• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines RangeConstraintManager, a class that tracks simple
11 //  equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 namespace { class ConstraintRange {}; }
27 static int ConstraintRangeIndex = 0;
28 
29 /// A Range represents the closed range [from, to].  The caller must
30 /// guarantee that from <= to.  Note that Range is immutable, so as not
31 /// to subvert RangeSet's immutability.
32 namespace {
33 class Range : public std::pair<const llvm::APSInt*,
34                                                 const llvm::APSInt*> {
35 public:
Range(const llvm::APSInt & from,const llvm::APSInt & to)36   Range(const llvm::APSInt &from, const llvm::APSInt &to)
37     : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
38     assert(from <= to);
39   }
Includes(const llvm::APSInt & v) const40   bool Includes(const llvm::APSInt &v) const {
41     return *first <= v && v <= *second;
42   }
From() const43   const llvm::APSInt &From() const {
44     return *first;
45   }
To() const46   const llvm::APSInt &To() const {
47     return *second;
48   }
getConcreteValue() const49   const llvm::APSInt *getConcreteValue() const {
50     return &From() == &To() ? &From() : NULL;
51   }
52 
Profile(llvm::FoldingSetNodeID & ID) const53   void Profile(llvm::FoldingSetNodeID &ID) const {
54     ID.AddPointer(&From());
55     ID.AddPointer(&To());
56   }
57 };
58 
59 
60 class RangeTrait : public llvm::ImutContainerInfo<Range> {
61 public:
62   // When comparing if one Range is less than another, we should compare
63   // the actual APSInt values instead of their pointers.  This keeps the order
64   // consistent (instead of comparing by pointer values) and can potentially
65   // be used to speed up some of the operations in RangeSet.
isLess(key_type_ref lhs,key_type_ref rhs)66   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
67     return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
68                                        *lhs.second < *rhs.second);
69   }
70 };
71 
72 /// RangeSet contains a set of ranges. If the set is empty, then
73 ///  there the value of a symbol is overly constrained and there are no
74 ///  possible values for that symbol.
75 class RangeSet {
76   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
77   PrimRangeSet ranges; // no need to make const, since it is an
78                        // ImmutableSet - this allows default operator=
79                        // to work.
80 public:
81   typedef PrimRangeSet::Factory Factory;
82   typedef PrimRangeSet::iterator iterator;
83 
RangeSet(PrimRangeSet RS)84   RangeSet(PrimRangeSet RS) : ranges(RS) {}
85 
begin() const86   iterator begin() const { return ranges.begin(); }
end() const87   iterator end() const { return ranges.end(); }
88 
isEmpty() const89   bool isEmpty() const { return ranges.isEmpty(); }
90 
91   /// Construct a new RangeSet representing '{ [from, to] }'.
RangeSet(Factory & F,const llvm::APSInt & from,const llvm::APSInt & to)92   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
93     : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
94 
95   /// Profile - Generates a hash profile of this RangeSet for use
96   ///  by FoldingSet.
Profile(llvm::FoldingSetNodeID & ID) const97   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
98 
99   /// getConcreteValue - If a symbol is contrained to equal a specific integer
100   ///  constant then this method returns that value.  Otherwise, it returns
101   ///  NULL.
getConcreteValue() const102   const llvm::APSInt* getConcreteValue() const {
103     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : 0;
104   }
105 
106 private:
IntersectInRange(BasicValueFactory & BV,Factory & F,const llvm::APSInt & Lower,const llvm::APSInt & Upper,PrimRangeSet & newRanges,PrimRangeSet::iterator & i,PrimRangeSet::iterator & e) const107   void IntersectInRange(BasicValueFactory &BV, Factory &F,
108                         const llvm::APSInt &Lower,
109                         const llvm::APSInt &Upper,
110                         PrimRangeSet &newRanges,
111                         PrimRangeSet::iterator &i,
112                         PrimRangeSet::iterator &e) const {
113     // There are six cases for each range R in the set:
114     //   1. R is entirely before the intersection range.
115     //   2. R is entirely after the intersection range.
116     //   3. R contains the entire intersection range.
117     //   4. R starts before the intersection range and ends in the middle.
118     //   5. R starts in the middle of the intersection range and ends after it.
119     //   6. R is entirely contained in the intersection range.
120     // These correspond to each of the conditions below.
121     for (/* i = begin(), e = end() */; i != e; ++i) {
122       if (i->To() < Lower) {
123         continue;
124       }
125       if (i->From() > Upper) {
126         break;
127       }
128 
129       if (i->Includes(Lower)) {
130         if (i->Includes(Upper)) {
131           newRanges = F.add(newRanges, Range(BV.getValue(Lower),
132                                              BV.getValue(Upper)));
133           break;
134         } else
135           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
136       } else {
137         if (i->Includes(Upper)) {
138           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
139           break;
140         } else
141           newRanges = F.add(newRanges, *i);
142       }
143     }
144   }
145 
146 public:
147   // Returns a set containing the values in the receiving set, intersected with
148   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
149   // modular arithmetic, corresponding to the common treatment of C integer
150   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
151   // range is taken to wrap around. This is equivalent to taking the
152   // intersection with the two ranges [Min, Upper] and [Lower, Max],
153   // or, alternatively, /removing/ all integers between Upper and Lower.
Intersect(BasicValueFactory & BV,Factory & F,const llvm::APSInt & Lower,const llvm::APSInt & Upper) const154   RangeSet Intersect(BasicValueFactory &BV, Factory &F,
155                      const llvm::APSInt &Lower,
156                      const llvm::APSInt &Upper) const {
157     PrimRangeSet newRanges = F.getEmptySet();
158 
159     PrimRangeSet::iterator i = begin(), e = end();
160     if (Lower <= Upper)
161       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
162     else {
163       // The order of the next two statements is important!
164       // IntersectInRange() does not reset the iteration state for i and e.
165       // Therefore, the lower range most be handled first.
166       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
167       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
168     }
169     return newRanges;
170   }
171 
print(raw_ostream & os) const172   void print(raw_ostream &os) const {
173     bool isFirst = true;
174     os << "{ ";
175     for (iterator i = begin(), e = end(); i != e; ++i) {
176       if (isFirst)
177         isFirst = false;
178       else
179         os << ", ";
180 
181       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
182          << ']';
183     }
184     os << " }";
185   }
186 
operator ==(const RangeSet & other) const187   bool operator==(const RangeSet &other) const {
188     return ranges == other.ranges;
189   }
190 };
191 } // end anonymous namespace
192 
193 typedef llvm::ImmutableMap<SymbolRef,RangeSet> ConstraintRangeTy;
194 
195 namespace clang {
196 namespace ento {
197 template<>
198 struct ProgramStateTrait<ConstraintRange>
199   : public ProgramStatePartialTrait<ConstraintRangeTy> {
GDMIndexclang::ento::ProgramStateTrait200   static inline void *GDMIndex() { return &ConstraintRangeIndex; }
201 };
202 }
203 }
204 
205 namespace {
206 class RangeConstraintManager : public SimpleConstraintManager{
207   RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
208 public:
RangeConstraintManager(SubEngine & subengine)209   RangeConstraintManager(SubEngine &subengine)
210     : SimpleConstraintManager(subengine) {}
211 
212   ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
213                              const llvm::APSInt& Int,
214                              const llvm::APSInt& Adjustment);
215 
216   ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
217                              const llvm::APSInt& Int,
218                              const llvm::APSInt& Adjustment);
219 
220   ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
221                              const llvm::APSInt& Int,
222                              const llvm::APSInt& Adjustment);
223 
224   ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
225                              const llvm::APSInt& Int,
226                              const llvm::APSInt& Adjustment);
227 
228   ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
229                              const llvm::APSInt& Int,
230                              const llvm::APSInt& Adjustment);
231 
232   ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
233                              const llvm::APSInt& Int,
234                              const llvm::APSInt& Adjustment);
235 
236   const llvm::APSInt* getSymVal(ProgramStateRef St, SymbolRef sym) const;
237 
238   // FIXME: Refactor into SimpleConstraintManager?
isEqual(ProgramStateRef St,SymbolRef sym,const llvm::APSInt & V) const239   bool isEqual(ProgramStateRef St, SymbolRef sym, const llvm::APSInt& V) const {
240     const llvm::APSInt *i = getSymVal(St, sym);
241     return i ? *i == V : false;
242   }
243 
244   ProgramStateRef removeDeadBindings(ProgramStateRef St, SymbolReaper& SymReaper);
245 
246   void print(ProgramStateRef St, raw_ostream &Out,
247              const char* nl, const char *sep);
248 
249 private:
250   RangeSet::Factory F;
251 };
252 
253 } // end anonymous namespace
254 
CreateRangeConstraintManager(ProgramStateManager &,SubEngine & subeng)255 ConstraintManager* ento::CreateRangeConstraintManager(ProgramStateManager&,
256                                                     SubEngine &subeng) {
257   return new RangeConstraintManager(subeng);
258 }
259 
getSymVal(ProgramStateRef St,SymbolRef sym) const260 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
261                                                       SymbolRef sym) const {
262   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
263   return T ? T->getConcreteValue() : NULL;
264 }
265 
266 /// Scan all symbols referenced by the constraints. If the symbol is not alive
267 /// as marked in LSymbols, mark it as dead in DSymbols.
268 ProgramStateRef
removeDeadBindings(ProgramStateRef state,SymbolReaper & SymReaper)269 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
270                                            SymbolReaper& SymReaper) {
271 
272   ConstraintRangeTy CR = state->get<ConstraintRange>();
273   ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
274 
275   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
276     SymbolRef sym = I.getKey();
277     if (SymReaper.maybeDead(sym))
278       CR = CRFactory.remove(CR, sym);
279   }
280 
281   return state->set<ConstraintRange>(CR);
282 }
283 
284 RangeSet
GetRange(ProgramStateRef state,SymbolRef sym)285 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
286   if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
287     return *V;
288 
289   // Lazily generate a new RangeSet representing all possible values for the
290   // given symbol type.
291   QualType T = state->getSymbolManager().getType(sym);
292   BasicValueFactory& BV = state->getBasicVals();
293   return RangeSet(F, BV.getMinValue(T), BV.getMaxValue(T));
294 }
295 
296 //===------------------------------------------------------------------------===
297 // assumeSymX methods: public interface for RangeConstraintManager.
298 //===------------------------------------------------------------------------===/
299 
300 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
301 // and (x, y) for open ranges. These ranges are modular, corresponding with
302 // a common treatment of C integer overflow. This means that these methods
303 // do not have to worry about overflow; RangeSet::Intersect can handle such a
304 // "wraparound" range.
305 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
306 // UINT_MAX, 0, 1, and 2.
307 
308 ProgramStateRef
assumeSymNE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)309 RangeConstraintManager::assumeSymNE(ProgramStateRef state, SymbolRef sym,
310                                     const llvm::APSInt& Int,
311                                     const llvm::APSInt& Adjustment) {
312   BasicValueFactory &BV = state->getBasicVals();
313 
314   llvm::APSInt Lower = Int-Adjustment;
315   llvm::APSInt Upper = Lower;
316   --Lower;
317   ++Upper;
318 
319   // [Int-Adjustment+1, Int-Adjustment-1]
320   // Notice that the lower bound is greater than the upper bound.
321   RangeSet New = GetRange(state, sym).Intersect(BV, F, Upper, Lower);
322   return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
323 }
324 
325 ProgramStateRef
assumeSymEQ(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)326 RangeConstraintManager::assumeSymEQ(ProgramStateRef state, SymbolRef sym,
327                                     const llvm::APSInt& Int,
328                                     const llvm::APSInt& Adjustment) {
329   // [Int-Adjustment, Int-Adjustment]
330   BasicValueFactory &BV = state->getBasicVals();
331   llvm::APSInt AdjInt = Int-Adjustment;
332   RangeSet New = GetRange(state, sym).Intersect(BV, F, AdjInt, AdjInt);
333   return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
334 }
335 
336 ProgramStateRef
assumeSymLT(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)337 RangeConstraintManager::assumeSymLT(ProgramStateRef state, SymbolRef sym,
338                                     const llvm::APSInt& Int,
339                                     const llvm::APSInt& Adjustment) {
340   BasicValueFactory &BV = state->getBasicVals();
341 
342   QualType T = state->getSymbolManager().getType(sym);
343   const llvm::APSInt &Min = BV.getMinValue(T);
344 
345   // Special case for Int == Min. This is always false.
346   if (Int == Min)
347     return NULL;
348 
349   llvm::APSInt Lower = Min-Adjustment;
350   llvm::APSInt Upper = Int-Adjustment;
351   --Upper;
352 
353   RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
354   return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
355 }
356 
357 ProgramStateRef
assumeSymGT(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)358 RangeConstraintManager::assumeSymGT(ProgramStateRef state, SymbolRef sym,
359                                     const llvm::APSInt& Int,
360                                     const llvm::APSInt& Adjustment) {
361   BasicValueFactory &BV = state->getBasicVals();
362 
363   QualType T = state->getSymbolManager().getType(sym);
364   const llvm::APSInt &Max = BV.getMaxValue(T);
365 
366   // Special case for Int == Max. This is always false.
367   if (Int == Max)
368     return NULL;
369 
370   llvm::APSInt Lower = Int-Adjustment;
371   llvm::APSInt Upper = Max-Adjustment;
372   ++Lower;
373 
374   RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
375   return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
376 }
377 
378 ProgramStateRef
assumeSymGE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)379 RangeConstraintManager::assumeSymGE(ProgramStateRef state, SymbolRef sym,
380                                     const llvm::APSInt& Int,
381                                     const llvm::APSInt& Adjustment) {
382   BasicValueFactory &BV = state->getBasicVals();
383 
384   QualType T = state->getSymbolManager().getType(sym);
385   const llvm::APSInt &Min = BV.getMinValue(T);
386 
387   // Special case for Int == Min. This is always feasible.
388   if (Int == Min)
389     return state;
390 
391   const llvm::APSInt &Max = BV.getMaxValue(T);
392 
393   llvm::APSInt Lower = Int-Adjustment;
394   llvm::APSInt Upper = Max-Adjustment;
395 
396   RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
397   return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
398 }
399 
400 ProgramStateRef
assumeSymLE(ProgramStateRef state,SymbolRef sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)401 RangeConstraintManager::assumeSymLE(ProgramStateRef state, SymbolRef sym,
402                                     const llvm::APSInt& Int,
403                                     const llvm::APSInt& Adjustment) {
404   BasicValueFactory &BV = state->getBasicVals();
405 
406   QualType T = state->getSymbolManager().getType(sym);
407   const llvm::APSInt &Max = BV.getMaxValue(T);
408 
409   // Special case for Int == Max. This is always feasible.
410   if (Int == Max)
411     return state;
412 
413   const llvm::APSInt &Min = BV.getMinValue(T);
414 
415   llvm::APSInt Lower = Min-Adjustment;
416   llvm::APSInt Upper = Int-Adjustment;
417 
418   RangeSet New = GetRange(state, sym).Intersect(BV, F, Lower, Upper);
419   return New.isEmpty() ? NULL : state->set<ConstraintRange>(sym, New);
420 }
421 
422 //===------------------------------------------------------------------------===
423 // Pretty-printing.
424 //===------------------------------------------------------------------------===/
425 
print(ProgramStateRef St,raw_ostream & Out,const char * nl,const char * sep)426 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
427                                    const char* nl, const char *sep) {
428 
429   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
430 
431   if (Ranges.isEmpty()) {
432     Out << nl << sep << "Ranges are empty." << nl;
433     return;
434   }
435 
436   Out << nl << sep << "Ranges of symbol values:";
437   for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
438     Out << nl << ' ' << I.getKey() << " : ";
439     I.getData().print(Out);
440   }
441   Out << nl;
442 }
443