• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/addsf3.c - Single-precision addition ------------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements single-precision soft-float addition with the IEEE-754
11 // default rounding (to nearest, ties to even).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define SINGLE_PRECISION
16 #include "fp_lib.h"
17 
18 ARM_EABI_FNALIAS(fadd, addsf3);
19 
__addsf3(fp_t a,fp_t b)20 fp_t __addsf3(fp_t a, fp_t b) {
21 
22     rep_t aRep = toRep(a);
23     rep_t bRep = toRep(b);
24     const rep_t aAbs = aRep & absMask;
25     const rep_t bAbs = bRep & absMask;
26 
27     // Detect if a or b is zero, infinity, or NaN.
28     if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) {
29 
30         // NaN + anything = qNaN
31         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
32         // anything + NaN = qNaN
33         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
34 
35         if (aAbs == infRep) {
36             // +/-infinity + -/+infinity = qNaN
37             if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
38             // +/-infinity + anything remaining = +/- infinity
39             else return a;
40         }
41 
42         // anything remaining + +/-infinity = +/-infinity
43         if (bAbs == infRep) return b;
44 
45         // zero + anything = anything
46         if (!aAbs) {
47             // but we need to get the sign right for zero + zero
48             if (!bAbs) return fromRep(toRep(a) & toRep(b));
49             else return b;
50         }
51 
52         // anything + zero = anything
53         if (!bAbs) return a;
54     }
55 
56     // Swap a and b if necessary so that a has the larger absolute value.
57     if (bAbs > aAbs) {
58         const rep_t temp = aRep;
59         aRep = bRep;
60         bRep = temp;
61     }
62 
63     // Extract the exponent and significand from the (possibly swapped) a and b.
64     int aExponent = aRep >> significandBits & maxExponent;
65     int bExponent = bRep >> significandBits & maxExponent;
66     rep_t aSignificand = aRep & significandMask;
67     rep_t bSignificand = bRep & significandMask;
68 
69     // Normalize any denormals, and adjust the exponent accordingly.
70     if (aExponent == 0) aExponent = normalize(&aSignificand);
71     if (bExponent == 0) bExponent = normalize(&bSignificand);
72 
73     // The sign of the result is the sign of the larger operand, a.  If they
74     // have opposite signs, we are performing a subtraction; otherwise addition.
75     const rep_t resultSign = aRep & signBit;
76     const bool subtraction = (aRep ^ bRep) & signBit;
77 
78     // Shift the significands to give us round, guard and sticky, and or in the
79     // implicit significand bit.  (If we fell through from the denormal path it
80     // was already set by normalize( ), but setting it twice won't hurt
81     // anything.)
82     aSignificand = (aSignificand | implicitBit) << 3;
83     bSignificand = (bSignificand | implicitBit) << 3;
84 
85     // Shift the significand of b by the difference in exponents, with a sticky
86     // bottom bit to get rounding correct.
87     const int align = aExponent - bExponent;
88     if (align) {
89         if (align < typeWidth) {
90             const bool sticky = bSignificand << (typeWidth - align);
91             bSignificand = bSignificand >> align | sticky;
92         } else {
93             bSignificand = 1; // sticky; b is known to be non-zero.
94         }
95     }
96 
97     if (subtraction) {
98         aSignificand -= bSignificand;
99 
100         // If a == -b, return +zero.
101         if (aSignificand == 0) return fromRep(0);
102 
103         // If partial cancellation occured, we need to left-shift the result
104         // and adjust the exponent:
105         if (aSignificand < implicitBit << 3) {
106             const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
107             aSignificand <<= shift;
108             aExponent -= shift;
109         }
110     }
111 
112     else /* addition */ {
113         aSignificand += bSignificand;
114 
115         // If the addition carried up, we need to right-shift the result and
116         // adjust the exponent:
117         if (aSignificand & implicitBit << 4) {
118             const bool sticky = aSignificand & 1;
119             aSignificand = aSignificand >> 1 | sticky;
120             aExponent += 1;
121         }
122     }
123 
124     // If we have overflowed the type, return +/- infinity:
125     if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
126 
127     if (aExponent <= 0) {
128         // Result is denormal before rounding; the exponent is zero and we
129         // need to shift the significand.
130         const int shift = 1 - aExponent;
131         const bool sticky = aSignificand << (typeWidth - shift);
132         aSignificand = aSignificand >> shift | sticky;
133         aExponent = 0;
134     }
135 
136     // Low three bits are round, guard, and sticky.
137     const int roundGuardSticky = aSignificand & 0x7;
138 
139     // Shift the significand into place, and mask off the implicit bit.
140     rep_t result = aSignificand >> 3 & significandMask;
141 
142     // Insert the exponent and sign.
143     result |= (rep_t)aExponent << significandBits;
144     result |= resultSign;
145 
146     // Final rounding.  The result may overflow to infinity, but that is the
147     // correct result in that case.
148     if (roundGuardSticky > 0x4) result++;
149     if (roundGuardSticky == 0x4) result += result & 1;
150     return fromRep(result);
151 }
152