• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2          "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
6  <title>Language Compatibility</title>
7  <link type="text/css" rel="stylesheet" href="menu.css">
8  <link type="text/css" rel="stylesheet" href="content.css">
9  <style type="text/css">
10</style>
11</head>
12<body>
13
14<!--#include virtual="menu.html.incl"-->
15
16<div id="content">
17
18<!-- ======================================================================= -->
19<h1>Language Compatibility</h1>
20<!-- ======================================================================= -->
21
22<p>Clang strives to both conform to current language standards (C99,
23  C++98) and also to implement many widely-used extensions available
24  in other compilers, so that most correct code will "just work" when
25  compiler with Clang. However, Clang is more strict than other
26  popular compilers, and may reject incorrect code that other
27  compilers allow. This page documents common compatibility and
28  portability issues with Clang to help you understand and fix the
29  problem in your code when Clang emits an error message.</p>
30
31<ul>
32  <li><a href="#c">C compatibility</a>
33    <ul>
34      <li><a href="#inline">C99 inline functions</a></li>
35      <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
36      <li><a href="#lvalue-cast">Lvalue casts</a></li>
37      <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
38      <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
39      <li><a href="#inline-asm">Inline assembly</a></li>
40    </ul>
41  </li>
42  <li><a href="#objective-c">Objective-C compatibility</a>
43    <ul>
44      <li><a href="#super-cast">Cast of super</a></li>
45      <li><a href="#sizeof-interface">Size of interfaces</a></li>
46      <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
47      <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
48    </ul>
49  </li>
50  <li><a href="#cxx">C++ compatibility</a>
51    <ul>
52      <li><a href="#vla">Variable-length arrays</a></li>
53      <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
54      <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
55      <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
56      <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
57      <li><a href="#default_init_const">Default initialization of const
58      variable of a class type requires user-defined default
59      constructor</a></li>
60      <li><a href="#param_name_lookup">Parameter name lookup</a></li>
61    </ul>
62  </li>
63  <li><a href="#cxx11">C++11 compatibility</a>
64    <ul>
65      <li><a href="#deleted-special-func">Deleted special member
66  functions</a></li>
67    </ul>
68  </li>
69  <li><a href="#objective-cxx">Objective-C++ compatibility</a>
70    <ul>
71      <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
72    </ul>
73    <ul>
74      <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
75    </ul>
76  </li>
77</ul>
78
79<!-- ======================================================================= -->
80<h2 id="c">C compatibility</h2>
81<!-- ======================================================================= -->
82
83<!-- ======================================================================= -->
84<h3 id="inline">C99 inline functions</h3>
85<!-- ======================================================================= -->
86<p>By default, Clang builds C code according to the C99 standard,
87which provides different semantics for the <code>inline</code> keyword
88than GCC's default behavior. For example, consider the following
89code:</p>
90<pre>
91inline int add(int i, int j) { return i + j; }
92
93int main() {
94  int i = add(4, 5);
95  return i;
96}
97</pre>
98
99<p>In C99, <code>inline</code> means that a function's definition is
100provided only for inlining, and that there is another definition
101(without <code>inline</code>) somewhere else in the program.  That
102means that this program is incomplete, because if <code>add</code>
103isn't inlined (for example, when compiling without optimization), then
104<code>main</code> will have an unresolved reference to that other
105definition.  Therefore we'll get a (correct) link-time error like this:</p>
106
107<pre>
108Undefined symbols:
109  "_add", referenced from:
110      _main in cc-y1jXIr.o
111</pre>
112
113<p>By contrast, GCC's default behavior follows the GNU89 dialect,
114which is the C89 standard plus a lot of extensions.  C89 doesn't have
115an <code>inline</code> keyword, but GCC recognizes it as an extension
116and just treats it as a hint to the optimizer.</p>
117
118<p>There are several ways to fix this problem:</p>
119
120<ul>
121  <li>Change <code>add</code> to a <code>static inline</code>
122  function.  This is usually the right solution if only one
123  translation unit needs to use the function.  <code>static
124  inline</code> functions are always resolved within the translation
125  unit, so you won't have to add a non-<code>inline</code> definition
126  of the function elsewhere in your program.</li>
127
128  <li>Remove the <code>inline</code> keyword from this definition of
129  <code>add</code>.  The <code>inline</code> keyword is not required
130  for a function to be inlined, nor does it guarantee that it will be.
131  Some compilers ignore it completely.  Clang treats it as a mild
132  suggestion from the programmer.</li>
133
134  <li>Provide an external (non-<code>inline</code>) definition
135  of <code>add</code> somewhere else in your program.  The two
136  definitions must be equivalent!</li>
137
138  <li>Compile with the GNU89 dialect by adding
139  <code>-std=gnu89</code> to the set of Clang options. This option is
140  only recommended if the program source cannot be changed or if the
141  program also relies on additional C89-specific behavior that cannot
142  be changed.</li>
143</ul>
144
145<p>All of this only applies to C code; the meaning of <code>inline</code>
146in C++ is very different from its meaning in either GNU89 or C99.</p>
147
148<!-- ======================================================================= -->
149<h3 id="vector_builtins">"missing" vector __builtin functions</h3>
150<!-- ======================================================================= -->
151
152<p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
153header files, which define a standardized API for accessing vector operations
154on X86 CPUs.  These functions have names like <tt>_mm_xor_ps</tt> and
155<tt>_mm256_addsub_pd</tt>.  Compilers have leeway to implement these functions
156however they want.  Since Clang supports an excellent set of <a
157href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
158the Clang headers implement these interfaces in terms of the native vector
159operations.
160</p>
161
162<p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
163builtin function calls, like <tt>__builtin_ia32_paddw128</tt>.  These builtin
164functions are an internal implementation detail of GCC, and are not portable to
165the Intel compiler, the Microsoft compiler, or Clang.  If you get build errors
166mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>
167
168<p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
169architectures respectively.  For these, make sure to use the &lt;arm_neon.h&gt;
170and &lt;altivec.h&gt; headers.</p>
171
172<p>For x86 architectures this <a href="builtins.py">script</a> should help with
173the manual migration process.  It will rewrite your source files in place to
174use the APIs instead of builtin function calls. Just call it like this:</p>
175
176<pre>
177  builtins.py *.c *.h
178</pre>
179
180<p>and it will rewrite all of the .c and .h files in the current directory to
181use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>
182
183<!-- ======================================================================= -->
184<h3 id="lvalue-cast">Lvalue casts</h3>
185<!-- ======================================================================= -->
186
187<p>Old versions of GCC permit casting the left-hand side of an assignment to a
188different type. Clang produces an error on similar code, e.g.,</p>
189
190<pre>
191lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts are not
192      supported
193  (int*)addr = val;
194  ^~~~~~~~~~ ~
195</pre>
196
197<p>To fix this problem, move the cast to the right-hand side. In this
198example, one could use:</p>
199
200<pre>
201  addr = (float *)val;
202</pre>
203
204<!-- ======================================================================= -->
205<h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
206<!-- ======================================================================= -->
207
208<p>Clang disallows jumps into the scope of a <tt>__block</tt>
209variable.  Variables marked with <tt>__block</tt> require special
210runtime initialization. A jump into the scope of a <tt>__block</tt>
211variable bypasses this initialization, leaving the variable's metadata
212in an invalid state.  Consider the following code fragment:</p>
213
214<pre>
215int fetch_object_state(struct MyObject *c) {
216  if (!c->active) goto error;
217
218  __block int result;
219  run_specially_somehow(^{ result = c->state; });
220  return result;
221
222 error:
223  fprintf(stderr, "error while fetching object state");
224  return -1;
225}
226</pre>
227
228<p>GCC accepts this code, but it produces code that will usually crash
229when <code>result</code> goes out of scope if the jump is taken.  (It's
230possible for this bug to go undetected because it often won't crash if
231the stack is fresh, i.e. still zeroed.)  Therefore, Clang rejects this
232code with a hard error:</p>
233
234<pre>
235t.c:3:5: error: goto into protected scope
236    goto error;
237    ^
238t.c:5:15: note: jump bypasses setup of __block variable
239  __block int result;
240              ^
241</pre>
242
243<p>The fix is to rewrite the code to not require jumping into a
244<tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>
245
246<pre>
247  {
248    __block int result;
249    run_specially_somehow(^{ result = c->state; });
250    return result;
251  }
252</pre>
253
254<!-- ======================================================================= -->
255<h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
256variables</h3>
257<!-- ======================================================================= -->
258
259<p>In the following example code, the <tt>x</tt> variable is used before it is
260defined:</p>
261<pre>
262int f0() {
263  __block int x;
264  return ^(){ return x; }();
265}
266</pre>
267
268<p>By an accident of implementation, GCC and llvm-gcc unintentionally always
269zero initialized <tt>__block</tt> variables. However, any program which depends
270on this behavior is relying on unspecified compiler behavior. Programs must
271explicitly initialize all local block variables before they are used, as with
272other local variables.</p>
273
274<p>Clang does not zero initialize local block variables, and programs which rely
275on such behavior will most likely break when built with Clang.</p>
276
277
278<!-- ======================================================================= -->
279<h3 id="inline-asm">Inline assembly</h3>
280<!-- ======================================================================= -->
281
282<p>In general, Clang is highly compatible with the GCC inline assembly
283extensions, allowing the same set of constraints, modifiers and operands as GCC
284inline assembly.</p>
285
286<p>On targets that use the integrated assembler (such as most X86 targets),
287inline assembly is run through the integrated assembler instead of your system
288assembler (which is most commonly "gas", the GNU assembler).  The LLVM
289integrated assembler is extremely compatible with GAS, but there are a couple of
290minor places where it is more picky, particularly due to outright GAS bugs.</p>
291
292<p>One specific example is that the assembler rejects ambiguous X86 instructions
293that don't have suffixes.  For example:</p>
294
295<pre>
296  asm("add %al, (%rax)");
297  asm("addw $4, (%rax)");
298  asm("add $4, (%rax)");
299</pre>
300
301<p>Both clang and GAS accept the first instruction: because the first
302instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
303it is an 8-bit add.  The second instruction is accepted by both because the "w"
304suffix indicates that it is a 16-bit add.  The last instruction is accepted by
305GAS even though there is nothing that specifies the size of the instruction (and
306the assembler randomly picks a 32-bit add).  Because it is ambiguous, Clang
307rejects the instruction with this error message:
308</p>
309
310<pre>
311&lt;inline asm&gt;:3:1: error: ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')
312add $4, (%rax)
313^
3141 error generated.
315</pre>
316
317<p>To fix this compatibility issue, add an explicit suffix to the instruction:
318this makes your code more clear and is compatible with both GCC and Clang.</p>
319
320<!-- ======================================================================= -->
321<h2 id="objective-c">Objective-C compatibility</h2>
322<!-- ======================================================================= -->
323
324<!-- ======================================================================= -->
325<h3 id="super-cast">Cast of super</h3>
326<!-- ======================================================================= -->
327
328<p>GCC treats the <code>super</code> identifier as an expression that
329can, among other things, be cast to a different type. Clang treats
330<code>super</code> as a context-sensitive keyword, and will reject a
331type-cast of <code>super</code>:</p>
332
333<pre>
334super.m:11:12: error: cannot cast 'super' (it isn't an expression)
335  [(Super*)super add:4];
336   ~~~~~~~~^
337</pre>
338
339<p>To fix this problem, remove the type cast, e.g.</p>
340<pre>
341  [super add:4];
342</pre>
343
344<!-- ======================================================================= -->
345<h3 id="sizeof-interface">Size of interfaces</h3>
346<!-- ======================================================================= -->
347
348<p>When using the "non-fragile" Objective-C ABI in use, the size of an
349Objective-C class may change over time as instance variables are added
350(or removed). For this reason, Clang rejects the application of the
351<code>sizeof</code> operator to an Objective-C class when using this
352ABI:</p>
353
354<pre>
355sizeof.m:4:14: error: invalid application of 'sizeof' to interface 'NSArray' in
356      non-fragile ABI
357  int size = sizeof(NSArray);
358             ^     ~~~~~~~~~
359</pre>
360
361<p>Code that relies on the size of an Objective-C class is likely to
362be broken anyway, since that size is not actually constant. To address
363this problem, use the Objective-C runtime API function
364<code>class_getInstanceSize()</code>:</p>
365
366<pre>
367  class_getInstanceSize([NSArray class])
368</pre>
369
370<!-- ======================================================================= -->
371<h3 id="objc_objs-cast">Internal Objective-C types</h3>
372<!-- ======================================================================= -->
373
374<p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
375<tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
376<tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
377internal Objective-C structures as implementation detail and won't do implicit conversions:
378
379<pre>
380t.mm:11:2: error: no matching function for call to 'f'
381        f((struct objc_object *)p);
382        ^
383t.mm:5:6: note: candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
384void f(id x);
385     ^
386</pre>
387
388<p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
389instead of the internal types.</p>
390
391<!-- ======================================================================= -->
392<h3 id="c_variables-class">C variables in @interface or @protocol</h3>
393<!-- ======================================================================= -->
394
395<p>GCC allows the declaration of C variables in
396an <code>@interface</code> or <code>@protocol</code>
397declaration. Clang does not allow variable declarations to appear
398within these declarations unless they are marked <code>extern</code>.</p>
399
400<p>Variables may still be declared in an @implementation.</p>
401
402<pre>
403@interface XX
404int a;         // not allowed in clang
405int b = 1;     // not allowed in clang
406extern int c;  // allowed
407@end
408
409</pre>
410
411<!-- ======================================================================= -->
412<h2 id="cxx">C++ compatibility</h2>
413<!-- ======================================================================= -->
414
415<!-- ======================================================================= -->
416<h3 id="vla">Variable-length arrays</h3>
417<!-- ======================================================================= -->
418
419<p>GCC and C99 allow an array's size to be determined at run
420time. This extension is not permitted in standard C++. However, Clang
421supports such variable length arrays in very limited circumstances for
422compatibility with GNU C and C99 programs:</p>
423
424<ul>
425  <li>The element type of a variable length array must be a POD
426  ("plain old data") type, which means that it cannot have any
427  user-declared constructors or destructors, any base classes, or any
428  members of non-POD type. All C types are POD types.</li>
429
430  <li>Variable length arrays cannot be used as the type of a non-type
431template parameter.</li> </ul>
432
433<p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
434
435<ol>
436<li>replace the variable length array with a fixed-size array if you can
437    determine a reasonable upper bound at compile time; sometimes this is as
438    simple as changing <tt>int size = ...;</tt> to <tt>const int size
439    = ...;</tt> (if the initializer is a compile-time constant);</li>
440<li>use <tt>std::vector</tt> or some other suitable container type;
441    or</li>
442<li>allocate the array on the heap instead using <tt>new Type[]</tt> -
443    just remember to <tt>delete[]</tt> it.</li>
444</ol>
445
446<!-- ======================================================================= -->
447<h3 id="dep_lookup">Unqualified lookup in templates</h3>
448<!-- ======================================================================= -->
449
450<p>Some versions of GCC accept the following invalid code:
451
452<pre>
453template &lt;typename T&gt; T Squared(T x) {
454  return Multiply(x, x);
455}
456
457int Multiply(int x, int y) {
458  return x * y;
459}
460
461int main() {
462  Squared(5);
463}
464</pre>
465
466<p>Clang complains:
467
468<pre>  <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
469    return Multiply(x, x);
470  <span class="caret">         ^</span>
471  <b>my_file.cpp:10:3: <span class="note">note:</span> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here</b>
472    Squared(5);
473  <span class="caret">  ^</span>
474  <b>my_file.cpp:5:5: <span class="note">note:</span> 'Multiply' should be declared prior to the call site</b>
475  int Multiply(int x, int y) {
476  <span class="caret">    ^</span>
477</pre>
478
479<p>The C++ standard says that unqualified names like <q>Multiply</q>
480are looked up in two ways.
481
482<p>First, the compiler does <i>unqualified lookup</i> in the scope
483where the name was written.  For a template, this means the lookup is
484done at the point where the template is defined, not where it's
485instantiated.  Since <tt>Multiply</tt> hasn't been declared yet at
486this point, unqualified lookup won't find it.
487
488<p>Second, if the name is called like a function, then the compiler
489also does <i>argument-dependent lookup</i> (ADL).  (Sometimes
490unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
491more information.)  In ADL, the compiler looks at the types of all the
492arguments to the call.  When it finds a class type, it looks up the
493name in that class's namespace; the result is all the declarations it
494finds in those namespaces, plus the declarations from unqualified
495lookup.  However, the compiler doesn't do ADL until it knows all the
496argument types.
497
498<p>In our example, <tt>Multiply</tt> is called with dependent
499arguments, so ADL isn't done until the template is instantiated.  At
500that point, the arguments both have type <tt>int</tt>, which doesn't
501contain any class types, and so ADL doesn't look in any namespaces.
502Since neither form of lookup found the declaration
503of <tt>Multiply</tt>, the code doesn't compile.
504
505<p>Here's another example, this time using overloaded operators,
506which obey very similar rules.
507
508<pre>#include &lt;iostream&gt;
509
510template&lt;typename T&gt;
511void Dump(const T&amp; value) {
512  std::cout &lt;&lt; value &lt;&lt; "\n";
513}
514
515namespace ns {
516  struct Data {};
517}
518
519std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
520  return out &lt;&lt; "Some data";
521}
522
523void Use() {
524  Dump(ns::Data());
525}</pre>
526
527<p>Again, Clang complains:</p>
528
529<pre>  <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
530    std::cout &lt;&lt; value &lt;&lt; "\n";
531  <span class="caret">            ^</span>
532  <b>my_file2.cpp:17:3: <span class="error">note:</span> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here</b>
533    Dump(ns::Data());
534  <span class="caret">  ^</span>
535  <b>my_file2.cpp:12:15: <span class="error">note:</span> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'</b>
536  std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
537  <span class="caret">              ^</span>
538</pre>
539
540<p>Just like before, unqualified lookup didn't find any declarations
541with the name <tt>operator&lt;&lt;</tt>.  Unlike before, the argument
542types both contain class types: one of them is an instance of the
543class template type <tt>std::basic_ostream</tt>, and the other is the
544type <tt>ns::Data</tt> that we declared above.  Therefore, ADL will
545look in the namespaces <tt>std</tt> and <tt>ns</tt> for
546an <tt>operator&lt;&lt;</tt>.  Since one of the argument types was
547still dependent during the template definition, ADL isn't done until
548the template is instantiated during <tt>Use</tt>, which means that
549the <tt>operator&lt;&lt;</tt> we want it to find has already been
550declared.  Unfortunately, it was declared in the global namespace, not
551in either of the namespaces that ADL will look in!
552
553<p>There are two ways to fix this problem:</p>
554<ol><li>Make sure the function you want to call is declared before the
555template that might call it.  This is the only option if none of its
556argument types contain classes.  You can do this either by moving the
557template definition, or by moving the function definition, or by
558adding a forward declaration of the function before the template.</li>
559<li>Move the function into the same namespace as one of its arguments
560so that ADL applies.</li></ol>
561
562<p>For more information about argument-dependent lookup, see
563[basic.lookup.argdep].  For more information about the ordering of
564lookup in templates, see [temp.dep.candidate].
565
566<!-- ======================================================================= -->
567<h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
568<!-- ======================================================================= -->
569
570Some versions of GCC accept the following invalid code:
571
572<pre>
573template &lt;typename T&gt; struct Base {
574  void DoThis(T x) {}
575  static void DoThat(T x) {}
576};
577
578template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
579  void Work(T x) {
580    DoThis(x);  // Invalid!
581    DoThat(x);  // Invalid!
582  }
583};
584</pre>
585
586Clang correctly rejects it with the following errors
587(when <tt>Derived</tt> is eventually instantiated):
588
589<pre>
590my_file.cpp:8:5: error: use of undeclared identifier 'DoThis'
591    DoThis(x);
592    ^
593    this-&gt;
594my_file.cpp:2:8: note: must qualify identifier to find this declaration in dependent base class
595  void DoThis(T x) {}
596       ^
597my_file.cpp:9:5: error: use of undeclared identifier 'DoThat'
598    DoThat(x);
599    ^
600    this-&gt;
601my_file.cpp:3:15: note: must qualify identifier to find this declaration in dependent base class
602  static void DoThat(T x) {}
603</pre>
604
605Like we said <a href="#dep_lookup">above</a>, unqualified names like
606<tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
607<tt>Derived</tt> is defined, not when it's instantiated.  When we look
608up a name used in a class, we usually look into the base classes.
609However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
610because its type depends on the template argument <tt>T</tt>, so the
611standard says we should just ignore it.  See [temp.dep]p3 for details.
612
613<p>The fix, as Clang tells you, is to tell the compiler that we want a
614class member by prefixing the calls with <tt>this-&gt;</tt>:
615
616<pre>
617  void Work(T x) {
618    <b>this-&gt;</b>DoThis(x);
619    <b>this-&gt;</b>DoThat(x);
620  }
621</pre>
622
623Alternatively, you can tell the compiler exactly where to look:
624
625<pre>
626  void Work(T x) {
627    <b>Base&lt;T&gt;</b>::DoThis(x);
628    <b>Base&lt;T&gt;</b>::DoThat(x);
629  }
630</pre>
631
632This works whether the methods are static or not, but be careful:
633if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
634dispatch!
635
636<!-- ======================================================================= -->
637<h3 id="undep_incomplete">Incomplete types in templates</h3>
638<!-- ======================================================================= -->
639
640The following code is invalid, but compilers are allowed to accept it:
641
642<pre>
643  class IOOptions;
644  template &lt;class T&gt; bool read(T &amp;value) {
645    IOOptions opts;
646    return read(opts, value);
647  }
648
649  class IOOptions { bool ForceReads; };
650  bool read(const IOOptions &amp;opts, int &amp;x);
651  template bool read&lt;&gt;(int &amp;);
652</pre>
653
654The standard says that types which don't depend on template parameters
655must be complete when a template is defined if they affect the
656program's behavior.  However, the standard also says that compilers
657are free to not enforce this rule.  Most compilers enforce it to some
658extent; for example, it would be an error in GCC to
659write <tt>opts.ForceReads</tt> in the code above.  In Clang, we feel
660that enforcing the rule consistently lets us provide a better
661experience, but unfortunately it also means we reject some code that
662other compilers accept.
663
664<p>We've explained the rule here in very imprecise terms; see
665[temp.res]p8 for details.
666
667<!-- ======================================================================= -->
668<h3 id="bad_templates">Templates with no valid instantiations</h3>
669<!-- ======================================================================= -->
670
671The following code contains a typo: the programmer
672meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
673
674<pre>
675  template &lt;class T&gt; class Processor {
676    ...
677    void init();
678    ...
679  };
680  ...
681  template &lt;class T&gt; void process() {
682    Processor&lt;T&gt; processor;
683    processor.innit();       // <-- should be 'init()'
684    ...
685  }
686</pre>
687
688Unfortunately, we can't flag this mistake as soon as we see it: inside
689a template, we're not allowed to make assumptions about "dependent
690types" like <tt>Processor&lt;T&gt;</tt>.  Suppose that later on in
691this file the programmer adds an explicit specialization
692of <tt>Processor</tt>, like so:
693
694<pre>
695  template &lt;&gt; class Processor&lt;char*&gt; {
696    void innit();
697  };
698</pre>
699
700Now the program will work &mdash; as long as the programmer only ever
701instantiates <tt>process()</tt> with <tt>T = char*</tt>!  This is why
702it's hard, and sometimes impossible, to diagnose mistakes in a
703template definition before it's instantiated.
704
705<p>The standard says that a template with no valid instantiations is
706ill-formed.  Clang tries to do as much checking as possible at
707definition-time instead of instantiation-time: not only does this
708produce clearer diagnostics, but it also substantially improves
709compile times when using pre-compiled headers.  The downside to this
710philosophy is that Clang sometimes fails to process files because they
711contain broken templates that are no longer used.  The solution is
712simple: since the code is unused, just remove it.
713
714<!-- ======================================================================= -->
715<h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
716<!-- ======================================================================= -->
717
718If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
719constructor, C++ doesn't allow you to default construct a <tt>const</tt>
720instance of it like this ([dcl.init], p9):
721
722<pre>
723class Foo {
724 public:
725  // The compiler-supplied default constructor works fine, so we
726  // don't bother with defining one.
727  ...
728};
729
730void Bar() {
731  const Foo foo;  // Error!
732  ...
733}
734</pre>
735
736To fix this, you can define a default constructor for the class:
737
738<pre>
739class Foo {
740 public:
741  Foo() {}
742  ...
743};
744
745void Bar() {
746  const Foo foo;  // Now the compiler is happy.
747  ...
748}
749</pre>
750
751<!-- ======================================================================= -->
752<h3 id="param_name_lookup">Parameter name lookup</h3>
753<!-- ======================================================================= -->
754
755<p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
756<blockquote>
757<pre>
758void f(int a, int a);
759</pre>
760</blockquote>
761<p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>
762
763<!-- ======================================================================= -->
764<h2 id="cxx11">C++11 compatibility</h2>
765<!-- ======================================================================= -->
766
767<!-- ======================================================================= -->
768<h3 id="deleted-special-func">Deleted special member functions</h3>
769<!-- ======================================================================= -->
770
771<p>In C++11, the explicit declaration of a move constructor or a move
772assignment operator within a class deletes the implicit declaration
773of the copy constructor and copy assignment operator. This change came
774fairly late in the C++11 standardization process, so early
775implementations of C++11 (including Clang before 3.0, GCC before 4.7,
776and Visual Studio 2010) do not implement this rule, leading them to
777accept this ill-formed code:</p>
778
779<pre>
780struct X {
781  X(X&amp;&amp;); <i>// deletes implicit copy constructor:</i>
782  <i>// X(const X&amp;) = delete;</i>
783};
784
785void f(X x);
786void g(X x) {
787  f(x); <i>// error: X has a deleted copy constructor</i>
788}
789</pre>
790
791<p>This affects some early C++11 code, including Boost's popular <a
792href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a>
793up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is
794<a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p>
795
796<!-- ======================================================================= -->
797<h2 id="objective-cxx">Objective-C++ compatibility</h2>
798<!-- ======================================================================= -->
799
800<!-- ======================================================================= -->
801<h3 id="implicit-downcasts">Implicit downcasts</h3>
802<!-- ======================================================================= -->
803
804<p>Due to a bug in its implementation, GCC allows implicit downcasts
805of Objective-C pointers (from a base class to a derived class) when
806calling functions. Such code is inherently unsafe, since the object
807might not actually be an instance of the derived class, and is
808rejected by Clang. For example, given this code:</p>
809
810<pre>
811@interface Base @end
812@interface Derived : Base @end
813
814void f(Derived *p);
815void g(Base *p) {
816  f(p);
817}
818</pre>
819
820<p>Clang produces the following error:</p>
821
822<pre>
823downcast.mm:6:3: error: no matching function for call to 'f'
824  f(p);
825  ^
826downcast.mm:4:6: note: candidate function not viable: cannot convert from
827      superclass 'Base *' to subclass 'Derived *' for 1st argument
828void f(Derived *p);
829     ^
830</pre>
831
832<p>If the downcast is actually correct (e.g., because the code has
833already checked that the object has the appropriate type), add an
834explicit cast:</p>
835
836<pre>
837  f((Derived *)base);
838</pre>
839
840<!-- ======================================================================= -->
841<h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
842<!-- ======================================================================= -->
843
844<p>In C and Objective-C, <code>class</code> is a normal identifier and
845can be used to name fields, ivars, methods, and so on.  In
846C++, <code>class</code> is a keyword.  For compatibility with existing
847code, Clang permits <code>class</code> to be used as part of a method
848selector in Objective-C++, but this does not extend to any other part
849of the language.  In particular, it is impossible to use property dot
850syntax in Objective-C++ with the property name <code>class</code>, so
851the following code will fail to parse:</p>
852
853<pre>
854@interface I {
855int cls;
856}
857+ (int)class;
858@end
859
860@implementation  I
861- (int) Meth { return I.class; }
862@end
863</pre>
864
865<p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>
866
867</div>
868</body>
869</html>
870