• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // // This file implements the following soft-float comparison routines:
11 //
12 //   __eqdf2   __gedf2   __unorddf2
13 //   __ledf2   __gtdf2
14 //   __ltdf2
15 //   __nedf2
16 //
17 // The semantics of the routines grouped in each column are identical, so there
18 // is a single implementation for each, and wrappers to provide the other names.
19 //
20 // The main routines behave as follows:
21 //
22 //   __ledf2(a,b) returns -1 if a < b
23 //                         0 if a == b
24 //                         1 if a > b
25 //                         1 if either a or b is NaN
26 //
27 //   __gedf2(a,b) returns -1 if a < b
28 //                         0 if a == b
29 //                         1 if a > b
30 //                        -1 if either a or b is NaN
31 //
32 //   __unorddf2(a,b) returns 0 if both a and b are numbers
33 //                           1 if either a or b is NaN
34 //
35 // Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
36 // NaN values.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #define DOUBLE_PRECISION
41 #include "fp_lib.h"
42 
43 enum LE_RESULT {
44     LE_LESS      = -1,
45     LE_EQUAL     =  0,
46     LE_GREATER   =  1,
47     LE_UNORDERED =  1
48 };
49 
__ledf2(fp_t a,fp_t b)50 enum LE_RESULT __ledf2(fp_t a, fp_t b) {
51 
52     const srep_t aInt = toRep(a);
53     const srep_t bInt = toRep(b);
54     const rep_t aAbs = aInt & absMask;
55     const rep_t bAbs = bInt & absMask;
56 
57     // If either a or b is NaN, they are unordered.
58     if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
59 
60     // If a and b are both zeros, they are equal.
61     if ((aAbs | bAbs) == 0) return LE_EQUAL;
62 
63     // If at least one of a and b is positive, we get the same result comparing
64     // a and b as signed integers as we would with a floating-point compare.
65     if ((aInt & bInt) >= 0) {
66         if (aInt < bInt) return LE_LESS;
67         else if (aInt == bInt) return LE_EQUAL;
68         else return LE_GREATER;
69     }
70 
71     // Otherwise, both are negative, so we need to flip the sense of the
72     // comparison to get the correct result.  (This assumes a twos- or ones-
73     // complement integer representation; if integers are represented in a
74     // sign-magnitude representation, then this flip is incorrect).
75     else {
76         if (aInt > bInt) return LE_LESS;
77         else if (aInt == bInt) return LE_EQUAL;
78         else return LE_GREATER;
79     }
80 }
81 
82 enum GE_RESULT {
83     GE_LESS      = -1,
84     GE_EQUAL     =  0,
85     GE_GREATER   =  1,
86     GE_UNORDERED = -1   // Note: different from LE_UNORDERED
87 };
88 
__gedf2(fp_t a,fp_t b)89 enum GE_RESULT __gedf2(fp_t a, fp_t b) {
90 
91     const srep_t aInt = toRep(a);
92     const srep_t bInt = toRep(b);
93     const rep_t aAbs = aInt & absMask;
94     const rep_t bAbs = bInt & absMask;
95 
96     if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
97     if ((aAbs | bAbs) == 0) return GE_EQUAL;
98     if ((aInt & bInt) >= 0) {
99         if (aInt < bInt) return GE_LESS;
100         else if (aInt == bInt) return GE_EQUAL;
101         else return GE_GREATER;
102     } else {
103         if (aInt > bInt) return GE_LESS;
104         else if (aInt == bInt) return GE_EQUAL;
105         else return GE_GREATER;
106     }
107 }
108 
__unorddf2(fp_t a,fp_t b)109 int __unorddf2(fp_t a, fp_t b) {
110     const rep_t aAbs = toRep(a) & absMask;
111     const rep_t bAbs = toRep(b) & absMask;
112     return aAbs > infRep || bAbs > infRep;
113 }
114 
115 // The following are alternative names for the preceeding routines.
116 
__eqdf2(fp_t a,fp_t b)117 enum LE_RESULT __eqdf2(fp_t a, fp_t b) {
118     return __ledf2(a, b);
119 }
120 
__ltdf2(fp_t a,fp_t b)121 enum LE_RESULT __ltdf2(fp_t a, fp_t b) {
122     return __ledf2(a, b);
123 }
124 
__nedf2(fp_t a,fp_t b)125 enum LE_RESULT __nedf2(fp_t a, fp_t b) {
126     return __ledf2(a, b);
127 }
128 
__gtdf2(fp_t a,fp_t b)129 enum GE_RESULT __gtdf2(fp_t a, fp_t b) {
130     return __gedf2(a, b);
131 }
132 
133