• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/adddf3.c - Double-precision addition ------------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements double-precision soft-float addition with the IEEE-754
11 // default rounding (to nearest, ties to even).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DOUBLE_PRECISION
16 #include "fp_lib.h"
17 
18 ARM_EABI_FNALIAS(dadd, adddf3);
19 
20 COMPILER_RT_ABI fp_t
__adddf3(fp_t a,fp_t b)21 __adddf3(fp_t a, fp_t b) {
22 
23     rep_t aRep = toRep(a);
24     rep_t bRep = toRep(b);
25     const rep_t aAbs = aRep & absMask;
26     const rep_t bAbs = bRep & absMask;
27 
28     // Detect if a or b is zero, infinity, or NaN.
29     if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) {
30 
31         // NaN + anything = qNaN
32         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
33         // anything + NaN = qNaN
34         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
35 
36         if (aAbs == infRep) {
37             // +/-infinity + -/+infinity = qNaN
38             if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
39             // +/-infinity + anything remaining = +/- infinity
40             else return a;
41         }
42 
43         // anything remaining + +/-infinity = +/-infinity
44         if (bAbs == infRep) return b;
45 
46         // zero + anything = anything
47         if (!aAbs) {
48             // but we need to get the sign right for zero + zero
49             if (!bAbs) return fromRep(toRep(a) & toRep(b));
50             else return b;
51         }
52 
53         // anything + zero = anything
54         if (!bAbs) return a;
55     }
56 
57     // Swap a and b if necessary so that a has the larger absolute value.
58     if (bAbs > aAbs) {
59         const rep_t temp = aRep;
60         aRep = bRep;
61         bRep = temp;
62     }
63 
64     // Extract the exponent and significand from the (possibly swapped) a and b.
65     int aExponent = aRep >> significandBits & maxExponent;
66     int bExponent = bRep >> significandBits & maxExponent;
67     rep_t aSignificand = aRep & significandMask;
68     rep_t bSignificand = bRep & significandMask;
69 
70     // Normalize any denormals, and adjust the exponent accordingly.
71     if (aExponent == 0) aExponent = normalize(&aSignificand);
72     if (bExponent == 0) bExponent = normalize(&bSignificand);
73 
74     // The sign of the result is the sign of the larger operand, a.  If they
75     // have opposite signs, we are performing a subtraction; otherwise addition.
76     const rep_t resultSign = aRep & signBit;
77     const bool subtraction = (aRep ^ bRep) & signBit;
78 
79     // Shift the significands to give us round, guard and sticky, and or in the
80     // implicit significand bit.  (If we fell through from the denormal path it
81     // was already set by normalize( ), but setting it twice won't hurt
82     // anything.)
83     aSignificand = (aSignificand | implicitBit) << 3;
84     bSignificand = (bSignificand | implicitBit) << 3;
85 
86     // Shift the significand of b by the difference in exponents, with a sticky
87     // bottom bit to get rounding correct.
88     const int align = aExponent - bExponent;
89     if (align) {
90         if (align < typeWidth) {
91             const bool sticky = bSignificand << (typeWidth - align);
92             bSignificand = bSignificand >> align | sticky;
93         } else {
94             bSignificand = 1; // sticky; b is known to be non-zero.
95         }
96     }
97 
98     if (subtraction) {
99         aSignificand -= bSignificand;
100 
101         // If a == -b, return +zero.
102         if (aSignificand == 0) return fromRep(0);
103 
104         // If partial cancellation occured, we need to left-shift the result
105         // and adjust the exponent:
106         if (aSignificand < implicitBit << 3) {
107             const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
108             aSignificand <<= shift;
109             aExponent -= shift;
110         }
111     }
112 
113     else /* addition */ {
114         aSignificand += bSignificand;
115 
116         // If the addition carried up, we need to right-shift the result and
117         // adjust the exponent:
118         if (aSignificand & implicitBit << 4) {
119             const bool sticky = aSignificand & 1;
120             aSignificand = aSignificand >> 1 | sticky;
121             aExponent += 1;
122         }
123     }
124 
125     // If we have overflowed the type, return +/- infinity:
126     if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
127 
128     if (aExponent <= 0) {
129         // Result is denormal before rounding; the exponent is zero and we
130         // need to shift the significand.
131         const int shift = 1 - aExponent;
132         const bool sticky = aSignificand << (typeWidth - shift);
133         aSignificand = aSignificand >> shift | sticky;
134         aExponent = 0;
135     }
136 
137     // Low three bits are round, guard, and sticky.
138     const int roundGuardSticky = aSignificand & 0x7;
139 
140     // Shift the significand into place, and mask off the implicit bit.
141     rep_t result = aSignificand >> 3 & significandMask;
142 
143     // Insert the exponent and sign.
144     result |= (rep_t)aExponent << significandBits;
145     result |= resultSign;
146 
147     // Final rounding.  The result may overflow to infinity, but that is the
148     // correct result in that case.
149     if (roundGuardSticky > 0x4) result++;
150     if (roundGuardSticky == 0x4) result += result & 1;
151     return fromRep(result);
152 }
153