point, because we still have
1802 // other tests to run.
1803 const FunctionType *OldType = cast<FunctionType>(OldQType);
1804 const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1805 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1806 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1807 bool RequiresAdjustment = false;
1808 if (OldTypeInfo.getCC() != CC_Default &&
1809 NewTypeInfo.getCC() == CC_Default) {
1810 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1811 RequiresAdjustment = true;
1812 } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1813 NewTypeInfo.getCC())) {
1814 // Calling conventions really aren't compatible, so complain.
1815 Diag(New->getLocation(), diag::err_cconv_change)
1816 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1817 << (OldTypeInfo.getCC() == CC_Default)
1818 << (OldTypeInfo.getCC() == CC_Default ? "" :
1819 FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1820 Diag(Old->getLocation(), diag::note_previous_declaration);
1821 return true;
1822 }
1823
1824 // FIXME: diagnose the other way around?
1825 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1826 NewTypeInfo = NewTypeInfo.withNoReturn(true);
1827 RequiresAdjustment = true;
1828 }
1829
1830 // Merge regparm attribute.
1831 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1832 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1833 if (NewTypeInfo.getHasRegParm()) {
1834 Diag(New->getLocation(), diag::err_regparm_mismatch)
1835 << NewType->getRegParmType()
1836 << OldType->getRegParmType();
1837 Diag(Old->getLocation(), diag::note_previous_declaration);
1838 return true;
1839 }
1840
1841 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1842 RequiresAdjustment = true;
1843 }
1844
1845 // Merge ns_returns_retained attribute.
1846 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1847 if (NewTypeInfo.getProducesResult()) {
1848 Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1849 Diag(Old->getLocation(), diag::note_previous_declaration);
1850 return true;
1851 }
1852
1853 NewTypeInfo = NewTypeInfo.withProducesResult(true);
1854 RequiresAdjustment = true;
1855 }
1856
1857 if (RequiresAdjustment) {
1858 NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1859 New->setType(QualType(NewType, 0));
1860 NewQType = Context.getCanonicalType(New->getType());
1861 }
1862
1863 if (getLangOpts().CPlusPlus) {
1864 // (C++98 13.1p2):
1865 // Certain function declarations cannot be overloaded:
1866 // -- Function declarations that differ only in the return type
1867 // cannot be overloaded.
1868 QualType OldReturnType = OldType->getResultType();
1869 QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1870 QualType ResQT;
1871 if (OldReturnType != NewReturnType) {
1872 if (NewReturnType->isObjCObjectPointerType()
1873 && OldReturnType->isObjCObjectPointerType())
1874 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1875 if (ResQT.isNull()) {
1876 if (New->isCXXClassMember() && New->isOutOfLine())
1877 Diag(New->getLocation(),
1878 diag::err_member_def_does_not_match_ret_type) << New;
1879 else
1880 Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1881 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1882 return true;
1883 }
1884 else
1885 NewQType = ResQT;
1886 }
1887
1888 const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1889 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1890 if (OldMethod && NewMethod) {
1891 // Preserve triviality.
1892 NewMethod->setTrivial(OldMethod->isTrivial());
1893
1894 // MSVC allows explicit template specialization at class scope:
1895 // 2 CXMethodDecls referring to the same function will be injected.
1896 // We don't want a redeclartion error.
1897 bool IsClassScopeExplicitSpecialization =
1898 OldMethod->isFunctionTemplateSpecialization() &&
1899 NewMethod->isFunctionTemplateSpecialization();
1900 bool isFriend = NewMethod->getFriendObjectKind();
1901
1902 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1903 !IsClassScopeExplicitSpecialization) {
1904 // -- Member function declarations with the same name and the
1905 // same parameter types cannot be overloaded if any of them
1906 // is a static member function declaration.
1907 if (OldMethod->isStatic() || NewMethod->isStatic()) {
1908 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1909 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1910 return true;
1911 }
1912
1913 // C++ [class.mem]p1:
1914 // [...] A member shall not be declared twice in the
1915 // member-specification, except that a nested class or member
1916 // class template can be declared and then later defined.
1917 unsigned NewDiag;
1918 if (isa<CXXConstructorDecl>(OldMethod))
1919 NewDiag = diag::err_constructor_redeclared;
1920 else if (isa<CXXDestructorDecl>(NewMethod))
1921 NewDiag = diag::err_destructor_redeclared;
1922 else if (isa<CXXConversionDecl>(NewMethod))
1923 NewDiag = diag::err_conv_function_redeclared;
1924 else
1925 NewDiag = diag::err_member_redeclared;
1926
1927 Diag(New->getLocation(), NewDiag);
1928 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1929
1930 // Complain if this is an explicit declaration of a special
1931 // member that was initially declared implicitly.
1932 //
1933 // As an exception, it's okay to befriend such methods in order
1934 // to permit the implicit constructor/destructor/operator calls.
1935 } else if (OldMethod->isImplicit()) {
1936 if (isFriend) {
1937 NewMethod->setImplicit();
1938 } else {
1939 Diag(NewMethod->getLocation(),
1940 diag::err_definition_of_implicitly_declared_member)
1941 << New << getSpecialMember(OldMethod);
1942 return true;
1943 }
1944 } else if (OldMethod->isExplicitlyDefaulted()) {
1945 Diag(NewMethod->getLocation(),
1946 diag::err_definition_of_explicitly_defaulted_member)
1947 << getSpecialMember(OldMethod);
1948 return true;
1949 }
1950 }
1951
1952 // (C++98 8.3.5p3):
1953 // All declarations for a function shall agree exactly in both the
1954 // return type and the parameter-type-list.
1955 // We also want to respect all the extended bits except noreturn.
1956
1957 // noreturn should now match unless the old type info didn't have it.
1958 QualType OldQTypeForComparison = OldQType;
1959 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1960 assert(OldQType == QualType(OldType, 0));
1961 const FunctionType *OldTypeForComparison
1962 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1963 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1964 assert(OldQTypeForComparison.isCanonical());
1965 }
1966
1967 if (OldQTypeForComparison == NewQType)
1968 return MergeCompatibleFunctionDecls(New, Old, S);
1969
1970 // Fall through for conflicting redeclarations and redefinitions.
1971 }
1972
1973 // C: Function types need to be compatible, not identical. This handles
1974 // duplicate function decls like "void f(int); void f(enum X);" properly.
1975 if (!getLangOpts().CPlusPlus &&
1976 Context.typesAreCompatible(OldQType, NewQType)) {
1977 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1978 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1979 const FunctionProtoType *OldProto = 0;
1980 if (isa<FunctionNoProtoType>(NewFuncType) &&
1981 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1982 // The old declaration provided a function prototype, but the
1983 // new declaration does not. Merge in the prototype.
1984 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1985 SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1986 OldProto->arg_type_end());
1987 NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1988 ParamTypes.data(), ParamTypes.size(),
1989 OldProto->getExtProtoInfo());
1990 New->setType(NewQType);
1991 New->setHasInheritedPrototype();
1992
1993 // Synthesize a parameter for each argument type.
1994 SmallVector<ParmVarDecl*, 16> Params;
1995 for (FunctionProtoType::arg_type_iterator
1996 ParamType = OldProto->arg_type_begin(),
1997 ParamEnd = OldProto->arg_type_end();
1998 ParamType != ParamEnd; ++ParamType) {
1999 ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2000 SourceLocation(),
2001 SourceLocation(), 0,
2002 *ParamType, /*TInfo=*/0,
2003 SC_None, SC_None,
2004 0);
2005 Param->setScopeInfo(0, Params.size());
2006 Param->setImplicit();
2007 Params.push_back(Param);
2008 }
2009
2010 New->setParams(Params);
2011 }
2012
2013 return MergeCompatibleFunctionDecls(New, Old, S);
2014 }
2015
2016 // GNU C permits a K&R definition to follow a prototype declaration
2017 // if the declared types of the parameters in the K&R definition
2018 // match the types in the prototype declaration, even when the
2019 // promoted types of the parameters from the K&R definition differ
2020 // from the types in the prototype. GCC then keeps the types from
2021 // the prototype.
2022 //
2023 // If a variadic prototype is followed by a non-variadic K&R definition,
2024 // the K&R definition becomes variadic. This is sort of an edge case, but
2025 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2026 // C99 6.9.1p8.
2027 if (!getLangOpts().CPlusPlus &&
2028 Old->hasPrototype() && !New->hasPrototype() &&
2029 New->getType()->getAs<FunctionProtoType>() &&
2030 Old->getNumParams() == New->getNumParams()) {
2031 SmallVector<QualType, 16> ArgTypes;
2032 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2033 const FunctionProtoType *OldProto
2034 = Old->getType()->getAs<FunctionProtoType>();
2035 const FunctionProtoType *NewProto
2036 = New->getType()->getAs<FunctionProtoType>();
2037
2038 // Determine whether this is the GNU C extension.
2039 QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2040 NewProto->getResultType());
2041 bool LooseCompatible = !MergedReturn.isNull();
2042 for (unsigned Idx = 0, End = Old->getNumParams();
2043 LooseCompatible && Idx != End; ++Idx) {
2044 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2045 ParmVarDecl *NewParm = New->getParamDecl(Idx);
2046 if (Context.typesAreCompatible(OldParm->getType(),
2047 NewProto->getArgType(Idx))) {
2048 ArgTypes.push_back(NewParm->getType());
2049 } else if (Context.typesAreCompatible(OldParm->getType(),
2050 NewParm->getType(),
2051 /*CompareUnqualified=*/true)) {
2052 GNUCompatibleParamWarning Warn
2053 = { OldParm, NewParm, NewProto->getArgType(Idx) };
2054 Warnings.push_back(Warn);
2055 ArgTypes.push_back(NewParm->getType());
2056 } else
2057 LooseCompatible = false;
2058 }
2059
2060 if (LooseCompatible) {
2061 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2062 Diag(Warnings[Warn].NewParm->getLocation(),
2063 diag::ext_param_promoted_not_compatible_with_prototype)
2064 << Warnings[Warn].PromotedType
2065 << Warnings[Warn].OldParm->getType();
2066 if (Warnings[Warn].OldParm->getLocation().isValid())
2067 Diag(Warnings[Warn].OldParm->getLocation(),
2068 diag::note_previous_declaration);
2069 }
2070
2071 New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2072 ArgTypes.size(),
2073 OldProto->getExtProtoInfo()));
2074 return MergeCompatibleFunctionDecls(New, Old, S);
2075 }
2076
2077 // Fall through to diagnose conflicting types.
2078 }
2079
2080 // A function that has already been declared has been redeclared or defined
2081 // with a different type- show appropriate diagnostic
2082 if (unsigned BuiltinID = Old->getBuiltinID()) {
2083 // The user has declared a builtin function with an incompatible
2084 // signature.
2085 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2086 // The function the user is redeclaring is a library-defined
2087 // function like 'malloc' or 'printf'. Warn about the
2088 // redeclaration, then pretend that we don't know about this
2089 // library built-in.
2090 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2091 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2092 << Old << Old->getType();
2093 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2094 Old->setInvalidDecl();
2095 return false;
2096 }
2097
2098 PrevDiag = diag::note_previous_builtin_declaration;
2099 }
2100
2101 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2102 Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2103 return true;
2104 }
2105
2106 /// \brief Completes the merge of two function declarations that are
2107 /// known to be compatible.
2108 ///
2109 /// This routine handles the merging of attributes and other
2110 /// properties of function declarations form the old declaration to
2111 /// the new declaration, once we know that New is in fact a
2112 /// redeclaration of Old.
2113 ///
2114 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S)2115 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2116 Scope *S) {
2117 // Merge the attributes
2118 mergeDeclAttributes(New, Old);
2119
2120 // Merge the storage class.
2121 if (Old->getStorageClass() != SC_Extern &&
2122 Old->getStorageClass() != SC_None)
2123 New->setStorageClass(Old->getStorageClass());
2124
2125 // Merge "pure" flag.
2126 if (Old->isPure())
2127 New->setPure();
2128
2129 // Merge attributes from the parameters. These can mismatch with K&R
2130 // declarations.
2131 if (New->getNumParams() == Old->getNumParams())
2132 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2133 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2134 Context);
2135
2136 if (getLangOpts().CPlusPlus)
2137 return MergeCXXFunctionDecl(New, Old, S);
2138
2139 return false;
2140 }
2141
2142
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2143 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2144 ObjCMethodDecl *oldMethod) {
2145 // We don't want to merge unavailable and deprecated attributes
2146 // except from interface to implementation.
2147 bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2148
2149 // Merge the attributes.
2150 mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2151
2152 // Merge attributes from the parameters.
2153 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2154 for (ObjCMethodDecl::param_iterator
2155 ni = newMethod->param_begin(), ne = newMethod->param_end();
2156 ni != ne; ++ni, ++oi)
2157 mergeParamDeclAttributes(*ni, *oi, Context);
2158
2159 CheckObjCMethodOverride(newMethod, oldMethod, true);
2160 }
2161
2162 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2163 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
2164 /// emitting diagnostics as appropriate.
2165 ///
2166 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2167 /// to here in AddInitializerToDecl. We can't check them before the initializer
2168 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old)2169 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2170 if (New->isInvalidDecl() || Old->isInvalidDecl())
2171 return;
2172
2173 QualType MergedT;
2174 if (getLangOpts().CPlusPlus) {
2175 AutoType *AT = New->getType()->getContainedAutoType();
2176 if (AT && !AT->isDeduced()) {
2177 // We don't know what the new type is until the initializer is attached.
2178 return;
2179 } else if (Context.hasSameType(New->getType(), Old->getType())) {
2180 // These could still be something that needs exception specs checked.
2181 return MergeVarDeclExceptionSpecs(New, Old);
2182 }
2183 // C++ [basic.link]p10:
2184 // [...] the types specified by all declarations referring to a given
2185 // object or function shall be identical, except that declarations for an
2186 // array object can specify array types that differ by the presence or
2187 // absence of a major array bound (8.3.4).
2188 else if (Old->getType()->isIncompleteArrayType() &&
2189 New->getType()->isArrayType()) {
2190 CanQual<ArrayType> OldArray
2191 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2192 CanQual<ArrayType> NewArray
2193 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2194 if (OldArray->getElementType() == NewArray->getElementType())
2195 MergedT = New->getType();
2196 } else if (Old->getType()->isArrayType() &&
2197 New->getType()->isIncompleteArrayType()) {
2198 CanQual<ArrayType> OldArray
2199 = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2200 CanQual<ArrayType> NewArray
2201 = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2202 if (OldArray->getElementType() == NewArray->getElementType())
2203 MergedT = Old->getType();
2204 } else if (New->getType()->isObjCObjectPointerType()
2205 && Old->getType()->isObjCObjectPointerType()) {
2206 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2207 Old->getType());
2208 }
2209 } else {
2210 MergedT = Context.mergeTypes(New->getType(), Old->getType());
2211 }
2212 if (MergedT.isNull()) {
2213 Diag(New->getLocation(), diag::err_redefinition_different_type)
2214 << New->getDeclName();
2215 Diag(Old->getLocation(), diag::note_previous_definition);
2216 return New->setInvalidDecl();
2217 }
2218 New->setType(MergedT);
2219 }
2220
2221 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
2222 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
2223 /// situation, merging decls or emitting diagnostics as appropriate.
2224 ///
2225 /// Tentative definition rules (C99 6.9.2p2) are checked by
2226 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2227 /// definitions here, since the initializer hasn't been attached.
2228 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)2229 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2230 // If the new decl is already invalid, don't do any other checking.
2231 if (New->isInvalidDecl())
2232 return;
2233
2234 // Verify the old decl was also a variable.
2235 VarDecl *Old = 0;
2236 if (!Previous.isSingleResult() ||
2237 !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2238 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2239 << New->getDeclName();
2240 Diag(Previous.getRepresentativeDecl()->getLocation(),
2241 diag::note_previous_definition);
2242 return New->setInvalidDecl();
2243 }
2244
2245 // C++ [class.mem]p1:
2246 // A member shall not be declared twice in the member-specification [...]
2247 //
2248 // Here, we need only consider static data members.
2249 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2250 Diag(New->getLocation(), diag::err_duplicate_member)
2251 << New->getIdentifier();
2252 Diag(Old->getLocation(), diag::note_previous_declaration);
2253 New->setInvalidDecl();
2254 }
2255
2256 mergeDeclAttributes(New, Old);
2257 // Warn if an already-declared variable is made a weak_import in a subsequent
2258 // declaration
2259 if (New->getAttr<WeakImportAttr>() &&
2260 Old->getStorageClass() == SC_None &&
2261 !Old->getAttr<WeakImportAttr>()) {
2262 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2263 Diag(Old->getLocation(), diag::note_previous_definition);
2264 // Remove weak_import attribute on new declaration.
2265 New->dropAttr<WeakImportAttr>();
2266 }
2267
2268 // Merge the types.
2269 MergeVarDeclTypes(New, Old);
2270 if (New->isInvalidDecl())
2271 return;
2272
2273 // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2274 if (New->getStorageClass() == SC_Static &&
2275 (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2276 Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2277 Diag(Old->getLocation(), diag::note_previous_definition);
2278 return New->setInvalidDecl();
2279 }
2280 // C99 6.2.2p4:
2281 // For an identifier declared with the storage-class specifier
2282 // extern in a scope in which a prior declaration of that
2283 // identifier is visible,23) if the prior declaration specifies
2284 // internal or external linkage, the linkage of the identifier at
2285 // the later declaration is the same as the linkage specified at
2286 // the prior declaration. If no prior declaration is visible, or
2287 // if the prior declaration specifies no linkage, then the
2288 // identifier has external linkage.
2289 if (New->hasExternalStorage() && Old->hasLinkage())
2290 /* Okay */;
2291 else if (New->getStorageClass() != SC_Static &&
2292 Old->getStorageClass() == SC_Static) {
2293 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2294 Diag(Old->getLocation(), diag::note_previous_definition);
2295 return New->setInvalidDecl();
2296 }
2297
2298 // Check if extern is followed by non-extern and vice-versa.
2299 if (New->hasExternalStorage() &&
2300 !Old->hasLinkage() && Old->isLocalVarDecl()) {
2301 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2302 Diag(Old->getLocation(), diag::note_previous_definition);
2303 return New->setInvalidDecl();
2304 }
2305 if (Old->hasExternalStorage() &&
2306 !New->hasLinkage() && New->isLocalVarDecl()) {
2307 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2308 Diag(Old->getLocation(), diag::note_previous_definition);
2309 return New->setInvalidDecl();
2310 }
2311
2312 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2313
2314 // FIXME: The test for external storage here seems wrong? We still
2315 // need to check for mismatches.
2316 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2317 // Don't complain about out-of-line definitions of static members.
2318 !(Old->getLexicalDeclContext()->isRecord() &&
2319 !New->getLexicalDeclContext()->isRecord())) {
2320 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2321 Diag(Old->getLocation(), diag::note_previous_definition);
2322 return New->setInvalidDecl();
2323 }
2324
2325 if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2326 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2327 Diag(Old->getLocation(), diag::note_previous_definition);
2328 } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2329 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2330 Diag(Old->getLocation(), diag::note_previous_definition);
2331 }
2332
2333 // C++ doesn't have tentative definitions, so go right ahead and check here.
2334 const VarDecl *Def;
2335 if (getLangOpts().CPlusPlus &&
2336 New->isThisDeclarationADefinition() == VarDecl::Definition &&
2337 (Def = Old->getDefinition())) {
2338 Diag(New->getLocation(), diag::err_redefinition)
2339 << New->getDeclName();
2340 Diag(Def->getLocation(), diag::note_previous_definition);
2341 New->setInvalidDecl();
2342 return;
2343 }
2344 // c99 6.2.2 P4.
2345 // For an identifier declared with the storage-class specifier extern in a
2346 // scope in which a prior declaration of that identifier is visible, if
2347 // the prior declaration specifies internal or external linkage, the linkage
2348 // of the identifier at the later declaration is the same as the linkage
2349 // specified at the prior declaration.
2350 // FIXME. revisit this code.
2351 if (New->hasExternalStorage() &&
2352 Old->getLinkage() == InternalLinkage &&
2353 New->getDeclContext() == Old->getDeclContext())
2354 New->setStorageClass(Old->getStorageClass());
2355
2356 // Keep a chain of previous declarations.
2357 New->setPreviousDeclaration(Old);
2358
2359 // Inherit access appropriately.
2360 New->setAccess(Old->getAccess());
2361 }
2362
2363 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2364 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)2365 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2366 DeclSpec &DS) {
2367 return ParsedFreeStandingDeclSpec(S, AS, DS,
2368 MultiTemplateParamsArg(*this, 0, 0));
2369 }
2370
2371 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2372 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2373 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams)2374 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2375 DeclSpec &DS,
2376 MultiTemplateParamsArg TemplateParams) {
2377 Decl *TagD = 0;
2378 TagDecl *Tag = 0;
2379 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2380 DS.getTypeSpecType() == DeclSpec::TST_struct ||
2381 DS.getTypeSpecType() == DeclSpec::TST_union ||
2382 DS.getTypeSpecType() == DeclSpec::TST_enum) {
2383 TagD = DS.getRepAsDecl();
2384
2385 if (!TagD) // We probably had an error
2386 return 0;
2387
2388 // Note that the above type specs guarantee that the
2389 // type rep is a Decl, whereas in many of the others
2390 // it's a Type.
2391 if (isa<TagDecl>(TagD))
2392 Tag = cast<TagDecl>(TagD);
2393 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2394 Tag = CTD->getTemplatedDecl();
2395 }
2396
2397 if (Tag) {
2398 Tag->setFreeStanding();
2399 if (Tag->isInvalidDecl())
2400 return Tag;
2401 }
2402
2403 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2404 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2405 // or incomplete types shall not be restrict-qualified."
2406 if (TypeQuals & DeclSpec::TQ_restrict)
2407 Diag(DS.getRestrictSpecLoc(),
2408 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2409 << DS.getSourceRange();
2410 }
2411
2412 if (DS.isConstexprSpecified()) {
2413 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2414 // and definitions of functions and variables.
2415 if (Tag)
2416 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2417 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2418 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2419 DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2420 else
2421 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2422 // Don't emit warnings after this error.
2423 return TagD;
2424 }
2425
2426 if (DS.isFriendSpecified()) {
2427 // If we're dealing with a decl but not a TagDecl, assume that
2428 // whatever routines created it handled the friendship aspect.
2429 if (TagD && !Tag)
2430 return 0;
2431 return ActOnFriendTypeDecl(S, DS, TemplateParams);
2432 }
2433
2434 // Track whether we warned about the fact that there aren't any
2435 // declarators.
2436 bool emittedWarning = false;
2437
2438 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2439 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2440 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2441 if (getLangOpts().CPlusPlus ||
2442 Record->getDeclContext()->isRecord())
2443 return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2444
2445 Diag(DS.getLocStart(), diag::ext_no_declarators)
2446 << DS.getSourceRange();
2447 emittedWarning = true;
2448 }
2449 }
2450
2451 // Check for Microsoft C extension: anonymous struct.
2452 if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2453 CurContext->isRecord() &&
2454 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2455 // Handle 2 kinds of anonymous struct:
2456 // struct STRUCT;
2457 // and
2458 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
2459 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2460 if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2461 (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2462 DS.getRepAsType().get()->isStructureType())) {
2463 Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2464 << DS.getSourceRange();
2465 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2466 }
2467 }
2468
2469 if (getLangOpts().CPlusPlus &&
2470 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2471 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2472 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2473 !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2474 Diag(Enum->getLocation(), diag::ext_no_declarators)
2475 << DS.getSourceRange();
2476 emittedWarning = true;
2477 }
2478
2479 // Skip all the checks below if we have a type error.
2480 if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2481
2482 if (!DS.isMissingDeclaratorOk()) {
2483 // Warn about typedefs of enums without names, since this is an
2484 // extension in both Microsoft and GNU.
2485 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2486 Tag && isa<EnumDecl>(Tag)) {
2487 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2488 << DS.getSourceRange();
2489 return Tag;
2490 }
2491
2492 Diag(DS.getLocStart(), diag::ext_no_declarators)
2493 << DS.getSourceRange();
2494 emittedWarning = true;
2495 }
2496
2497 // We're going to complain about a bunch of spurious specifiers;
2498 // only do this if we're declaring a tag, because otherwise we
2499 // should be getting diag::ext_no_declarators.
2500 if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2501 return TagD;
2502
2503 // Note that a linkage-specification sets a storage class, but
2504 // 'extern "C" struct foo;' is actually valid and not theoretically
2505 // useless.
2506 if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2507 if (!DS.isExternInLinkageSpec())
2508 Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2509 << DeclSpec::getSpecifierName(scs);
2510
2511 if (DS.isThreadSpecified())
2512 Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2513 if (DS.getTypeQualifiers()) {
2514 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2515 Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2516 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2517 Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2518 // Restrict is covered above.
2519 }
2520 if (DS.isInlineSpecified())
2521 Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2522 if (DS.isVirtualSpecified())
2523 Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2524 if (DS.isExplicitSpecified())
2525 Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2526
2527 if (DS.isModulePrivateSpecified() &&
2528 Tag && Tag->getDeclContext()->isFunctionOrMethod())
2529 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2530 << Tag->getTagKind()
2531 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2532
2533 // Warn about ignored type attributes, for example:
2534 // __attribute__((aligned)) struct A;
2535 // Attributes should be placed after tag to apply to type declaration.
2536 if (!DS.getAttributes().empty()) {
2537 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2538 if (TypeSpecType == DeclSpec::TST_class ||
2539 TypeSpecType == DeclSpec::TST_struct ||
2540 TypeSpecType == DeclSpec::TST_union ||
2541 TypeSpecType == DeclSpec::TST_enum) {
2542 AttributeList* attrs = DS.getAttributes().getList();
2543 while (attrs) {
2544 Diag(attrs->getScopeLoc(),
2545 diag::warn_declspec_attribute_ignored)
2546 << attrs->getName()
2547 << (TypeSpecType == DeclSpec::TST_class ? 0 :
2548 TypeSpecType == DeclSpec::TST_struct ? 1 :
2549 TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2550 attrs = attrs->getNext();
2551 }
2552 }
2553 }
2554
2555 return TagD;
2556 }
2557
2558 /// We are trying to inject an anonymous member into the given scope;
2559 /// check if there's an existing declaration that can't be overloaded.
2560 ///
2561 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)2562 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2563 Scope *S,
2564 DeclContext *Owner,
2565 DeclarationName Name,
2566 SourceLocation NameLoc,
2567 unsigned diagnostic) {
2568 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2569 Sema::ForRedeclaration);
2570 if (!SemaRef.LookupName(R, S)) return false;
2571
2572 if (R.getAsSingle<TagDecl>())
2573 return false;
2574
2575 // Pick a representative declaration.
2576 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2577 assert(PrevDecl && "Expected a non-null Decl");
2578
2579 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2580 return false;
2581
2582 SemaRef.Diag(NameLoc, diagnostic) << Name;
2583 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2584
2585 return true;
2586 }
2587
2588 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
2589 /// anonymous struct or union AnonRecord into the owning context Owner
2590 /// and scope S. This routine will be invoked just after we realize
2591 /// that an unnamed union or struct is actually an anonymous union or
2592 /// struct, e.g.,
2593 ///
2594 /// @code
2595 /// union {
2596 /// int i;
2597 /// float f;
2598 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2599 /// // f into the surrounding scope.x
2600 /// @endcode
2601 ///
2602 /// This routine is recursive, injecting the names of nested anonymous
2603 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVector<NamedDecl *,2> & Chaining,bool MSAnonStruct)2604 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2605 DeclContext *Owner,
2606 RecordDecl *AnonRecord,
2607 AccessSpecifier AS,
2608 SmallVector<NamedDecl*, 2> &Chaining,
2609 bool MSAnonStruct) {
2610 unsigned diagKind
2611 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2612 : diag::err_anonymous_struct_member_redecl;
2613
2614 bool Invalid = false;
2615
2616 // Look every FieldDecl and IndirectFieldDecl with a name.
2617 for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2618 DEnd = AnonRecord->decls_end();
2619 D != DEnd; ++D) {
2620 if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2621 cast<NamedDecl>(*D)->getDeclName()) {
2622 ValueDecl *VD = cast<ValueDecl>(*D);
2623 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2624 VD->getLocation(), diagKind)) {
2625 // C++ [class.union]p2:
2626 // The names of the members of an anonymous union shall be
2627 // distinct from the names of any other entity in the
2628 // scope in which the anonymous union is declared.
2629 Invalid = true;
2630 } else {
2631 // C++ [class.union]p2:
2632 // For the purpose of name lookup, after the anonymous union
2633 // definition, the members of the anonymous union are
2634 // considered to have been defined in the scope in which the
2635 // anonymous union is declared.
2636 unsigned OldChainingSize = Chaining.size();
2637 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2638 for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2639 PE = IF->chain_end(); PI != PE; ++PI)
2640 Chaining.push_back(*PI);
2641 else
2642 Chaining.push_back(VD);
2643
2644 assert(Chaining.size() >= 2);
2645 NamedDecl **NamedChain =
2646 new (SemaRef.Context)NamedDecl*[Chaining.size()];
2647 for (unsigned i = 0; i < Chaining.size(); i++)
2648 NamedChain[i] = Chaining[i];
2649
2650 IndirectFieldDecl* IndirectField =
2651 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2652 VD->getIdentifier(), VD->getType(),
2653 NamedChain, Chaining.size());
2654
2655 IndirectField->setAccess(AS);
2656 IndirectField->setImplicit();
2657 SemaRef.PushOnScopeChains(IndirectField, S);
2658
2659 // That includes picking up the appropriate access specifier.
2660 if (AS != AS_none) IndirectField->setAccess(AS);
2661
2662 Chaining.resize(OldChainingSize);
2663 }
2664 }
2665 }
2666
2667 return Invalid;
2668 }
2669
2670 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2671 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
2672 /// illegal input values are mapped to SC_None.
2673 static StorageClass
StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec)2674 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2675 switch (StorageClassSpec) {
2676 case DeclSpec::SCS_unspecified: return SC_None;
2677 case DeclSpec::SCS_extern: return SC_Extern;
2678 case DeclSpec::SCS_static: return SC_Static;
2679 case DeclSpec::SCS_auto: return SC_Auto;
2680 case DeclSpec::SCS_register: return SC_Register;
2681 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2682 // Illegal SCSs map to None: error reporting is up to the caller.
2683 case DeclSpec::SCS_mutable: // Fall through.
2684 case DeclSpec::SCS_typedef: return SC_None;
2685 }
2686 llvm_unreachable("unknown storage class specifier");
2687 }
2688
2689 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2690 /// a StorageClass. Any error reporting is up to the caller:
2691 /// illegal input values are mapped to SC_None.
2692 static StorageClass
StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec)2693 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2694 switch (StorageClassSpec) {
2695 case DeclSpec::SCS_unspecified: return SC_None;
2696 case DeclSpec::SCS_extern: return SC_Extern;
2697 case DeclSpec::SCS_static: return SC_Static;
2698 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2699 // Illegal SCSs map to None: error reporting is up to the caller.
2700 case DeclSpec::SCS_auto: // Fall through.
2701 case DeclSpec::SCS_mutable: // Fall through.
2702 case DeclSpec::SCS_register: // Fall through.
2703 case DeclSpec::SCS_typedef: return SC_None;
2704 }
2705 llvm_unreachable("unknown storage class specifier");
2706 }
2707
2708 /// BuildAnonymousStructOrUnion - Handle the declaration of an
2709 /// anonymous structure or union. Anonymous unions are a C++ feature
2710 /// (C++ [class.union]) and a C11 feature; anonymous structures
2711 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record)2712 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2713 AccessSpecifier AS,
2714 RecordDecl *Record) {
2715 DeclContext *Owner = Record->getDeclContext();
2716
2717 // Diagnose whether this anonymous struct/union is an extension.
2718 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2719 Diag(Record->getLocation(), diag::ext_anonymous_union);
2720 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2721 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2722 else if (!Record->isUnion() && !getLangOpts().C11)
2723 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2724
2725 // C and C++ require different kinds of checks for anonymous
2726 // structs/unions.
2727 bool Invalid = false;
2728 if (getLangOpts().CPlusPlus) {
2729 const char* PrevSpec = 0;
2730 unsigned DiagID;
2731 if (Record->isUnion()) {
2732 // C++ [class.union]p6:
2733 // Anonymous unions declared in a named namespace or in the
2734 // global namespace shall be declared static.
2735 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2736 (isa<TranslationUnitDecl>(Owner) ||
2737 (isa<NamespaceDecl>(Owner) &&
2738 cast<NamespaceDecl>(Owner)->getDeclName()))) {
2739 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2740 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2741
2742 // Recover by adding 'static'.
2743 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2744 PrevSpec, DiagID);
2745 }
2746 // C++ [class.union]p6:
2747 // A storage class is not allowed in a declaration of an
2748 // anonymous union in a class scope.
2749 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2750 isa<RecordDecl>(Owner)) {
2751 Diag(DS.getStorageClassSpecLoc(),
2752 diag::err_anonymous_union_with_storage_spec)
2753 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2754
2755 // Recover by removing the storage specifier.
2756 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2757 SourceLocation(),
2758 PrevSpec, DiagID);
2759 }
2760 }
2761
2762 // Ignore const/volatile/restrict qualifiers.
2763 if (DS.getTypeQualifiers()) {
2764 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2765 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2766 << Record->isUnion() << 0
2767 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2768 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2769 Diag(DS.getVolatileSpecLoc(),
2770 diag::ext_anonymous_struct_union_qualified)
2771 << Record->isUnion() << 1
2772 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2773 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2774 Diag(DS.getRestrictSpecLoc(),
2775 diag::ext_anonymous_struct_union_qualified)
2776 << Record->isUnion() << 2
2777 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2778
2779 DS.ClearTypeQualifiers();
2780 }
2781
2782 // C++ [class.union]p2:
2783 // The member-specification of an anonymous union shall only
2784 // define non-static data members. [Note: nested types and
2785 // functions cannot be declared within an anonymous union. ]
2786 for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2787 MemEnd = Record->decls_end();
2788 Mem != MemEnd; ++Mem) {
2789 if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2790 // C++ [class.union]p3:
2791 // An anonymous union shall not have private or protected
2792 // members (clause 11).
2793 assert(FD->getAccess() != AS_none);
2794 if (FD->getAccess() != AS_public) {
2795 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2796 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2797 Invalid = true;
2798 }
2799
2800 // C++ [class.union]p1
2801 // An object of a class with a non-trivial constructor, a non-trivial
2802 // copy constructor, a non-trivial destructor, or a non-trivial copy
2803 // assignment operator cannot be a member of a union, nor can an
2804 // array of such objects.
2805 if (CheckNontrivialField(FD))
2806 Invalid = true;
2807 } else if ((*Mem)->isImplicit()) {
2808 // Any implicit members are fine.
2809 } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2810 // This is a type that showed up in an
2811 // elaborated-type-specifier inside the anonymous struct or
2812 // union, but which actually declares a type outside of the
2813 // anonymous struct or union. It's okay.
2814 } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2815 if (!MemRecord->isAnonymousStructOrUnion() &&
2816 MemRecord->getDeclName()) {
2817 // Visual C++ allows type definition in anonymous struct or union.
2818 if (getLangOpts().MicrosoftExt)
2819 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2820 << (int)Record->isUnion();
2821 else {
2822 // This is a nested type declaration.
2823 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2824 << (int)Record->isUnion();
2825 Invalid = true;
2826 }
2827 }
2828 } else if (isa<AccessSpecDecl>(*Mem)) {
2829 // Any access specifier is fine.
2830 } else {
2831 // We have something that isn't a non-static data
2832 // member. Complain about it.
2833 unsigned DK = diag::err_anonymous_record_bad_member;
2834 if (isa<TypeDecl>(*Mem))
2835 DK = diag::err_anonymous_record_with_type;
2836 else if (isa<FunctionDecl>(*Mem))
2837 DK = diag::err_anonymous_record_with_function;
2838 else if (isa<VarDecl>(*Mem))
2839 DK = diag::err_anonymous_record_with_static;
2840
2841 // Visual C++ allows type definition in anonymous struct or union.
2842 if (getLangOpts().MicrosoftExt &&
2843 DK == diag::err_anonymous_record_with_type)
2844 Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2845 << (int)Record->isUnion();
2846 else {
2847 Diag((*Mem)->getLocation(), DK)
2848 << (int)Record->isUnion();
2849 Invalid = true;
2850 }
2851 }
2852 }
2853 }
2854
2855 if (!Record->isUnion() && !Owner->isRecord()) {
2856 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2857 << (int)getLangOpts().CPlusPlus;
2858 Invalid = true;
2859 }
2860
2861 // Mock up a declarator.
2862 Declarator Dc(DS, Declarator::MemberContext);
2863 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2864 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2865
2866 // Create a declaration for this anonymous struct/union.
2867 NamedDecl *Anon = 0;
2868 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2869 Anon = FieldDecl::Create(Context, OwningClass,
2870 DS.getLocStart(),
2871 Record->getLocation(),
2872 /*IdentifierInfo=*/0,
2873 Context.getTypeDeclType(Record),
2874 TInfo,
2875 /*BitWidth=*/0, /*Mutable=*/false,
2876 /*HasInit=*/false);
2877 Anon->setAccess(AS);
2878 if (getLangOpts().CPlusPlus)
2879 FieldCollector->Add(cast<FieldDecl>(Anon));
2880 } else {
2881 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2882 assert(SCSpec != DeclSpec::SCS_typedef &&
2883 "Parser allowed 'typedef' as storage class VarDecl.");
2884 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2885 if (SCSpec == DeclSpec::SCS_mutable) {
2886 // mutable can only appear on non-static class members, so it's always
2887 // an error here
2888 Diag(Record->getLocation(), diag::err_mutable_nonmember);
2889 Invalid = true;
2890 SC = SC_None;
2891 }
2892 SCSpec = DS.getStorageClassSpecAsWritten();
2893 VarDecl::StorageClass SCAsWritten
2894 = StorageClassSpecToVarDeclStorageClass(SCSpec);
2895
2896 Anon = VarDecl::Create(Context, Owner,
2897 DS.getLocStart(),
2898 Record->getLocation(), /*IdentifierInfo=*/0,
2899 Context.getTypeDeclType(Record),
2900 TInfo, SC, SCAsWritten);
2901
2902 // Default-initialize the implicit variable. This initialization will be
2903 // trivial in almost all cases, except if a union member has an in-class
2904 // initializer:
2905 // union { int n = 0; };
2906 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2907 }
2908 Anon->setImplicit();
2909
2910 // Add the anonymous struct/union object to the current
2911 // context. We'll be referencing this object when we refer to one of
2912 // its members.
2913 Owner->addDecl(Anon);
2914
2915 // Inject the members of the anonymous struct/union into the owning
2916 // context and into the identifier resolver chain for name lookup
2917 // purposes.
2918 SmallVector<NamedDecl*, 2> Chain;
2919 Chain.push_back(Anon);
2920
2921 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2922 Chain, false))
2923 Invalid = true;
2924
2925 // Mark this as an anonymous struct/union type. Note that we do not
2926 // do this until after we have already checked and injected the
2927 // members of this anonymous struct/union type, because otherwise
2928 // the members could be injected twice: once by DeclContext when it
2929 // builds its lookup table, and once by
2930 // InjectAnonymousStructOrUnionMembers.
2931 Record->setAnonymousStructOrUnion(true);
2932
2933 if (Invalid)
2934 Anon->setInvalidDecl();
2935
2936 return Anon;
2937 }
2938
2939 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2940 /// Microsoft C anonymous structure.
2941 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2942 /// Example:
2943 ///
2944 /// struct A { int a; };
2945 /// struct B { struct A; int b; };
2946 ///
2947 /// void foo() {
2948 /// B var;
2949 /// var.a = 3;
2950 /// }
2951 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)2952 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2953 RecordDecl *Record) {
2954
2955 // If there is no Record, get the record via the typedef.
2956 if (!Record)
2957 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2958
2959 // Mock up a declarator.
2960 Declarator Dc(DS, Declarator::TypeNameContext);
2961 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2962 assert(TInfo && "couldn't build declarator info for anonymous struct");
2963
2964 // Create a declaration for this anonymous struct.
2965 NamedDecl* Anon = FieldDecl::Create(Context,
2966 cast<RecordDecl>(CurContext),
2967 DS.getLocStart(),
2968 DS.getLocStart(),
2969 /*IdentifierInfo=*/0,
2970 Context.getTypeDeclType(Record),
2971 TInfo,
2972 /*BitWidth=*/0, /*Mutable=*/false,
2973 /*HasInit=*/false);
2974 Anon->setImplicit();
2975
2976 // Add the anonymous struct object to the current context.
2977 CurContext->addDecl(Anon);
2978
2979 // Inject the members of the anonymous struct into the current
2980 // context and into the identifier resolver chain for name lookup
2981 // purposes.
2982 SmallVector<NamedDecl*, 2> Chain;
2983 Chain.push_back(Anon);
2984
2985 RecordDecl *RecordDef = Record->getDefinition();
2986 if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2987 RecordDef, AS_none,
2988 Chain, true))
2989 Anon->setInvalidDecl();
2990
2991 return Anon;
2992 }
2993
2994 /// GetNameForDeclarator - Determine the full declaration name for the
2995 /// given Declarator.
GetNameForDeclarator(Declarator & D)2996 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2997 return GetNameFromUnqualifiedId(D.getName());
2998 }
2999
3000 /// \brief Retrieves the declaration name from a parsed unqualified-id.
3001 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)3002 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3003 DeclarationNameInfo NameInfo;
3004 NameInfo.setLoc(Name.StartLocation);
3005
3006 switch (Name.getKind()) {
3007
3008 case UnqualifiedId::IK_ImplicitSelfParam:
3009 case UnqualifiedId::IK_Identifier:
3010 NameInfo.setName(Name.Identifier);
3011 NameInfo.setLoc(Name.StartLocation);
3012 return NameInfo;
3013
3014 case UnqualifiedId::IK_OperatorFunctionId:
3015 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3016 Name.OperatorFunctionId.Operator));
3017 NameInfo.setLoc(Name.StartLocation);
3018 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3019 = Name.OperatorFunctionId.SymbolLocations[0];
3020 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3021 = Name.EndLocation.getRawEncoding();
3022 return NameInfo;
3023
3024 case UnqualifiedId::IK_LiteralOperatorId:
3025 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3026 Name.Identifier));
3027 NameInfo.setLoc(Name.StartLocation);
3028 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3029 return NameInfo;
3030
3031 case UnqualifiedId::IK_ConversionFunctionId: {
3032 TypeSourceInfo *TInfo;
3033 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3034 if (Ty.isNull())
3035 return DeclarationNameInfo();
3036 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3037 Context.getCanonicalType(Ty)));
3038 NameInfo.setLoc(Name.StartLocation);
3039 NameInfo.setNamedTypeInfo(TInfo);
3040 return NameInfo;
3041 }
3042
3043 case UnqualifiedId::IK_ConstructorName: {
3044 TypeSourceInfo *TInfo;
3045 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3046 if (Ty.isNull())
3047 return DeclarationNameInfo();
3048 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3049 Context.getCanonicalType(Ty)));
3050 NameInfo.setLoc(Name.StartLocation);
3051 NameInfo.setNamedTypeInfo(TInfo);
3052 return NameInfo;
3053 }
3054
3055 case UnqualifiedId::IK_ConstructorTemplateId: {
3056 // In well-formed code, we can only have a constructor
3057 // template-id that refers to the current context, so go there
3058 // to find the actual type being constructed.
3059 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3060 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3061 return DeclarationNameInfo();
3062
3063 // Determine the type of the class being constructed.
3064 QualType CurClassType = Context.getTypeDeclType(CurClass);
3065
3066 // FIXME: Check two things: that the template-id names the same type as
3067 // CurClassType, and that the template-id does not occur when the name
3068 // was qualified.
3069
3070 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3071 Context.getCanonicalType(CurClassType)));
3072 NameInfo.setLoc(Name.StartLocation);
3073 // FIXME: should we retrieve TypeSourceInfo?
3074 NameInfo.setNamedTypeInfo(0);
3075 return NameInfo;
3076 }
3077
3078 case UnqualifiedId::IK_DestructorName: {
3079 TypeSourceInfo *TInfo;
3080 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3081 if (Ty.isNull())
3082 return DeclarationNameInfo();
3083 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3084 Context.getCanonicalType(Ty)));
3085 NameInfo.setLoc(Name.StartLocation);
3086 NameInfo.setNamedTypeInfo(TInfo);
3087 return NameInfo;
3088 }
3089
3090 case UnqualifiedId::IK_TemplateId: {
3091 TemplateName TName = Name.TemplateId->Template.get();
3092 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3093 return Context.getNameForTemplate(TName, TNameLoc);
3094 }
3095
3096 } // switch (Name.getKind())
3097
3098 llvm_unreachable("Unknown name kind");
3099 }
3100
getCoreType(QualType Ty)3101 static QualType getCoreType(QualType Ty) {
3102 do {
3103 if (Ty->isPointerType() || Ty->isReferenceType())
3104 Ty = Ty->getPointeeType();
3105 else if (Ty->isArrayType())
3106 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3107 else
3108 return Ty.withoutLocalFastQualifiers();
3109 } while (true);
3110 }
3111
3112 /// hasSimilarParameters - Determine whether the C++ functions Declaration
3113 /// and Definition have "nearly" matching parameters. This heuristic is
3114 /// used to improve diagnostics in the case where an out-of-line function
3115 /// definition doesn't match any declaration within the class or namespace.
3116 /// Also sets Params to the list of indices to the parameters that differ
3117 /// between the declaration and the definition. If hasSimilarParameters
3118 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,llvm::SmallVectorImpl<unsigned> & Params)3119 static bool hasSimilarParameters(ASTContext &Context,
3120 FunctionDecl *Declaration,
3121 FunctionDecl *Definition,
3122 llvm::SmallVectorImpl<unsigned> &Params) {
3123 Params.clear();
3124 if (Declaration->param_size() != Definition->param_size())
3125 return false;
3126 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3127 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3128 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3129
3130 // The parameter types are identical
3131 if (Context.hasSameType(DefParamTy, DeclParamTy))
3132 continue;
3133
3134 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3135 QualType DefParamBaseTy = getCoreType(DefParamTy);
3136 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3137 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3138
3139 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3140 (DeclTyName && DeclTyName == DefTyName))
3141 Params.push_back(Idx);
3142 else // The two parameters aren't even close
3143 return false;
3144 }
3145
3146 return true;
3147 }
3148
3149 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3150 /// declarator needs to be rebuilt in the current instantiation.
3151 /// Any bits of declarator which appear before the name are valid for
3152 /// consideration here. That's specifically the type in the decl spec
3153 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)3154 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3155 DeclarationName Name) {
3156 // The types we specifically need to rebuild are:
3157 // - typenames, typeofs, and decltypes
3158 // - types which will become injected class names
3159 // Of course, we also need to rebuild any type referencing such a
3160 // type. It's safest to just say "dependent", but we call out a
3161 // few cases here.
3162
3163 DeclSpec &DS = D.getMutableDeclSpec();
3164 switch (DS.getTypeSpecType()) {
3165 case DeclSpec::TST_typename:
3166 case DeclSpec::TST_typeofType:
3167 case DeclSpec::TST_decltype:
3168 case DeclSpec::TST_underlyingType:
3169 case DeclSpec::TST_atomic: {
3170 // Grab the type from the parser.
3171 TypeSourceInfo *TSI = 0;
3172 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3173 if (T.isNull() || !T->isDependentType()) break;
3174
3175 // Make sure there's a type source info. This isn't really much
3176 // of a waste; most dependent types should have type source info
3177 // attached already.
3178 if (!TSI)
3179 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3180
3181 // Rebuild the type in the current instantiation.
3182 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3183 if (!TSI) return true;
3184
3185 // Store the new type back in the decl spec.
3186 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3187 DS.UpdateTypeRep(LocType);
3188 break;
3189 }
3190
3191 case DeclSpec::TST_typeofExpr: {
3192 Expr *E = DS.getRepAsExpr();
3193 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3194 if (Result.isInvalid()) return true;
3195 DS.UpdateExprRep(Result.get());
3196 break;
3197 }
3198
3199 default:
3200 // Nothing to do for these decl specs.
3201 break;
3202 }
3203
3204 // It doesn't matter what order we do this in.
3205 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3206 DeclaratorChunk &Chunk = D.getTypeObject(I);
3207
3208 // The only type information in the declarator which can come
3209 // before the declaration name is the base type of a member
3210 // pointer.
3211 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3212 continue;
3213
3214 // Rebuild the scope specifier in-place.
3215 CXXScopeSpec &SS = Chunk.Mem.Scope();
3216 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3217 return true;
3218 }
3219
3220 return false;
3221 }
3222
ActOnDeclarator(Scope * S,Declarator & D)3223 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3224 D.setFunctionDefinitionKind(FDK_Declaration);
3225 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3226
3227 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3228 Dcl->getDeclContext()->isFileContext())
3229 Dcl->setTopLevelDeclInObjCContainer();
3230
3231 return Dcl;
3232 }
3233
3234 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3235 /// If T is the name of a class, then each of the following shall have a
3236 /// name different from T:
3237 /// - every static data member of class T;
3238 /// - every member function of class T
3239 /// - every member of class T that is itself a type;
3240 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)3241 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3242 DeclarationNameInfo NameInfo) {
3243 DeclarationName Name = NameInfo.getName();
3244
3245 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3246 if (Record->getIdentifier() && Record->getDeclName() == Name) {
3247 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3248 return true;
3249 }
3250
3251 return false;
3252 }
3253
3254 /// \brief Diagnose a declaration whose declarator-id has the given
3255 /// nested-name-specifier.
3256 ///
3257 /// \param SS The nested-name-specifier of the declarator-id.
3258 ///
3259 /// \param DC The declaration context to which the nested-name-specifier
3260 /// resolves.
3261 ///
3262 /// \param Name The name of the entity being declared.
3263 ///
3264 /// \param Loc The location of the name of the entity being declared.
3265 ///
3266 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)3267 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3268 DeclarationName Name,
3269 SourceLocation Loc) {
3270 DeclContext *Cur = CurContext;
3271 while (isa<LinkageSpecDecl>(Cur))
3272 Cur = Cur->getParent();
3273
3274 // C++ [dcl.meaning]p1:
3275 // A declarator-id shall not be qualified except for the definition
3276 // of a member function (9.3) or static data member (9.4) outside of
3277 // its class, the definition or explicit instantiation of a function
3278 // or variable member of a namespace outside of its namespace, or the
3279 // definition of an explicit specialization outside of its namespace,
3280 // or the declaration of a friend function that is a member of
3281 // another class or namespace (11.3). [...]
3282
3283 // The user provided a superfluous scope specifier that refers back to the
3284 // class or namespaces in which the entity is already declared.
3285 //
3286 // class X {
3287 // void X::f();
3288 // };
3289 if (Cur->Equals(DC)) {
3290 Diag(Loc, diag::warn_member_extra_qualification)
3291 << Name << FixItHint::CreateRemoval(SS.getRange());
3292 SS.clear();
3293 return false;
3294 }
3295
3296 // Check whether the qualifying scope encloses the scope of the original
3297 // declaration.
3298 if (!Cur->Encloses(DC)) {
3299 if (Cur->isRecord())
3300 Diag(Loc, diag::err_member_qualification)
3301 << Name << SS.getRange();
3302 else if (isa<TranslationUnitDecl>(DC))
3303 Diag(Loc, diag::err_invalid_declarator_global_scope)
3304 << Name << SS.getRange();
3305 else if (isa<FunctionDecl>(Cur))
3306 Diag(Loc, diag::err_invalid_declarator_in_function)
3307 << Name << SS.getRange();
3308 else
3309 Diag(Loc, diag::err_invalid_declarator_scope)
3310 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3311
3312 return true;
3313 }
3314
3315 if (Cur->isRecord()) {
3316 // Cannot qualify members within a class.
3317 Diag(Loc, diag::err_member_qualification)
3318 << Name << SS.getRange();
3319 SS.clear();
3320
3321 // C++ constructors and destructors with incorrect scopes can break
3322 // our AST invariants by having the wrong underlying types. If
3323 // that's the case, then drop this declaration entirely.
3324 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3325 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3326 !Context.hasSameType(Name.getCXXNameType(),
3327 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3328 return true;
3329
3330 return false;
3331 }
3332
3333 // C++11 [dcl.meaning]p1:
3334 // [...] "The nested-name-specifier of the qualified declarator-id shall
3335 // not begin with a decltype-specifer"
3336 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3337 while (SpecLoc.getPrefix())
3338 SpecLoc = SpecLoc.getPrefix();
3339 if (dyn_cast_or_null<DecltypeType>(
3340 SpecLoc.getNestedNameSpecifier()->getAsType()))
3341 Diag(Loc, diag::err_decltype_in_declarator)
3342 << SpecLoc.getTypeLoc().getSourceRange();
3343
3344 return false;
3345 }
3346
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)3347 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3348 MultiTemplateParamsArg TemplateParamLists) {
3349 // TODO: consider using NameInfo for diagnostic.
3350 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3351 DeclarationName Name = NameInfo.getName();
3352
3353 // All of these full declarators require an identifier. If it doesn't have
3354 // one, the ParsedFreeStandingDeclSpec action should be used.
3355 if (!Name) {
3356 if (!D.isInvalidType()) // Reject this if we think it is valid.
3357 Diag(D.getDeclSpec().getLocStart(),
3358 diag::err_declarator_need_ident)
3359 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3360 return 0;
3361 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3362 return 0;
3363
3364 // The scope passed in may not be a decl scope. Zip up the scope tree until
3365 // we find one that is.
3366 while ((S->getFlags() & Scope::DeclScope) == 0 ||
3367 (S->getFlags() & Scope::TemplateParamScope) != 0)
3368 S = S->getParent();
3369
3370 DeclContext *DC = CurContext;
3371 if (D.getCXXScopeSpec().isInvalid())
3372 D.setInvalidType();
3373 else if (D.getCXXScopeSpec().isSet()) {
3374 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3375 UPPC_DeclarationQualifier))
3376 return 0;
3377
3378 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3379 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3380 if (!DC) {
3381 // If we could not compute the declaration context, it's because the
3382 // declaration context is dependent but does not refer to a class,
3383 // class template, or class template partial specialization. Complain
3384 // and return early, to avoid the coming semantic disaster.
3385 Diag(D.getIdentifierLoc(),
3386 diag::err_template_qualified_declarator_no_match)
3387 << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3388 << D.getCXXScopeSpec().getRange();
3389 return 0;
3390 }
3391 bool IsDependentContext = DC->isDependentContext();
3392
3393 if (!IsDependentContext &&
3394 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3395 return 0;
3396
3397 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3398 Diag(D.getIdentifierLoc(),
3399 diag::err_member_def_undefined_record)
3400 << Name << DC << D.getCXXScopeSpec().getRange();
3401 D.setInvalidType();
3402 } else if (!D.getDeclSpec().isFriendSpecified()) {
3403 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3404 Name, D.getIdentifierLoc())) {
3405 if (DC->isRecord())
3406 return 0;
3407
3408 D.setInvalidType();
3409 }
3410 }
3411
3412 // Check whether we need to rebuild the type of the given
3413 // declaration in the current instantiation.
3414 if (EnteringContext && IsDependentContext &&
3415 TemplateParamLists.size() != 0) {
3416 ContextRAII SavedContext(*this, DC);
3417 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3418 D.setInvalidType();
3419 }
3420 }
3421
3422 if (DiagnoseClassNameShadow(DC, NameInfo))
3423 // If this is a typedef, we'll end up spewing multiple diagnostics.
3424 // Just return early; it's safer.
3425 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3426 return 0;
3427
3428 NamedDecl *New;
3429
3430 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3431 QualType R = TInfo->getType();
3432
3433 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3434 UPPC_DeclarationType))
3435 D.setInvalidType();
3436
3437 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3438 ForRedeclaration);
3439
3440 // See if this is a redefinition of a variable in the same scope.
3441 if (!D.getCXXScopeSpec().isSet()) {
3442 bool IsLinkageLookup = false;
3443
3444 // If the declaration we're planning to build will be a function
3445 // or object with linkage, then look for another declaration with
3446 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3447 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3448 /* Do nothing*/;
3449 else if (R->isFunctionType()) {
3450 if (CurContext->isFunctionOrMethod() ||
3451 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3452 IsLinkageLookup = true;
3453 } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3454 IsLinkageLookup = true;
3455 else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3456 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3457 IsLinkageLookup = true;
3458
3459 if (IsLinkageLookup)
3460 Previous.clear(LookupRedeclarationWithLinkage);
3461
3462 LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3463 } else { // Something like "int foo::x;"
3464 LookupQualifiedName(Previous, DC);
3465
3466 // C++ [dcl.meaning]p1:
3467 // When the declarator-id is qualified, the declaration shall refer to a
3468 // previously declared member of the class or namespace to which the
3469 // qualifier refers (or, in the case of a namespace, of an element of the
3470 // inline namespace set of that namespace (7.3.1)) or to a specialization
3471 // thereof; [...]
3472 //
3473 // Note that we already checked the context above, and that we do not have
3474 // enough information to make sure that Previous contains the declaration
3475 // we want to match. For example, given:
3476 //
3477 // class X {
3478 // void f();
3479 // void f(float);
3480 // };
3481 //
3482 // void X::f(int) { } // ill-formed
3483 //
3484 // In this case, Previous will point to the overload set
3485 // containing the two f's declared in X, but neither of them
3486 // matches.
3487
3488 // C++ [dcl.meaning]p1:
3489 // [...] the member shall not merely have been introduced by a
3490 // using-declaration in the scope of the class or namespace nominated by
3491 // the nested-name-specifier of the declarator-id.
3492 RemoveUsingDecls(Previous);
3493 }
3494
3495 if (Previous.isSingleResult() &&
3496 Previous.getFoundDecl()->isTemplateParameter()) {
3497 // Maybe we will complain about the shadowed template parameter.
3498 if (!D.isInvalidType())
3499 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3500 Previous.getFoundDecl());
3501
3502 // Just pretend that we didn't see the previous declaration.
3503 Previous.clear();
3504 }
3505
3506 // In C++, the previous declaration we find might be a tag type
3507 // (class or enum). In this case, the new declaration will hide the
3508 // tag type. Note that this does does not apply if we're declaring a
3509 // typedef (C++ [dcl.typedef]p4).
3510 if (Previous.isSingleTagDecl() &&
3511 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3512 Previous.clear();
3513
3514 bool AddToScope = true;
3515 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3516 if (TemplateParamLists.size()) {
3517 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3518 return 0;
3519 }
3520
3521 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3522 } else if (R->isFunctionType()) {
3523 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3524 move(TemplateParamLists),
3525 AddToScope);
3526 } else {
3527 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3528 move(TemplateParamLists));
3529 }
3530
3531 if (New == 0)
3532 return 0;
3533
3534 // If this has an identifier and is not an invalid redeclaration or
3535 // function template specialization, add it to the scope stack.
3536 if (New->getDeclName() && AddToScope &&
3537 !(D.isRedeclaration() && New->isInvalidDecl()))
3538 PushOnScopeChains(New, S);
3539
3540 return New;
3541 }
3542
3543 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3544 /// types into constant array types in certain situations which would otherwise
3545 /// be errors (for GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)3546 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3547 ASTContext &Context,
3548 bool &SizeIsNegative,
3549 llvm::APSInt &Oversized) {
3550 // This method tries to turn a variable array into a constant
3551 // array even when the size isn't an ICE. This is necessary
3552 // for compatibility with code that depends on gcc's buggy
3553 // constant expression folding, like struct {char x[(int)(char*)2];}
3554 SizeIsNegative = false;
3555 Oversized = 0;
3556
3557 if (T->isDependentType())
3558 return QualType();
3559
3560 QualifierCollector Qs;
3561 const Type *Ty = Qs.strip(T);
3562
3563 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3564 QualType Pointee = PTy->getPointeeType();
3565 QualType FixedType =
3566 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3567 Oversized);
3568 if (FixedType.isNull()) return FixedType;
3569 FixedType = Context.getPointerType(FixedType);
3570 return Qs.apply(Context, FixedType);
3571 }
3572 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3573 QualType Inner = PTy->getInnerType();
3574 QualType FixedType =
3575 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3576 Oversized);
3577 if (FixedType.isNull()) return FixedType;
3578 FixedType = Context.getParenType(FixedType);
3579 return Qs.apply(Context, FixedType);
3580 }
3581
3582 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3583 if (!VLATy)
3584 return QualType();
3585 // FIXME: We should probably handle this case
3586 if (VLATy->getElementType()->isVariablyModifiedType())
3587 return QualType();
3588
3589 llvm::APSInt Res;
3590 if (!VLATy->getSizeExpr() ||
3591 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3592 return QualType();
3593
3594 // Check whether the array size is negative.
3595 if (Res.isSigned() && Res.isNegative()) {
3596 SizeIsNegative = true;
3597 return QualType();
3598 }
3599
3600 // Check whether the array is too large to be addressed.
3601 unsigned ActiveSizeBits
3602 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3603 Res);
3604 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3605 Oversized = Res;
3606 return QualType();
3607 }
3608
3609 return Context.getConstantArrayType(VLATy->getElementType(),
3610 Res, ArrayType::Normal, 0);
3611 }
3612
3613 /// \brief Register the given locally-scoped external C declaration so
3614 /// that it can be found later for redeclarations
3615 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,const LookupResult & Previous,Scope * S)3616 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3617 const LookupResult &Previous,
3618 Scope *S) {
3619 assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3620 "Decl is not a locally-scoped decl!");
3621 // Note that we have a locally-scoped external with this name.
3622 LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3623
3624 if (!Previous.isSingleResult())
3625 return;
3626
3627 NamedDecl *PrevDecl = Previous.getFoundDecl();
3628
3629 // If there was a previous declaration of this variable, it may be
3630 // in our identifier chain. Update the identifier chain with the new
3631 // declaration.
3632 if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3633 // The previous declaration was found on the identifer resolver
3634 // chain, so remove it from its scope.
3635
3636 if (S->isDeclScope(PrevDecl)) {
3637 // Special case for redeclarations in the SAME scope.
3638 // Because this declaration is going to be added to the identifier chain
3639 // later, we should temporarily take it OFF the chain.
3640 IdResolver.RemoveDecl(ND);
3641
3642 } else {
3643 // Find the scope for the original declaration.
3644 while (S && !S->isDeclScope(PrevDecl))
3645 S = S->getParent();
3646 }
3647
3648 if (S)
3649 S->RemoveDecl(PrevDecl);
3650 }
3651 }
3652
3653 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
findLocallyScopedExternalDecl(DeclarationName Name)3654 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3655 if (ExternalSource) {
3656 // Load locally-scoped external decls from the external source.
3657 SmallVector<NamedDecl *, 4> Decls;
3658 ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3659 for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3660 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3661 = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3662 if (Pos == LocallyScopedExternalDecls.end())
3663 LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3664 }
3665 }
3666
3667 return LocallyScopedExternalDecls.find(Name);
3668 }
3669
3670 /// \brief Diagnose function specifiers on a declaration of an identifier that
3671 /// does not identify a function.
DiagnoseFunctionSpecifiers(Declarator & D)3672 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3673 // FIXME: We should probably indicate the identifier in question to avoid
3674 // confusion for constructs like "inline int a(), b;"
3675 if (D.getDeclSpec().isInlineSpecified())
3676 Diag(D.getDeclSpec().getInlineSpecLoc(),
3677 diag::err_inline_non_function);
3678
3679 if (D.getDeclSpec().isVirtualSpecified())
3680 Diag(D.getDeclSpec().getVirtualSpecLoc(),
3681 diag::err_virtual_non_function);
3682
3683 if (D.getDeclSpec().isExplicitSpecified())
3684 Diag(D.getDeclSpec().getExplicitSpecLoc(),
3685 diag::err_explicit_non_function);
3686 }
3687
3688 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)3689 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3690 TypeSourceInfo *TInfo, LookupResult &Previous) {
3691 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3692 if (D.getCXXScopeSpec().isSet()) {
3693 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3694 << D.getCXXScopeSpec().getRange();
3695 D.setInvalidType();
3696 // Pretend we didn't see the scope specifier.
3697 DC = CurContext;
3698 Previous.clear();
3699 }
3700
3701 if (getLangOpts().CPlusPlus) {
3702 // Check that there are no default arguments (C++ only).
3703 CheckExtraCXXDefaultArguments(D);
3704 }
3705
3706 DiagnoseFunctionSpecifiers(D);
3707
3708 if (D.getDeclSpec().isThreadSpecified())
3709 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3710 if (D.getDeclSpec().isConstexprSpecified())
3711 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3712 << 1;
3713
3714 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3715 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3716 << D.getName().getSourceRange();
3717 return 0;
3718 }
3719
3720 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3721 if (!NewTD) return 0;
3722
3723 // Handle attributes prior to checking for duplicates in MergeVarDecl
3724 ProcessDeclAttributes(S, NewTD, D);
3725
3726 CheckTypedefForVariablyModifiedType(S, NewTD);
3727
3728 bool Redeclaration = D.isRedeclaration();
3729 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3730 D.setRedeclaration(Redeclaration);
3731 return ND;
3732 }
3733
3734 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)3735 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3736 // C99 6.7.7p2: If a typedef name specifies a variably modified type
3737 // then it shall have block scope.
3738 // Note that variably modified types must be fixed before merging the decl so
3739 // that redeclarations will match.
3740 QualType T = NewTD->getUnderlyingType();
3741 if (T->isVariablyModifiedType()) {
3742 getCurFunction()->setHasBranchProtectedScope();
3743
3744 if (S->getFnParent() == 0) {
3745 bool SizeIsNegative;
3746 llvm::APSInt Oversized;
3747 QualType FixedTy =
3748 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3749 Oversized);
3750 if (!FixedTy.isNull()) {
3751 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3752 NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3753 } else {
3754 if (SizeIsNegative)
3755 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3756 else if (T->isVariableArrayType())
3757 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3758 else if (Oversized.getBoolValue())
3759 Diag(NewTD->getLocation(), diag::err_array_too_large)
3760 << Oversized.toString(10);
3761 else
3762 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3763 NewTD->setInvalidDecl();
3764 }
3765 }
3766 }
3767 }
3768
3769
3770 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3771 /// declares a typedef-name, either using the 'typedef' type specifier or via
3772 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3773 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)3774 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3775 LookupResult &Previous, bool &Redeclaration) {
3776 // Merge the decl with the existing one if appropriate. If the decl is
3777 // in an outer scope, it isn't the same thing.
3778 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3779 /*ExplicitInstantiationOrSpecialization=*/false);
3780 if (!Previous.empty()) {
3781 Redeclaration = true;
3782 MergeTypedefNameDecl(NewTD, Previous);
3783 }
3784
3785 // If this is the C FILE type, notify the AST context.
3786 if (IdentifierInfo *II = NewTD->getIdentifier())
3787 if (!NewTD->isInvalidDecl() &&
3788 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3789 if (II->isStr("FILE"))
3790 Context.setFILEDecl(NewTD);
3791 else if (II->isStr("jmp_buf"))
3792 Context.setjmp_bufDecl(NewTD);
3793 else if (II->isStr("sigjmp_buf"))
3794 Context.setsigjmp_bufDecl(NewTD);
3795 else if (II->isStr("ucontext_t"))
3796 Context.setucontext_tDecl(NewTD);
3797 else if (II->isStr("__builtin_va_list"))
3798 Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3799 }
3800
3801 return NewTD;
3802 }
3803
3804 /// \brief Determines whether the given declaration is an out-of-scope
3805 /// previous declaration.
3806 ///
3807 /// This routine should be invoked when name lookup has found a
3808 /// previous declaration (PrevDecl) that is not in the scope where a
3809 /// new declaration by the same name is being introduced. If the new
3810 /// declaration occurs in a local scope, previous declarations with
3811 /// linkage may still be considered previous declarations (C99
3812 /// 6.2.2p4-5, C++ [basic.link]p6).
3813 ///
3814 /// \param PrevDecl the previous declaration found by name
3815 /// lookup
3816 ///
3817 /// \param DC the context in which the new declaration is being
3818 /// declared.
3819 ///
3820 /// \returns true if PrevDecl is an out-of-scope previous declaration
3821 /// for a new delcaration with the same name.
3822 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)3823 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3824 ASTContext &Context) {
3825 if (!PrevDecl)
3826 return false;
3827
3828 if (!PrevDecl->hasLinkage())
3829 return false;
3830
3831 if (Context.getLangOpts().CPlusPlus) {
3832 // C++ [basic.link]p6:
3833 // If there is a visible declaration of an entity with linkage
3834 // having the same name and type, ignoring entities declared
3835 // outside the innermost enclosing namespace scope, the block
3836 // scope declaration declares that same entity and receives the
3837 // linkage of the previous declaration.
3838 DeclContext *OuterContext = DC->getRedeclContext();
3839 if (!OuterContext->isFunctionOrMethod())
3840 // This rule only applies to block-scope declarations.
3841 return false;
3842
3843 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3844 if (PrevOuterContext->isRecord())
3845 // We found a member function: ignore it.
3846 return false;
3847
3848 // Find the innermost enclosing namespace for the new and
3849 // previous declarations.
3850 OuterContext = OuterContext->getEnclosingNamespaceContext();
3851 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3852
3853 // The previous declaration is in a different namespace, so it
3854 // isn't the same function.
3855 if (!OuterContext->Equals(PrevOuterContext))
3856 return false;
3857 }
3858
3859 return true;
3860 }
3861
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)3862 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3863 CXXScopeSpec &SS = D.getCXXScopeSpec();
3864 if (!SS.isSet()) return;
3865 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3866 }
3867
inferObjCARCLifetime(ValueDecl * decl)3868 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3869 QualType type = decl->getType();
3870 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3871 if (lifetime == Qualifiers::OCL_Autoreleasing) {
3872 // Various kinds of declaration aren't allowed to be __autoreleasing.
3873 unsigned kind = -1U;
3874 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3875 if (var->hasAttr<BlocksAttr>())
3876 kind = 0; // __block
3877 else if (!var->hasLocalStorage())
3878 kind = 1; // global
3879 } else if (isa<ObjCIvarDecl>(decl)) {
3880 kind = 3; // ivar
3881 } else if (isa<FieldDecl>(decl)) {
3882 kind = 2; // field
3883 }
3884
3885 if (kind != -1U) {
3886 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3887 << kind;
3888 }
3889 } else if (lifetime == Qualifiers::OCL_None) {
3890 // Try to infer lifetime.
3891 if (!type->isObjCLifetimeType())
3892 return false;
3893
3894 lifetime = type->getObjCARCImplicitLifetime();
3895 type = Context.getLifetimeQualifiedType(type, lifetime);
3896 decl->setType(type);
3897 }
3898
3899 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3900 // Thread-local variables cannot have lifetime.
3901 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3902 var->isThreadSpecified()) {
3903 Diag(var->getLocation(), diag::err_arc_thread_ownership)
3904 << var->getType();
3905 return true;
3906 }
3907 }
3908
3909 return false;
3910 }
3911
3912 NamedDecl*
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists)3913 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3914 TypeSourceInfo *TInfo, LookupResult &Previous,
3915 MultiTemplateParamsArg TemplateParamLists) {
3916 QualType R = TInfo->getType();
3917 DeclarationName Name = GetNameForDeclarator(D).getName();
3918
3919 // Check that there are no default arguments (C++ only).
3920 if (getLangOpts().CPlusPlus)
3921 CheckExtraCXXDefaultArguments(D);
3922
3923 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3924 assert(SCSpec != DeclSpec::SCS_typedef &&
3925 "Parser allowed 'typedef' as storage class VarDecl.");
3926 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3927 if (SCSpec == DeclSpec::SCS_mutable) {
3928 // mutable can only appear on non-static class members, so it's always
3929 // an error here
3930 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3931 D.setInvalidType();
3932 SC = SC_None;
3933 }
3934 SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3935 VarDecl::StorageClass SCAsWritten
3936 = StorageClassSpecToVarDeclStorageClass(SCSpec);
3937
3938 IdentifierInfo *II = Name.getAsIdentifierInfo();
3939 if (!II) {
3940 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3941 << Name;
3942 return 0;
3943 }
3944
3945 DiagnoseFunctionSpecifiers(D);
3946
3947 if (!DC->isRecord() && S->getFnParent() == 0) {
3948 // C99 6.9p2: The storage-class specifiers auto and register shall not
3949 // appear in the declaration specifiers in an external declaration.
3950 if (SC == SC_Auto || SC == SC_Register) {
3951
3952 // If this is a register variable with an asm label specified, then this
3953 // is a GNU extension.
3954 if (SC == SC_Register && D.getAsmLabel())
3955 Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3956 else
3957 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3958 D.setInvalidType();
3959 }
3960 }
3961
3962 if (getLangOpts().OpenCL) {
3963 // Set up the special work-group-local storage class for variables in the
3964 // OpenCL __local address space.
3965 if (R.getAddressSpace() == LangAS::opencl_local)
3966 SC = SC_OpenCLWorkGroupLocal;
3967 }
3968
3969 bool isExplicitSpecialization = false;
3970 VarDecl *NewVD;
3971 if (!getLangOpts().CPlusPlus) {
3972 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
3973 D.getIdentifierLoc(), II,
3974 R, TInfo, SC, SCAsWritten);
3975
3976 if (D.isInvalidType())
3977 NewVD->setInvalidDecl();
3978 } else {
3979 if (DC->isRecord() && !CurContext->isRecord()) {
3980 // This is an out-of-line definition of a static data member.
3981 if (SC == SC_Static) {
3982 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3983 diag::err_static_out_of_line)
3984 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3985 } else if (SC == SC_None)
3986 SC = SC_Static;
3987 }
3988 if (SC == SC_Static && CurContext->isRecord()) {
3989 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3990 if (RD->isLocalClass())
3991 Diag(D.getIdentifierLoc(),
3992 diag::err_static_data_member_not_allowed_in_local_class)
3993 << Name << RD->getDeclName();
3994
3995 // C++98 [class.union]p1: If a union contains a static data member,
3996 // the program is ill-formed. C++11 drops this restriction.
3997 if (RD->isUnion())
3998 Diag(D.getIdentifierLoc(),
3999 getLangOpts().CPlusPlus0x
4000 ? diag::warn_cxx98_compat_static_data_member_in_union
4001 : diag::ext_static_data_member_in_union) << Name;
4002 // We conservatively disallow static data members in anonymous structs.
4003 else if (!RD->getDeclName())
4004 Diag(D.getIdentifierLoc(),
4005 diag::err_static_data_member_not_allowed_in_anon_struct)
4006 << Name << RD->isUnion();
4007 }
4008 }
4009
4010 // Match up the template parameter lists with the scope specifier, then
4011 // determine whether we have a template or a template specialization.
4012 isExplicitSpecialization = false;
4013 bool Invalid = false;
4014 if (TemplateParameterList *TemplateParams
4015 = MatchTemplateParametersToScopeSpecifier(
4016 D.getDeclSpec().getLocStart(),
4017 D.getIdentifierLoc(),
4018 D.getCXXScopeSpec(),
4019 TemplateParamLists.get(),
4020 TemplateParamLists.size(),
4021 /*never a friend*/ false,
4022 isExplicitSpecialization,
4023 Invalid)) {
4024 if (TemplateParams->size() > 0) {
4025 // There is no such thing as a variable template.
4026 Diag(D.getIdentifierLoc(), diag::err_template_variable)
4027 << II
4028 << SourceRange(TemplateParams->getTemplateLoc(),
4029 TemplateParams->getRAngleLoc());
4030 return 0;
4031 } else {
4032 // There is an extraneous 'template<>' for this variable. Complain
4033 // about it, but allow the declaration of the variable.
4034 Diag(TemplateParams->getTemplateLoc(),
4035 diag::err_template_variable_noparams)
4036 << II
4037 << SourceRange(TemplateParams->getTemplateLoc(),
4038 TemplateParams->getRAngleLoc());
4039 }
4040 }
4041
4042 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4043 D.getIdentifierLoc(), II,
4044 R, TInfo, SC, SCAsWritten);
4045
4046 // If this decl has an auto type in need of deduction, make a note of the
4047 // Decl so we can diagnose uses of it in its own initializer.
4048 if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4049 R->getContainedAutoType())
4050 ParsingInitForAutoVars.insert(NewVD);
4051
4052 if (D.isInvalidType() || Invalid)
4053 NewVD->setInvalidDecl();
4054
4055 SetNestedNameSpecifier(NewVD, D);
4056
4057 if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4058 NewVD->setTemplateParameterListsInfo(Context,
4059 TemplateParamLists.size(),
4060 TemplateParamLists.release());
4061 }
4062
4063 if (D.getDeclSpec().isConstexprSpecified())
4064 NewVD->setConstexpr(true);
4065 }
4066
4067 // Set the lexical context. If the declarator has a C++ scope specifier, the
4068 // lexical context will be different from the semantic context.
4069 NewVD->setLexicalDeclContext(CurContext);
4070
4071 if (D.getDeclSpec().isThreadSpecified()) {
4072 if (NewVD->hasLocalStorage())
4073 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4074 else if (!Context.getTargetInfo().isTLSSupported())
4075 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4076 else
4077 NewVD->setThreadSpecified(true);
4078 }
4079
4080 if (D.getDeclSpec().isModulePrivateSpecified()) {
4081 if (isExplicitSpecialization)
4082 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4083 << 2
4084 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4085 else if (NewVD->hasLocalStorage())
4086 Diag(NewVD->getLocation(), diag::err_module_private_local)
4087 << 0 << NewVD->getDeclName()
4088 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4089 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4090 else
4091 NewVD->setModulePrivate();
4092 }
4093
4094 // Handle attributes prior to checking for duplicates in MergeVarDecl
4095 ProcessDeclAttributes(S, NewVD, D);
4096
4097 // In auto-retain/release, infer strong retension for variables of
4098 // retainable type.
4099 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4100 NewVD->setInvalidDecl();
4101
4102 // Handle GNU asm-label extension (encoded as an attribute).
4103 if (Expr *E = (Expr*)D.getAsmLabel()) {
4104 // The parser guarantees this is a string.
4105 StringLiteral *SE = cast<StringLiteral>(E);
4106 StringRef Label = SE->getString();
4107 if (S->getFnParent() != 0) {
4108 switch (SC) {
4109 case SC_None:
4110 case SC_Auto:
4111 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4112 break;
4113 case SC_Register:
4114 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4115 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4116 break;
4117 case SC_Static:
4118 case SC_Extern:
4119 case SC_PrivateExtern:
4120 case SC_OpenCLWorkGroupLocal:
4121 break;
4122 }
4123 }
4124
4125 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4126 Context, Label));
4127 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4128 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4129 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4130 if (I != ExtnameUndeclaredIdentifiers.end()) {
4131 NewVD->addAttr(I->second);
4132 ExtnameUndeclaredIdentifiers.erase(I);
4133 }
4134 }
4135
4136 // Diagnose shadowed variables before filtering for scope.
4137 if (!D.getCXXScopeSpec().isSet())
4138 CheckShadow(S, NewVD, Previous);
4139
4140 // Don't consider existing declarations that are in a different
4141 // scope and are out-of-semantic-context declarations (if the new
4142 // declaration has linkage).
4143 FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4144 isExplicitSpecialization);
4145
4146 if (!getLangOpts().CPlusPlus) {
4147 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4148 } else {
4149 // Merge the decl with the existing one if appropriate.
4150 if (!Previous.empty()) {
4151 if (Previous.isSingleResult() &&
4152 isa<FieldDecl>(Previous.getFoundDecl()) &&
4153 D.getCXXScopeSpec().isSet()) {
4154 // The user tried to define a non-static data member
4155 // out-of-line (C++ [dcl.meaning]p1).
4156 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4157 << D.getCXXScopeSpec().getRange();
4158 Previous.clear();
4159 NewVD->setInvalidDecl();
4160 }
4161 } else if (D.getCXXScopeSpec().isSet()) {
4162 // No previous declaration in the qualifying scope.
4163 Diag(D.getIdentifierLoc(), diag::err_no_member)
4164 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4165 << D.getCXXScopeSpec().getRange();
4166 NewVD->setInvalidDecl();
4167 }
4168
4169 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4170
4171 // This is an explicit specialization of a static data member. Check it.
4172 if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4173 CheckMemberSpecialization(NewVD, Previous))
4174 NewVD->setInvalidDecl();
4175 }
4176
4177 // attributes declared post-definition are currently ignored
4178 // FIXME: This should be handled in attribute merging, not
4179 // here.
4180 if (Previous.isSingleResult()) {
4181 VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4182 if (Def && (Def = Def->getDefinition()) &&
4183 Def != NewVD && D.hasAttributes()) {
4184 Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4185 Diag(Def->getLocation(), diag::note_previous_definition);
4186 }
4187 }
4188
4189 // If this is a locally-scoped extern C variable, update the map of
4190 // such variables.
4191 if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4192 !NewVD->isInvalidDecl())
4193 RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4194
4195 // If there's a #pragma GCC visibility in scope, and this isn't a class
4196 // member, set the visibility of this variable.
4197 if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4198 AddPushedVisibilityAttribute(NewVD);
4199
4200 MarkUnusedFileScopedDecl(NewVD);
4201
4202 return NewVD;
4203 }
4204
4205 /// \brief Diagnose variable or built-in function shadowing. Implements
4206 /// -Wshadow.
4207 ///
4208 /// This method is called whenever a VarDecl is added to a "useful"
4209 /// scope.
4210 ///
4211 /// \param S the scope in which the shadowing name is being declared
4212 /// \param R the lookup of the name
4213 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)4214 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4215 // Return if warning is ignored.
4216 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4217 DiagnosticsEngine::Ignored)
4218 return;
4219
4220 // Don't diagnose declarations at file scope.
4221 if (D->hasGlobalStorage())
4222 return;
4223
4224 DeclContext *NewDC = D->getDeclContext();
4225
4226 // Only diagnose if we're shadowing an unambiguous field or variable.
4227 if (R.getResultKind() != LookupResult::Found)
4228 return;
4229
4230 NamedDecl* ShadowedDecl = R.getFoundDecl();
4231 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4232 return;
4233
4234 // Fields are not shadowed by variables in C++ static methods.
4235 if (isa<FieldDecl>(ShadowedDecl))
4236 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4237 if (MD->isStatic())
4238 return;
4239
4240 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4241 if (shadowedVar->isExternC()) {
4242 // For shadowing external vars, make sure that we point to the global
4243 // declaration, not a locally scoped extern declaration.
4244 for (VarDecl::redecl_iterator
4245 I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4246 I != E; ++I)
4247 if (I->isFileVarDecl()) {
4248 ShadowedDecl = *I;
4249 break;
4250 }
4251 }
4252
4253 DeclContext *OldDC = ShadowedDecl->getDeclContext();
4254
4255 // Only warn about certain kinds of shadowing for class members.
4256 if (NewDC && NewDC->isRecord()) {
4257 // In particular, don't warn about shadowing non-class members.
4258 if (!OldDC->isRecord())
4259 return;
4260
4261 // TODO: should we warn about static data members shadowing
4262 // static data members from base classes?
4263
4264 // TODO: don't diagnose for inaccessible shadowed members.
4265 // This is hard to do perfectly because we might friend the
4266 // shadowing context, but that's just a false negative.
4267 }
4268
4269 // Determine what kind of declaration we're shadowing.
4270 unsigned Kind;
4271 if (isa<RecordDecl>(OldDC)) {
4272 if (isa<FieldDecl>(ShadowedDecl))
4273 Kind = 3; // field
4274 else
4275 Kind = 2; // static data member
4276 } else if (OldDC->isFileContext())
4277 Kind = 1; // global
4278 else
4279 Kind = 0; // local
4280
4281 DeclarationName Name = R.getLookupName();
4282
4283 // Emit warning and note.
4284 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4285 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4286 }
4287
4288 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)4289 void Sema::CheckShadow(Scope *S, VarDecl *D) {
4290 if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4291 DiagnosticsEngine::Ignored)
4292 return;
4293
4294 LookupResult R(*this, D->getDeclName(), D->getLocation(),
4295 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4296 LookupName(R, S);
4297 CheckShadow(S, D, R);
4298 }
4299
4300 /// \brief Perform semantic checking on a newly-created variable
4301 /// declaration.
4302 ///
4303 /// This routine performs all of the type-checking required for a
4304 /// variable declaration once it has been built. It is used both to
4305 /// check variables after they have been parsed and their declarators
4306 /// have been translated into a declaration, and to check variables
4307 /// that have been instantiated from a template.
4308 ///
4309 /// Sets NewVD->isInvalidDecl() if an error was encountered.
4310 ///
4311 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)4312 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4313 LookupResult &Previous) {
4314 // If the decl is already known invalid, don't check it.
4315 if (NewVD->isInvalidDecl())
4316 return false;
4317
4318 QualType T = NewVD->getType();
4319
4320 if (T->isObjCObjectType()) {
4321 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4322 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4323 T = Context.getObjCObjectPointerType(T);
4324 NewVD->setType(T);
4325 }
4326
4327 // Emit an error if an address space was applied to decl with local storage.
4328 // This includes arrays of objects with address space qualifiers, but not
4329 // automatic variables that point to other address spaces.
4330 // ISO/IEC TR 18037 S5.1.2
4331 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4332 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4333 NewVD->setInvalidDecl();
4334 return false;
4335 }
4336
4337 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4338 && !NewVD->hasAttr<BlocksAttr>()) {
4339 if (getLangOpts().getGC() != LangOptions::NonGC)
4340 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4341 else
4342 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4343 }
4344
4345 bool isVM = T->isVariablyModifiedType();
4346 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4347 NewVD->hasAttr<BlocksAttr>())
4348 getCurFunction()->setHasBranchProtectedScope();
4349
4350 if ((isVM && NewVD->hasLinkage()) ||
4351 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4352 bool SizeIsNegative;
4353 llvm::APSInt Oversized;
4354 QualType FixedTy =
4355 TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4356 Oversized);
4357
4358 if (FixedTy.isNull() && T->isVariableArrayType()) {
4359 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4360 // FIXME: This won't give the correct result for
4361 // int a[10][n];
4362 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4363
4364 if (NewVD->isFileVarDecl())
4365 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4366 << SizeRange;
4367 else if (NewVD->getStorageClass() == SC_Static)
4368 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4369 << SizeRange;
4370 else
4371 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4372 << SizeRange;
4373 NewVD->setInvalidDecl();
4374 return false;
4375 }
4376
4377 if (FixedTy.isNull()) {
4378 if (NewVD->isFileVarDecl())
4379 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4380 else
4381 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4382 NewVD->setInvalidDecl();
4383 return false;
4384 }
4385
4386 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4387 NewVD->setType(FixedTy);
4388 }
4389
4390 if (Previous.empty() && NewVD->isExternC()) {
4391 // Since we did not find anything by this name and we're declaring
4392 // an extern "C" variable, look for a non-visible extern "C"
4393 // declaration with the same name.
4394 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4395 = findLocallyScopedExternalDecl(NewVD->getDeclName());
4396 if (Pos != LocallyScopedExternalDecls.end())
4397 Previous.addDecl(Pos->second);
4398 }
4399
4400 if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4401 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4402 << T;
4403 NewVD->setInvalidDecl();
4404 return false;
4405 }
4406
4407 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4408 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4409 NewVD->setInvalidDecl();
4410 return false;
4411 }
4412
4413 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4414 Diag(NewVD->getLocation(), diag::err_block_on_vm);
4415 NewVD->setInvalidDecl();
4416 return false;
4417 }
4418
4419 if (NewVD->isConstexpr() && !T->isDependentType() &&
4420 RequireLiteralType(NewVD->getLocation(), T,
4421 PDiag(diag::err_constexpr_var_non_literal))) {
4422 NewVD->setInvalidDecl();
4423 return false;
4424 }
4425
4426 if (!Previous.empty()) {
4427 MergeVarDecl(NewVD, Previous);
4428 return true;
4429 }
4430 return false;
4431 }
4432
4433 /// \brief Data used with FindOverriddenMethod
4434 struct FindOverriddenMethodData {
4435 Sema *S;
4436 CXXMethodDecl *Method;
4437 };
4438
4439 /// \brief Member lookup function that determines whether a given C++
4440 /// method overrides a method in a base class, to be used with
4441 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)4442 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4443 CXXBasePath &Path,
4444 void *UserData) {
4445 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4446
4447 FindOverriddenMethodData *Data
4448 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4449
4450 DeclarationName Name = Data->Method->getDeclName();
4451
4452 // FIXME: Do we care about other names here too?
4453 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4454 // We really want to find the base class destructor here.
4455 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4456 CanQualType CT = Data->S->Context.getCanonicalType(T);
4457
4458 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4459 }
4460
4461 for (Path.Decls = BaseRecord->lookup(Name);
4462 Path.Decls.first != Path.Decls.second;
4463 ++Path.Decls.first) {
4464 NamedDecl *D = *Path.Decls.first;
4465 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4466 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4467 return true;
4468 }
4469 }
4470
4471 return false;
4472 }
4473
hasDelayedExceptionSpec(CXXMethodDecl * Method)4474 static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
4475 const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
4476 return Proto && Proto->getExceptionSpecType() == EST_Delayed;
4477 }
4478
4479 /// AddOverriddenMethods - See if a method overrides any in the base classes,
4480 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)4481 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4482 // Look for virtual methods in base classes that this method might override.
4483 CXXBasePaths Paths;
4484 FindOverriddenMethodData Data;
4485 Data.Method = MD;
4486 Data.S = this;
4487 bool AddedAny = false;
4488 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4489 for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4490 E = Paths.found_decls_end(); I != E; ++I) {
4491 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4492 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4493 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4494 (hasDelayedExceptionSpec(MD) ||
4495 !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
4496 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4497 AddedAny = true;
4498 }
4499 }
4500 }
4501 }
4502
4503 return AddedAny;
4504 }
4505
4506 namespace {
4507 // Struct for holding all of the extra arguments needed by
4508 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4509 struct ActOnFDArgs {
4510 Scope *S;
4511 Declarator &D;
4512 MultiTemplateParamsArg TemplateParamLists;
4513 bool AddToScope;
4514 };
4515 }
4516
4517 namespace {
4518
4519 // Callback to only accept typo corrections that have a non-zero edit distance.
4520 // Also only accept corrections that have the same parent decl.
4521 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4522 public:
DifferentNameValidatorCCC(CXXRecordDecl * Parent)4523 DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4524 : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4525
ValidateCandidate(const TypoCorrection & candidate)4526 virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4527 if (candidate.getEditDistance() == 0)
4528 return false;
4529
4530 if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4531 CXXRecordDecl *Parent = MD->getParent();
4532 return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4533 }
4534
4535 return !ExpectedParent;
4536 }
4537
4538 private:
4539 CXXRecordDecl *ExpectedParent;
4540 };
4541
4542 }
4543
4544 /// \brief Generate diagnostics for an invalid function redeclaration.
4545 ///
4546 /// This routine handles generating the diagnostic messages for an invalid
4547 /// function redeclaration, including finding possible similar declarations
4548 /// or performing typo correction if there are no previous declarations with
4549 /// the same name.
4550 ///
4551 /// Returns a NamedDecl iff typo correction was performed and substituting in
4552 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs)4553 static NamedDecl* DiagnoseInvalidRedeclaration(
4554 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4555 ActOnFDArgs &ExtraArgs) {
4556 NamedDecl *Result = NULL;
4557 DeclarationName Name = NewFD->getDeclName();
4558 DeclContext *NewDC = NewFD->getDeclContext();
4559 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4560 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4561 llvm::SmallVector<unsigned, 1> MismatchedParams;
4562 llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4563 TypoCorrection Correction;
4564 bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4565 ExtraArgs.D.getDeclSpec().isFriendSpecified());
4566 unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4567 : diag::err_member_def_does_not_match;
4568
4569 NewFD->setInvalidDecl();
4570 SemaRef.LookupQualifiedName(Prev, NewDC);
4571 assert(!Prev.isAmbiguous() &&
4572 "Cannot have an ambiguity in previous-declaration lookup");
4573 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4574 DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4575 if (!Prev.empty()) {
4576 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4577 Func != FuncEnd; ++Func) {
4578 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4579 if (FD &&
4580 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4581 // Add 1 to the index so that 0 can mean the mismatch didn't
4582 // involve a parameter
4583 unsigned ParamNum =
4584 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4585 NearMatches.push_back(std::make_pair(FD, ParamNum));
4586 }
4587 }
4588 // If the qualified name lookup yielded nothing, try typo correction
4589 } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4590 Prev.getLookupKind(), 0, 0,
4591 Validator, NewDC))) {
4592 // Trap errors.
4593 Sema::SFINAETrap Trap(SemaRef);
4594
4595 // Set up everything for the call to ActOnFunctionDeclarator
4596 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4597 ExtraArgs.D.getIdentifierLoc());
4598 Previous.clear();
4599 Previous.setLookupName(Correction.getCorrection());
4600 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4601 CDeclEnd = Correction.end();
4602 CDecl != CDeclEnd; ++CDecl) {
4603 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4604 if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4605 MismatchedParams)) {
4606 Previous.addDecl(FD);
4607 }
4608 }
4609 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4610 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4611 // pieces need to verify the typo-corrected C++ declaraction and hopefully
4612 // eliminate the need for the parameter pack ExtraArgs.
4613 Result = SemaRef.ActOnFunctionDeclarator(
4614 ExtraArgs.S, ExtraArgs.D,
4615 Correction.getCorrectionDecl()->getDeclContext(),
4616 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4617 ExtraArgs.AddToScope);
4618 if (Trap.hasErrorOccurred()) {
4619 // Pretend the typo correction never occurred
4620 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4621 ExtraArgs.D.getIdentifierLoc());
4622 ExtraArgs.D.setRedeclaration(wasRedeclaration);
4623 Previous.clear();
4624 Previous.setLookupName(Name);
4625 Result = NULL;
4626 } else {
4627 for (LookupResult::iterator Func = Previous.begin(),
4628 FuncEnd = Previous.end();
4629 Func != FuncEnd; ++Func) {
4630 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4631 NearMatches.push_back(std::make_pair(FD, 0));
4632 }
4633 }
4634 if (NearMatches.empty()) {
4635 // Ignore the correction if it didn't yield any close FunctionDecl matches
4636 Correction = TypoCorrection();
4637 } else {
4638 DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4639 : diag::err_member_def_does_not_match_suggest;
4640 }
4641 }
4642
4643 if (Correction)
4644 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4645 << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4646 << FixItHint::CreateReplacement(
4647 NewFD->getLocation(),
4648 Correction.getAsString(SemaRef.getLangOpts()));
4649 else
4650 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4651 << Name << NewDC << NewFD->getLocation();
4652
4653 bool NewFDisConst = false;
4654 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4655 NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4656
4657 for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4658 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4659 NearMatch != NearMatchEnd; ++NearMatch) {
4660 FunctionDecl *FD = NearMatch->first;
4661 bool FDisConst = false;
4662 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4663 FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4664
4665 if (unsigned Idx = NearMatch->second) {
4666 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4667 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4668 if (Loc.isInvalid()) Loc = FD->getLocation();
4669 SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4670 << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4671 } else if (Correction) {
4672 SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4673 << Correction.getQuoted(SemaRef.getLangOpts());
4674 } else if (FDisConst != NewFDisConst) {
4675 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4676 << NewFDisConst << FD->getSourceRange().getEnd();
4677 } else
4678 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4679 }
4680 return Result;
4681 }
4682
getFunctionStorageClass(Sema & SemaRef,Declarator & D)4683 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4684 Declarator &D) {
4685 switch (D.getDeclSpec().getStorageClassSpec()) {
4686 default: llvm_unreachable("Unknown storage class!");
4687 case DeclSpec::SCS_auto:
4688 case DeclSpec::SCS_register:
4689 case DeclSpec::SCS_mutable:
4690 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4691 diag::err_typecheck_sclass_func);
4692 D.setInvalidType();
4693 break;
4694 case DeclSpec::SCS_unspecified: break;
4695 case DeclSpec::SCS_extern: return SC_Extern;
4696 case DeclSpec::SCS_static: {
4697 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4698 // C99 6.7.1p5:
4699 // The declaration of an identifier for a function that has
4700 // block scope shall have no explicit storage-class specifier
4701 // other than extern
4702 // See also (C++ [dcl.stc]p4).
4703 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4704 diag::err_static_block_func);
4705 break;
4706 } else
4707 return SC_Static;
4708 }
4709 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4710 }
4711
4712 // No explicit storage class has already been returned
4713 return SC_None;
4714 }
4715
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)4716 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4717 DeclContext *DC, QualType &R,
4718 TypeSourceInfo *TInfo,
4719 FunctionDecl::StorageClass SC,
4720 bool &IsVirtualOkay) {
4721 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4722 DeclarationName Name = NameInfo.getName();
4723
4724 FunctionDecl *NewFD = 0;
4725 bool isInline = D.getDeclSpec().isInlineSpecified();
4726 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4727 FunctionDecl::StorageClass SCAsWritten
4728 = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4729
4730 if (!SemaRef.getLangOpts().CPlusPlus) {
4731 // Determine whether the function was written with a
4732 // prototype. This true when:
4733 // - there is a prototype in the declarator, or
4734 // - the type R of the function is some kind of typedef or other reference
4735 // to a type name (which eventually refers to a function type).
4736 bool HasPrototype =
4737 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4738 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4739
4740 NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4741 D.getLocStart(), NameInfo, R,
4742 TInfo, SC, SCAsWritten, isInline,
4743 HasPrototype);
4744 if (D.isInvalidType())
4745 NewFD->setInvalidDecl();
4746
4747 // Set the lexical context.
4748 NewFD->setLexicalDeclContext(SemaRef.CurContext);
4749
4750 return NewFD;
4751 }
4752
4753 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4754 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4755
4756 // Check that the return type is not an abstract class type.
4757 // For record types, this is done by the AbstractClassUsageDiagnoser once
4758 // the class has been completely parsed.
4759 if (!DC->isRecord() &&
4760 SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4761 R->getAs<FunctionType>()->getResultType(),
4762 diag::err_abstract_type_in_decl,
4763 SemaRef.AbstractReturnType))
4764 D.setInvalidType();
4765
4766 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4767 // This is a C++ constructor declaration.
4768 assert(DC->isRecord() &&
4769 "Constructors can only be declared in a member context");
4770
4771 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4772 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4773 D.getLocStart(), NameInfo,
4774 R, TInfo, isExplicit, isInline,
4775 /*isImplicitlyDeclared=*/false,
4776 isConstexpr);
4777
4778 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4779 // This is a C++ destructor declaration.
4780 if (DC->isRecord()) {
4781 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4782 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4783 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4784 SemaRef.Context, Record,
4785 D.getLocStart(),
4786 NameInfo, R, TInfo, isInline,
4787 /*isImplicitlyDeclared=*/false);
4788
4789 // If the class is complete, then we now create the implicit exception
4790 // specification. If the class is incomplete or dependent, we can't do
4791 // it yet.
4792 if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4793 Record->getDefinition() && !Record->isBeingDefined() &&
4794 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4795 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4796 }
4797
4798 IsVirtualOkay = true;
4799 return NewDD;
4800
4801 } else {
4802 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4803 D.setInvalidType();
4804
4805 // Create a FunctionDecl to satisfy the function definition parsing
4806 // code path.
4807 return FunctionDecl::Create(SemaRef.Context, DC,
4808 D.getLocStart(),
4809 D.getIdentifierLoc(), Name, R, TInfo,
4810 SC, SCAsWritten, isInline,
4811 /*hasPrototype=*/true, isConstexpr);
4812 }
4813
4814 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4815 if (!DC->isRecord()) {
4816 SemaRef.Diag(D.getIdentifierLoc(),
4817 diag::err_conv_function_not_member);
4818 return 0;
4819 }
4820
4821 SemaRef.CheckConversionDeclarator(D, R, SC);
4822 IsVirtualOkay = true;
4823 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4824 D.getLocStart(), NameInfo,
4825 R, TInfo, isInline, isExplicit,
4826 isConstexpr, SourceLocation());
4827
4828 } else if (DC->isRecord()) {
4829 // If the name of the function is the same as the name of the record,
4830 // then this must be an invalid constructor that has a return type.
4831 // (The parser checks for a return type and makes the declarator a
4832 // constructor if it has no return type).
4833 if (Name.getAsIdentifierInfo() &&
4834 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4835 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4836 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4837 << SourceRange(D.getIdentifierLoc());
4838 return 0;
4839 }
4840
4841 bool isStatic = SC == SC_Static;
4842
4843 // [class.free]p1:
4844 // Any allocation function for a class T is a static member
4845 // (even if not explicitly declared static).
4846 if (Name.getCXXOverloadedOperator() == OO_New ||
4847 Name.getCXXOverloadedOperator() == OO_Array_New)
4848 isStatic = true;
4849
4850 // [class.free]p6 Any deallocation function for a class X is a static member
4851 // (even if not explicitly declared static).
4852 if (Name.getCXXOverloadedOperator() == OO_Delete ||
4853 Name.getCXXOverloadedOperator() == OO_Array_Delete)
4854 isStatic = true;
4855
4856 IsVirtualOkay = !isStatic;
4857
4858 // This is a C++ method declaration.
4859 return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4860 D.getLocStart(), NameInfo, R,
4861 TInfo, isStatic, SCAsWritten, isInline,
4862 isConstexpr, SourceLocation());
4863
4864 } else {
4865 // Determine whether the function was written with a
4866 // prototype. This true when:
4867 // - we're in C++ (where every function has a prototype),
4868 return FunctionDecl::Create(SemaRef.Context, DC,
4869 D.getLocStart(),
4870 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4871 true/*HasPrototype*/, isConstexpr);
4872 }
4873 }
4874
4875 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)4876 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4877 TypeSourceInfo *TInfo, LookupResult &Previous,
4878 MultiTemplateParamsArg TemplateParamLists,
4879 bool &AddToScope) {
4880 QualType R = TInfo->getType();
4881
4882 assert(R.getTypePtr()->isFunctionType());
4883
4884 // TODO: consider using NameInfo for diagnostic.
4885 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4886 DeclarationName Name = NameInfo.getName();
4887 FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4888
4889 if (D.getDeclSpec().isThreadSpecified())
4890 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4891
4892 // Do not allow returning a objc interface by-value.
4893 if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4894 Diag(D.getIdentifierLoc(),
4895 diag::err_object_cannot_be_passed_returned_by_value) << 0
4896 << R->getAs<FunctionType>()->getResultType()
4897 << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4898
4899 QualType T = R->getAs<FunctionType>()->getResultType();
4900 T = Context.getObjCObjectPointerType(T);
4901 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4902 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4903 R = Context.getFunctionType(T, FPT->arg_type_begin(),
4904 FPT->getNumArgs(), EPI);
4905 }
4906 else if (isa<FunctionNoProtoType>(R))
4907 R = Context.getFunctionNoProtoType(T);
4908 }
4909
4910 bool isFriend = false;
4911 FunctionTemplateDecl *FunctionTemplate = 0;
4912 bool isExplicitSpecialization = false;
4913 bool isFunctionTemplateSpecialization = false;
4914 bool isDependentClassScopeExplicitSpecialization = false;
4915 bool isVirtualOkay = false;
4916
4917 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4918 isVirtualOkay);
4919 if (!NewFD) return 0;
4920
4921 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4922 NewFD->setTopLevelDeclInObjCContainer();
4923
4924 if (getLangOpts().CPlusPlus) {
4925 bool isInline = D.getDeclSpec().isInlineSpecified();
4926 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4927 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4928 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4929 isFriend = D.getDeclSpec().isFriendSpecified();
4930 if (isFriend && !isInline && D.isFunctionDefinition()) {
4931 // C++ [class.friend]p5
4932 // A function can be defined in a friend declaration of a
4933 // class . . . . Such a function is implicitly inline.
4934 NewFD->setImplicitlyInline();
4935 }
4936
4937 SetNestedNameSpecifier(NewFD, D);
4938 isExplicitSpecialization = false;
4939 isFunctionTemplateSpecialization = false;
4940 if (D.isInvalidType())
4941 NewFD->setInvalidDecl();
4942
4943 // Set the lexical context. If the declarator has a C++
4944 // scope specifier, or is the object of a friend declaration, the
4945 // lexical context will be different from the semantic context.
4946 NewFD->setLexicalDeclContext(CurContext);
4947
4948 // Match up the template parameter lists with the scope specifier, then
4949 // determine whether we have a template or a template specialization.
4950 bool Invalid = false;
4951 if (TemplateParameterList *TemplateParams
4952 = MatchTemplateParametersToScopeSpecifier(
4953 D.getDeclSpec().getLocStart(),
4954 D.getIdentifierLoc(),
4955 D.getCXXScopeSpec(),
4956 TemplateParamLists.get(),
4957 TemplateParamLists.size(),
4958 isFriend,
4959 isExplicitSpecialization,
4960 Invalid)) {
4961 if (TemplateParams->size() > 0) {
4962 // This is a function template
4963
4964 // Check that we can declare a template here.
4965 if (CheckTemplateDeclScope(S, TemplateParams))
4966 return 0;
4967
4968 // A destructor cannot be a template.
4969 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4970 Diag(NewFD->getLocation(), diag::err_destructor_template);
4971 return 0;
4972 }
4973
4974 // If we're adding a template to a dependent context, we may need to
4975 // rebuilding some of the types used within the template parameter list,
4976 // now that we know what the current instantiation is.
4977 if (DC->isDependentContext()) {
4978 ContextRAII SavedContext(*this, DC);
4979 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4980 Invalid = true;
4981 }
4982
4983
4984 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4985 NewFD->getLocation(),
4986 Name, TemplateParams,
4987 NewFD);
4988 FunctionTemplate->setLexicalDeclContext(CurContext);
4989 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4990
4991 // For source fidelity, store the other template param lists.
4992 if (TemplateParamLists.size() > 1) {
4993 NewFD->setTemplateParameterListsInfo(Context,
4994 TemplateParamLists.size() - 1,
4995 TemplateParamLists.release());
4996 }
4997 } else {
4998 // This is a function template specialization.
4999 isFunctionTemplateSpecialization = true;
5000 // For source fidelity, store all the template param lists.
5001 NewFD->setTemplateParameterListsInfo(Context,
5002 TemplateParamLists.size(),
5003 TemplateParamLists.release());
5004
5005 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5006 if (isFriend) {
5007 // We want to remove the "template<>", found here.
5008 SourceRange RemoveRange = TemplateParams->getSourceRange();
5009
5010 // If we remove the template<> and the name is not a
5011 // template-id, we're actually silently creating a problem:
5012 // the friend declaration will refer to an untemplated decl,
5013 // and clearly the user wants a template specialization. So
5014 // we need to insert '<>' after the name.
5015 SourceLocation InsertLoc;
5016 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5017 InsertLoc = D.getName().getSourceRange().getEnd();
5018 InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5019 }
5020
5021 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5022 << Name << RemoveRange
5023 << FixItHint::CreateRemoval(RemoveRange)
5024 << FixItHint::CreateInsertion(InsertLoc, "<>");
5025 }
5026 }
5027 }
5028 else {
5029 // All template param lists were matched against the scope specifier:
5030 // this is NOT (an explicit specialization of) a template.
5031 if (TemplateParamLists.size() > 0)
5032 // For source fidelity, store all the template param lists.
5033 NewFD->setTemplateParameterListsInfo(Context,
5034 TemplateParamLists.size(),
5035 TemplateParamLists.release());
5036 }
5037
5038 if (Invalid) {
5039 NewFD->setInvalidDecl();
5040 if (FunctionTemplate)
5041 FunctionTemplate->setInvalidDecl();
5042 }
5043
5044 // If we see "T var();" at block scope, where T is a class type, it is
5045 // probably an attempt to initialize a variable, not a function declaration.
5046 // We don't catch this case earlier, since there is no ambiguity here.
5047 if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5048 CurContext->isFunctionOrMethod() &&
5049 D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5050 D.getDeclSpec().getStorageClassSpecAsWritten()
5051 == DeclSpec::SCS_unspecified) {
5052 QualType T = R->getAs<FunctionType>()->getResultType();
5053 DeclaratorChunk &C = D.getTypeObject(0);
5054 if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5055 !C.Fun.TrailingReturnType &&
5056 C.Fun.getExceptionSpecType() == EST_None) {
5057 SourceRange ParenRange(C.Loc, C.EndLoc);
5058 Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5059
5060 // If the declaration looks like:
5061 // T var1,
5062 // f();
5063 // and name lookup finds a function named 'f', then the ',' was
5064 // probably intended to be a ';'.
5065 if (!D.isFirstDeclarator() && D.getIdentifier()) {
5066 FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5067 FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5068 if (Comma.getFileID() != Name.getFileID() ||
5069 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5070 LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5071 LookupOrdinaryName);
5072 if (LookupName(Result, S))
5073 Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5074 << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5075 }
5076 }
5077 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5078 // Empty parens mean value-initialization, and no parens mean default
5079 // initialization. These are equivalent if the default constructor is
5080 // user-provided, or if zero-initialization is a no-op.
5081 if (RD && RD->hasDefinition() &&
5082 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5083 Diag(C.Loc, diag::note_empty_parens_default_ctor)
5084 << FixItHint::CreateRemoval(ParenRange);
5085 else if (const char *Init = getFixItZeroInitializerForType(T))
5086 Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5087 << FixItHint::CreateReplacement(ParenRange, Init);
5088 else if (LangOpts.CPlusPlus0x)
5089 Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5090 << FixItHint::CreateReplacement(ParenRange, "{}");
5091 }
5092 }
5093
5094 // C++ [dcl.fct.spec]p5:
5095 // The virtual specifier shall only be used in declarations of
5096 // nonstatic class member functions that appear within a
5097 // member-specification of a class declaration; see 10.3.
5098 //
5099 if (isVirtual && !NewFD->isInvalidDecl()) {
5100 if (!isVirtualOkay) {
5101 Diag(D.getDeclSpec().getVirtualSpecLoc(),
5102 diag::err_virtual_non_function);
5103 } else if (!CurContext->isRecord()) {
5104 // 'virtual' was specified outside of the class.
5105 Diag(D.getDeclSpec().getVirtualSpecLoc(),
5106 diag::err_virtual_out_of_class)
5107 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5108 } else if (NewFD->getDescribedFunctionTemplate()) {
5109 // C++ [temp.mem]p3:
5110 // A member function template shall not be virtual.
5111 Diag(D.getDeclSpec().getVirtualSpecLoc(),
5112 diag::err_virtual_member_function_template)
5113 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5114 } else {
5115 // Okay: Add virtual to the method.
5116 NewFD->setVirtualAsWritten(true);
5117 }
5118 }
5119
5120 // C++ [dcl.fct.spec]p3:
5121 // The inline specifier shall not appear on a block scope function
5122 // declaration.
5123 if (isInline && !NewFD->isInvalidDecl()) {
5124 if (CurContext->isFunctionOrMethod()) {
5125 // 'inline' is not allowed on block scope function declaration.
5126 Diag(D.getDeclSpec().getInlineSpecLoc(),
5127 diag::err_inline_declaration_block_scope) << Name
5128 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5129 }
5130 }
5131
5132 // C++ [dcl.fct.spec]p6:
5133 // The explicit specifier shall be used only in the declaration of a
5134 // constructor or conversion function within its class definition;
5135 // see 12.3.1 and 12.3.2.
5136 if (isExplicit && !NewFD->isInvalidDecl()) {
5137 if (!CurContext->isRecord()) {
5138 // 'explicit' was specified outside of the class.
5139 Diag(D.getDeclSpec().getExplicitSpecLoc(),
5140 diag::err_explicit_out_of_class)
5141 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5142 } else if (!isa<CXXConstructorDecl>(NewFD) &&
5143 !isa<CXXConversionDecl>(NewFD)) {
5144 // 'explicit' was specified on a function that wasn't a constructor
5145 // or conversion function.
5146 Diag(D.getDeclSpec().getExplicitSpecLoc(),
5147 diag::err_explicit_non_ctor_or_conv_function)
5148 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5149 }
5150 }
5151
5152 if (isConstexpr) {
5153 // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5154 // are implicitly inline.
5155 NewFD->setImplicitlyInline();
5156
5157 // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5158 // be either constructors or to return a literal type. Therefore,
5159 // destructors cannot be declared constexpr.
5160 if (isa<CXXDestructorDecl>(NewFD))
5161 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5162 }
5163
5164 // If __module_private__ was specified, mark the function accordingly.
5165 if (D.getDeclSpec().isModulePrivateSpecified()) {
5166 if (isFunctionTemplateSpecialization) {
5167 SourceLocation ModulePrivateLoc
5168 = D.getDeclSpec().getModulePrivateSpecLoc();
5169 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5170 << 0
5171 << FixItHint::CreateRemoval(ModulePrivateLoc);
5172 } else {
5173 NewFD->setModulePrivate();
5174 if (FunctionTemplate)
5175 FunctionTemplate->setModulePrivate();
5176 }
5177 }
5178
5179 if (isFriend) {
5180 // For now, claim that the objects have no previous declaration.
5181 if (FunctionTemplate) {
5182 FunctionTemplate->setObjectOfFriendDecl(false);
5183 FunctionTemplate->setAccess(AS_public);
5184 }
5185 NewFD->setObjectOfFriendDecl(false);
5186 NewFD->setAccess(AS_public);
5187 }
5188
5189 // If a function is defined as defaulted or deleted, mark it as such now.
5190 switch (D.getFunctionDefinitionKind()) {
5191 case FDK_Declaration:
5192 case FDK_Definition:
5193 break;
5194
5195 case FDK_Defaulted:
5196 NewFD->setDefaulted();
5197 break;
5198
5199 case FDK_Deleted:
5200 NewFD->setDeletedAsWritten();
5201 break;
5202 }
5203
5204 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5205 D.isFunctionDefinition()) {
5206 // C++ [class.mfct]p2:
5207 // A member function may be defined (8.4) in its class definition, in
5208 // which case it is an inline member function (7.1.2)
5209 NewFD->setImplicitlyInline();
5210 }
5211
5212 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5213 !CurContext->isRecord()) {
5214 // C++ [class.static]p1:
5215 // A data or function member of a class may be declared static
5216 // in a class definition, in which case it is a static member of
5217 // the class.
5218
5219 // Complain about the 'static' specifier if it's on an out-of-line
5220 // member function definition.
5221 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5222 diag::err_static_out_of_line)
5223 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5224 }
5225 }
5226
5227 // Filter out previous declarations that don't match the scope.
5228 FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5229 isExplicitSpecialization ||
5230 isFunctionTemplateSpecialization);
5231
5232 // Handle GNU asm-label extension (encoded as an attribute).
5233 if (Expr *E = (Expr*) D.getAsmLabel()) {
5234 // The parser guarantees this is a string.
5235 StringLiteral *SE = cast<StringLiteral>(E);
5236 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5237 SE->getString()));
5238 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5239 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5240 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5241 if (I != ExtnameUndeclaredIdentifiers.end()) {
5242 NewFD->addAttr(I->second);
5243 ExtnameUndeclaredIdentifiers.erase(I);
5244 }
5245 }
5246
5247 // Copy the parameter declarations from the declarator D to the function
5248 // declaration NewFD, if they are available. First scavenge them into Params.
5249 SmallVector<ParmVarDecl*, 16> Params;
5250 if (D.isFunctionDeclarator()) {
5251 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5252
5253 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5254 // function that takes no arguments, not a function that takes a
5255 // single void argument.
5256 // We let through "const void" here because Sema::GetTypeForDeclarator
5257 // already checks for that case.
5258 if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5259 FTI.ArgInfo[0].Param &&
5260 cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5261 // Empty arg list, don't push any params.
5262 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5263
5264 // In C++, the empty parameter-type-list must be spelled "void"; a
5265 // typedef of void is not permitted.
5266 if (getLangOpts().CPlusPlus &&
5267 Param->getType().getUnqualifiedType() != Context.VoidTy) {
5268 bool IsTypeAlias = false;
5269 if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5270 IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5271 else if (const TemplateSpecializationType *TST =
5272 Param->getType()->getAs<TemplateSpecializationType>())
5273 IsTypeAlias = TST->isTypeAlias();
5274 Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5275 << IsTypeAlias;
5276 }
5277 } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5278 for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5279 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5280 assert(Param->getDeclContext() != NewFD && "Was set before ?");
5281 Param->setDeclContext(NewFD);
5282 Params.push_back(Param);
5283
5284 if (Param->isInvalidDecl())
5285 NewFD->setInvalidDecl();
5286 }
5287 }
5288
5289 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5290 // When we're declaring a function with a typedef, typeof, etc as in the
5291 // following example, we'll need to synthesize (unnamed)
5292 // parameters for use in the declaration.
5293 //
5294 // @code
5295 // typedef void fn(int);
5296 // fn f;
5297 // @endcode
5298
5299 // Synthesize a parameter for each argument type.
5300 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5301 AE = FT->arg_type_end(); AI != AE; ++AI) {
5302 ParmVarDecl *Param =
5303 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5304 Param->setScopeInfo(0, Params.size());
5305 Params.push_back(Param);
5306 }
5307 } else {
5308 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5309 "Should not need args for typedef of non-prototype fn");
5310 }
5311
5312 // Finally, we know we have the right number of parameters, install them.
5313 NewFD->setParams(Params);
5314
5315 // Find all anonymous symbols defined during the declaration of this function
5316 // and add to NewFD. This lets us track decls such 'enum Y' in:
5317 //
5318 // void f(enum Y {AA} x) {}
5319 //
5320 // which would otherwise incorrectly end up in the translation unit scope.
5321 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5322 DeclsInPrototypeScope.clear();
5323
5324 // Process the non-inheritable attributes on this declaration.
5325 ProcessDeclAttributes(S, NewFD, D,
5326 /*NonInheritable=*/true, /*Inheritable=*/false);
5327
5328 // Functions returning a variably modified type violate C99 6.7.5.2p2
5329 // because all functions have linkage.
5330 if (!NewFD->isInvalidDecl() &&
5331 NewFD->getResultType()->isVariablyModifiedType()) {
5332 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5333 NewFD->setInvalidDecl();
5334 }
5335
5336 if (!getLangOpts().CPlusPlus) {
5337 // Perform semantic checking on the function declaration.
5338 bool isExplicitSpecialization=false;
5339 if (!NewFD->isInvalidDecl()) {
5340 if (NewFD->isMain())
5341 CheckMain(NewFD, D.getDeclSpec());
5342 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5343 isExplicitSpecialization));
5344 }
5345 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5346 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5347 "previous declaration set still overloaded");
5348 } else {
5349 // If the declarator is a template-id, translate the parser's template
5350 // argument list into our AST format.
5351 bool HasExplicitTemplateArgs = false;
5352 TemplateArgumentListInfo TemplateArgs;
5353 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5354 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5355 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5356 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5357 ASTTemplateArgsPtr TemplateArgsPtr(*this,
5358 TemplateId->getTemplateArgs(),
5359 TemplateId->NumArgs);
5360 translateTemplateArguments(TemplateArgsPtr,
5361 TemplateArgs);
5362 TemplateArgsPtr.release();
5363
5364 HasExplicitTemplateArgs = true;
5365
5366 if (NewFD->isInvalidDecl()) {
5367 HasExplicitTemplateArgs = false;
5368 } else if (FunctionTemplate) {
5369 // Function template with explicit template arguments.
5370 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5371 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5372
5373 HasExplicitTemplateArgs = false;
5374 } else if (!isFunctionTemplateSpecialization &&
5375 !D.getDeclSpec().isFriendSpecified()) {
5376 // We have encountered something that the user meant to be a
5377 // specialization (because it has explicitly-specified template
5378 // arguments) but that was not introduced with a "template<>" (or had
5379 // too few of them).
5380 Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5381 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5382 << FixItHint::CreateInsertion(
5383 D.getDeclSpec().getLocStart(),
5384 "template<> ");
5385 isFunctionTemplateSpecialization = true;
5386 } else {
5387 // "friend void foo<>(int);" is an implicit specialization decl.
5388 isFunctionTemplateSpecialization = true;
5389 }
5390 } else if (isFriend && isFunctionTemplateSpecialization) {
5391 // This combination is only possible in a recovery case; the user
5392 // wrote something like:
5393 // template <> friend void foo(int);
5394 // which we're recovering from as if the user had written:
5395 // friend void foo<>(int);
5396 // Go ahead and fake up a template id.
5397 HasExplicitTemplateArgs = true;
5398 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5399 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5400 }
5401
5402 // If it's a friend (and only if it's a friend), it's possible
5403 // that either the specialized function type or the specialized
5404 // template is dependent, and therefore matching will fail. In
5405 // this case, don't check the specialization yet.
5406 bool InstantiationDependent = false;
5407 if (isFunctionTemplateSpecialization && isFriend &&
5408 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5409 TemplateSpecializationType::anyDependentTemplateArguments(
5410 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5411 InstantiationDependent))) {
5412 assert(HasExplicitTemplateArgs &&
5413 "friend function specialization without template args");
5414 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5415 Previous))
5416 NewFD->setInvalidDecl();
5417 } else if (isFunctionTemplateSpecialization) {
5418 if (CurContext->isDependentContext() && CurContext->isRecord()
5419 && !isFriend) {
5420 isDependentClassScopeExplicitSpecialization = true;
5421 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5422 diag::ext_function_specialization_in_class :
5423 diag::err_function_specialization_in_class)
5424 << NewFD->getDeclName();
5425 } else if (CheckFunctionTemplateSpecialization(NewFD,
5426 (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5427 Previous))
5428 NewFD->setInvalidDecl();
5429
5430 // C++ [dcl.stc]p1:
5431 // A storage-class-specifier shall not be specified in an explicit
5432 // specialization (14.7.3)
5433 if (SC != SC_None) {
5434 if (SC != NewFD->getStorageClass())
5435 Diag(NewFD->getLocation(),
5436 diag::err_explicit_specialization_inconsistent_storage_class)
5437 << SC
5438 << FixItHint::CreateRemoval(
5439 D.getDeclSpec().getStorageClassSpecLoc());
5440
5441 else
5442 Diag(NewFD->getLocation(),
5443 diag::ext_explicit_specialization_storage_class)
5444 << FixItHint::CreateRemoval(
5445 D.getDeclSpec().getStorageClassSpecLoc());
5446 }
5447
5448 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5449 if (CheckMemberSpecialization(NewFD, Previous))
5450 NewFD->setInvalidDecl();
5451 }
5452
5453 // Perform semantic checking on the function declaration.
5454 if (!isDependentClassScopeExplicitSpecialization) {
5455 if (NewFD->isInvalidDecl()) {
5456 // If this is a class member, mark the class invalid immediately.
5457 // This avoids some consistency errors later.
5458 if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5459 methodDecl->getParent()->setInvalidDecl();
5460 } else {
5461 if (NewFD->isMain())
5462 CheckMain(NewFD, D.getDeclSpec());
5463 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5464 isExplicitSpecialization));
5465 }
5466 }
5467
5468 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5469 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5470 "previous declaration set still overloaded");
5471
5472 NamedDecl *PrincipalDecl = (FunctionTemplate
5473 ? cast<NamedDecl>(FunctionTemplate)
5474 : NewFD);
5475
5476 if (isFriend && D.isRedeclaration()) {
5477 AccessSpecifier Access = AS_public;
5478 if (!NewFD->isInvalidDecl())
5479 Access = NewFD->getPreviousDecl()->getAccess();
5480
5481 NewFD->setAccess(Access);
5482 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5483
5484 PrincipalDecl->setObjectOfFriendDecl(true);
5485 }
5486
5487 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5488 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5489 PrincipalDecl->setNonMemberOperator();
5490
5491 // If we have a function template, check the template parameter
5492 // list. This will check and merge default template arguments.
5493 if (FunctionTemplate) {
5494 FunctionTemplateDecl *PrevTemplate =
5495 FunctionTemplate->getPreviousDecl();
5496 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5497 PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5498 D.getDeclSpec().isFriendSpecified()
5499 ? (D.isFunctionDefinition()
5500 ? TPC_FriendFunctionTemplateDefinition
5501 : TPC_FriendFunctionTemplate)
5502 : (D.getCXXScopeSpec().isSet() &&
5503 DC && DC->isRecord() &&
5504 DC->isDependentContext())
5505 ? TPC_ClassTemplateMember
5506 : TPC_FunctionTemplate);
5507 }
5508
5509 if (NewFD->isInvalidDecl()) {
5510 // Ignore all the rest of this.
5511 } else if (!D.isRedeclaration()) {
5512 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5513 AddToScope };
5514 // Fake up an access specifier if it's supposed to be a class member.
5515 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5516 NewFD->setAccess(AS_public);
5517
5518 // Qualified decls generally require a previous declaration.
5519 if (D.getCXXScopeSpec().isSet()) {
5520 // ...with the major exception of templated-scope or
5521 // dependent-scope friend declarations.
5522
5523 // TODO: we currently also suppress this check in dependent
5524 // contexts because (1) the parameter depth will be off when
5525 // matching friend templates and (2) we might actually be
5526 // selecting a friend based on a dependent factor. But there
5527 // are situations where these conditions don't apply and we
5528 // can actually do this check immediately.
5529 if (isFriend &&
5530 (TemplateParamLists.size() ||
5531 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5532 CurContext->isDependentContext())) {
5533 // ignore these
5534 } else {
5535 // The user tried to provide an out-of-line definition for a
5536 // function that is a member of a class or namespace, but there
5537 // was no such member function declared (C++ [class.mfct]p2,
5538 // C++ [namespace.memdef]p2). For example:
5539 //
5540 // class X {
5541 // void f() const;
5542 // };
5543 //
5544 // void X::f() { } // ill-formed
5545 //
5546 // Complain about this problem, and attempt to suggest close
5547 // matches (e.g., those that differ only in cv-qualifiers and
5548 // whether the parameter types are references).
5549
5550 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5551 NewFD,
5552 ExtraArgs)) {
5553 AddToScope = ExtraArgs.AddToScope;
5554 return Result;
5555 }
5556 }
5557
5558 // Unqualified local friend declarations are required to resolve
5559 // to something.
5560 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5561 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5562 NewFD,
5563 ExtraArgs)) {
5564 AddToScope = ExtraArgs.AddToScope;
5565 return Result;
5566 }
5567 }
5568
5569 } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5570 !isFriend && !isFunctionTemplateSpecialization &&
5571 !isExplicitSpecialization) {
5572 // An out-of-line member function declaration must also be a
5573 // definition (C++ [dcl.meaning]p1).
5574 // Note that this is not the case for explicit specializations of
5575 // function templates or member functions of class templates, per
5576 // C++ [temp.expl.spec]p2. We also allow these declarations as an
5577 // extension for compatibility with old SWIG code which likes to
5578 // generate them.
5579 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5580 << D.getCXXScopeSpec().getRange();
5581 }
5582 }
5583
5584
5585 // Handle attributes. We need to have merged decls when handling attributes
5586 // (for example to check for conflicts, etc).
5587 // FIXME: This needs to happen before we merge declarations. Then,
5588 // let attribute merging cope with attribute conflicts.
5589 ProcessDeclAttributes(S, NewFD, D,
5590 /*NonInheritable=*/false, /*Inheritable=*/true);
5591
5592 // attributes declared post-definition are currently ignored
5593 // FIXME: This should happen during attribute merging
5594 if (D.isRedeclaration() && Previous.isSingleResult()) {
5595 const FunctionDecl *Def;
5596 FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5597 if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5598 Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5599 Diag(Def->getLocation(), diag::note_previous_definition);
5600 }
5601 }
5602
5603 AddKnownFunctionAttributes(NewFD);
5604
5605 if (NewFD->hasAttr<OverloadableAttr>() &&
5606 !NewFD->getType()->getAs<FunctionProtoType>()) {
5607 Diag(NewFD->getLocation(),
5608 diag::err_attribute_overloadable_no_prototype)
5609 << NewFD;
5610
5611 // Turn this into a variadic function with no parameters.
5612 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5613 FunctionProtoType::ExtProtoInfo EPI;
5614 EPI.Variadic = true;
5615 EPI.ExtInfo = FT->getExtInfo();
5616
5617 QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5618 NewFD->setType(R);
5619 }
5620
5621 // If there's a #pragma GCC visibility in scope, and this isn't a class
5622 // member, set the visibility of this function.
5623 if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5624 AddPushedVisibilityAttribute(NewFD);
5625
5626 // If there's a #pragma clang arc_cf_code_audited in scope, consider
5627 // marking the function.
5628 AddCFAuditedAttribute(NewFD);
5629
5630 // If this is a locally-scoped extern C function, update the
5631 // map of such names.
5632 if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5633 && !NewFD->isInvalidDecl())
5634 RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5635
5636 // Set this FunctionDecl's range up to the right paren.
5637 NewFD->setRangeEnd(D.getSourceRange().getEnd());
5638
5639 if (getLangOpts().CPlusPlus) {
5640 if (FunctionTemplate) {
5641 if (NewFD->isInvalidDecl())
5642 FunctionTemplate->setInvalidDecl();
5643 return FunctionTemplate;
5644 }
5645 }
5646
5647 MarkUnusedFileScopedDecl(NewFD);
5648
5649 if (getLangOpts().CUDA)
5650 if (IdentifierInfo *II = NewFD->getIdentifier())
5651 if (!NewFD->isInvalidDecl() &&
5652 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5653 if (II->isStr("cudaConfigureCall")) {
5654 if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5655 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5656
5657 Context.setcudaConfigureCallDecl(NewFD);
5658 }
5659 }
5660
5661 // Here we have an function template explicit specialization at class scope.
5662 // The actually specialization will be postponed to template instatiation
5663 // time via the ClassScopeFunctionSpecializationDecl node.
5664 if (isDependentClassScopeExplicitSpecialization) {
5665 ClassScopeFunctionSpecializationDecl *NewSpec =
5666 ClassScopeFunctionSpecializationDecl::Create(
5667 Context, CurContext, SourceLocation(),
5668 cast<CXXMethodDecl>(NewFD));
5669 CurContext->addDecl(NewSpec);
5670 AddToScope = false;
5671 }
5672
5673 return NewFD;
5674 }
5675
5676 /// \brief Perform semantic checking of a new function declaration.
5677 ///
5678 /// Performs semantic analysis of the new function declaration
5679 /// NewFD. This routine performs all semantic checking that does not
5680 /// require the actual declarator involved in the declaration, and is
5681 /// used both for the declaration of functions as they are parsed
5682 /// (called via ActOnDeclarator) and for the declaration of functions
5683 /// that have been instantiated via C++ template instantiation (called
5684 /// via InstantiateDecl).
5685 ///
5686 /// \param IsExplicitSpecialiation whether this new function declaration is
5687 /// an explicit specialization of the previous declaration.
5688 ///
5689 /// This sets NewFD->isInvalidDecl() to true if there was an error.
5690 ///
5691 /// Returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)5692 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5693 LookupResult &Previous,
5694 bool IsExplicitSpecialization) {
5695 assert(!NewFD->getResultType()->isVariablyModifiedType()
5696 && "Variably modified return types are not handled here");
5697
5698 // Check for a previous declaration of this name.
5699 if (Previous.empty() && NewFD->isExternC()) {
5700 // Since we did not find anything by this name and we're declaring
5701 // an extern "C" function, look for a non-visible extern "C"
5702 // declaration with the same name.
5703 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5704 = findLocallyScopedExternalDecl(NewFD->getDeclName());
5705 if (Pos != LocallyScopedExternalDecls.end())
5706 Previous.addDecl(Pos->second);
5707 }
5708
5709 bool Redeclaration = false;
5710
5711 // Merge or overload the declaration with an existing declaration of
5712 // the same name, if appropriate.
5713 if (!Previous.empty()) {
5714 // Determine whether NewFD is an overload of PrevDecl or
5715 // a declaration that requires merging. If it's an overload,
5716 // there's no more work to do here; we'll just add the new
5717 // function to the scope.
5718
5719 NamedDecl *OldDecl = 0;
5720 if (!AllowOverloadingOfFunction(Previous, Context)) {
5721 Redeclaration = true;
5722 OldDecl = Previous.getFoundDecl();
5723 } else {
5724 switch (CheckOverload(S, NewFD, Previous, OldDecl,
5725 /*NewIsUsingDecl*/ false)) {
5726 case Ovl_Match:
5727 Redeclaration = true;
5728 break;
5729
5730 case Ovl_NonFunction:
5731 Redeclaration = true;
5732 break;
5733
5734 case Ovl_Overload:
5735 Redeclaration = false;
5736 break;
5737 }
5738
5739 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5740 // If a function name is overloadable in C, then every function
5741 // with that name must be marked "overloadable".
5742 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5743 << Redeclaration << NewFD;
5744 NamedDecl *OverloadedDecl = 0;
5745 if (Redeclaration)
5746 OverloadedDecl = OldDecl;
5747 else if (!Previous.empty())
5748 OverloadedDecl = Previous.getRepresentativeDecl();
5749 if (OverloadedDecl)
5750 Diag(OverloadedDecl->getLocation(),
5751 diag::note_attribute_overloadable_prev_overload);
5752 NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5753 Context));
5754 }
5755 }
5756
5757 if (Redeclaration) {
5758 // NewFD and OldDecl represent declarations that need to be
5759 // merged.
5760 if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5761 NewFD->setInvalidDecl();
5762 return Redeclaration;
5763 }
5764
5765 Previous.clear();
5766 Previous.addDecl(OldDecl);
5767
5768 if (FunctionTemplateDecl *OldTemplateDecl
5769 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5770 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5771 FunctionTemplateDecl *NewTemplateDecl
5772 = NewFD->getDescribedFunctionTemplate();
5773 assert(NewTemplateDecl && "Template/non-template mismatch");
5774 if (CXXMethodDecl *Method
5775 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5776 Method->setAccess(OldTemplateDecl->getAccess());
5777 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5778 }
5779
5780 // If this is an explicit specialization of a member that is a function
5781 // template, mark it as a member specialization.
5782 if (IsExplicitSpecialization &&
5783 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5784 NewTemplateDecl->setMemberSpecialization();
5785 assert(OldTemplateDecl->isMemberSpecialization());
5786 }
5787
5788 } else {
5789 if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5790 NewFD->setAccess(OldDecl->getAccess());
5791 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5792 }
5793 }
5794 }
5795
5796 // Semantic checking for this function declaration (in isolation).
5797 if (getLangOpts().CPlusPlus) {
5798 // C++-specific checks.
5799 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5800 CheckConstructor(Constructor);
5801 } else if (CXXDestructorDecl *Destructor =
5802 dyn_cast<CXXDestructorDecl>(NewFD)) {
5803 CXXRecordDecl *Record = Destructor->getParent();
5804 QualType ClassType = Context.getTypeDeclType(Record);
5805
5806 // FIXME: Shouldn't we be able to perform this check even when the class
5807 // type is dependent? Both gcc and edg can handle that.
5808 if (!ClassType->isDependentType()) {
5809 DeclarationName Name
5810 = Context.DeclarationNames.getCXXDestructorName(
5811 Context.getCanonicalType(ClassType));
5812 if (NewFD->getDeclName() != Name) {
5813 Diag(NewFD->getLocation(), diag::err_destructor_name);
5814 NewFD->setInvalidDecl();
5815 return Redeclaration;
5816 }
5817 }
5818 } else if (CXXConversionDecl *Conversion
5819 = dyn_cast<CXXConversionDecl>(NewFD)) {
5820 ActOnConversionDeclarator(Conversion);
5821 }
5822
5823 // Find any virtual functions that this function overrides.
5824 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5825 if (!Method->isFunctionTemplateSpecialization() &&
5826 !Method->getDescribedFunctionTemplate()) {
5827 if (AddOverriddenMethods(Method->getParent(), Method)) {
5828 // If the function was marked as "static", we have a problem.
5829 if (NewFD->getStorageClass() == SC_Static) {
5830 Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5831 << NewFD->getDeclName();
5832 for (CXXMethodDecl::method_iterator
5833 Overridden = Method->begin_overridden_methods(),
5834 OverriddenEnd = Method->end_overridden_methods();
5835 Overridden != OverriddenEnd;
5836 ++Overridden) {
5837 Diag((*Overridden)->getLocation(),
5838 diag::note_overridden_virtual_function);
5839 }
5840 }
5841 }
5842 }
5843
5844 if (Method->isStatic())
5845 checkThisInStaticMemberFunctionType(Method);
5846 }
5847
5848 // Extra checking for C++ overloaded operators (C++ [over.oper]).
5849 if (NewFD->isOverloadedOperator() &&
5850 CheckOverloadedOperatorDeclaration(NewFD)) {
5851 NewFD->setInvalidDecl();
5852 return Redeclaration;
5853 }
5854
5855 // Extra checking for C++0x literal operators (C++0x [over.literal]).
5856 if (NewFD->getLiteralIdentifier() &&
5857 CheckLiteralOperatorDeclaration(NewFD)) {
5858 NewFD->setInvalidDecl();
5859 return Redeclaration;
5860 }
5861
5862 // In C++, check default arguments now that we have merged decls. Unless
5863 // the lexical context is the class, because in this case this is done
5864 // during delayed parsing anyway.
5865 if (!CurContext->isRecord())
5866 CheckCXXDefaultArguments(NewFD);
5867
5868 // If this function declares a builtin function, check the type of this
5869 // declaration against the expected type for the builtin.
5870 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5871 ASTContext::GetBuiltinTypeError Error;
5872 QualType T = Context.GetBuiltinType(BuiltinID, Error);
5873 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5874 // The type of this function differs from the type of the builtin,
5875 // so forget about the builtin entirely.
5876 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5877 }
5878 }
5879
5880 // If this function is declared as being extern "C", then check to see if
5881 // the function returns a UDT (class, struct, or union type) that is not C
5882 // compatible, and if it does, warn the user.
5883 if (NewFD->isExternC()) {
5884 QualType R = NewFD->getResultType();
5885 if (!R.isPODType(Context) &&
5886 !R->isVoidType())
5887 Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5888 << NewFD << R;
5889 }
5890 }
5891 return Redeclaration;
5892 }
5893
CheckMain(FunctionDecl * FD,const DeclSpec & DS)5894 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5895 // C++11 [basic.start.main]p3: A program that declares main to be inline,
5896 // static or constexpr is ill-formed.
5897 // C99 6.7.4p4: In a hosted environment, the inline function specifier
5898 // shall not appear in a declaration of main.
5899 // static main is not an error under C99, but we should warn about it.
5900 if (FD->getStorageClass() == SC_Static)
5901 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
5902 ? diag::err_static_main : diag::warn_static_main)
5903 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5904 if (FD->isInlineSpecified())
5905 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5906 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5907 if (FD->isConstexpr()) {
5908 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5909 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5910 FD->setConstexpr(false);
5911 }
5912
5913 QualType T = FD->getType();
5914 assert(T->isFunctionType() && "function decl is not of function type");
5915 const FunctionType* FT = T->castAs<FunctionType>();
5916
5917 // All the standards say that main() should should return 'int'.
5918 if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5919 // In C and C++, main magically returns 0 if you fall off the end;
5920 // set the flag which tells us that.
5921 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5922 FD->setHasImplicitReturnZero(true);
5923
5924 // In C with GNU extensions we allow main() to have non-integer return
5925 // type, but we should warn about the extension, and we disable the
5926 // implicit-return-zero rule.
5927 } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
5928 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
5929
5930 // Otherwise, this is just a flat-out error.
5931 } else {
5932 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5933 FD->setInvalidDecl(true);
5934 }
5935
5936 // Treat protoless main() as nullary.
5937 if (isa<FunctionNoProtoType>(FT)) return;
5938
5939 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5940 unsigned nparams = FTP->getNumArgs();
5941 assert(FD->getNumParams() == nparams);
5942
5943 bool HasExtraParameters = (nparams > 3);
5944
5945 // Darwin passes an undocumented fourth argument of type char**. If
5946 // other platforms start sprouting these, the logic below will start
5947 // getting shifty.
5948 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5949 HasExtraParameters = false;
5950
5951 if (HasExtraParameters) {
5952 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5953 FD->setInvalidDecl(true);
5954 nparams = 3;
5955 }
5956
5957 // FIXME: a lot of the following diagnostics would be improved
5958 // if we had some location information about types.
5959
5960 QualType CharPP =
5961 Context.getPointerType(Context.getPointerType(Context.CharTy));
5962 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5963
5964 for (unsigned i = 0; i < nparams; ++i) {
5965 QualType AT = FTP->getArgType(i);
5966
5967 bool mismatch = true;
5968
5969 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5970 mismatch = false;
5971 else if (Expected[i] == CharPP) {
5972 // As an extension, the following forms are okay:
5973 // char const **
5974 // char const * const *
5975 // char * const *
5976
5977 QualifierCollector qs;
5978 const PointerType* PT;
5979 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5980 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5981 (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5982 qs.removeConst();
5983 mismatch = !qs.empty();
5984 }
5985 }
5986
5987 if (mismatch) {
5988 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5989 // TODO: suggest replacing given type with expected type
5990 FD->setInvalidDecl(true);
5991 }
5992 }
5993
5994 if (nparams == 1 && !FD->isInvalidDecl()) {
5995 Diag(FD->getLocation(), diag::warn_main_one_arg);
5996 }
5997
5998 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5999 Diag(FD->getLocation(), diag::err_main_template_decl);
6000 FD->setInvalidDecl();
6001 }
6002 }
6003
CheckForConstantInitializer(Expr * Init,QualType DclT)6004 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6005 // FIXME: Need strict checking. In C89, we need to check for
6006 // any assignment, increment, decrement, function-calls, or
6007 // commas outside of a sizeof. In C99, it's the same list,
6008 // except that the aforementioned are allowed in unevaluated
6009 // expressions. Everything else falls under the
6010 // "may accept other forms of constant expressions" exception.
6011 // (We never end up here for C++, so the constant expression
6012 // rules there don't matter.)
6013 if (Init->isConstantInitializer(Context, false))
6014 return false;
6015 Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6016 << Init->getSourceRange();
6017 return true;
6018 }
6019
6020 namespace {
6021 // Visits an initialization expression to see if OrigDecl is evaluated in
6022 // its own initialization and throws a warning if it does.
6023 class SelfReferenceChecker
6024 : public EvaluatedExprVisitor<SelfReferenceChecker> {
6025 Sema &S;
6026 Decl *OrigDecl;
6027 bool isRecordType;
6028 bool isPODType;
6029
6030 public:
6031 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6032
SelfReferenceChecker(Sema & S,Decl * OrigDecl)6033 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6034 S(S), OrigDecl(OrigDecl) {
6035 isPODType = false;
6036 isRecordType = false;
6037 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6038 isPODType = VD->getType().isPODType(S.Context);
6039 isRecordType = VD->getType()->isRecordType();
6040 }
6041 }
6042
VisitExpr(Expr * E)6043 void VisitExpr(Expr *E) {
6044 if (isa<ObjCMessageExpr>(*E)) return;
6045 if (isRecordType) {
6046 Expr *expr = E;
6047 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
6048 ValueDecl *VD = ME->getMemberDecl();
6049 if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
6050 expr = ME->getBase();
6051 }
6052 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
6053 HandleDeclRefExpr(DRE);
6054 return;
6055 }
6056 }
6057 Inherited::VisitExpr(E);
6058 }
6059
VisitMemberExpr(MemberExpr * E)6060 void VisitMemberExpr(MemberExpr *E) {
6061 if (E->getType()->canDecayToPointerType()) return;
6062 ValueDecl *VD = E->getMemberDecl();
6063 if (isa<FieldDecl>(VD) || isa<CXXMethodDecl>(VD))
6064 if (DeclRefExpr *DRE
6065 = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6066 HandleDeclRefExpr(DRE);
6067 return;
6068 }
6069 Inherited::VisitMemberExpr(E);
6070 }
6071
VisitImplicitCastExpr(ImplicitCastExpr * E)6072 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6073 if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
6074 (isRecordType && E->getCastKind() == CK_NoOp)) {
6075 Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
6076 if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
6077 SubExpr = ME->getBase()->IgnoreParenImpCasts();
6078 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
6079 HandleDeclRefExpr(DRE);
6080 return;
6081 }
6082 }
6083 Inherited::VisitImplicitCastExpr(E);
6084 }
6085
VisitUnaryOperator(UnaryOperator * E)6086 void VisitUnaryOperator(UnaryOperator *E) {
6087 // For POD record types, addresses of its own members are well-defined.
6088 if (isRecordType && isPODType) return;
6089 Inherited::VisitUnaryOperator(E);
6090 }
6091
HandleDeclRefExpr(DeclRefExpr * DRE)6092 void HandleDeclRefExpr(DeclRefExpr *DRE) {
6093 Decl* ReferenceDecl = DRE->getDecl();
6094 if (OrigDecl != ReferenceDecl) return;
6095 LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6096 Sema::NotForRedeclaration);
6097 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6098 S.PDiag(diag::warn_uninit_self_reference_in_init)
6099 << Result.getLookupName()
6100 << OrigDecl->getLocation()
6101 << DRE->getSourceRange());
6102 }
6103 };
6104 }
6105
6106 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Decl * OrigDecl,Expr * E)6107 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6108 SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
6109 }
6110
6111 /// AddInitializerToDecl - Adds the initializer Init to the
6112 /// declaration dcl. If DirectInit is true, this is C++ direct
6113 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)6114 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6115 bool DirectInit, bool TypeMayContainAuto) {
6116 // If there is no declaration, there was an error parsing it. Just ignore
6117 // the initializer.
6118 if (RealDecl == 0 || RealDecl->isInvalidDecl())
6119 return;
6120
6121 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6122 // With declarators parsed the way they are, the parser cannot
6123 // distinguish between a normal initializer and a pure-specifier.
6124 // Thus this grotesque test.
6125 IntegerLiteral *IL;
6126 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6127 Context.getCanonicalType(IL->getType()) == Context.IntTy)
6128 CheckPureMethod(Method, Init->getSourceRange());
6129 else {
6130 Diag(Method->getLocation(), diag::err_member_function_initialization)
6131 << Method->getDeclName() << Init->getSourceRange();
6132 Method->setInvalidDecl();
6133 }
6134 return;
6135 }
6136
6137 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6138 if (!VDecl) {
6139 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6140 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6141 RealDecl->setInvalidDecl();
6142 return;
6143 }
6144
6145 // Check for self-references within variable initializers.
6146 // Variables declared within a function/method body are handled
6147 // by a dataflow analysis.
6148 if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6149 CheckSelfReference(RealDecl, Init);
6150
6151 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6152
6153 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6154 if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6155 Expr *DeduceInit = Init;
6156 // Initializer could be a C++ direct-initializer. Deduction only works if it
6157 // contains exactly one expression.
6158 if (CXXDirectInit) {
6159 if (CXXDirectInit->getNumExprs() == 0) {
6160 // It isn't possible to write this directly, but it is possible to
6161 // end up in this situation with "auto x(some_pack...);"
6162 Diag(CXXDirectInit->getLocStart(),
6163 diag::err_auto_var_init_no_expression)
6164 << VDecl->getDeclName() << VDecl->getType()
6165 << VDecl->getSourceRange();
6166 RealDecl->setInvalidDecl();
6167 return;
6168 } else if (CXXDirectInit->getNumExprs() > 1) {
6169 Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6170 diag::err_auto_var_init_multiple_expressions)
6171 << VDecl->getDeclName() << VDecl->getType()
6172 << VDecl->getSourceRange();
6173 RealDecl->setInvalidDecl();
6174 return;
6175 } else {
6176 DeduceInit = CXXDirectInit->getExpr(0);
6177 }
6178 }
6179 TypeSourceInfo *DeducedType = 0;
6180 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6181 DAR_Failed)
6182 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6183 if (!DeducedType) {
6184 RealDecl->setInvalidDecl();
6185 return;
6186 }
6187 VDecl->setTypeSourceInfo(DeducedType);
6188 VDecl->setType(DeducedType->getType());
6189 VDecl->ClearLinkageCache();
6190
6191 // In ARC, infer lifetime.
6192 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6193 VDecl->setInvalidDecl();
6194
6195 // If this is a redeclaration, check that the type we just deduced matches
6196 // the previously declared type.
6197 if (VarDecl *Old = VDecl->getPreviousDecl())
6198 MergeVarDeclTypes(VDecl, Old);
6199 }
6200
6201 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6202 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6203 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6204 VDecl->setInvalidDecl();
6205 return;
6206 }
6207
6208 if (!VDecl->getType()->isDependentType()) {
6209 // A definition must end up with a complete type, which means it must be
6210 // complete with the restriction that an array type might be completed by
6211 // the initializer; note that later code assumes this restriction.
6212 QualType BaseDeclType = VDecl->getType();
6213 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6214 BaseDeclType = Array->getElementType();
6215 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6216 diag::err_typecheck_decl_incomplete_type)) {
6217 RealDecl->setInvalidDecl();
6218 return;
6219 }
6220
6221 // The variable can not have an abstract class type.
6222 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6223 diag::err_abstract_type_in_decl,
6224 AbstractVariableType))
6225 VDecl->setInvalidDecl();
6226 }
6227
6228 const VarDecl *Def;
6229 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6230 Diag(VDecl->getLocation(), diag::err_redefinition)
6231 << VDecl->getDeclName();
6232 Diag(Def->getLocation(), diag::note_previous_definition);
6233 VDecl->setInvalidDecl();
6234 return;
6235 }
6236
6237 const VarDecl* PrevInit = 0;
6238 if (getLangOpts().CPlusPlus) {
6239 // C++ [class.static.data]p4
6240 // If a static data member is of const integral or const
6241 // enumeration type, its declaration in the class definition can
6242 // specify a constant-initializer which shall be an integral
6243 // constant expression (5.19). In that case, the member can appear
6244 // in integral constant expressions. The member shall still be
6245 // defined in a namespace scope if it is used in the program and the
6246 // namespace scope definition shall not contain an initializer.
6247 //
6248 // We already performed a redefinition check above, but for static
6249 // data members we also need to check whether there was an in-class
6250 // declaration with an initializer.
6251 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6252 Diag(VDecl->getLocation(), diag::err_redefinition)
6253 << VDecl->getDeclName();
6254 Diag(PrevInit->getLocation(), diag::note_previous_definition);
6255 return;
6256 }
6257
6258 if (VDecl->hasLocalStorage())
6259 getCurFunction()->setHasBranchProtectedScope();
6260
6261 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6262 VDecl->setInvalidDecl();
6263 return;
6264 }
6265 }
6266
6267 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6268 // a kernel function cannot be initialized."
6269 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6270 Diag(VDecl->getLocation(), diag::err_local_cant_init);
6271 VDecl->setInvalidDecl();
6272 return;
6273 }
6274
6275 // Get the decls type and save a reference for later, since
6276 // CheckInitializerTypes may change it.
6277 QualType DclT = VDecl->getType(), SavT = DclT;
6278
6279 // Top-level message sends default to 'id' when we're in a debugger
6280 // and we are assigning it to a variable of 'id' type.
6281 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6282 if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6283 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6284 if (Result.isInvalid()) {
6285 VDecl->setInvalidDecl();
6286 return;
6287 }
6288 Init = Result.take();
6289 }
6290
6291 // Perform the initialization.
6292 if (!VDecl->isInvalidDecl()) {
6293 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6294 InitializationKind Kind
6295 = DirectInit ?
6296 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6297 Init->getLocStart(),
6298 Init->getLocEnd())
6299 : InitializationKind::CreateDirectList(
6300 VDecl->getLocation())
6301 : InitializationKind::CreateCopy(VDecl->getLocation(),
6302 Init->getLocStart());
6303
6304 Expr **Args = &Init;
6305 unsigned NumArgs = 1;
6306 if (CXXDirectInit) {
6307 Args = CXXDirectInit->getExprs();
6308 NumArgs = CXXDirectInit->getNumExprs();
6309 }
6310 InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6311 ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6312 MultiExprArg(*this, Args,NumArgs),
6313 &DclT);
6314 if (Result.isInvalid()) {
6315 VDecl->setInvalidDecl();
6316 return;
6317 }
6318
6319 Init = Result.takeAs<Expr>();
6320 }
6321
6322 // If the type changed, it means we had an incomplete type that was
6323 // completed by the initializer. For example:
6324 // int ary[] = { 1, 3, 5 };
6325 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6326 if (!VDecl->isInvalidDecl() && (DclT != SavT))
6327 VDecl->setType(DclT);
6328
6329 // Check any implicit conversions within the expression.
6330 CheckImplicitConversions(Init, VDecl->getLocation());
6331
6332 if (!VDecl->isInvalidDecl())
6333 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6334
6335 Init = MaybeCreateExprWithCleanups(Init);
6336 // Attach the initializer to the decl.
6337 VDecl->setInit(Init);
6338
6339 if (VDecl->isLocalVarDecl()) {
6340 // C99 6.7.8p4: All the expressions in an initializer for an object that has
6341 // static storage duration shall be constant expressions or string literals.
6342 // C++ does not have this restriction.
6343 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6344 VDecl->getStorageClass() == SC_Static)
6345 CheckForConstantInitializer(Init, DclT);
6346 } else if (VDecl->isStaticDataMember() &&
6347 VDecl->getLexicalDeclContext()->isRecord()) {
6348 // This is an in-class initialization for a static data member, e.g.,
6349 //
6350 // struct S {
6351 // static const int value = 17;
6352 // };
6353
6354 // C++ [class.mem]p4:
6355 // A member-declarator can contain a constant-initializer only
6356 // if it declares a static member (9.4) of const integral or
6357 // const enumeration type, see 9.4.2.
6358 //
6359 // C++11 [class.static.data]p3:
6360 // If a non-volatile const static data member is of integral or
6361 // enumeration type, its declaration in the class definition can
6362 // specify a brace-or-equal-initializer in which every initalizer-clause
6363 // that is an assignment-expression is a constant expression. A static
6364 // data member of literal type can be declared in the class definition
6365 // with the constexpr specifier; if so, its declaration shall specify a
6366 // brace-or-equal-initializer in which every initializer-clause that is
6367 // an assignment-expression is a constant expression.
6368
6369 // Do nothing on dependent types.
6370 if (DclT->isDependentType()) {
6371
6372 // Allow any 'static constexpr' members, whether or not they are of literal
6373 // type. We separately check that every constexpr variable is of literal
6374 // type.
6375 } else if (VDecl->isConstexpr()) {
6376
6377 // Require constness.
6378 } else if (!DclT.isConstQualified()) {
6379 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6380 << Init->getSourceRange();
6381 VDecl->setInvalidDecl();
6382
6383 // We allow integer constant expressions in all cases.
6384 } else if (DclT->isIntegralOrEnumerationType()) {
6385 // Check whether the expression is a constant expression.
6386 SourceLocation Loc;
6387 if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6388 // In C++11, a non-constexpr const static data member with an
6389 // in-class initializer cannot be volatile.
6390 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6391 else if (Init->isValueDependent())
6392 ; // Nothing to check.
6393 else if (Init->isIntegerConstantExpr(Context, &Loc))
6394 ; // Ok, it's an ICE!
6395 else if (Init->isEvaluatable(Context)) {
6396 // If we can constant fold the initializer through heroics, accept it,
6397 // but report this as a use of an extension for -pedantic.
6398 Diag(Loc, diag::ext_in_class_initializer_non_constant)
6399 << Init->getSourceRange();
6400 } else {
6401 // Otherwise, this is some crazy unknown case. Report the issue at the
6402 // location provided by the isIntegerConstantExpr failed check.
6403 Diag(Loc, diag::err_in_class_initializer_non_constant)
6404 << Init->getSourceRange();
6405 VDecl->setInvalidDecl();
6406 }
6407
6408 // We allow foldable floating-point constants as an extension.
6409 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6410 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6411 << DclT << Init->getSourceRange();
6412 if (getLangOpts().CPlusPlus0x)
6413 Diag(VDecl->getLocation(),
6414 diag::note_in_class_initializer_float_type_constexpr)
6415 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6416
6417 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6418 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6419 << Init->getSourceRange();
6420 VDecl->setInvalidDecl();
6421 }
6422
6423 // Suggest adding 'constexpr' in C++11 for literal types.
6424 } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6425 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6426 << DclT << Init->getSourceRange()
6427 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6428 VDecl->setConstexpr(true);
6429
6430 } else {
6431 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6432 << DclT << Init->getSourceRange();
6433 VDecl->setInvalidDecl();
6434 }
6435 } else if (VDecl->isFileVarDecl()) {
6436 if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6437 (!getLangOpts().CPlusPlus ||
6438 !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6439 Diag(VDecl->getLocation(), diag::warn_extern_init);
6440
6441 // C99 6.7.8p4. All file scoped initializers need to be constant.
6442 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6443 CheckForConstantInitializer(Init, DclT);
6444 }
6445
6446 // We will represent direct-initialization similarly to copy-initialization:
6447 // int x(1); -as-> int x = 1;
6448 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6449 //
6450 // Clients that want to distinguish between the two forms, can check for
6451 // direct initializer using VarDecl::getInitStyle().
6452 // A major benefit is that clients that don't particularly care about which
6453 // exactly form was it (like the CodeGen) can handle both cases without
6454 // special case code.
6455
6456 // C++ 8.5p11:
6457 // The form of initialization (using parentheses or '=') is generally
6458 // insignificant, but does matter when the entity being initialized has a
6459 // class type.
6460 if (CXXDirectInit) {
6461 assert(DirectInit && "Call-style initializer must be direct init.");
6462 VDecl->setInitStyle(VarDecl::CallInit);
6463 } else if (DirectInit) {
6464 // This must be list-initialization. No other way is direct-initialization.
6465 VDecl->setInitStyle(VarDecl::ListInit);
6466 }
6467
6468 CheckCompleteVariableDeclaration(VDecl);
6469 }
6470
6471 /// ActOnInitializerError - Given that there was an error parsing an
6472 /// initializer for the given declaration, try to return to some form
6473 /// of sanity.
ActOnInitializerError(Decl * D)6474 void Sema::ActOnInitializerError(Decl *D) {
6475 // Our main concern here is re-establishing invariants like "a
6476 // variable's type is either dependent or complete".
6477 if (!D || D->isInvalidDecl()) return;
6478
6479 VarDecl *VD = dyn_cast<VarDecl>(D);
6480 if (!VD) return;
6481
6482 // Auto types are meaningless if we can't make sense of the initializer.
6483 if (ParsingInitForAutoVars.count(D)) {
6484 D->setInvalidDecl();
6485 return;
6486 }
6487
6488 QualType Ty = VD->getType();
6489 if (Ty->isDependentType()) return;
6490
6491 // Require a complete type.
6492 if (RequireCompleteType(VD->getLocation(),
6493 Context.getBaseElementType(Ty),
6494 diag::err_typecheck_decl_incomplete_type)) {
6495 VD->setInvalidDecl();
6496 return;
6497 }
6498
6499 // Require an abstract type.
6500 if (RequireNonAbstractType(VD->getLocation(), Ty,
6501 diag::err_abstract_type_in_decl,
6502 AbstractVariableType)) {
6503 VD->setInvalidDecl();
6504 return;
6505 }
6506
6507 // Don't bother complaining about constructors or destructors,
6508 // though.
6509 }
6510
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)6511 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6512 bool TypeMayContainAuto) {
6513 // If there is no declaration, there was an error parsing it. Just ignore it.
6514 if (RealDecl == 0)
6515 return;
6516
6517 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6518 QualType Type = Var->getType();
6519
6520 // C++11 [dcl.spec.auto]p3
6521 if (TypeMayContainAuto && Type->getContainedAutoType()) {
6522 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6523 << Var->getDeclName() << Type;
6524 Var->setInvalidDecl();
6525 return;
6526 }
6527
6528 // C++11 [class.static.data]p3: A static data member can be declared with
6529 // the constexpr specifier; if so, its declaration shall specify
6530 // a brace-or-equal-initializer.
6531 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6532 // the definition of a variable [...] or the declaration of a static data
6533 // member.
6534 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6535 if (Var->isStaticDataMember())
6536 Diag(Var->getLocation(),
6537 diag::err_constexpr_static_mem_var_requires_init)
6538 << Var->getDeclName();
6539 else
6540 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6541 Var->setInvalidDecl();
6542 return;
6543 }
6544
6545 switch (Var->isThisDeclarationADefinition()) {
6546 case VarDecl::Definition:
6547 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6548 break;
6549
6550 // We have an out-of-line definition of a static data member
6551 // that has an in-class initializer, so we type-check this like
6552 // a declaration.
6553 //
6554 // Fall through
6555
6556 case VarDecl::DeclarationOnly:
6557 // It's only a declaration.
6558
6559 // Block scope. C99 6.7p7: If an identifier for an object is
6560 // declared with no linkage (C99 6.2.2p6), the type for the
6561 // object shall be complete.
6562 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6563 !Var->getLinkage() && !Var->isInvalidDecl() &&
6564 RequireCompleteType(Var->getLocation(), Type,
6565 diag::err_typecheck_decl_incomplete_type))
6566 Var->setInvalidDecl();
6567
6568 // Make sure that the type is not abstract.
6569 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6570 RequireNonAbstractType(Var->getLocation(), Type,
6571 diag::err_abstract_type_in_decl,
6572 AbstractVariableType))
6573 Var->setInvalidDecl();
6574 return;
6575
6576 case VarDecl::TentativeDefinition:
6577 // File scope. C99 6.9.2p2: A declaration of an identifier for an
6578 // object that has file scope without an initializer, and without a
6579 // storage-class specifier or with the storage-class specifier "static",
6580 // constitutes a tentative definition. Note: A tentative definition with
6581 // external linkage is valid (C99 6.2.2p5).
6582 if (!Var->isInvalidDecl()) {
6583 if (const IncompleteArrayType *ArrayT
6584 = Context.getAsIncompleteArrayType(Type)) {
6585 if (RequireCompleteType(Var->getLocation(),
6586 ArrayT->getElementType(),
6587 diag::err_illegal_decl_array_incomplete_type))
6588 Var->setInvalidDecl();
6589 } else if (Var->getStorageClass() == SC_Static) {
6590 // C99 6.9.2p3: If the declaration of an identifier for an object is
6591 // a tentative definition and has internal linkage (C99 6.2.2p3), the
6592 // declared type shall not be an incomplete type.
6593 // NOTE: code such as the following
6594 // static struct s;
6595 // struct s { int a; };
6596 // is accepted by gcc. Hence here we issue a warning instead of
6597 // an error and we do not invalidate the static declaration.
6598 // NOTE: to avoid multiple warnings, only check the first declaration.
6599 if (Var->getPreviousDecl() == 0)
6600 RequireCompleteType(Var->getLocation(), Type,
6601 diag::ext_typecheck_decl_incomplete_type);
6602 }
6603 }
6604
6605 // Record the tentative definition; we're done.
6606 if (!Var->isInvalidDecl())
6607 TentativeDefinitions.push_back(Var);
6608 return;
6609 }
6610
6611 // Provide a specific diagnostic for uninitialized variable
6612 // definitions with incomplete array type.
6613 if (Type->isIncompleteArrayType()) {
6614 Diag(Var->getLocation(),
6615 diag::err_typecheck_incomplete_array_needs_initializer);
6616 Var->setInvalidDecl();
6617 return;
6618 }
6619
6620 // Provide a specific diagnostic for uninitialized variable
6621 // definitions with reference type.
6622 if (Type->isReferenceType()) {
6623 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6624 << Var->getDeclName()
6625 << SourceRange(Var->getLocation(), Var->getLocation());
6626 Var->setInvalidDecl();
6627 return;
6628 }
6629
6630 // Do not attempt to type-check the default initializer for a
6631 // variable with dependent type.
6632 if (Type->isDependentType())
6633 return;
6634
6635 if (Var->isInvalidDecl())
6636 return;
6637
6638 if (RequireCompleteType(Var->getLocation(),
6639 Context.getBaseElementType(Type),
6640 diag::err_typecheck_decl_incomplete_type)) {
6641 Var->setInvalidDecl();
6642 return;
6643 }
6644
6645 // The variable can not have an abstract class type.
6646 if (RequireNonAbstractType(Var->getLocation(), Type,
6647 diag::err_abstract_type_in_decl,
6648 AbstractVariableType)) {
6649 Var->setInvalidDecl();
6650 return;
6651 }
6652
6653 // Check for jumps past the implicit initializer. C++0x
6654 // clarifies that this applies to a "variable with automatic
6655 // storage duration", not a "local variable".
6656 // C++11 [stmt.dcl]p3
6657 // A program that jumps from a point where a variable with automatic
6658 // storage duration is not in scope to a point where it is in scope is
6659 // ill-formed unless the variable has scalar type, class type with a
6660 // trivial default constructor and a trivial destructor, a cv-qualified
6661 // version of one of these types, or an array of one of the preceding
6662 // types and is declared without an initializer.
6663 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6664 if (const RecordType *Record
6665 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6666 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6667 // Mark the function for further checking even if the looser rules of
6668 // C++11 do not require such checks, so that we can diagnose
6669 // incompatibilities with C++98.
6670 if (!CXXRecord->isPOD())
6671 getCurFunction()->setHasBranchProtectedScope();
6672 }
6673 }
6674
6675 // C++03 [dcl.init]p9:
6676 // If no initializer is specified for an object, and the
6677 // object is of (possibly cv-qualified) non-POD class type (or
6678 // array thereof), the object shall be default-initialized; if
6679 // the object is of const-qualified type, the underlying class
6680 // type shall have a user-declared default
6681 // constructor. Otherwise, if no initializer is specified for
6682 // a non- static object, the object and its subobjects, if
6683 // any, have an indeterminate initial value); if the object
6684 // or any of its subobjects are of const-qualified type, the
6685 // program is ill-formed.
6686 // C++0x [dcl.init]p11:
6687 // If no initializer is specified for an object, the object is
6688 // default-initialized; [...].
6689 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6690 InitializationKind Kind
6691 = InitializationKind::CreateDefault(Var->getLocation());
6692
6693 InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6694 ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6695 MultiExprArg(*this, 0, 0));
6696 if (Init.isInvalid())
6697 Var->setInvalidDecl();
6698 else if (Init.get()) {
6699 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6700 // This is important for template substitution.
6701 Var->setInitStyle(VarDecl::CallInit);
6702 }
6703
6704 CheckCompleteVariableDeclaration(Var);
6705 }
6706 }
6707
ActOnCXXForRangeDecl(Decl * D)6708 void Sema::ActOnCXXForRangeDecl(Decl *D) {
6709 VarDecl *VD = dyn_cast<VarDecl>(D);
6710 if (!VD) {
6711 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6712 D->setInvalidDecl();
6713 return;
6714 }
6715
6716 VD->setCXXForRangeDecl(true);
6717
6718 // for-range-declaration cannot be given a storage class specifier.
6719 int Error = -1;
6720 switch (VD->getStorageClassAsWritten()) {
6721 case SC_None:
6722 break;
6723 case SC_Extern:
6724 Error = 0;
6725 break;
6726 case SC_Static:
6727 Error = 1;
6728 break;
6729 case SC_PrivateExtern:
6730 Error = 2;
6731 break;
6732 case SC_Auto:
6733 Error = 3;
6734 break;
6735 case SC_Register:
6736 Error = 4;
6737 break;
6738 case SC_OpenCLWorkGroupLocal:
6739 llvm_unreachable("Unexpected storage class");
6740 }
6741 if (VD->isConstexpr())
6742 Error = 5;
6743 if (Error != -1) {
6744 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6745 << VD->getDeclName() << Error;
6746 D->setInvalidDecl();
6747 }
6748 }
6749
CheckCompleteVariableDeclaration(VarDecl * var)6750 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6751 if (var->isInvalidDecl()) return;
6752
6753 // In ARC, don't allow jumps past the implicit initialization of a
6754 // local retaining variable.
6755 if (getLangOpts().ObjCAutoRefCount &&
6756 var->hasLocalStorage()) {
6757 switch (var->getType().getObjCLifetime()) {
6758 case Qualifiers::OCL_None:
6759 case Qualifiers::OCL_ExplicitNone:
6760 case Qualifiers::OCL_Autoreleasing:
6761 break;
6762
6763 case Qualifiers::OCL_Weak:
6764 case Qualifiers::OCL_Strong:
6765 getCurFunction()->setHasBranchProtectedScope();
6766 break;
6767 }
6768 }
6769
6770 // All the following checks are C++ only.
6771 if (!getLangOpts().CPlusPlus) return;
6772
6773 QualType baseType = Context.getBaseElementType(var->getType());
6774 if (baseType->isDependentType()) return;
6775
6776 // __block variables might require us to capture a copy-initializer.
6777 if (var->hasAttr<BlocksAttr>()) {
6778 // It's currently invalid to ever have a __block variable with an
6779 // array type; should we diagnose that here?
6780
6781 // Regardless, we don't want to ignore array nesting when
6782 // constructing this copy.
6783 QualType type = var->getType();
6784
6785 if (type->isStructureOrClassType()) {
6786 SourceLocation poi = var->getLocation();
6787 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6788 ExprResult result =
6789 PerformCopyInitialization(
6790 InitializedEntity::InitializeBlock(poi, type, false),
6791 poi, Owned(varRef));
6792 if (!result.isInvalid()) {
6793 result = MaybeCreateExprWithCleanups(result);
6794 Expr *init = result.takeAs<Expr>();
6795 Context.setBlockVarCopyInits(var, init);
6796 }
6797 }
6798 }
6799
6800 Expr *Init = var->getInit();
6801 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6802
6803 if (!var->getDeclContext()->isDependentContext() && Init) {
6804 if (IsGlobal && !var->isConstexpr() &&
6805 getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6806 var->getLocation())
6807 != DiagnosticsEngine::Ignored &&
6808 !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6809 Diag(var->getLocation(), diag::warn_global_constructor)
6810 << Init->getSourceRange();
6811
6812 if (var->isConstexpr()) {
6813 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6814 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6815 SourceLocation DiagLoc = var->getLocation();
6816 // If the note doesn't add any useful information other than a source
6817 // location, fold it into the primary diagnostic.
6818 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6819 diag::note_invalid_subexpr_in_const_expr) {
6820 DiagLoc = Notes[0].first;
6821 Notes.clear();
6822 }
6823 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6824 << var << Init->getSourceRange();
6825 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6826 Diag(Notes[I].first, Notes[I].second);
6827 }
6828 } else if (var->isUsableInConstantExpressions(Context)) {
6829 // Check whether the initializer of a const variable of integral or
6830 // enumeration type is an ICE now, since we can't tell whether it was
6831 // initialized by a constant expression if we check later.
6832 var->checkInitIsICE();
6833 }
6834 }
6835
6836 // Require the destructor.
6837 if (const RecordType *recordType = baseType->getAs<RecordType>())
6838 FinalizeVarWithDestructor(var, recordType);
6839 }
6840
6841 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6842 /// any semantic actions necessary after any initializer has been attached.
6843 void
FinalizeDeclaration(Decl * ThisDecl)6844 Sema::FinalizeDeclaration(Decl *ThisDecl) {
6845 // Note that we are no longer parsing the initializer for this declaration.
6846 ParsingInitForAutoVars.erase(ThisDecl);
6847 }
6848
6849 Sema::DeclGroupPtrTy
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,Decl ** Group,unsigned NumDecls)6850 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6851 Decl **Group, unsigned NumDecls) {
6852 SmallVector<Decl*, 8> Decls;
6853
6854 if (DS.isTypeSpecOwned())
6855 Decls.push_back(DS.getRepAsDecl());
6856
6857 for (unsigned i = 0; i != NumDecls; ++i)
6858 if (Decl *D = Group[i])
6859 Decls.push_back(D);
6860
6861 return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6862 DS.getTypeSpecType() == DeclSpec::TST_auto);
6863 }
6864
6865 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
6866 /// group, performing any necessary semantic checking.
6867 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(Decl ** Group,unsigned NumDecls,bool TypeMayContainAuto)6868 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6869 bool TypeMayContainAuto) {
6870 // C++0x [dcl.spec.auto]p7:
6871 // If the type deduced for the template parameter U is not the same in each
6872 // deduction, the program is ill-formed.
6873 // FIXME: When initializer-list support is added, a distinction is needed
6874 // between the deduced type U and the deduced type which 'auto' stands for.
6875 // auto a = 0, b = { 1, 2, 3 };
6876 // is legal because the deduced type U is 'int' in both cases.
6877 if (TypeMayContainAuto && NumDecls > 1) {
6878 QualType Deduced;
6879 CanQualType DeducedCanon;
6880 VarDecl *DeducedDecl = 0;
6881 for (unsigned i = 0; i != NumDecls; ++i) {
6882 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6883 AutoType *AT = D->getType()->getContainedAutoType();
6884 // Don't reissue diagnostics when instantiating a template.
6885 if (AT && D->isInvalidDecl())
6886 break;
6887 if (AT && AT->isDeduced()) {
6888 QualType U = AT->getDeducedType();
6889 CanQualType UCanon = Context.getCanonicalType(U);
6890 if (Deduced.isNull()) {
6891 Deduced = U;
6892 DeducedCanon = UCanon;
6893 DeducedDecl = D;
6894 } else if (DeducedCanon != UCanon) {
6895 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6896 diag::err_auto_different_deductions)
6897 << Deduced << DeducedDecl->getDeclName()
6898 << U << D->getDeclName()
6899 << DeducedDecl->getInit()->getSourceRange()
6900 << D->getInit()->getSourceRange();
6901 D->setInvalidDecl();
6902 break;
6903 }
6904 }
6905 }
6906 }
6907 }
6908
6909 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6910 }
6911
6912
6913 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6914 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)6915 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6916 const DeclSpec &DS = D.getDeclSpec();
6917
6918 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6919 // C++03 [dcl.stc]p2 also permits 'auto'.
6920 VarDecl::StorageClass StorageClass = SC_None;
6921 VarDecl::StorageClass StorageClassAsWritten = SC_None;
6922 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6923 StorageClass = SC_Register;
6924 StorageClassAsWritten = SC_Register;
6925 } else if (getLangOpts().CPlusPlus &&
6926 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6927 StorageClass = SC_Auto;
6928 StorageClassAsWritten = SC_Auto;
6929 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6930 Diag(DS.getStorageClassSpecLoc(),
6931 diag::err_invalid_storage_class_in_func_decl);
6932 D.getMutableDeclSpec().ClearStorageClassSpecs();
6933 }
6934
6935 if (D.getDeclSpec().isThreadSpecified())
6936 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6937 if (D.getDeclSpec().isConstexprSpecified())
6938 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6939 << 0;
6940
6941 DiagnoseFunctionSpecifiers(D);
6942
6943 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6944 QualType parmDeclType = TInfo->getType();
6945
6946 if (getLangOpts().CPlusPlus) {
6947 // Check that there are no default arguments inside the type of this
6948 // parameter.
6949 CheckExtraCXXDefaultArguments(D);
6950
6951 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6952 if (D.getCXXScopeSpec().isSet()) {
6953 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6954 << D.getCXXScopeSpec().getRange();
6955 D.getCXXScopeSpec().clear();
6956 }
6957 }
6958
6959 // Ensure we have a valid name
6960 IdentifierInfo *II = 0;
6961 if (D.hasName()) {
6962 II = D.getIdentifier();
6963 if (!II) {
6964 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6965 << GetNameForDeclarator(D).getName().getAsString();
6966 D.setInvalidType(true);
6967 }
6968 }
6969
6970 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6971 if (II) {
6972 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6973 ForRedeclaration);
6974 LookupName(R, S);
6975 if (R.isSingleResult()) {
6976 NamedDecl *PrevDecl = R.getFoundDecl();
6977 if (PrevDecl->isTemplateParameter()) {
6978 // Maybe we will complain about the shadowed template parameter.
6979 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6980 // Just pretend that we didn't see the previous declaration.
6981 PrevDecl = 0;
6982 } else if (S->isDeclScope(PrevDecl)) {
6983 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6984 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6985
6986 // Recover by removing the name
6987 II = 0;
6988 D.SetIdentifier(0, D.getIdentifierLoc());
6989 D.setInvalidType(true);
6990 }
6991 }
6992 }
6993
6994 // Temporarily put parameter variables in the translation unit, not
6995 // the enclosing context. This prevents them from accidentally
6996 // looking like class members in C++.
6997 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6998 D.getLocStart(),
6999 D.getIdentifierLoc(), II,
7000 parmDeclType, TInfo,
7001 StorageClass, StorageClassAsWritten);
7002
7003 if (D.isInvalidType())
7004 New->setInvalidDecl();
7005
7006 assert(S->isFunctionPrototypeScope());
7007 assert(S->getFunctionPrototypeDepth() >= 1);
7008 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7009 S->getNextFunctionPrototypeIndex());
7010
7011 // Add the parameter declaration into this scope.
7012 S->AddDecl(New);
7013 if (II)
7014 IdResolver.AddDecl(New);
7015
7016 ProcessDeclAttributes(S, New, D);
7017
7018 if (D.getDeclSpec().isModulePrivateSpecified())
7019 Diag(New->getLocation(), diag::err_module_private_local)
7020 << 1 << New->getDeclName()
7021 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7022 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7023
7024 if (New->hasAttr<BlocksAttr>()) {
7025 Diag(New->getLocation(), diag::err_block_on_nonlocal);
7026 }
7027 return New;
7028 }
7029
7030 /// \brief Synthesizes a variable for a parameter arising from a
7031 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)7032 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7033 SourceLocation Loc,
7034 QualType T) {
7035 /* FIXME: setting StartLoc == Loc.
7036 Would it be worth to modify callers so as to provide proper source
7037 location for the unnamed parameters, embedding the parameter's type? */
7038 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7039 T, Context.getTrivialTypeSourceInfo(T, Loc),
7040 SC_None, SC_None, 0);
7041 Param->setImplicit();
7042 return Param;
7043 }
7044
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)7045 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7046 ParmVarDecl * const *ParamEnd) {
7047 // Don't diagnose unused-parameter errors in template instantiations; we
7048 // will already have done so in the template itself.
7049 if (!ActiveTemplateInstantiations.empty())
7050 return;
7051
7052 for (; Param != ParamEnd; ++Param) {
7053 if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7054 !(*Param)->hasAttr<UnusedAttr>()) {
7055 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7056 << (*Param)->getDeclName();
7057 }
7058 }
7059 }
7060
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)7061 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7062 ParmVarDecl * const *ParamEnd,
7063 QualType ReturnTy,
7064 NamedDecl *D) {
7065 if (LangOpts.NumLargeByValueCopy == 0) // No check.
7066 return;
7067
7068 // Warn if the return value is pass-by-value and larger than the specified
7069 // threshold.
7070 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7071 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7072 if (Size > LangOpts.NumLargeByValueCopy)
7073 Diag(D->getLocation(), diag::warn_return_value_size)
7074 << D->getDeclName() << Size;
7075 }
7076
7077 // Warn if any parameter is pass-by-value and larger than the specified
7078 // threshold.
7079 for (; Param != ParamEnd; ++Param) {
7080 QualType T = (*Param)->getType();
7081 if (T->isDependentType() || !T.isPODType(Context))
7082 continue;
7083 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7084 if (Size > LangOpts.NumLargeByValueCopy)
7085 Diag((*Param)->getLocation(), diag::warn_parameter_size)
7086 << (*Param)->getDeclName() << Size;
7087 }
7088 }
7089
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass,VarDecl::StorageClass StorageClassAsWritten)7090 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7091 SourceLocation NameLoc, IdentifierInfo *Name,
7092 QualType T, TypeSourceInfo *TSInfo,
7093 VarDecl::StorageClass StorageClass,
7094 VarDecl::StorageClass StorageClassAsWritten) {
7095 // In ARC, infer a lifetime qualifier for appropriate parameter types.
7096 if (getLangOpts().ObjCAutoRefCount &&
7097 T.getObjCLifetime() == Qualifiers::OCL_None &&
7098 T->isObjCLifetimeType()) {
7099
7100 Qualifiers::ObjCLifetime lifetime;
7101
7102 // Special cases for arrays:
7103 // - if it's const, use __unsafe_unretained
7104 // - otherwise, it's an error
7105 if (T->isArrayType()) {
7106 if (!T.isConstQualified()) {
7107 DelayedDiagnostics.add(
7108 sema::DelayedDiagnostic::makeForbiddenType(
7109 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7110 }
7111 lifetime = Qualifiers::OCL_ExplicitNone;
7112 } else {
7113 lifetime = T->getObjCARCImplicitLifetime();
7114 }
7115 T = Context.getLifetimeQualifiedType(T, lifetime);
7116 }
7117
7118 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7119 Context.getAdjustedParameterType(T),
7120 TSInfo,
7121 StorageClass, StorageClassAsWritten,
7122 0);
7123
7124 // Parameters can not be abstract class types.
7125 // For record types, this is done by the AbstractClassUsageDiagnoser once
7126 // the class has been completely parsed.
7127 if (!CurContext->isRecord() &&
7128 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7129 AbstractParamType))
7130 New->setInvalidDecl();
7131
7132 // Parameter declarators cannot be interface types. All ObjC objects are
7133 // passed by reference.
7134 if (T->isObjCObjectType()) {
7135 Diag(NameLoc,
7136 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7137 << FixItHint::CreateInsertion(NameLoc, "*");
7138 T = Context.getObjCObjectPointerType(T);
7139 New->setType(T);
7140 }
7141
7142 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7143 // duration shall not be qualified by an address-space qualifier."
7144 // Since all parameters have automatic store duration, they can not have
7145 // an address space.
7146 if (T.getAddressSpace() != 0) {
7147 Diag(NameLoc, diag::err_arg_with_address_space);
7148 New->setInvalidDecl();
7149 }
7150
7151 return New;
7152 }
7153
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)7154 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7155 SourceLocation LocAfterDecls) {
7156 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7157
7158 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7159 // for a K&R function.
7160 if (!FTI.hasPrototype) {
7161 for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7162 --i;
7163 if (FTI.ArgInfo[i].Param == 0) {
7164 SmallString<256> Code;
7165 llvm::raw_svector_ostream(Code) << " int "
7166 << FTI.ArgInfo[i].Ident->getName()
7167 << ";\n";
7168 Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7169 << FTI.ArgInfo[i].Ident
7170 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7171
7172 // Implicitly declare the argument as type 'int' for lack of a better
7173 // type.
7174 AttributeFactory attrs;
7175 DeclSpec DS(attrs);
7176 const char* PrevSpec; // unused
7177 unsigned DiagID; // unused
7178 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7179 PrevSpec, DiagID);
7180 Declarator ParamD(DS, Declarator::KNRTypeListContext);
7181 ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7182 FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7183 }
7184 }
7185 }
7186 }
7187
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)7188 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7189 assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7190 assert(D.isFunctionDeclarator() && "Not a function declarator!");
7191 Scope *ParentScope = FnBodyScope->getParent();
7192
7193 D.setFunctionDefinitionKind(FDK_Definition);
7194 Decl *DP = HandleDeclarator(ParentScope, D,
7195 MultiTemplateParamsArg(*this));
7196 return ActOnStartOfFunctionDef(FnBodyScope, DP);
7197 }
7198
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD)7199 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7200 // Don't warn about invalid declarations.
7201 if (FD->isInvalidDecl())
7202 return false;
7203
7204 // Or declarations that aren't global.
7205 if (!FD->isGlobal())
7206 return false;
7207
7208 // Don't warn about C++ member functions.
7209 if (isa<CXXMethodDecl>(FD))
7210 return false;
7211
7212 // Don't warn about 'main'.
7213 if (FD->isMain())
7214 return false;
7215
7216 // Don't warn about inline functions.
7217 if (FD->isInlined())
7218 return false;
7219
7220 // Don't warn about function templates.
7221 if (FD->getDescribedFunctionTemplate())
7222 return false;
7223
7224 // Don't warn about function template specializations.
7225 if (FD->isFunctionTemplateSpecialization())
7226 return false;
7227
7228 bool MissingPrototype = true;
7229 for (const FunctionDecl *Prev = FD->getPreviousDecl();
7230 Prev; Prev = Prev->getPreviousDecl()) {
7231 // Ignore any declarations that occur in function or method
7232 // scope, because they aren't visible from the header.
7233 if (Prev->getDeclContext()->isFunctionOrMethod())
7234 continue;
7235
7236 MissingPrototype = !Prev->getType()->isFunctionProtoType();
7237 break;
7238 }
7239
7240 return MissingPrototype;
7241 }
7242
CheckForFunctionRedefinition(FunctionDecl * FD)7243 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7244 // Don't complain if we're in GNU89 mode and the previous definition
7245 // was an extern inline function.
7246 const FunctionDecl *Definition;
7247 if (FD->isDefined(Definition) &&
7248 !canRedefineFunction(Definition, getLangOpts())) {
7249 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7250 Definition->getStorageClass() == SC_Extern)
7251 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7252 << FD->getDeclName() << getLangOpts().CPlusPlus;
7253 else
7254 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7255 Diag(Definition->getLocation(), diag::note_previous_definition);
7256 }
7257 }
7258
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)7259 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7260 // Clear the last template instantiation error context.
7261 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7262
7263 if (!D)
7264 return D;
7265 FunctionDecl *FD = 0;
7266
7267 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7268 FD = FunTmpl->getTemplatedDecl();
7269 else
7270 FD = cast<FunctionDecl>(D);
7271
7272 // Enter a new function scope
7273 PushFunctionScope();
7274
7275 // See if this is a redefinition.
7276 if (!FD->isLateTemplateParsed())
7277 CheckForFunctionRedefinition(FD);
7278
7279 // Builtin functions cannot be defined.
7280 if (unsigned BuiltinID = FD->getBuiltinID()) {
7281 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7282 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7283 FD->setInvalidDecl();
7284 }
7285 }
7286
7287 // The return type of a function definition must be complete
7288 // (C99 6.9.1p3, C++ [dcl.fct]p6).
7289 QualType ResultType = FD->getResultType();
7290 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7291 !FD->isInvalidDecl() &&
7292 RequireCompleteType(FD->getLocation(), ResultType,
7293 diag::err_func_def_incomplete_result))
7294 FD->setInvalidDecl();
7295
7296 // GNU warning -Wmissing-prototypes:
7297 // Warn if a global function is defined without a previous
7298 // prototype declaration. This warning is issued even if the
7299 // definition itself provides a prototype. The aim is to detect
7300 // global functions that fail to be declared in header files.
7301 if (ShouldWarnAboutMissingPrototype(FD))
7302 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7303
7304 if (FnBodyScope)
7305 PushDeclContext(FnBodyScope, FD);
7306
7307 // Check the validity of our function parameters
7308 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7309 /*CheckParameterNames=*/true);
7310
7311 // Introduce our parameters into the function scope
7312 for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7313 ParmVarDecl *Param = FD->getParamDecl(p);
7314 Param->setOwningFunction(FD);
7315
7316 // If this has an identifier, add it to the scope stack.
7317 if (Param->getIdentifier() && FnBodyScope) {
7318 CheckShadow(FnBodyScope, Param);
7319
7320 PushOnScopeChains(Param, FnBodyScope);
7321 }
7322 }
7323
7324 // If we had any tags defined in the function prototype,
7325 // introduce them into the function scope.
7326 if (FnBodyScope) {
7327 for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7328 E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7329 NamedDecl *D = *I;
7330
7331 // Some of these decls (like enums) may have been pinned to the translation unit
7332 // for lack of a real context earlier. If so, remove from the translation unit
7333 // and reattach to the current context.
7334 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7335 // Is the decl actually in the context?
7336 for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7337 DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7338 if (*DI == D) {
7339 Context.getTranslationUnitDecl()->removeDecl(D);
7340 break;
7341 }
7342 }
7343 // Either way, reassign the lexical decl context to our FunctionDecl.
7344 D->setLexicalDeclContext(CurContext);
7345 }
7346
7347 // If the decl has a non-null name, make accessible in the current scope.
7348 if (!D->getName().empty())
7349 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7350
7351 // Similarly, dive into enums and fish their constants out, making them
7352 // accessible in this scope.
7353 if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7354 for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7355 EE = ED->enumerator_end(); EI != EE; ++EI)
7356 PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7357 }
7358 }
7359 }
7360
7361 // Ensure that the function's exception specification is instantiated.
7362 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7363 ResolveExceptionSpec(D->getLocation(), FPT);
7364
7365 // Checking attributes of current function definition
7366 // dllimport attribute.
7367 DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7368 if (DA && (!FD->getAttr<DLLExportAttr>())) {
7369 // dllimport attribute cannot be directly applied to definition.
7370 // Microsoft accepts dllimport for functions defined within class scope.
7371 if (!DA->isInherited() &&
7372 !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7373 Diag(FD->getLocation(),
7374 diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7375 << "dllimport";
7376 FD->setInvalidDecl();
7377 return FD;
7378 }
7379
7380 // Visual C++ appears to not think this is an issue, so only issue
7381 // a warning when Microsoft extensions are disabled.
7382 if (!LangOpts.MicrosoftExt) {
7383 // If a symbol previously declared dllimport is later defined, the
7384 // attribute is ignored in subsequent references, and a warning is
7385 // emitted.
7386 Diag(FD->getLocation(),
7387 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7388 << FD->getName() << "dllimport";
7389 }
7390 }
7391 return FD;
7392 }
7393
7394 /// \brief Given the set of return statements within a function body,
7395 /// compute the variables that are subject to the named return value
7396 /// optimization.
7397 ///
7398 /// Each of the variables that is subject to the named return value
7399 /// optimization will be marked as NRVO variables in the AST, and any
7400 /// return statement that has a marked NRVO variable as its NRVO candidate can
7401 /// use the named return value optimization.
7402 ///
7403 /// This function applies a very simplistic algorithm for NRVO: if every return
7404 /// statement in the function has the same NRVO candidate, that candidate is
7405 /// the NRVO variable.
7406 ///
7407 /// FIXME: Employ a smarter algorithm that accounts for multiple return
7408 /// statements and the lifetimes of the NRVO candidates. We should be able to
7409 /// find a maximal set of NRVO variables.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)7410 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7411 ReturnStmt **Returns = Scope->Returns.data();
7412
7413 const VarDecl *NRVOCandidate = 0;
7414 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7415 if (!Returns[I]->getNRVOCandidate())
7416 return;
7417
7418 if (!NRVOCandidate)
7419 NRVOCandidate = Returns[I]->getNRVOCandidate();
7420 else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7421 return;
7422 }
7423
7424 if (NRVOCandidate)
7425 const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7426 }
7427
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)7428 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7429 return ActOnFinishFunctionBody(D, move(BodyArg), false);
7430 }
7431
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)7432 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7433 bool IsInstantiation) {
7434 FunctionDecl *FD = 0;
7435 FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7436 if (FunTmpl)
7437 FD = FunTmpl->getTemplatedDecl();
7438 else
7439 FD = dyn_cast_or_null<FunctionDecl>(dcl);
7440
7441 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7442 sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7443
7444 if (FD) {
7445 FD->setBody(Body);
7446
7447 // If the function implicitly returns zero (like 'main') or is naked,
7448 // don't complain about missing return statements.
7449 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7450 WP.disableCheckFallThrough();
7451
7452 // MSVC permits the use of pure specifier (=0) on function definition,
7453 // defined at class scope, warn about this non standard construct.
7454 if (getLangOpts().MicrosoftExt && FD->isPure())
7455 Diag(FD->getLocation(), diag::warn_pure_function_definition);
7456
7457 if (!FD->isInvalidDecl()) {
7458 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7459 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7460 FD->getResultType(), FD);
7461
7462 // If this is a constructor, we need a vtable.
7463 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7464 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7465
7466 computeNRVO(Body, getCurFunction());
7467 }
7468
7469 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7470 "Function parsing confused");
7471 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7472 assert(MD == getCurMethodDecl() && "Method parsing confused");
7473 MD->setBody(Body);
7474 if (Body)
7475 MD->setEndLoc(Body->getLocEnd());
7476 if (!MD->isInvalidDecl()) {
7477 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7478 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7479 MD->getResultType(), MD);
7480
7481 if (Body)
7482 computeNRVO(Body, getCurFunction());
7483 }
7484 if (ObjCShouldCallSuperDealloc) {
7485 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7486 ObjCShouldCallSuperDealloc = false;
7487 }
7488 if (ObjCShouldCallSuperFinalize) {
7489 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7490 ObjCShouldCallSuperFinalize = false;
7491 }
7492 } else {
7493 return 0;
7494 }
7495
7496 assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7497 "ObjC methods, which should have been handled in the block above.");
7498 assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7499 "ObjC methods, which should have been handled in the block above.");
7500
7501 // Verify and clean out per-function state.
7502 if (Body) {
7503 // C++ constructors that have function-try-blocks can't have return
7504 // statements in the handlers of that block. (C++ [except.handle]p14)
7505 // Verify this.
7506 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7507 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7508
7509 // Verify that gotos and switch cases don't jump into scopes illegally.
7510 if (getCurFunction()->NeedsScopeChecking() &&
7511 !dcl->isInvalidDecl() &&
7512 !hasAnyUnrecoverableErrorsInThisFunction())
7513 DiagnoseInvalidJumps(Body);
7514
7515 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7516 if (!Destructor->getParent()->isDependentType())
7517 CheckDestructor(Destructor);
7518
7519 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7520 Destructor->getParent());
7521 }
7522
7523 // If any errors have occurred, clear out any temporaries that may have
7524 // been leftover. This ensures that these temporaries won't be picked up for
7525 // deletion in some later function.
7526 if (PP.getDiagnostics().hasErrorOccurred() ||
7527 PP.getDiagnostics().getSuppressAllDiagnostics()) {
7528 DiscardCleanupsInEvaluationContext();
7529 } else if (!isa<FunctionTemplateDecl>(dcl)) {
7530 // Since the body is valid, issue any analysis-based warnings that are
7531 // enabled.
7532 ActivePolicy = &WP;
7533 }
7534
7535 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7536 (!CheckConstexprFunctionDecl(FD) ||
7537 !CheckConstexprFunctionBody(FD, Body)))
7538 FD->setInvalidDecl();
7539
7540 assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7541 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7542 assert(MaybeODRUseExprs.empty() &&
7543 "Leftover expressions for odr-use checking");
7544 }
7545
7546 if (!IsInstantiation)
7547 PopDeclContext();
7548
7549 PopFunctionScopeInfo(ActivePolicy, dcl);
7550
7551 // If any errors have occurred, clear out any temporaries that may have
7552 // been leftover. This ensures that these temporaries won't be picked up for
7553 // deletion in some later function.
7554 if (getDiagnostics().hasErrorOccurred()) {
7555 DiscardCleanupsInEvaluationContext();
7556 }
7557
7558 return dcl;
7559 }
7560
7561
7562 /// When we finish delayed parsing of an attribute, we must attach it to the
7563 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)7564 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7565 ParsedAttributes &Attrs) {
7566 // Always attach attributes to the underlying decl.
7567 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7568 D = TD->getTemplatedDecl();
7569 ProcessDeclAttributeList(S, D, Attrs.getList());
7570
7571 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7572 if (Method->isStatic())
7573 checkThisInStaticMemberFunctionAttributes(Method);
7574 }
7575
7576
7577 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7578 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)7579 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7580 IdentifierInfo &II, Scope *S) {
7581 // Before we produce a declaration for an implicitly defined
7582 // function, see whether there was a locally-scoped declaration of
7583 // this name as a function or variable. If so, use that
7584 // (non-visible) declaration, and complain about it.
7585 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7586 = findLocallyScopedExternalDecl(&II);
7587 if (Pos != LocallyScopedExternalDecls.end()) {
7588 Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7589 Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7590 return Pos->second;
7591 }
7592
7593 // Extension in C99. Legal in C90, but warn about it.
7594 unsigned diag_id;
7595 if (II.getName().startswith("__builtin_"))
7596 diag_id = diag::warn_builtin_unknown;
7597 else if (getLangOpts().C99)
7598 diag_id = diag::ext_implicit_function_decl;
7599 else
7600 diag_id = diag::warn_implicit_function_decl;
7601 Diag(Loc, diag_id) << &II;
7602
7603 // Because typo correction is expensive, only do it if the implicit
7604 // function declaration is going to be treated as an error.
7605 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7606 TypoCorrection Corrected;
7607 DeclFilterCCC<FunctionDecl> Validator;
7608 if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7609 LookupOrdinaryName, S, 0, Validator))) {
7610 std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7611 std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7612 FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7613
7614 Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7615 << FixItHint::CreateReplacement(Loc, CorrectedStr);
7616
7617 if (Func->getLocation().isValid()
7618 && !II.getName().startswith("__builtin_"))
7619 Diag(Func->getLocation(), diag::note_previous_decl)
7620 << CorrectedQuotedStr;
7621 }
7622 }
7623
7624 // Set a Declarator for the implicit definition: int foo();
7625 const char *Dummy;
7626 AttributeFactory attrFactory;
7627 DeclSpec DS(attrFactory);
7628 unsigned DiagID;
7629 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7630 (void)Error; // Silence warning.
7631 assert(!Error && "Error setting up implicit decl!");
7632 Declarator D(DS, Declarator::BlockContext);
7633 D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7634 0, 0, true, SourceLocation(),
7635 SourceLocation(), SourceLocation(),
7636 SourceLocation(),
7637 EST_None, SourceLocation(),
7638 0, 0, 0, 0, 0, Loc, Loc, D),
7639 DS.getAttributes(),
7640 SourceLocation());
7641 D.SetIdentifier(&II, Loc);
7642
7643 // Insert this function into translation-unit scope.
7644
7645 DeclContext *PrevDC = CurContext;
7646 CurContext = Context.getTranslationUnitDecl();
7647
7648 FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7649 FD->setImplicit();
7650
7651 CurContext = PrevDC;
7652
7653 AddKnownFunctionAttributes(FD);
7654
7655 return FD;
7656 }
7657
7658 /// \brief Adds any function attributes that we know a priori based on
7659 /// the declaration of this function.
7660 ///
7661 /// These attributes can apply both to implicitly-declared builtins
7662 /// (like __builtin___printf_chk) or to library-declared functions
7663 /// like NSLog or printf.
7664 ///
7665 /// We need to check for duplicate attributes both here and where user-written
7666 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)7667 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7668 if (FD->isInvalidDecl())
7669 return;
7670
7671 // If this is a built-in function, map its builtin attributes to
7672 // actual attributes.
7673 if (unsigned BuiltinID = FD->getBuiltinID()) {
7674 // Handle printf-formatting attributes.
7675 unsigned FormatIdx;
7676 bool HasVAListArg;
7677 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7678 if (!FD->getAttr<FormatAttr>()) {
7679 const char *fmt = "printf";
7680 unsigned int NumParams = FD->getNumParams();
7681 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7682 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7683 fmt = "NSString";
7684 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7685 fmt, FormatIdx+1,
7686 HasVAListArg ? 0 : FormatIdx+2));
7687 }
7688 }
7689 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7690 HasVAListArg)) {
7691 if (!FD->getAttr<FormatAttr>())
7692 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7693 "scanf", FormatIdx+1,
7694 HasVAListArg ? 0 : FormatIdx+2));
7695 }
7696
7697 // Mark const if we don't care about errno and that is the only
7698 // thing preventing the function from being const. This allows
7699 // IRgen to use LLVM intrinsics for such functions.
7700 if (!getLangOpts().MathErrno &&
7701 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7702 if (!FD->getAttr<ConstAttr>())
7703 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7704 }
7705
7706 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7707 !FD->getAttr<ReturnsTwiceAttr>())
7708 FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7709 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7710 FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7711 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7712 FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7713 }
7714
7715 IdentifierInfo *Name = FD->getIdentifier();
7716 if (!Name)
7717 return;
7718 if ((!getLangOpts().CPlusPlus &&
7719 FD->getDeclContext()->isTranslationUnit()) ||
7720 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7721 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7722 LinkageSpecDecl::lang_c)) {
7723 // Okay: this could be a libc/libm/Objective-C function we know
7724 // about.
7725 } else
7726 return;
7727
7728 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7729 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7730 // target-specific builtins, perhaps?
7731 if (!FD->getAttr<FormatAttr>())
7732 FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7733 "printf", 2,
7734 Name->isStr("vasprintf") ? 0 : 3));
7735 }
7736 }
7737
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)7738 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7739 TypeSourceInfo *TInfo) {
7740 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7741 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7742
7743 if (!TInfo) {
7744 assert(D.isInvalidType() && "no declarator info for valid type");
7745 TInfo = Context.getTrivialTypeSourceInfo(T);
7746 }
7747
7748 // Scope manipulation handled by caller.
7749 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7750 D.getLocStart(),
7751 D.getIdentifierLoc(),
7752 D.getIdentifier(),
7753 TInfo);
7754
7755 // Bail out immediately if we have an invalid declaration.
7756 if (D.isInvalidType()) {
7757 NewTD->setInvalidDecl();
7758 return NewTD;
7759 }
7760
7761 if (D.getDeclSpec().isModulePrivateSpecified()) {
7762 if (CurContext->isFunctionOrMethod())
7763 Diag(NewTD->getLocation(), diag::err_module_private_local)
7764 << 2 << NewTD->getDeclName()
7765 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7766 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7767 else
7768 NewTD->setModulePrivate();
7769 }
7770
7771 // C++ [dcl.typedef]p8:
7772 // If the typedef declaration defines an unnamed class (or
7773 // enum), the first typedef-name declared by the declaration
7774 // to be that class type (or enum type) is used to denote the
7775 // class type (or enum type) for linkage purposes only.
7776 // We need to check whether the type was declared in the declaration.
7777 switch (D.getDeclSpec().getTypeSpecType()) {
7778 case TST_enum:
7779 case TST_struct:
7780 case TST_union:
7781 case TST_class: {
7782 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7783
7784 // Do nothing if the tag is not anonymous or already has an
7785 // associated typedef (from an earlier typedef in this decl group).
7786 if (tagFromDeclSpec->getIdentifier()) break;
7787 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7788
7789 // A well-formed anonymous tag must always be a TUK_Definition.
7790 assert(tagFromDeclSpec->isThisDeclarationADefinition());
7791
7792 // The type must match the tag exactly; no qualifiers allowed.
7793 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7794 break;
7795
7796 // Otherwise, set this is the anon-decl typedef for the tag.
7797 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7798 break;
7799 }
7800
7801 default:
7802 break;
7803 }
7804
7805 return NewTD;
7806 }
7807
7808
7809 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)7810 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7811 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7812 QualType T = TI->getType();
7813
7814 if (T->isDependentType() || T->isIntegralType(Context))
7815 return false;
7816
7817 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7818 return true;
7819 }
7820
7821 /// Check whether this is a valid redeclaration of a previous enumeration.
7822 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)7823 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
7824 QualType EnumUnderlyingTy,
7825 const EnumDecl *Prev) {
7826 bool IsFixed = !EnumUnderlyingTy.isNull();
7827
7828 if (IsScoped != Prev->isScoped()) {
7829 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
7830 << Prev->isScoped();
7831 Diag(Prev->getLocation(), diag::note_previous_use);
7832 return true;
7833 }
7834
7835 if (IsFixed && Prev->isFixed()) {
7836 if (!EnumUnderlyingTy->isDependentType() &&
7837 !Prev->getIntegerType()->isDependentType() &&
7838 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
7839 Prev->getIntegerType())) {
7840 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
7841 << EnumUnderlyingTy << Prev->getIntegerType();
7842 Diag(Prev->getLocation(), diag::note_previous_use);
7843 return true;
7844 }
7845 } else if (IsFixed != Prev->isFixed()) {
7846 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
7847 << Prev->isFixed();
7848 Diag(Prev->getLocation(), diag::note_previous_use);
7849 return true;
7850 }
7851
7852 return false;
7853 }
7854
7855 /// \brief Determine whether a tag with a given kind is acceptable
7856 /// as a redeclaration of the given tag declaration.
7857 ///
7858 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)7859 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7860 TagTypeKind NewTag, bool isDefinition,
7861 SourceLocation NewTagLoc,
7862 const IdentifierInfo &Name) {
7863 // C++ [dcl.type.elab]p3:
7864 // The class-key or enum keyword present in the
7865 // elaborated-type-specifier shall agree in kind with the
7866 // declaration to which the name in the elaborated-type-specifier
7867 // refers. This rule also applies to the form of
7868 // elaborated-type-specifier that declares a class-name or
7869 // friend class since it can be construed as referring to the
7870 // definition of the class. Thus, in any
7871 // elaborated-type-specifier, the enum keyword shall be used to
7872 // refer to an enumeration (7.2), the union class-key shall be
7873 // used to refer to a union (clause 9), and either the class or
7874 // struct class-key shall be used to refer to a class (clause 9)
7875 // declared using the class or struct class-key.
7876 TagTypeKind OldTag = Previous->getTagKind();
7877 if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7878 if (OldTag == NewTag)
7879 return true;
7880
7881 if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7882 (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7883 // Warn about the struct/class tag mismatch.
7884 bool isTemplate = false;
7885 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7886 isTemplate = Record->getDescribedClassTemplate();
7887
7888 if (!ActiveTemplateInstantiations.empty()) {
7889 // In a template instantiation, do not offer fix-its for tag mismatches
7890 // since they usually mess up the template instead of fixing the problem.
7891 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7892 << (NewTag == TTK_Class) << isTemplate << &Name;
7893 return true;
7894 }
7895
7896 if (isDefinition) {
7897 // On definitions, check previous tags and issue a fix-it for each
7898 // one that doesn't match the current tag.
7899 if (Previous->getDefinition()) {
7900 // Don't suggest fix-its for redefinitions.
7901 return true;
7902 }
7903
7904 bool previousMismatch = false;
7905 for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7906 E(Previous->redecls_end()); I != E; ++I) {
7907 if (I->getTagKind() != NewTag) {
7908 if (!previousMismatch) {
7909 previousMismatch = true;
7910 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7911 << (NewTag == TTK_Class) << isTemplate << &Name;
7912 }
7913 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7914 << (NewTag == TTK_Class)
7915 << FixItHint::CreateReplacement(I->getInnerLocStart(),
7916 NewTag == TTK_Class?
7917 "class" : "struct");
7918 }
7919 }
7920 return true;
7921 }
7922
7923 // Check for a previous definition. If current tag and definition
7924 // are same type, do nothing. If no definition, but disagree with
7925 // with previous tag type, give a warning, but no fix-it.
7926 const TagDecl *Redecl = Previous->getDefinition() ?
7927 Previous->getDefinition() : Previous;
7928 if (Redecl->getTagKind() == NewTag) {
7929 return true;
7930 }
7931
7932 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7933 << (NewTag == TTK_Class)
7934 << isTemplate << &Name;
7935 Diag(Redecl->getLocation(), diag::note_previous_use);
7936
7937 // If there is a previous defintion, suggest a fix-it.
7938 if (Previous->getDefinition()) {
7939 Diag(NewTagLoc, diag::note_struct_class_suggestion)
7940 << (Redecl->getTagKind() == TTK_Class)
7941 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7942 Redecl->getTagKind() == TTK_Class? "class" : "struct");
7943 }
7944
7945 return true;
7946 }
7947 return false;
7948 }
7949
7950 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
7951 /// former case, Name will be non-null. In the later case, Name will be null.
7952 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7953 /// reference/declaration/definition of a tag.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType)7954 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7955 SourceLocation KWLoc, CXXScopeSpec &SS,
7956 IdentifierInfo *Name, SourceLocation NameLoc,
7957 AttributeList *Attr, AccessSpecifier AS,
7958 SourceLocation ModulePrivateLoc,
7959 MultiTemplateParamsArg TemplateParameterLists,
7960 bool &OwnedDecl, bool &IsDependent,
7961 SourceLocation ScopedEnumKWLoc,
7962 bool ScopedEnumUsesClassTag,
7963 TypeResult UnderlyingType) {
7964 // If this is not a definition, it must have a name.
7965 IdentifierInfo *OrigName = Name;
7966 assert((Name != 0 || TUK == TUK_Definition) &&
7967 "Nameless record must be a definition!");
7968 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7969
7970 OwnedDecl = false;
7971 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7972 bool ScopedEnum = ScopedEnumKWLoc.isValid();
7973
7974 // FIXME: Check explicit specializations more carefully.
7975 bool isExplicitSpecialization = false;
7976 bool Invalid = false;
7977
7978 // We only need to do this matching if we have template parameters
7979 // or a scope specifier, which also conveniently avoids this work
7980 // for non-C++ cases.
7981 if (TemplateParameterLists.size() > 0 ||
7982 (SS.isNotEmpty() && TUK != TUK_Reference)) {
7983 if (TemplateParameterList *TemplateParams
7984 = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7985 TemplateParameterLists.get(),
7986 TemplateParameterLists.size(),
7987 TUK == TUK_Friend,
7988 isExplicitSpecialization,
7989 Invalid)) {
7990 if (TemplateParams->size() > 0) {
7991 // This is a declaration or definition of a class template (which may
7992 // be a member of another template).
7993
7994 if (Invalid)
7995 return 0;
7996
7997 OwnedDecl = false;
7998 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7999 SS, Name, NameLoc, Attr,
8000 TemplateParams, AS,
8001 ModulePrivateLoc,
8002 TemplateParameterLists.size() - 1,
8003 (TemplateParameterList**) TemplateParameterLists.release());
8004 return Result.get();
8005 } else {
8006 // The "template<>" header is extraneous.
8007 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8008 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8009 isExplicitSpecialization = true;
8010 }
8011 }
8012 }
8013
8014 // Figure out the underlying type if this a enum declaration. We need to do
8015 // this early, because it's needed to detect if this is an incompatible
8016 // redeclaration.
8017 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8018
8019 if (Kind == TTK_Enum) {
8020 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8021 // No underlying type explicitly specified, or we failed to parse the
8022 // type, default to int.
8023 EnumUnderlying = Context.IntTy.getTypePtr();
8024 else if (UnderlyingType.get()) {
8025 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8026 // integral type; any cv-qualification is ignored.
8027 TypeSourceInfo *TI = 0;
8028 GetTypeFromParser(UnderlyingType.get(), &TI);
8029 EnumUnderlying = TI;
8030
8031 if (CheckEnumUnderlyingType(TI))
8032 // Recover by falling back to int.
8033 EnumUnderlying = Context.IntTy.getTypePtr();
8034
8035 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8036 UPPC_FixedUnderlyingType))
8037 EnumUnderlying = Context.IntTy.getTypePtr();
8038
8039 } else if (getLangOpts().MicrosoftMode)
8040 // Microsoft enums are always of int type.
8041 EnumUnderlying = Context.IntTy.getTypePtr();
8042 }
8043
8044 DeclContext *SearchDC = CurContext;
8045 DeclContext *DC = CurContext;
8046 bool isStdBadAlloc = false;
8047
8048 RedeclarationKind Redecl = ForRedeclaration;
8049 if (TUK == TUK_Friend || TUK == TUK_Reference)
8050 Redecl = NotForRedeclaration;
8051
8052 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8053
8054 if (Name && SS.isNotEmpty()) {
8055 // We have a nested-name tag ('struct foo::bar').
8056
8057 // Check for invalid 'foo::'.
8058 if (SS.isInvalid()) {
8059 Name = 0;
8060 goto CreateNewDecl;
8061 }
8062
8063 // If this is a friend or a reference to a class in a dependent
8064 // context, don't try to make a decl for it.
8065 if (TUK == TUK_Friend || TUK == TUK_Reference) {
8066 DC = computeDeclContext(SS, false);
8067 if (!DC) {
8068 IsDependent = true;
8069 return 0;
8070 }
8071 } else {
8072 DC = computeDeclContext(SS, true);
8073 if (!DC) {
8074 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8075 << SS.getRange();
8076 return 0;
8077 }
8078 }
8079
8080 if (RequireCompleteDeclContext(SS, DC))
8081 return 0;
8082
8083 SearchDC = DC;
8084 // Look-up name inside 'foo::'.
8085 LookupQualifiedName(Previous, DC);
8086
8087 if (Previous.isAmbiguous())
8088 return 0;
8089
8090 if (Previous.empty()) {
8091 // Name lookup did not find anything. However, if the
8092 // nested-name-specifier refers to the current instantiation,
8093 // and that current instantiation has any dependent base
8094 // classes, we might find something at instantiation time: treat
8095 // this as a dependent elaborated-type-specifier.
8096 // But this only makes any sense for reference-like lookups.
8097 if (Previous.wasNotFoundInCurrentInstantiation() &&
8098 (TUK == TUK_Reference || TUK == TUK_Friend)) {
8099 IsDependent = true;
8100 return 0;
8101 }
8102
8103 // A tag 'foo::bar' must already exist.
8104 Diag(NameLoc, diag::err_not_tag_in_scope)
8105 << Kind << Name << DC << SS.getRange();
8106 Name = 0;
8107 Invalid = true;
8108 goto CreateNewDecl;
8109 }
8110 } else if (Name) {
8111 // If this is a named struct, check to see if there was a previous forward
8112 // declaration or definition.
8113 // FIXME: We're looking into outer scopes here, even when we
8114 // shouldn't be. Doing so can result in ambiguities that we
8115 // shouldn't be diagnosing.
8116 LookupName(Previous, S);
8117
8118 if (Previous.isAmbiguous() &&
8119 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8120 LookupResult::Filter F = Previous.makeFilter();
8121 while (F.hasNext()) {
8122 NamedDecl *ND = F.next();
8123 if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8124 F.erase();
8125 }
8126 F.done();
8127 }
8128
8129 // Note: there used to be some attempt at recovery here.
8130 if (Previous.isAmbiguous())
8131 return 0;
8132
8133 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8134 // FIXME: This makes sure that we ignore the contexts associated
8135 // with C structs, unions, and enums when looking for a matching
8136 // tag declaration or definition. See the similar lookup tweak
8137 // in Sema::LookupName; is there a better way to deal with this?
8138 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8139 SearchDC = SearchDC->getParent();
8140 }
8141 } else if (S->isFunctionPrototypeScope()) {
8142 // If this is an enum declaration in function prototype scope, set its
8143 // initial context to the translation unit.
8144 // FIXME: [citation needed]
8145 SearchDC = Context.getTranslationUnitDecl();
8146 }
8147
8148 if (Previous.isSingleResult() &&
8149 Previous.getFoundDecl()->isTemplateParameter()) {
8150 // Maybe we will complain about the shadowed template parameter.
8151 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8152 // Just pretend that we didn't see the previous declaration.
8153 Previous.clear();
8154 }
8155
8156 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8157 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8158 // This is a declaration of or a reference to "std::bad_alloc".
8159 isStdBadAlloc = true;
8160
8161 if (Previous.empty() && StdBadAlloc) {
8162 // std::bad_alloc has been implicitly declared (but made invisible to
8163 // name lookup). Fill in this implicit declaration as the previous
8164 // declaration, so that the declarations get chained appropriately.
8165 Previous.addDecl(getStdBadAlloc());
8166 }
8167 }
8168
8169 // If we didn't find a previous declaration, and this is a reference
8170 // (or friend reference), move to the correct scope. In C++, we
8171 // also need to do a redeclaration lookup there, just in case
8172 // there's a shadow friend decl.
8173 if (Name && Previous.empty() &&
8174 (TUK == TUK_Reference || TUK == TUK_Friend)) {
8175 if (Invalid) goto CreateNewDecl;
8176 assert(SS.isEmpty());
8177
8178 if (TUK == TUK_Reference) {
8179 // C++ [basic.scope.pdecl]p5:
8180 // -- for an elaborated-type-specifier of the form
8181 //
8182 // class-key identifier
8183 //
8184 // if the elaborated-type-specifier is used in the
8185 // decl-specifier-seq or parameter-declaration-clause of a
8186 // function defined in namespace scope, the identifier is
8187 // declared as a class-name in the namespace that contains
8188 // the declaration; otherwise, except as a friend
8189 // declaration, the identifier is declared in the smallest
8190 // non-class, non-function-prototype scope that contains the
8191 // declaration.
8192 //
8193 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8194 // C structs and unions.
8195 //
8196 // It is an error in C++ to declare (rather than define) an enum
8197 // type, including via an elaborated type specifier. We'll
8198 // diagnose that later; for now, declare the enum in the same
8199 // scope as we would have picked for any other tag type.
8200 //
8201 // GNU C also supports this behavior as part of its incomplete
8202 // enum types extension, while GNU C++ does not.
8203 //
8204 // Find the context where we'll be declaring the tag.
8205 // FIXME: We would like to maintain the current DeclContext as the
8206 // lexical context,
8207 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8208 SearchDC = SearchDC->getParent();
8209
8210 // Find the scope where we'll be declaring the tag.
8211 while (S->isClassScope() ||
8212 (getLangOpts().CPlusPlus &&
8213 S->isFunctionPrototypeScope()) ||
8214 ((S->getFlags() & Scope::DeclScope) == 0) ||
8215 (S->getEntity() &&
8216 ((DeclContext *)S->getEntity())->isTransparentContext()))
8217 S = S->getParent();
8218 } else {
8219 assert(TUK == TUK_Friend);
8220 // C++ [namespace.memdef]p3:
8221 // If a friend declaration in a non-local class first declares a
8222 // class or function, the friend class or function is a member of
8223 // the innermost enclosing namespace.
8224 SearchDC = SearchDC->getEnclosingNamespaceContext();
8225 }
8226
8227 // In C++, we need to do a redeclaration lookup to properly
8228 // diagnose some problems.
8229 if (getLangOpts().CPlusPlus) {
8230 Previous.setRedeclarationKind(ForRedeclaration);
8231 LookupQualifiedName(Previous, SearchDC);
8232 }
8233 }
8234
8235 if (!Previous.empty()) {
8236 NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8237
8238 // It's okay to have a tag decl in the same scope as a typedef
8239 // which hides a tag decl in the same scope. Finding this
8240 // insanity with a redeclaration lookup can only actually happen
8241 // in C++.
8242 //
8243 // This is also okay for elaborated-type-specifiers, which is
8244 // technically forbidden by the current standard but which is
8245 // okay according to the likely resolution of an open issue;
8246 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8247 if (getLangOpts().CPlusPlus) {
8248 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8249 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8250 TagDecl *Tag = TT->getDecl();
8251 if (Tag->getDeclName() == Name &&
8252 Tag->getDeclContext()->getRedeclContext()
8253 ->Equals(TD->getDeclContext()->getRedeclContext())) {
8254 PrevDecl = Tag;
8255 Previous.clear();
8256 Previous.addDecl(Tag);
8257 Previous.resolveKind();
8258 }
8259 }
8260 }
8261 }
8262
8263 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8264 // If this is a use of a previous tag, or if the tag is already declared
8265 // in the same scope (so that the definition/declaration completes or
8266 // rementions the tag), reuse the decl.
8267 if (TUK == TUK_Reference || TUK == TUK_Friend ||
8268 isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8269 // Make sure that this wasn't declared as an enum and now used as a
8270 // struct or something similar.
8271 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8272 TUK == TUK_Definition, KWLoc,
8273 *Name)) {
8274 bool SafeToContinue
8275 = (PrevTagDecl->getTagKind() != TTK_Enum &&
8276 Kind != TTK_Enum);
8277 if (SafeToContinue)
8278 Diag(KWLoc, diag::err_use_with_wrong_tag)
8279 << Name
8280 << FixItHint::CreateReplacement(SourceRange(KWLoc),
8281 PrevTagDecl->getKindName());
8282 else
8283 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8284 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8285
8286 if (SafeToContinue)
8287 Kind = PrevTagDecl->getTagKind();
8288 else {
8289 // Recover by making this an anonymous redefinition.
8290 Name = 0;
8291 Previous.clear();
8292 Invalid = true;
8293 }
8294 }
8295
8296 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8297 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8298
8299 // If this is an elaborated-type-specifier for a scoped enumeration,
8300 // the 'class' keyword is not necessary and not permitted.
8301 if (TUK == TUK_Reference || TUK == TUK_Friend) {
8302 if (ScopedEnum)
8303 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8304 << PrevEnum->isScoped()
8305 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8306 return PrevTagDecl;
8307 }
8308
8309 QualType EnumUnderlyingTy;
8310 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8311 EnumUnderlyingTy = TI->getType();
8312 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8313 EnumUnderlyingTy = QualType(T, 0);
8314
8315 // All conflicts with previous declarations are recovered by
8316 // returning the previous declaration, unless this is a definition,
8317 // in which case we want the caller to bail out.
8318 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8319 ScopedEnum, EnumUnderlyingTy, PrevEnum))
8320 return TUK == TUK_Declaration ? PrevTagDecl : 0;
8321 }
8322
8323 if (!Invalid) {
8324 // If this is a use, just return the declaration we found.
8325
8326 // FIXME: In the future, return a variant or some other clue
8327 // for the consumer of this Decl to know it doesn't own it.
8328 // For our current ASTs this shouldn't be a problem, but will
8329 // need to be changed with DeclGroups.
8330 if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8331 getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8332 return PrevTagDecl;
8333
8334 // Diagnose attempts to redefine a tag.
8335 if (TUK == TUK_Definition) {
8336 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8337 // If we're defining a specialization and the previous definition
8338 // is from an implicit instantiation, don't emit an error
8339 // here; we'll catch this in the general case below.
8340 bool IsExplicitSpecializationAfterInstantiation = false;
8341 if (isExplicitSpecialization) {
8342 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8343 IsExplicitSpecializationAfterInstantiation =
8344 RD->getTemplateSpecializationKind() !=
8345 TSK_ExplicitSpecialization;
8346 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8347 IsExplicitSpecializationAfterInstantiation =
8348 ED->getTemplateSpecializationKind() !=
8349 TSK_ExplicitSpecialization;
8350 }
8351
8352 if (!IsExplicitSpecializationAfterInstantiation) {
8353 // A redeclaration in function prototype scope in C isn't
8354 // visible elsewhere, so merely issue a warning.
8355 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8356 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8357 else
8358 Diag(NameLoc, diag::err_redefinition) << Name;
8359 Diag(Def->getLocation(), diag::note_previous_definition);
8360 // If this is a redefinition, recover by making this
8361 // struct be anonymous, which will make any later
8362 // references get the previous definition.
8363 Name = 0;
8364 Previous.clear();
8365 Invalid = true;
8366 }
8367 } else {
8368 // If the type is currently being defined, complain
8369 // about a nested redefinition.
8370 const TagType *Tag
8371 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8372 if (Tag->isBeingDefined()) {
8373 Diag(NameLoc, diag::err_nested_redefinition) << Name;
8374 Diag(PrevTagDecl->getLocation(),
8375 diag::note_previous_definition);
8376 Name = 0;
8377 Previous.clear();
8378 Invalid = true;
8379 }
8380 }
8381
8382 // Okay, this is definition of a previously declared or referenced
8383 // tag PrevDecl. We're going to create a new Decl for it.
8384 }
8385 }
8386 // If we get here we have (another) forward declaration or we
8387 // have a definition. Just create a new decl.
8388
8389 } else {
8390 // If we get here, this is a definition of a new tag type in a nested
8391 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8392 // new decl/type. We set PrevDecl to NULL so that the entities
8393 // have distinct types.
8394 Previous.clear();
8395 }
8396 // If we get here, we're going to create a new Decl. If PrevDecl
8397 // is non-NULL, it's a definition of the tag declared by
8398 // PrevDecl. If it's NULL, we have a new definition.
8399
8400
8401 // Otherwise, PrevDecl is not a tag, but was found with tag
8402 // lookup. This is only actually possible in C++, where a few
8403 // things like templates still live in the tag namespace.
8404 } else {
8405 // Use a better diagnostic if an elaborated-type-specifier
8406 // found the wrong kind of type on the first
8407 // (non-redeclaration) lookup.
8408 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8409 !Previous.isForRedeclaration()) {
8410 unsigned Kind = 0;
8411 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8412 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8413 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8414 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8415 Diag(PrevDecl->getLocation(), diag::note_declared_at);
8416 Invalid = true;
8417
8418 // Otherwise, only diagnose if the declaration is in scope.
8419 } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8420 isExplicitSpecialization)) {
8421 // do nothing
8422
8423 // Diagnose implicit declarations introduced by elaborated types.
8424 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8425 unsigned Kind = 0;
8426 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8427 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8428 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8429 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8430 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8431 Invalid = true;
8432
8433 // Otherwise it's a declaration. Call out a particularly common
8434 // case here.
8435 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8436 unsigned Kind = 0;
8437 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8438 Diag(NameLoc, diag::err_tag_definition_of_typedef)
8439 << Name << Kind << TND->getUnderlyingType();
8440 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8441 Invalid = true;
8442
8443 // Otherwise, diagnose.
8444 } else {
8445 // The tag name clashes with something else in the target scope,
8446 // issue an error and recover by making this tag be anonymous.
8447 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8448 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8449 Name = 0;
8450 Invalid = true;
8451 }
8452
8453 // The existing declaration isn't relevant to us; we're in a
8454 // new scope, so clear out the previous declaration.
8455 Previous.clear();
8456 }
8457 }
8458
8459 CreateNewDecl:
8460
8461 TagDecl *PrevDecl = 0;
8462 if (Previous.isSingleResult())
8463 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8464
8465 // If there is an identifier, use the location of the identifier as the
8466 // location of the decl, otherwise use the location of the struct/union
8467 // keyword.
8468 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8469
8470 // Otherwise, create a new declaration. If there is a previous
8471 // declaration of the same entity, the two will be linked via
8472 // PrevDecl.
8473 TagDecl *New;
8474
8475 bool IsForwardReference = false;
8476 if (Kind == TTK_Enum) {
8477 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8478 // enum X { A, B, C } D; D should chain to X.
8479 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8480 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8481 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8482 // If this is an undefined enum, warn.
8483 if (TUK != TUK_Definition && !Invalid) {
8484 TagDecl *Def;
8485 if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8486 // C++0x: 7.2p2: opaque-enum-declaration.
8487 // Conflicts are diagnosed above. Do nothing.
8488 }
8489 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8490 Diag(Loc, diag::ext_forward_ref_enum_def)
8491 << New;
8492 Diag(Def->getLocation(), diag::note_previous_definition);
8493 } else {
8494 unsigned DiagID = diag::ext_forward_ref_enum;
8495 if (getLangOpts().MicrosoftMode)
8496 DiagID = diag::ext_ms_forward_ref_enum;
8497 else if (getLangOpts().CPlusPlus)
8498 DiagID = diag::err_forward_ref_enum;
8499 Diag(Loc, DiagID);
8500
8501 // If this is a forward-declared reference to an enumeration, make a
8502 // note of it; we won't actually be introducing the declaration into
8503 // the declaration context.
8504 if (TUK == TUK_Reference)
8505 IsForwardReference = true;
8506 }
8507 }
8508
8509 if (EnumUnderlying) {
8510 EnumDecl *ED = cast<EnumDecl>(New);
8511 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8512 ED->setIntegerTypeSourceInfo(TI);
8513 else
8514 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8515 ED->setPromotionType(ED->getIntegerType());
8516 }
8517
8518 } else {
8519 // struct/union/class
8520
8521 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8522 // struct X { int A; } D; D should chain to X.
8523 if (getLangOpts().CPlusPlus) {
8524 // FIXME: Look for a way to use RecordDecl for simple structs.
8525 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8526 cast_or_null<CXXRecordDecl>(PrevDecl));
8527
8528 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8529 StdBadAlloc = cast<CXXRecordDecl>(New);
8530 } else
8531 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8532 cast_or_null<RecordDecl>(PrevDecl));
8533 }
8534
8535 // Maybe add qualifier info.
8536 if (SS.isNotEmpty()) {
8537 if (SS.isSet()) {
8538 // If this is either a declaration or a definition, check the
8539 // nested-name-specifier against the current context. We don't do this
8540 // for explicit specializations, because they have similar checking
8541 // (with more specific diagnostics) in the call to
8542 // CheckMemberSpecialization, below.
8543 if (!isExplicitSpecialization &&
8544 (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8545 diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8546 Invalid = true;
8547
8548 New->setQualifierInfo(SS.getWithLocInContext(Context));
8549 if (TemplateParameterLists.size() > 0) {
8550 New->setTemplateParameterListsInfo(Context,
8551 TemplateParameterLists.size(),
8552 (TemplateParameterList**) TemplateParameterLists.release());
8553 }
8554 }
8555 else
8556 Invalid = true;
8557 }
8558
8559 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8560 // Add alignment attributes if necessary; these attributes are checked when
8561 // the ASTContext lays out the structure.
8562 //
8563 // It is important for implementing the correct semantics that this
8564 // happen here (in act on tag decl). The #pragma pack stack is
8565 // maintained as a result of parser callbacks which can occur at
8566 // many points during the parsing of a struct declaration (because
8567 // the #pragma tokens are effectively skipped over during the
8568 // parsing of the struct).
8569 AddAlignmentAttributesForRecord(RD);
8570
8571 AddMsStructLayoutForRecord(RD);
8572 }
8573
8574 if (ModulePrivateLoc.isValid()) {
8575 if (isExplicitSpecialization)
8576 Diag(New->getLocation(), diag::err_module_private_specialization)
8577 << 2
8578 << FixItHint::CreateRemoval(ModulePrivateLoc);
8579 // __module_private__ does not apply to local classes. However, we only
8580 // diagnose this as an error when the declaration specifiers are
8581 // freestanding. Here, we just ignore the __module_private__.
8582 else if (!SearchDC->isFunctionOrMethod())
8583 New->setModulePrivate();
8584 }
8585
8586 // If this is a specialization of a member class (of a class template),
8587 // check the specialization.
8588 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8589 Invalid = true;
8590
8591 if (Invalid)
8592 New->setInvalidDecl();
8593
8594 if (Attr)
8595 ProcessDeclAttributeList(S, New, Attr);
8596
8597 // If we're declaring or defining a tag in function prototype scope
8598 // in C, note that this type can only be used within the function.
8599 if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8600 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8601
8602 // Set the lexical context. If the tag has a C++ scope specifier, the
8603 // lexical context will be different from the semantic context.
8604 New->setLexicalDeclContext(CurContext);
8605
8606 // Mark this as a friend decl if applicable.
8607 // In Microsoft mode, a friend declaration also acts as a forward
8608 // declaration so we always pass true to setObjectOfFriendDecl to make
8609 // the tag name visible.
8610 if (TUK == TUK_Friend)
8611 New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8612 getLangOpts().MicrosoftExt);
8613
8614 // Set the access specifier.
8615 if (!Invalid && SearchDC->isRecord())
8616 SetMemberAccessSpecifier(New, PrevDecl, AS);
8617
8618 if (TUK == TUK_Definition)
8619 New->startDefinition();
8620
8621 // If this has an identifier, add it to the scope stack.
8622 if (TUK == TUK_Friend) {
8623 // We might be replacing an existing declaration in the lookup tables;
8624 // if so, borrow its access specifier.
8625 if (PrevDecl)
8626 New->setAccess(PrevDecl->getAccess());
8627
8628 DeclContext *DC = New->getDeclContext()->getRedeclContext();
8629 DC->makeDeclVisibleInContext(New);
8630 if (Name) // can be null along some error paths
8631 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8632 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8633 } else if (Name) {
8634 S = getNonFieldDeclScope(S);
8635 PushOnScopeChains(New, S, !IsForwardReference);
8636 if (IsForwardReference)
8637 SearchDC->makeDeclVisibleInContext(New);
8638
8639 } else {
8640 CurContext->addDecl(New);
8641 }
8642
8643 // If this is the C FILE type, notify the AST context.
8644 if (IdentifierInfo *II = New->getIdentifier())
8645 if (!New->isInvalidDecl() &&
8646 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8647 II->isStr("FILE"))
8648 Context.setFILEDecl(New);
8649
8650 // If we were in function prototype scope (and not in C++ mode), add this
8651 // tag to the list of decls to inject into the function definition scope.
8652 if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8653 InFunctionDeclarator && Name)
8654 DeclsInPrototypeScope.push_back(New);
8655
8656 OwnedDecl = true;
8657 return New;
8658 }
8659
ActOnTagStartDefinition(Scope * S,Decl * TagD)8660 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8661 AdjustDeclIfTemplate(TagD);
8662 TagDecl *Tag = cast<TagDecl>(TagD);
8663
8664 // Enter the tag context.
8665 PushDeclContext(S, Tag);
8666 }
8667
ActOnObjCContainerStartDefinition(Decl * IDecl)8668 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8669 assert(isa<ObjCContainerDecl>(IDecl) &&
8670 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8671 DeclContext *OCD = cast<DeclContext>(IDecl);
8672 assert(getContainingDC(OCD) == CurContext &&
8673 "The next DeclContext should be lexically contained in the current one.");
8674 CurContext = OCD;
8675 return IDecl;
8676 }
8677
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,SourceLocation LBraceLoc)8678 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8679 SourceLocation FinalLoc,
8680 SourceLocation LBraceLoc) {
8681 AdjustDeclIfTemplate(TagD);
8682 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8683
8684 FieldCollector->StartClass();
8685
8686 if (!Record->getIdentifier())
8687 return;
8688
8689 if (FinalLoc.isValid())
8690 Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8691
8692 // C++ [class]p2:
8693 // [...] The class-name is also inserted into the scope of the
8694 // class itself; this is known as the injected-class-name. For
8695 // purposes of access checking, the injected-class-name is treated
8696 // as if it were a public member name.
8697 CXXRecordDecl *InjectedClassName
8698 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8699 Record->getLocStart(), Record->getLocation(),
8700 Record->getIdentifier(),
8701 /*PrevDecl=*/0,
8702 /*DelayTypeCreation=*/true);
8703 Context.getTypeDeclType(InjectedClassName, Record);
8704 InjectedClassName->setImplicit();
8705 InjectedClassName->setAccess(AS_public);
8706 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8707 InjectedClassName->setDescribedClassTemplate(Template);
8708 PushOnScopeChains(InjectedClassName, S);
8709 assert(InjectedClassName->isInjectedClassName() &&
8710 "Broken injected-class-name");
8711 }
8712
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)8713 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8714 SourceLocation RBraceLoc) {
8715 AdjustDeclIfTemplate(TagD);
8716 TagDecl *Tag = cast<TagDecl>(TagD);
8717 Tag->setRBraceLoc(RBraceLoc);
8718
8719 // Make sure we "complete" the definition even it is invalid.
8720 if (Tag->isBeingDefined()) {
8721 assert(Tag->isInvalidDecl() && "We should already have completed it");
8722 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8723 RD->completeDefinition();
8724 }
8725
8726 if (isa<CXXRecordDecl>(Tag))
8727 FieldCollector->FinishClass();
8728
8729 // Exit this scope of this tag's definition.
8730 PopDeclContext();
8731
8732 // Notify the consumer that we've defined a tag.
8733 Consumer.HandleTagDeclDefinition(Tag);
8734 }
8735
ActOnObjCContainerFinishDefinition()8736 void Sema::ActOnObjCContainerFinishDefinition() {
8737 // Exit this scope of this interface definition.
8738 PopDeclContext();
8739 }
8740
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)8741 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8742 assert(DC == CurContext && "Mismatch of container contexts");
8743 OriginalLexicalContext = DC;
8744 ActOnObjCContainerFinishDefinition();
8745 }
8746
ActOnObjCReenterContainerContext(DeclContext * DC)8747 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8748 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8749 OriginalLexicalContext = 0;
8750 }
8751
ActOnTagDefinitionError(Scope * S,Decl * TagD)8752 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8753 AdjustDeclIfTemplate(TagD);
8754 TagDecl *Tag = cast<TagDecl>(TagD);
8755 Tag->setInvalidDecl();
8756
8757 // Make sure we "complete" the definition even it is invalid.
8758 if (Tag->isBeingDefined()) {
8759 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8760 RD->completeDefinition();
8761 }
8762
8763 // We're undoing ActOnTagStartDefinition here, not
8764 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8765 // the FieldCollector.
8766
8767 PopDeclContext();
8768 }
8769
8770 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,Expr * BitWidth,bool * ZeroWidth)8771 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8772 IdentifierInfo *FieldName,
8773 QualType FieldTy, Expr *BitWidth,
8774 bool *ZeroWidth) {
8775 // Default to true; that shouldn't confuse checks for emptiness
8776 if (ZeroWidth)
8777 *ZeroWidth = true;
8778
8779 // C99 6.7.2.1p4 - verify the field type.
8780 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8781 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8782 // Handle incomplete types with specific error.
8783 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8784 return ExprError();
8785 if (FieldName)
8786 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8787 << FieldName << FieldTy << BitWidth->getSourceRange();
8788 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8789 << FieldTy << BitWidth->getSourceRange();
8790 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8791 UPPC_BitFieldWidth))
8792 return ExprError();
8793
8794 // If the bit-width is type- or value-dependent, don't try to check
8795 // it now.
8796 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8797 return Owned(BitWidth);
8798
8799 llvm::APSInt Value;
8800 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8801 if (ICE.isInvalid())
8802 return ICE;
8803 BitWidth = ICE.take();
8804
8805 if (Value != 0 && ZeroWidth)
8806 *ZeroWidth = false;
8807
8808 // Zero-width bitfield is ok for anonymous field.
8809 if (Value == 0 && FieldName)
8810 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8811
8812 if (Value.isSigned() && Value.isNegative()) {
8813 if (FieldName)
8814 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8815 << FieldName << Value.toString(10);
8816 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8817 << Value.toString(10);
8818 }
8819
8820 if (!FieldTy->isDependentType()) {
8821 uint64_t TypeSize = Context.getTypeSize(FieldTy);
8822 if (Value.getZExtValue() > TypeSize) {
8823 if (!getLangOpts().CPlusPlus) {
8824 if (FieldName)
8825 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8826 << FieldName << (unsigned)Value.getZExtValue()
8827 << (unsigned)TypeSize;
8828
8829 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8830 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8831 }
8832
8833 if (FieldName)
8834 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8835 << FieldName << (unsigned)Value.getZExtValue()
8836 << (unsigned)TypeSize;
8837 else
8838 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8839 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8840 }
8841 }
8842
8843 return Owned(BitWidth);
8844 }
8845
8846 /// ActOnField - Each field of a C struct/union is passed into this in order
8847 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)8848 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8849 Declarator &D, Expr *BitfieldWidth) {
8850 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8851 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8852 /*HasInit=*/false, AS_public);
8853 return Res;
8854 }
8855
8856 /// HandleField - Analyze a field of a C struct or a C++ data member.
8857 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,bool HasInit,AccessSpecifier AS)8858 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8859 SourceLocation DeclStart,
8860 Declarator &D, Expr *BitWidth, bool HasInit,
8861 AccessSpecifier AS) {
8862 IdentifierInfo *II = D.getIdentifier();
8863 SourceLocation Loc = DeclStart;
8864 if (II) Loc = D.getIdentifierLoc();
8865
8866 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8867 QualType T = TInfo->getType();
8868 if (getLangOpts().CPlusPlus) {
8869 CheckExtraCXXDefaultArguments(D);
8870
8871 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8872 UPPC_DataMemberType)) {
8873 D.setInvalidType();
8874 T = Context.IntTy;
8875 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8876 }
8877 }
8878
8879 DiagnoseFunctionSpecifiers(D);
8880
8881 if (D.getDeclSpec().isThreadSpecified())
8882 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8883 if (D.getDeclSpec().isConstexprSpecified())
8884 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8885 << 2;
8886
8887 // Check to see if this name was declared as a member previously
8888 NamedDecl *PrevDecl = 0;
8889 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8890 LookupName(Previous, S);
8891 switch (Previous.getResultKind()) {
8892 case LookupResult::Found:
8893 case LookupResult::FoundUnresolvedValue:
8894 PrevDecl = Previous.getAsSingle<NamedDecl>();
8895 break;
8896
8897 case LookupResult::FoundOverloaded:
8898 PrevDecl = Previous.getRepresentativeDecl();
8899 break;
8900
8901 case LookupResult::NotFound:
8902 case LookupResult::NotFoundInCurrentInstantiation:
8903 case LookupResult::Ambiguous:
8904 break;
8905 }
8906 Previous.suppressDiagnostics();
8907
8908 if (PrevDecl && PrevDecl->isTemplateParameter()) {
8909 // Maybe we will complain about the shadowed template parameter.
8910 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8911 // Just pretend that we didn't see the previous declaration.
8912 PrevDecl = 0;
8913 }
8914
8915 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8916 PrevDecl = 0;
8917
8918 bool Mutable
8919 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8920 SourceLocation TSSL = D.getLocStart();
8921 FieldDecl *NewFD
8922 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8923 TSSL, AS, PrevDecl, &D);
8924
8925 if (NewFD->isInvalidDecl())
8926 Record->setInvalidDecl();
8927
8928 if (D.getDeclSpec().isModulePrivateSpecified())
8929 NewFD->setModulePrivate();
8930
8931 if (NewFD->isInvalidDecl() && PrevDecl) {
8932 // Don't introduce NewFD into scope; there's already something
8933 // with the same name in the same scope.
8934 } else if (II) {
8935 PushOnScopeChains(NewFD, S);
8936 } else
8937 Record->addDecl(NewFD);
8938
8939 return NewFD;
8940 }
8941
8942 /// \brief Build a new FieldDecl and check its well-formedness.
8943 ///
8944 /// This routine builds a new FieldDecl given the fields name, type,
8945 /// record, etc. \p PrevDecl should refer to any previous declaration
8946 /// with the same name and in the same scope as the field to be
8947 /// created.
8948 ///
8949 /// \returns a new FieldDecl.
8950 ///
8951 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,bool HasInit,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)8952 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8953 TypeSourceInfo *TInfo,
8954 RecordDecl *Record, SourceLocation Loc,
8955 bool Mutable, Expr *BitWidth, bool HasInit,
8956 SourceLocation TSSL,
8957 AccessSpecifier AS, NamedDecl *PrevDecl,
8958 Declarator *D) {
8959 IdentifierInfo *II = Name.getAsIdentifierInfo();
8960 bool InvalidDecl = false;
8961 if (D) InvalidDecl = D->isInvalidType();
8962
8963 // If we receive a broken type, recover by assuming 'int' and
8964 // marking this declaration as invalid.
8965 if (T.isNull()) {
8966 InvalidDecl = true;
8967 T = Context.IntTy;
8968 }
8969
8970 QualType EltTy = Context.getBaseElementType(T);
8971 if (!EltTy->isDependentType()) {
8972 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8973 // Fields of incomplete type force their record to be invalid.
8974 Record->setInvalidDecl();
8975 InvalidDecl = true;
8976 } else {
8977 NamedDecl *Def;
8978 EltTy->isIncompleteType(&Def);
8979 if (Def && Def->isInvalidDecl()) {
8980 Record->setInvalidDecl();
8981 InvalidDecl = true;
8982 }
8983 }
8984 }
8985
8986 // C99 6.7.2.1p8: A member of a structure or union may have any type other
8987 // than a variably modified type.
8988 if (!InvalidDecl && T->isVariablyModifiedType()) {
8989 bool SizeIsNegative;
8990 llvm::APSInt Oversized;
8991 QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8992 SizeIsNegative,
8993 Oversized);
8994 if (!FixedTy.isNull()) {
8995 Diag(Loc, diag::warn_illegal_constant_array_size);
8996 T = FixedTy;
8997 } else {
8998 if (SizeIsNegative)
8999 Diag(Loc, diag::err_typecheck_negative_array_size);
9000 else if (Oversized.getBoolValue())
9001 Diag(Loc, diag::err_array_too_large)
9002 << Oversized.toString(10);
9003 else
9004 Diag(Loc, diag::err_typecheck_field_variable_size);
9005 InvalidDecl = true;
9006 }
9007 }
9008
9009 // Fields can not have abstract class types
9010 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9011 diag::err_abstract_type_in_decl,
9012 AbstractFieldType))
9013 InvalidDecl = true;
9014
9015 bool ZeroWidth = false;
9016 // If this is declared as a bit-field, check the bit-field.
9017 if (!InvalidDecl && BitWidth) {
9018 BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9019 if (!BitWidth) {
9020 InvalidDecl = true;
9021 BitWidth = 0;
9022 ZeroWidth = false;
9023 }
9024 }
9025
9026 // Check that 'mutable' is consistent with the type of the declaration.
9027 if (!InvalidDecl && Mutable) {
9028 unsigned DiagID = 0;
9029 if (T->isReferenceType())
9030 DiagID = diag::err_mutable_reference;
9031 else if (T.isConstQualified())
9032 DiagID = diag::err_mutable_const;
9033
9034 if (DiagID) {
9035 SourceLocation ErrLoc = Loc;
9036 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9037 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9038 Diag(ErrLoc, DiagID);
9039 Mutable = false;
9040 InvalidDecl = true;
9041 }
9042 }
9043
9044 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9045 BitWidth, Mutable, HasInit);
9046 if (InvalidDecl)
9047 NewFD->setInvalidDecl();
9048
9049 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9050 Diag(Loc, diag::err_duplicate_member) << II;
9051 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9052 NewFD->setInvalidDecl();
9053 }
9054
9055 if (!InvalidDecl && getLangOpts().CPlusPlus) {
9056 if (Record->isUnion()) {
9057 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9058 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9059 if (RDecl->getDefinition()) {
9060 // C++ [class.union]p1: An object of a class with a non-trivial
9061 // constructor, a non-trivial copy constructor, a non-trivial
9062 // destructor, or a non-trivial copy assignment operator
9063 // cannot be a member of a union, nor can an array of such
9064 // objects.
9065 if (CheckNontrivialField(NewFD))
9066 NewFD->setInvalidDecl();
9067 }
9068 }
9069
9070 // C++ [class.union]p1: If a union contains a member of reference type,
9071 // the program is ill-formed.
9072 if (EltTy->isReferenceType()) {
9073 Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9074 << NewFD->getDeclName() << EltTy;
9075 NewFD->setInvalidDecl();
9076 }
9077 }
9078 }
9079
9080 // FIXME: We need to pass in the attributes given an AST
9081 // representation, not a parser representation.
9082 if (D)
9083 // FIXME: What to pass instead of TUScope?
9084 ProcessDeclAttributes(TUScope, NewFD, *D);
9085
9086 // In auto-retain/release, infer strong retension for fields of
9087 // retainable type.
9088 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9089 NewFD->setInvalidDecl();
9090
9091 if (T.isObjCGCWeak())
9092 Diag(Loc, diag::warn_attribute_weak_on_field);
9093
9094 NewFD->setAccess(AS);
9095 return NewFD;
9096 }
9097
CheckNontrivialField(FieldDecl * FD)9098 bool Sema::CheckNontrivialField(FieldDecl *FD) {
9099 assert(FD);
9100 assert(getLangOpts().CPlusPlus && "valid check only for C++");
9101
9102 if (FD->isInvalidDecl())
9103 return true;
9104
9105 QualType EltTy = Context.getBaseElementType(FD->getType());
9106 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9107 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9108 if (RDecl->getDefinition()) {
9109 // We check for copy constructors before constructors
9110 // because otherwise we'll never get complaints about
9111 // copy constructors.
9112
9113 CXXSpecialMember member = CXXInvalid;
9114 if (!RDecl->hasTrivialCopyConstructor())
9115 member = CXXCopyConstructor;
9116 else if (!RDecl->hasTrivialDefaultConstructor())
9117 member = CXXDefaultConstructor;
9118 else if (!RDecl->hasTrivialCopyAssignment())
9119 member = CXXCopyAssignment;
9120 else if (!RDecl->hasTrivialDestructor())
9121 member = CXXDestructor;
9122
9123 if (member != CXXInvalid) {
9124 if (!getLangOpts().CPlusPlus0x &&
9125 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9126 // Objective-C++ ARC: it is an error to have a non-trivial field of
9127 // a union. However, system headers in Objective-C programs
9128 // occasionally have Objective-C lifetime objects within unions,
9129 // and rather than cause the program to fail, we make those
9130 // members unavailable.
9131 SourceLocation Loc = FD->getLocation();
9132 if (getSourceManager().isInSystemHeader(Loc)) {
9133 if (!FD->hasAttr<UnavailableAttr>())
9134 FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9135 "this system field has retaining ownership"));
9136 return false;
9137 }
9138 }
9139
9140 Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9141 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9142 diag::err_illegal_union_or_anon_struct_member)
9143 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9144 DiagnoseNontrivial(RT, member);
9145 return !getLangOpts().CPlusPlus0x;
9146 }
9147 }
9148 }
9149
9150 return false;
9151 }
9152
9153 /// If the given constructor is user-provided, produce a diagnostic explaining
9154 /// that it makes the class non-trivial.
DiagnoseNontrivialUserProvidedCtor(Sema & S,QualType QT,CXXConstructorDecl * CD,Sema::CXXSpecialMember CSM)9155 static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9156 CXXConstructorDecl *CD,
9157 Sema::CXXSpecialMember CSM) {
9158 if (!CD->isUserProvided())
9159 return false;
9160
9161 SourceLocation CtorLoc = CD->getLocation();
9162 S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9163 return true;
9164 }
9165
9166 /// DiagnoseNontrivial - Given that a class has a non-trivial
9167 /// special member, figure out why.
DiagnoseNontrivial(const RecordType * T,CXXSpecialMember member)9168 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9169 QualType QT(T, 0U);
9170 CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9171
9172 // Check whether the member was user-declared.
9173 switch (member) {
9174 case CXXInvalid:
9175 break;
9176
9177 case CXXDefaultConstructor:
9178 if (RD->hasUserDeclaredConstructor()) {
9179 typedef CXXRecordDecl::ctor_iterator ctor_iter;
9180 for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9181 if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9182 return;
9183
9184 // No user-provided constructors; look for constructor templates.
9185 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9186 tmpl_iter;
9187 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9188 TI != TE; ++TI) {
9189 CXXConstructorDecl *CD =
9190 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9191 if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9192 return;
9193 }
9194 }
9195 break;
9196
9197 case CXXCopyConstructor:
9198 if (RD->hasUserDeclaredCopyConstructor()) {
9199 SourceLocation CtorLoc =
9200 RD->getCopyConstructor(0)->getLocation();
9201 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9202 return;
9203 }
9204 break;
9205
9206 case CXXMoveConstructor:
9207 if (RD->hasUserDeclaredMoveConstructor()) {
9208 SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9209 Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9210 return;
9211 }
9212 break;
9213
9214 case CXXCopyAssignment:
9215 if (RD->hasUserDeclaredCopyAssignment()) {
9216 // FIXME: this should use the location of the copy
9217 // assignment, not the type.
9218 SourceLocation TyLoc = RD->getLocStart();
9219 Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9220 return;
9221 }
9222 break;
9223
9224 case CXXMoveAssignment:
9225 if (RD->hasUserDeclaredMoveAssignment()) {
9226 SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9227 Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9228 return;
9229 }
9230 break;
9231
9232 case CXXDestructor:
9233 if (RD->hasUserDeclaredDestructor()) {
9234 SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9235 Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9236 return;
9237 }
9238 break;
9239 }
9240
9241 typedef CXXRecordDecl::base_class_iterator base_iter;
9242
9243 // Virtual bases and members inhibit trivial copying/construction,
9244 // but not trivial destruction.
9245 if (member != CXXDestructor) {
9246 // Check for virtual bases. vbases includes indirect virtual bases,
9247 // so we just iterate through the direct bases.
9248 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9249 if (bi->isVirtual()) {
9250 SourceLocation BaseLoc = bi->getLocStart();
9251 Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9252 return;
9253 }
9254
9255 // Check for virtual methods.
9256 typedef CXXRecordDecl::method_iterator meth_iter;
9257 for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9258 ++mi) {
9259 if (mi->isVirtual()) {
9260 SourceLocation MLoc = mi->getLocStart();
9261 Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9262 return;
9263 }
9264 }
9265 }
9266
9267 bool (CXXRecordDecl::*hasTrivial)() const;
9268 switch (member) {
9269 case CXXDefaultConstructor:
9270 hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9271 case CXXCopyConstructor:
9272 hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9273 case CXXCopyAssignment:
9274 hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9275 case CXXDestructor:
9276 hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9277 default:
9278 llvm_unreachable("unexpected special member");
9279 }
9280
9281 // Check for nontrivial bases (and recurse).
9282 for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9283 const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9284 assert(BaseRT && "Don't know how to handle dependent bases");
9285 CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9286 if (!(BaseRecTy->*hasTrivial)()) {
9287 SourceLocation BaseLoc = bi->getLocStart();
9288 Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9289 DiagnoseNontrivial(BaseRT, member);
9290 return;
9291 }
9292 }
9293
9294 // Check for nontrivial members (and recurse).
9295 typedef RecordDecl::field_iterator field_iter;
9296 for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9297 ++fi) {
9298 QualType EltTy = Context.getBaseElementType((*fi)->getType());
9299 if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9300 CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9301
9302 if (!(EltRD->*hasTrivial)()) {
9303 SourceLocation FLoc = (*fi)->getLocation();
9304 Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9305 DiagnoseNontrivial(EltRT, member);
9306 return;
9307 }
9308 }
9309
9310 if (EltTy->isObjCLifetimeType()) {
9311 switch (EltTy.getObjCLifetime()) {
9312 case Qualifiers::OCL_None:
9313 case Qualifiers::OCL_ExplicitNone:
9314 break;
9315
9316 case Qualifiers::OCL_Autoreleasing:
9317 case Qualifiers::OCL_Weak:
9318 case Qualifiers::OCL_Strong:
9319 Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9320 << QT << EltTy.getObjCLifetime();
9321 return;
9322 }
9323 }
9324 }
9325
9326 llvm_unreachable("found no explanation for non-trivial member");
9327 }
9328
9329 /// TranslateIvarVisibility - Translate visibility from a token ID to an
9330 /// AST enum value.
9331 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)9332 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9333 switch (ivarVisibility) {
9334 default: llvm_unreachable("Unknown visitibility kind");
9335 case tok::objc_private: return ObjCIvarDecl::Private;
9336 case tok::objc_public: return ObjCIvarDecl::Public;
9337 case tok::objc_protected: return ObjCIvarDecl::Protected;
9338 case tok::objc_package: return ObjCIvarDecl::Package;
9339 }
9340 }
9341
9342 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
9343 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)9344 Decl *Sema::ActOnIvar(Scope *S,
9345 SourceLocation DeclStart,
9346 Declarator &D, Expr *BitfieldWidth,
9347 tok::ObjCKeywordKind Visibility) {
9348
9349 IdentifierInfo *II = D.getIdentifier();
9350 Expr *BitWidth = (Expr*)BitfieldWidth;
9351 SourceLocation Loc = DeclStart;
9352 if (II) Loc = D.getIdentifierLoc();
9353
9354 // FIXME: Unnamed fields can be handled in various different ways, for
9355 // example, unnamed unions inject all members into the struct namespace!
9356
9357 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9358 QualType T = TInfo->getType();
9359
9360 if (BitWidth) {
9361 // 6.7.2.1p3, 6.7.2.1p4
9362 BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9363 if (!BitWidth)
9364 D.setInvalidType();
9365 } else {
9366 // Not a bitfield.
9367
9368 // validate II.
9369
9370 }
9371 if (T->isReferenceType()) {
9372 Diag(Loc, diag::err_ivar_reference_type);
9373 D.setInvalidType();
9374 }
9375 // C99 6.7.2.1p8: A member of a structure or union may have any type other
9376 // than a variably modified type.
9377 else if (T->isVariablyModifiedType()) {
9378 Diag(Loc, diag::err_typecheck_ivar_variable_size);
9379 D.setInvalidType();
9380 }
9381
9382 // Get the visibility (access control) for this ivar.
9383 ObjCIvarDecl::AccessControl ac =
9384 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9385 : ObjCIvarDecl::None;
9386 // Must set ivar's DeclContext to its enclosing interface.
9387 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9388 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9389 return 0;
9390 ObjCContainerDecl *EnclosingContext;
9391 if (ObjCImplementationDecl *IMPDecl =
9392 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9393 if (!LangOpts.ObjCNonFragileABI2) {
9394 // Case of ivar declared in an implementation. Context is that of its class.
9395 EnclosingContext = IMPDecl->getClassInterface();
9396 assert(EnclosingContext && "Implementation has no class interface!");
9397 }
9398 else
9399 EnclosingContext = EnclosingDecl;
9400 } else {
9401 if (ObjCCategoryDecl *CDecl =
9402 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9403 if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9404 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9405 return 0;
9406 }
9407 }
9408 EnclosingContext = EnclosingDecl;
9409 }
9410
9411 // Construct the decl.
9412 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9413 DeclStart, Loc, II, T,
9414 TInfo, ac, (Expr *)BitfieldWidth);
9415
9416 if (II) {
9417 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9418 ForRedeclaration);
9419 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9420 && !isa<TagDecl>(PrevDecl)) {
9421 Diag(Loc, diag::err_duplicate_member) << II;
9422 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9423 NewID->setInvalidDecl();
9424 }
9425 }
9426
9427 // Process attributes attached to the ivar.
9428 ProcessDeclAttributes(S, NewID, D);
9429
9430 if (D.isInvalidType())
9431 NewID->setInvalidDecl();
9432
9433 // In ARC, infer 'retaining' for ivars of retainable type.
9434 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9435 NewID->setInvalidDecl();
9436
9437 if (D.getDeclSpec().isModulePrivateSpecified())
9438 NewID->setModulePrivate();
9439
9440 if (II) {
9441 // FIXME: When interfaces are DeclContexts, we'll need to add
9442 // these to the interface.
9443 S->AddDecl(NewID);
9444 IdResolver.AddDecl(NewID);
9445 }
9446
9447 return NewID;
9448 }
9449
9450 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9451 /// class and class extensions. For every class @interface and class
9452 /// extension @interface, if the last ivar is a bitfield of any type,
9453 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)9454 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9455 SmallVectorImpl<Decl *> &AllIvarDecls) {
9456 if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9457 return;
9458
9459 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9460 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9461
9462 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9463 return;
9464 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9465 if (!ID) {
9466 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9467 if (!CD->IsClassExtension())
9468 return;
9469 }
9470 // No need to add this to end of @implementation.
9471 else
9472 return;
9473 }
9474 // All conditions are met. Add a new bitfield to the tail end of ivars.
9475 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9476 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9477
9478 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9479 DeclLoc, DeclLoc, 0,
9480 Context.CharTy,
9481 Context.getTrivialTypeSourceInfo(Context.CharTy,
9482 DeclLoc),
9483 ObjCIvarDecl::Private, BW,
9484 true);
9485 AllIvarDecls.push_back(Ivar);
9486 }
9487
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,llvm::ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)9488 void Sema::ActOnFields(Scope* S,
9489 SourceLocation RecLoc, Decl *EnclosingDecl,
9490 llvm::ArrayRef<Decl *> Fields,
9491 SourceLocation LBrac, SourceLocation RBrac,
9492 AttributeList *Attr) {
9493 assert(EnclosingDecl && "missing record or interface decl");
9494
9495 // If the decl this is being inserted into is invalid, then it may be a
9496 // redeclaration or some other bogus case. Don't try to add fields to it.
9497 if (EnclosingDecl->isInvalidDecl())
9498 return;
9499
9500 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9501
9502 // Start counting up the number of named members; make sure to include
9503 // members of anonymous structs and unions in the total.
9504 unsigned NumNamedMembers = 0;
9505 if (Record) {
9506 for (RecordDecl::decl_iterator i = Record->decls_begin(),
9507 e = Record->decls_end(); i != e; i++) {
9508 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9509 if (IFD->getDeclName())
9510 ++NumNamedMembers;
9511 }
9512 }
9513
9514 // Verify that all the fields are okay.
9515 SmallVector<FieldDecl*, 32> RecFields;
9516
9517 bool ARCErrReported = false;
9518 for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9519 i != end; ++i) {
9520 FieldDecl *FD = cast<FieldDecl>(*i);
9521
9522 // Get the type for the field.
9523 const Type *FDTy = FD->getType().getTypePtr();
9524
9525 if (!FD->isAnonymousStructOrUnion()) {
9526 // Remember all fields written by the user.
9527 RecFields.push_back(FD);
9528 }
9529
9530 // If the field is already invalid for some reason, don't emit more
9531 // diagnostics about it.
9532 if (FD->isInvalidDecl()) {
9533 EnclosingDecl->setInvalidDecl();
9534 continue;
9535 }
9536
9537 // C99 6.7.2.1p2:
9538 // A structure or union shall not contain a member with
9539 // incomplete or function type (hence, a structure shall not
9540 // contain an instance of itself, but may contain a pointer to
9541 // an instance of itself), except that the last member of a
9542 // structure with more than one named member may have incomplete
9543 // array type; such a structure (and any union containing,
9544 // possibly recursively, a member that is such a structure)
9545 // shall not be a member of a structure or an element of an
9546 // array.
9547 if (FDTy->isFunctionType()) {
9548 // Field declared as a function.
9549 Diag(FD->getLocation(), diag::err_field_declared_as_function)
9550 << FD->getDeclName();
9551 FD->setInvalidDecl();
9552 EnclosingDecl->setInvalidDecl();
9553 continue;
9554 } else if (FDTy->isIncompleteArrayType() && Record &&
9555 ((i + 1 == Fields.end() && !Record->isUnion()) ||
9556 ((getLangOpts().MicrosoftExt ||
9557 getLangOpts().CPlusPlus) &&
9558 (i + 1 == Fields.end() || Record->isUnion())))) {
9559 // Flexible array member.
9560 // Microsoft and g++ is more permissive regarding flexible array.
9561 // It will accept flexible array in union and also
9562 // as the sole element of a struct/class.
9563 if (getLangOpts().MicrosoftExt) {
9564 if (Record->isUnion())
9565 Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9566 << FD->getDeclName();
9567 else if (Fields.size() == 1)
9568 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9569 << FD->getDeclName() << Record->getTagKind();
9570 } else if (getLangOpts().CPlusPlus) {
9571 if (Record->isUnion())
9572 Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9573 << FD->getDeclName();
9574 else if (Fields.size() == 1)
9575 Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9576 << FD->getDeclName() << Record->getTagKind();
9577 } else if (!getLangOpts().C99) {
9578 if (Record->isUnion())
9579 Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9580 << FD->getDeclName();
9581 else
9582 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9583 << FD->getDeclName() << Record->getTagKind();
9584 } else if (NumNamedMembers < 1) {
9585 Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9586 << FD->getDeclName();
9587 FD->setInvalidDecl();
9588 EnclosingDecl->setInvalidDecl();
9589 continue;
9590 }
9591 if (!FD->getType()->isDependentType() &&
9592 !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9593 Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9594 << FD->getDeclName() << FD->getType();
9595 FD->setInvalidDecl();
9596 EnclosingDecl->setInvalidDecl();
9597 continue;
9598 }
9599 // Okay, we have a legal flexible array member at the end of the struct.
9600 if (Record)
9601 Record->setHasFlexibleArrayMember(true);
9602 } else if (!FDTy->isDependentType() &&
9603 RequireCompleteType(FD->getLocation(), FD->getType(),
9604 diag::err_field_incomplete)) {
9605 // Incomplete type
9606 FD->setInvalidDecl();
9607 EnclosingDecl->setInvalidDecl();
9608 continue;
9609 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9610 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9611 // If this is a member of a union, then entire union becomes "flexible".
9612 if (Record && Record->isUnion()) {
9613 Record->setHasFlexibleArrayMember(true);
9614 } else {
9615 // If this is a struct/class and this is not the last element, reject
9616 // it. Note that GCC supports variable sized arrays in the middle of
9617 // structures.
9618 if (i + 1 != Fields.end())
9619 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9620 << FD->getDeclName() << FD->getType();
9621 else {
9622 // We support flexible arrays at the end of structs in
9623 // other structs as an extension.
9624 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9625 << FD->getDeclName();
9626 if (Record)
9627 Record->setHasFlexibleArrayMember(true);
9628 }
9629 }
9630 }
9631 if (Record && FDTTy->getDecl()->hasObjectMember())
9632 Record->setHasObjectMember(true);
9633 } else if (FDTy->isObjCObjectType()) {
9634 /// A field cannot be an Objective-c object
9635 Diag(FD->getLocation(), diag::err_statically_allocated_object)
9636 << FixItHint::CreateInsertion(FD->getLocation(), "*");
9637 QualType T = Context.getObjCObjectPointerType(FD->getType());
9638 FD->setType(T);
9639 }
9640 else if (!getLangOpts().CPlusPlus) {
9641 if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9642 // It's an error in ARC if a field has lifetime.
9643 // We don't want to report this in a system header, though,
9644 // so we just make the field unavailable.
9645 // FIXME: that's really not sufficient; we need to make the type
9646 // itself invalid to, say, initialize or copy.
9647 QualType T = FD->getType();
9648 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9649 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9650 SourceLocation loc = FD->getLocation();
9651 if (getSourceManager().isInSystemHeader(loc)) {
9652 if (!FD->hasAttr<UnavailableAttr>()) {
9653 FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9654 "this system field has retaining ownership"));
9655 }
9656 } else {
9657 Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9658 << T->isBlockPointerType();
9659 }
9660 ARCErrReported = true;
9661 }
9662 }
9663 else if (getLangOpts().ObjC1 &&
9664 getLangOpts().getGC() != LangOptions::NonGC &&
9665 Record && !Record->hasObjectMember()) {
9666 if (FD->getType()->isObjCObjectPointerType() ||
9667 FD->getType().isObjCGCStrong())
9668 Record->setHasObjectMember(true);
9669 else if (Context.getAsArrayType(FD->getType())) {
9670 QualType BaseType = Context.getBaseElementType(FD->getType());
9671 if (BaseType->isRecordType() &&
9672 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9673 Record->setHasObjectMember(true);
9674 else if (BaseType->isObjCObjectPointerType() ||
9675 BaseType.isObjCGCStrong())
9676 Record->setHasObjectMember(true);
9677 }
9678 }
9679 }
9680 // Keep track of the number of named members.
9681 if (FD->getIdentifier())
9682 ++NumNamedMembers;
9683 }
9684
9685 // Okay, we successfully defined 'Record'.
9686 if (Record) {
9687 bool Completed = false;
9688 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9689 if (!CXXRecord->isInvalidDecl()) {
9690 // Set access bits correctly on the directly-declared conversions.
9691 UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9692 for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9693 I != E; ++I)
9694 Convs->setAccess(I, (*I)->getAccess());
9695
9696 if (!CXXRecord->isDependentType()) {
9697 // Objective-C Automatic Reference Counting:
9698 // If a class has a non-static data member of Objective-C pointer
9699 // type (or array thereof), it is a non-POD type and its
9700 // default constructor (if any), copy constructor, copy assignment
9701 // operator, and destructor are non-trivial.
9702 //
9703 // This rule is also handled by CXXRecordDecl::completeDefinition().
9704 // However, here we check whether this particular class is only
9705 // non-POD because of the presence of an Objective-C pointer member.
9706 // If so, objects of this type cannot be shared between code compiled
9707 // with instant objects and code compiled with manual retain/release.
9708 if (getLangOpts().ObjCAutoRefCount &&
9709 CXXRecord->hasObjectMember() &&
9710 CXXRecord->getLinkage() == ExternalLinkage) {
9711 if (CXXRecord->isPOD()) {
9712 Diag(CXXRecord->getLocation(),
9713 diag::warn_arc_non_pod_class_with_object_member)
9714 << CXXRecord;
9715 } else {
9716 // FIXME: Fix-Its would be nice here, but finding a good location
9717 // for them is going to be tricky.
9718 if (CXXRecord->hasTrivialCopyConstructor())
9719 Diag(CXXRecord->getLocation(),
9720 diag::warn_arc_trivial_member_function_with_object_member)
9721 << CXXRecord << 0;
9722 if (CXXRecord->hasTrivialCopyAssignment())
9723 Diag(CXXRecord->getLocation(),
9724 diag::warn_arc_trivial_member_function_with_object_member)
9725 << CXXRecord << 1;
9726 if (CXXRecord->hasTrivialDestructor())
9727 Diag(CXXRecord->getLocation(),
9728 diag::warn_arc_trivial_member_function_with_object_member)
9729 << CXXRecord << 2;
9730 }
9731 }
9732
9733 // Adjust user-defined destructor exception spec.
9734 if (getLangOpts().CPlusPlus0x &&
9735 CXXRecord->hasUserDeclaredDestructor())
9736 AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9737
9738 // Add any implicitly-declared members to this class.
9739 AddImplicitlyDeclaredMembersToClass(CXXRecord);
9740
9741 // If we have virtual base classes, we may end up finding multiple
9742 // final overriders for a given virtual function. Check for this
9743 // problem now.
9744 if (CXXRecord->getNumVBases()) {
9745 CXXFinalOverriderMap FinalOverriders;
9746 CXXRecord->getFinalOverriders(FinalOverriders);
9747
9748 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9749 MEnd = FinalOverriders.end();
9750 M != MEnd; ++M) {
9751 for (OverridingMethods::iterator SO = M->second.begin(),
9752 SOEnd = M->second.end();
9753 SO != SOEnd; ++SO) {
9754 assert(SO->second.size() > 0 &&
9755 "Virtual function without overridding functions?");
9756 if (SO->second.size() == 1)
9757 continue;
9758
9759 // C++ [class.virtual]p2:
9760 // In a derived class, if a virtual member function of a base
9761 // class subobject has more than one final overrider the
9762 // program is ill-formed.
9763 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9764 << (NamedDecl *)M->first << Record;
9765 Diag(M->first->getLocation(),
9766 diag::note_overridden_virtual_function);
9767 for (OverridingMethods::overriding_iterator
9768 OM = SO->second.begin(),
9769 OMEnd = SO->second.end();
9770 OM != OMEnd; ++OM)
9771 Diag(OM->Method->getLocation(), diag::note_final_overrider)
9772 << (NamedDecl *)M->first << OM->Method->getParent();
9773
9774 Record->setInvalidDecl();
9775 }
9776 }
9777 CXXRecord->completeDefinition(&FinalOverriders);
9778 Completed = true;
9779 }
9780 }
9781 }
9782 }
9783
9784 if (!Completed)
9785 Record->completeDefinition();
9786
9787 // Now that the record is complete, do any delayed exception spec checks
9788 // we were missing.
9789 while (!DelayedDestructorExceptionSpecChecks.empty()) {
9790 const CXXDestructorDecl *Dtor =
9791 DelayedDestructorExceptionSpecChecks.back().first;
9792 if (Dtor->getParent() != Record)
9793 break;
9794
9795 assert(!Dtor->getParent()->isDependentType() &&
9796 "Should not ever add destructors of templates into the list.");
9797 CheckOverridingFunctionExceptionSpec(Dtor,
9798 DelayedDestructorExceptionSpecChecks.back().second);
9799 DelayedDestructorExceptionSpecChecks.pop_back();
9800 }
9801
9802 } else {
9803 ObjCIvarDecl **ClsFields =
9804 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9805 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9806 ID->setEndOfDefinitionLoc(RBrac);
9807 // Add ivar's to class's DeclContext.
9808 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9809 ClsFields[i]->setLexicalDeclContext(ID);
9810 ID->addDecl(ClsFields[i]);
9811 }
9812 // Must enforce the rule that ivars in the base classes may not be
9813 // duplicates.
9814 if (ID->getSuperClass())
9815 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9816 } else if (ObjCImplementationDecl *IMPDecl =
9817 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9818 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9819 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9820 // Ivar declared in @implementation never belongs to the implementation.
9821 // Only it is in implementation's lexical context.
9822 ClsFields[I]->setLexicalDeclContext(IMPDecl);
9823 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9824 IMPDecl->setIvarLBraceLoc(LBrac);
9825 IMPDecl->setIvarRBraceLoc(RBrac);
9826 } else if (ObjCCategoryDecl *CDecl =
9827 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9828 // case of ivars in class extension; all other cases have been
9829 // reported as errors elsewhere.
9830 // FIXME. Class extension does not have a LocEnd field.
9831 // CDecl->setLocEnd(RBrac);
9832 // Add ivar's to class extension's DeclContext.
9833 // Diagnose redeclaration of private ivars.
9834 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9835 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9836 if (IDecl) {
9837 if (const ObjCIvarDecl *ClsIvar =
9838 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9839 Diag(ClsFields[i]->getLocation(),
9840 diag::err_duplicate_ivar_declaration);
9841 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9842 continue;
9843 }
9844 for (const ObjCCategoryDecl *ClsExtDecl =
9845 IDecl->getFirstClassExtension();
9846 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9847 if (const ObjCIvarDecl *ClsExtIvar =
9848 ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9849 Diag(ClsFields[i]->getLocation(),
9850 diag::err_duplicate_ivar_declaration);
9851 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9852 continue;
9853 }
9854 }
9855 }
9856 ClsFields[i]->setLexicalDeclContext(CDecl);
9857 CDecl->addDecl(ClsFields[i]);
9858 }
9859 CDecl->setIvarLBraceLoc(LBrac);
9860 CDecl->setIvarRBraceLoc(RBrac);
9861 }
9862 }
9863
9864 if (Attr)
9865 ProcessDeclAttributeList(S, Record, Attr);
9866
9867 // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9868 // set the visibility of this record.
9869 if (Record && !Record->getDeclContext()->isRecord())
9870 AddPushedVisibilityAttribute(Record);
9871 }
9872
9873 /// \brief Determine whether the given integral value is representable within
9874 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)9875 static bool isRepresentableIntegerValue(ASTContext &Context,
9876 llvm::APSInt &Value,
9877 QualType T) {
9878 assert(T->isIntegralType(Context) && "Integral type required!");
9879 unsigned BitWidth = Context.getIntWidth(T);
9880
9881 if (Value.isUnsigned() || Value.isNonNegative()) {
9882 if (T->isSignedIntegerOrEnumerationType())
9883 --BitWidth;
9884 return Value.getActiveBits() <= BitWidth;
9885 }
9886 return Value.getMinSignedBits() <= BitWidth;
9887 }
9888
9889 // \brief Given an integral type, return the next larger integral type
9890 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)9891 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9892 // FIXME: Int128/UInt128 support, which also needs to be introduced into
9893 // enum checking below.
9894 assert(T->isIntegralType(Context) && "Integral type required!");
9895 const unsigned NumTypes = 4;
9896 QualType SignedIntegralTypes[NumTypes] = {
9897 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9898 };
9899 QualType UnsignedIntegralTypes[NumTypes] = {
9900 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9901 Context.UnsignedLongLongTy
9902 };
9903
9904 unsigned BitWidth = Context.getTypeSize(T);
9905 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9906 : UnsignedIntegralTypes;
9907 for (unsigned I = 0; I != NumTypes; ++I)
9908 if (Context.getTypeSize(Types[I]) > BitWidth)
9909 return Types[I];
9910
9911 return QualType();
9912 }
9913
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)9914 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9915 EnumConstantDecl *LastEnumConst,
9916 SourceLocation IdLoc,
9917 IdentifierInfo *Id,
9918 Expr *Val) {
9919 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9920 llvm::APSInt EnumVal(IntWidth);
9921 QualType EltTy;
9922
9923 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9924 Val = 0;
9925
9926 if (Val)
9927 Val = DefaultLvalueConversion(Val).take();
9928
9929 if (Val) {
9930 if (Enum->isDependentType() || Val->isTypeDependent())
9931 EltTy = Context.DependentTy;
9932 else {
9933 SourceLocation ExpLoc;
9934 if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
9935 !getLangOpts().MicrosoftMode) {
9936 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9937 // constant-expression in the enumerator-definition shall be a converted
9938 // constant expression of the underlying type.
9939 EltTy = Enum->getIntegerType();
9940 ExprResult Converted =
9941 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9942 CCEK_Enumerator);
9943 if (Converted.isInvalid())
9944 Val = 0;
9945 else
9946 Val = Converted.take();
9947 } else if (!Val->isValueDependent() &&
9948 !(Val = VerifyIntegerConstantExpression(Val,
9949 &EnumVal).take())) {
9950 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9951 } else {
9952 if (Enum->isFixed()) {
9953 EltTy = Enum->getIntegerType();
9954
9955 // In Obj-C and Microsoft mode, require the enumeration value to be
9956 // representable in the underlying type of the enumeration. In C++11,
9957 // we perform a non-narrowing conversion as part of converted constant
9958 // expression checking.
9959 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9960 if (getLangOpts().MicrosoftMode) {
9961 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9962 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9963 } else
9964 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9965 } else
9966 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9967 } else if (getLangOpts().CPlusPlus) {
9968 // C++11 [dcl.enum]p5:
9969 // If the underlying type is not fixed, the type of each enumerator
9970 // is the type of its initializing value:
9971 // - If an initializer is specified for an enumerator, the
9972 // initializing value has the same type as the expression.
9973 EltTy = Val->getType();
9974 } else {
9975 // C99 6.7.2.2p2:
9976 // The expression that defines the value of an enumeration constant
9977 // shall be an integer constant expression that has a value
9978 // representable as an int.
9979
9980 // Complain if the value is not representable in an int.
9981 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9982 Diag(IdLoc, diag::ext_enum_value_not_int)
9983 << EnumVal.toString(10) << Val->getSourceRange()
9984 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9985 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9986 // Force the type of the expression to 'int'.
9987 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9988 }
9989 EltTy = Val->getType();
9990 }
9991 }
9992 }
9993 }
9994
9995 if (!Val) {
9996 if (Enum->isDependentType())
9997 EltTy = Context.DependentTy;
9998 else if (!LastEnumConst) {
9999 // C++0x [dcl.enum]p5:
10000 // If the underlying type is not fixed, the type of each enumerator
10001 // is the type of its initializing value:
10002 // - If no initializer is specified for the first enumerator, the
10003 // initializing value has an unspecified integral type.
10004 //
10005 // GCC uses 'int' for its unspecified integral type, as does
10006 // C99 6.7.2.2p3.
10007 if (Enum->isFixed()) {
10008 EltTy = Enum->getIntegerType();
10009 }
10010 else {
10011 EltTy = Context.IntTy;
10012 }
10013 } else {
10014 // Assign the last value + 1.
10015 EnumVal = LastEnumConst->getInitVal();
10016 ++EnumVal;
10017 EltTy = LastEnumConst->getType();
10018
10019 // Check for overflow on increment.
10020 if (EnumVal < LastEnumConst->getInitVal()) {
10021 // C++0x [dcl.enum]p5:
10022 // If the underlying type is not fixed, the type of each enumerator
10023 // is the type of its initializing value:
10024 //
10025 // - Otherwise the type of the initializing value is the same as
10026 // the type of the initializing value of the preceding enumerator
10027 // unless the incremented value is not representable in that type,
10028 // in which case the type is an unspecified integral type
10029 // sufficient to contain the incremented value. If no such type
10030 // exists, the program is ill-formed.
10031 QualType T = getNextLargerIntegralType(Context, EltTy);
10032 if (T.isNull() || Enum->isFixed()) {
10033 // There is no integral type larger enough to represent this
10034 // value. Complain, then allow the value to wrap around.
10035 EnumVal = LastEnumConst->getInitVal();
10036 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10037 ++EnumVal;
10038 if (Enum->isFixed())
10039 // When the underlying type is fixed, this is ill-formed.
10040 Diag(IdLoc, diag::err_enumerator_wrapped)
10041 << EnumVal.toString(10)
10042 << EltTy;
10043 else
10044 Diag(IdLoc, diag::warn_enumerator_too_large)
10045 << EnumVal.toString(10);
10046 } else {
10047 EltTy = T;
10048 }
10049
10050 // Retrieve the last enumerator's value, extent that type to the
10051 // type that is supposed to be large enough to represent the incremented
10052 // value, then increment.
10053 EnumVal = LastEnumConst->getInitVal();
10054 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10055 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10056 ++EnumVal;
10057
10058 // If we're not in C++, diagnose the overflow of enumerator values,
10059 // which in C99 means that the enumerator value is not representable in
10060 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10061 // permits enumerator values that are representable in some larger
10062 // integral type.
10063 if (!getLangOpts().CPlusPlus && !T.isNull())
10064 Diag(IdLoc, diag::warn_enum_value_overflow);
10065 } else if (!getLangOpts().CPlusPlus &&
10066 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10067 // Enforce C99 6.7.2.2p2 even when we compute the next value.
10068 Diag(IdLoc, diag::ext_enum_value_not_int)
10069 << EnumVal.toString(10) << 1;
10070 }
10071 }
10072 }
10073
10074 if (!EltTy->isDependentType()) {
10075 // Make the enumerator value match the signedness and size of the
10076 // enumerator's type.
10077 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10078 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10079 }
10080
10081 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10082 Val, EnumVal);
10083 }
10084
10085
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)10086 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10087 SourceLocation IdLoc, IdentifierInfo *Id,
10088 AttributeList *Attr,
10089 SourceLocation EqualLoc, Expr *Val) {
10090 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10091 EnumConstantDecl *LastEnumConst =
10092 cast_or_null<EnumConstantDecl>(lastEnumConst);
10093
10094 // The scope passed in may not be a decl scope. Zip up the scope tree until
10095 // we find one that is.
10096 S = getNonFieldDeclScope(S);
10097
10098 // Verify that there isn't already something declared with this name in this
10099 // scope.
10100 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10101 ForRedeclaration);
10102 if (PrevDecl && PrevDecl->isTemplateParameter()) {
10103 // Maybe we will complain about the shadowed template parameter.
10104 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10105 // Just pretend that we didn't see the previous declaration.
10106 PrevDecl = 0;
10107 }
10108
10109 if (PrevDecl) {
10110 // When in C++, we may get a TagDecl with the same name; in this case the
10111 // enum constant will 'hide' the tag.
10112 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10113 "Received TagDecl when not in C++!");
10114 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10115 if (isa<EnumConstantDecl>(PrevDecl))
10116 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10117 else
10118 Diag(IdLoc, diag::err_redefinition) << Id;
10119 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10120 return 0;
10121 }
10122 }
10123
10124 // C++ [class.mem]p13:
10125 // If T is the name of a class, then each of the following shall have a
10126 // name different from T:
10127 // - every enumerator of every member of class T that is an enumerated
10128 // type
10129 if (CXXRecordDecl *Record
10130 = dyn_cast<CXXRecordDecl>(
10131 TheEnumDecl->getDeclContext()->getRedeclContext()))
10132 if (Record->getIdentifier() && Record->getIdentifier() == Id)
10133 Diag(IdLoc, diag::err_member_name_of_class) << Id;
10134
10135 EnumConstantDecl *New =
10136 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10137
10138 if (New) {
10139 // Process attributes.
10140 if (Attr) ProcessDeclAttributeList(S, New, Attr);
10141
10142 // Register this decl in the current scope stack.
10143 New->setAccess(TheEnumDecl->getAccess());
10144 PushOnScopeChains(New, S);
10145 }
10146
10147 return New;
10148 }
10149
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,Decl ** Elements,unsigned NumElements,Scope * S,AttributeList * Attr)10150 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10151 SourceLocation RBraceLoc, Decl *EnumDeclX,
10152 Decl **Elements, unsigned NumElements,
10153 Scope *S, AttributeList *Attr) {
10154 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10155 QualType EnumType = Context.getTypeDeclType(Enum);
10156
10157 if (Attr)
10158 ProcessDeclAttributeList(S, Enum, Attr);
10159
10160 if (Enum->isDependentType()) {
10161 for (unsigned i = 0; i != NumElements; ++i) {
10162 EnumConstantDecl *ECD =
10163 cast_or_null<EnumConstantDecl>(Elements[i]);
10164 if (!ECD) continue;
10165
10166 ECD->setType(EnumType);
10167 }
10168
10169 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10170 return;
10171 }
10172
10173 // TODO: If the result value doesn't fit in an int, it must be a long or long
10174 // long value. ISO C does not support this, but GCC does as an extension,
10175 // emit a warning.
10176 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10177 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10178 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10179
10180 // Verify that all the values are okay, compute the size of the values, and
10181 // reverse the list.
10182 unsigned NumNegativeBits = 0;
10183 unsigned NumPositiveBits = 0;
10184
10185 // Keep track of whether all elements have type int.
10186 bool AllElementsInt = true;
10187
10188 for (unsigned i = 0; i != NumElements; ++i) {
10189 EnumConstantDecl *ECD =
10190 cast_or_null<EnumConstantDecl>(Elements[i]);
10191 if (!ECD) continue; // Already issued a diagnostic.
10192
10193 const llvm::APSInt &InitVal = ECD->getInitVal();
10194
10195 // Keep track of the size of positive and negative values.
10196 if (InitVal.isUnsigned() || InitVal.isNonNegative())
10197 NumPositiveBits = std::max(NumPositiveBits,
10198 (unsigned)InitVal.getActiveBits());
10199 else
10200 NumNegativeBits = std::max(NumNegativeBits,
10201 (unsigned)InitVal.getMinSignedBits());
10202
10203 // Keep track of whether every enum element has type int (very commmon).
10204 if (AllElementsInt)
10205 AllElementsInt = ECD->getType() == Context.IntTy;
10206 }
10207
10208 // Figure out the type that should be used for this enum.
10209 QualType BestType;
10210 unsigned BestWidth;
10211
10212 // C++0x N3000 [conv.prom]p3:
10213 // An rvalue of an unscoped enumeration type whose underlying
10214 // type is not fixed can be converted to an rvalue of the first
10215 // of the following types that can represent all the values of
10216 // the enumeration: int, unsigned int, long int, unsigned long
10217 // int, long long int, or unsigned long long int.
10218 // C99 6.4.4.3p2:
10219 // An identifier declared as an enumeration constant has type int.
10220 // The C99 rule is modified by a gcc extension
10221 QualType BestPromotionType;
10222
10223 bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10224 // -fshort-enums is the equivalent to specifying the packed attribute on all
10225 // enum definitions.
10226 if (LangOpts.ShortEnums)
10227 Packed = true;
10228
10229 if (Enum->isFixed()) {
10230 BestType = Enum->getIntegerType();
10231 if (BestType->isPromotableIntegerType())
10232 BestPromotionType = Context.getPromotedIntegerType(BestType);
10233 else
10234 BestPromotionType = BestType;
10235 // We don't need to set BestWidth, because BestType is going to be the type
10236 // of the enumerators, but we do anyway because otherwise some compilers
10237 // warn that it might be used uninitialized.
10238 BestWidth = CharWidth;
10239 }
10240 else if (NumNegativeBits) {
10241 // If there is a negative value, figure out the smallest integer type (of
10242 // int/long/longlong) that fits.
10243 // If it's packed, check also if it fits a char or a short.
10244 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10245 BestType = Context.SignedCharTy;
10246 BestWidth = CharWidth;
10247 } else if (Packed && NumNegativeBits <= ShortWidth &&
10248 NumPositiveBits < ShortWidth) {
10249 BestType = Context.ShortTy;
10250 BestWidth = ShortWidth;
10251 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10252 BestType = Context.IntTy;
10253 BestWidth = IntWidth;
10254 } else {
10255 BestWidth = Context.getTargetInfo().getLongWidth();
10256
10257 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10258 BestType = Context.LongTy;
10259 } else {
10260 BestWidth = Context.getTargetInfo().getLongLongWidth();
10261
10262 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10263 Diag(Enum->getLocation(), diag::warn_enum_too_large);
10264 BestType = Context.LongLongTy;
10265 }
10266 }
10267 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10268 } else {
10269 // If there is no negative value, figure out the smallest type that fits
10270 // all of the enumerator values.
10271 // If it's packed, check also if it fits a char or a short.
10272 if (Packed && NumPositiveBits <= CharWidth) {
10273 BestType = Context.UnsignedCharTy;
10274 BestPromotionType = Context.IntTy;
10275 BestWidth = CharWidth;
10276 } else if (Packed && NumPositiveBits <= ShortWidth) {
10277 BestType = Context.UnsignedShortTy;
10278 BestPromotionType = Context.IntTy;
10279 BestWidth = ShortWidth;
10280 } else if (NumPositiveBits <= IntWidth) {
10281 BestType = Context.UnsignedIntTy;
10282 BestWidth = IntWidth;
10283 BestPromotionType
10284 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10285 ? Context.UnsignedIntTy : Context.IntTy;
10286 } else if (NumPositiveBits <=
10287 (BestWidth = Context.getTargetInfo().getLongWidth())) {
10288 BestType = Context.UnsignedLongTy;
10289 BestPromotionType
10290 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10291 ? Context.UnsignedLongTy : Context.LongTy;
10292 } else {
10293 BestWidth = Context.getTargetInfo().getLongLongWidth();
10294 assert(NumPositiveBits <= BestWidth &&
10295 "How could an initializer get larger than ULL?");
10296 BestType = Context.UnsignedLongLongTy;
10297 BestPromotionType
10298 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10299 ? Context.UnsignedLongLongTy : Context.LongLongTy;
10300 }
10301 }
10302
10303 // Loop over all of the enumerator constants, changing their types to match
10304 // the type of the enum if needed.
10305 for (unsigned i = 0; i != NumElements; ++i) {
10306 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10307 if (!ECD) continue; // Already issued a diagnostic.
10308
10309 // Standard C says the enumerators have int type, but we allow, as an
10310 // extension, the enumerators to be larger than int size. If each
10311 // enumerator value fits in an int, type it as an int, otherwise type it the
10312 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
10313 // that X has type 'int', not 'unsigned'.
10314
10315 // Determine whether the value fits into an int.
10316 llvm::APSInt InitVal = ECD->getInitVal();
10317
10318 // If it fits into an integer type, force it. Otherwise force it to match
10319 // the enum decl type.
10320 QualType NewTy;
10321 unsigned NewWidth;
10322 bool NewSign;
10323 if (!getLangOpts().CPlusPlus &&
10324 !Enum->isFixed() &&
10325 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10326 NewTy = Context.IntTy;
10327 NewWidth = IntWidth;
10328 NewSign = true;
10329 } else if (ECD->getType() == BestType) {
10330 // Already the right type!
10331 if (getLangOpts().CPlusPlus)
10332 // C++ [dcl.enum]p4: Following the closing brace of an
10333 // enum-specifier, each enumerator has the type of its
10334 // enumeration.
10335 ECD->setType(EnumType);
10336 continue;
10337 } else {
10338 NewTy = BestType;
10339 NewWidth = BestWidth;
10340 NewSign = BestType->isSignedIntegerOrEnumerationType();
10341 }
10342
10343 // Adjust the APSInt value.
10344 InitVal = InitVal.extOrTrunc(NewWidth);
10345 InitVal.setIsSigned(NewSign);
10346 ECD->setInitVal(InitVal);
10347
10348 // Adjust the Expr initializer and type.
10349 if (ECD->getInitExpr() &&
10350 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10351 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10352 CK_IntegralCast,
10353 ECD->getInitExpr(),
10354 /*base paths*/ 0,
10355 VK_RValue));
10356 if (getLangOpts().CPlusPlus)
10357 // C++ [dcl.enum]p4: Following the closing brace of an
10358 // enum-specifier, each enumerator has the type of its
10359 // enumeration.
10360 ECD->setType(EnumType);
10361 else
10362 ECD->setType(NewTy);
10363 }
10364
10365 Enum->completeDefinition(BestType, BestPromotionType,
10366 NumPositiveBits, NumNegativeBits);
10367
10368 // If we're declaring a function, ensure this decl isn't forgotten about -
10369 // it needs to go into the function scope.
10370 if (InFunctionDeclarator)
10371 DeclsInPrototypeScope.push_back(Enum);
10372
10373 }
10374
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)10375 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10376 SourceLocation StartLoc,
10377 SourceLocation EndLoc) {
10378 StringLiteral *AsmString = cast<StringLiteral>(expr);
10379
10380 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10381 AsmString, StartLoc,
10382 EndLoc);
10383 CurContext->addDecl(New);
10384 return New;
10385 }
10386
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)10387 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10388 SourceLocation ImportLoc,
10389 ModuleIdPath Path) {
10390 Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10391 Module::AllVisible,
10392 /*IsIncludeDirective=*/false);
10393 if (!Mod)
10394 return true;
10395
10396 llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10397 Module *ModCheck = Mod;
10398 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10399 // If we've run out of module parents, just drop the remaining identifiers.
10400 // We need the length to be consistent.
10401 if (!ModCheck)
10402 break;
10403 ModCheck = ModCheck->Parent;
10404
10405 IdentifierLocs.push_back(Path[I].second);
10406 }
10407
10408 ImportDecl *Import = ImportDecl::Create(Context,
10409 Context.getTranslationUnitDecl(),
10410 AtLoc.isValid()? AtLoc : ImportLoc,
10411 Mod, IdentifierLocs);
10412 Context.getTranslationUnitDecl()->addDecl(Import);
10413 return Import;
10414 }
10415
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)10416 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10417 IdentifierInfo* AliasName,
10418 SourceLocation PragmaLoc,
10419 SourceLocation NameLoc,
10420 SourceLocation AliasNameLoc) {
10421 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10422 LookupOrdinaryName);
10423 AsmLabelAttr *Attr =
10424 ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10425
10426 if (PrevDecl)
10427 PrevDecl->addAttr(Attr);
10428 else
10429 (void)ExtnameUndeclaredIdentifiers.insert(
10430 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10431 }
10432
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)10433 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10434 SourceLocation PragmaLoc,
10435 SourceLocation NameLoc) {
10436 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10437
10438 if (PrevDecl) {
10439 PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10440 } else {
10441 (void)WeakUndeclaredIdentifiers.insert(
10442 std::pair<IdentifierInfo*,WeakInfo>
10443 (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10444 }
10445 }
10446
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)10447 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10448 IdentifierInfo* AliasName,
10449 SourceLocation PragmaLoc,
10450 SourceLocation NameLoc,
10451 SourceLocation AliasNameLoc) {
10452 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10453 LookupOrdinaryName);
10454 WeakInfo W = WeakInfo(Name, NameLoc);
10455
10456 if (PrevDecl) {
10457 if (!PrevDecl->hasAttr<AliasAttr>())
10458 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10459 DeclApplyPragmaWeak(TUScope, ND, W);
10460 } else {
10461 (void)WeakUndeclaredIdentifiers.insert(
10462 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10463 }
10464 }
10465
getObjCDeclContext() const10466 Decl *Sema::getObjCDeclContext() const {
10467 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10468 }
10469
getCurContextAvailability() const10470 AvailabilityResult Sema::getCurContextAvailability() const {
10471 const Decl *D = cast<Decl>(getCurLexicalContext());
10472 // A category implicitly has the availability of the interface.
10473 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10474 D = CatD->getClassInterface();
10475
10476 return D->getAvailability();
10477 }
10478