1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements single-precision soft-float division
11 // with the IEEE-754 default rounding (to nearest, ties to even).
12 //
13 // For simplicity, this implementation currently flushes denormals to zero.
14 // It should be a fairly straightforward exercise to implement gradual
15 // underflow with correct rounding.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define SINGLE_PRECISION
20 #include "fp_lib.h"
21
22 ARM_EABI_FNALIAS(fdiv, divsf3);
23
__divsf3(fp_t a,fp_t b)24 fp_t __divsf3(fp_t a, fp_t b) {
25
26 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
27 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
28 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
29
30 rep_t aSignificand = toRep(a) & significandMask;
31 rep_t bSignificand = toRep(b) & significandMask;
32 int scale = 0;
33
34 // Detect if a or b is zero, denormal, infinity, or NaN.
35 if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
36
37 const rep_t aAbs = toRep(a) & absMask;
38 const rep_t bAbs = toRep(b) & absMask;
39
40 // NaN / anything = qNaN
41 if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
42 // anything / NaN = qNaN
43 if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
44
45 if (aAbs == infRep) {
46 // infinity / infinity = NaN
47 if (bAbs == infRep) return fromRep(qnanRep);
48 // infinity / anything else = +/- infinity
49 else return fromRep(aAbs | quotientSign);
50 }
51
52 // anything else / infinity = +/- 0
53 if (bAbs == infRep) return fromRep(quotientSign);
54
55 if (!aAbs) {
56 // zero / zero = NaN
57 if (!bAbs) return fromRep(qnanRep);
58 // zero / anything else = +/- zero
59 else return fromRep(quotientSign);
60 }
61 // anything else / zero = +/- infinity
62 if (!bAbs) return fromRep(infRep | quotientSign);
63
64 // one or both of a or b is denormal, the other (if applicable) is a
65 // normal number. Renormalize one or both of a and b, and set scale to
66 // include the necessary exponent adjustment.
67 if (aAbs < implicitBit) scale += normalize(&aSignificand);
68 if (bAbs < implicitBit) scale -= normalize(&bSignificand);
69 }
70
71 // Or in the implicit significand bit. (If we fell through from the
72 // denormal path it was already set by normalize( ), but setting it twice
73 // won't hurt anything.)
74 aSignificand |= implicitBit;
75 bSignificand |= implicitBit;
76 int quotientExponent = aExponent - bExponent + scale;
77
78 // Align the significand of b as a Q31 fixed-point number in the range
79 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
80 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
81 // is accurate to about 3.5 binary digits.
82 uint32_t q31b = bSignificand << 8;
83 uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
84
85 // Now refine the reciprocal estimate using a Newton-Raphson iteration:
86 //
87 // x1 = x0 * (2 - x0 * b)
88 //
89 // This doubles the number of correct binary digits in the approximation
90 // with each iteration, so after three iterations, we have about 28 binary
91 // digits of accuracy.
92 uint32_t correction;
93 correction = -((uint64_t)reciprocal * q31b >> 32);
94 reciprocal = (uint64_t)reciprocal * correction >> 31;
95 correction = -((uint64_t)reciprocal * q31b >> 32);
96 reciprocal = (uint64_t)reciprocal * correction >> 31;
97 correction = -((uint64_t)reciprocal * q31b >> 32);
98 reciprocal = (uint64_t)reciprocal * correction >> 31;
99
100 // Exhaustive testing shows that the error in reciprocal after three steps
101 // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
102 // expectations. We bump the reciprocal by a tiny value to force the error
103 // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
104 // be specific). This also causes 1/1 to give a sensible approximation
105 // instead of zero (due to overflow).
106 reciprocal -= 2;
107
108 // The numerical reciprocal is accurate to within 2^-28, lies in the
109 // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
110 // than the true reciprocal of b. Multiplying a by this reciprocal thus
111 // gives a numerical q = a/b in Q24 with the following properties:
112 //
113 // 1. q < a/b
114 // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
115 // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
116 // from the fact that we truncate the product, and the 2^27 term
117 // is the error in the reciprocal of b scaled by the maximum
118 // possible value of a. As a consequence of this error bound,
119 // either q or nextafter(q) is the correctly rounded
120 rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
121
122 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
123 // In either case, we are going to compute a residual of the form
124 //
125 // r = a - q*b
126 //
127 // We know from the construction of q that r satisfies:
128 //
129 // 0 <= r < ulp(q)*b
130 //
131 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
132 // already have the correct result. The exact halfway case cannot occur.
133 // We also take this time to right shift quotient if it falls in the [1,2)
134 // range and adjust the exponent accordingly.
135 rep_t residual;
136 if (quotient < (implicitBit << 1)) {
137 residual = (aSignificand << 24) - quotient * bSignificand;
138 quotientExponent--;
139 } else {
140 quotient >>= 1;
141 residual = (aSignificand << 23) - quotient * bSignificand;
142 }
143
144 const int writtenExponent = quotientExponent + exponentBias;
145
146 if (writtenExponent >= maxExponent) {
147 // If we have overflowed the exponent, return infinity.
148 return fromRep(infRep | quotientSign);
149 }
150
151 else if (writtenExponent < 1) {
152 // Flush denormals to zero. In the future, it would be nice to add
153 // code to round them correctly.
154 return fromRep(quotientSign);
155 }
156
157 else {
158 const bool round = (residual << 1) > bSignificand;
159 // Clear the implicit bit
160 rep_t absResult = quotient & significandMask;
161 // Insert the exponent
162 absResult |= (rep_t)writtenExponent << significandBits;
163 // Round
164 absResult += round;
165 // Insert the sign and return
166 return fromRep(absResult | quotientSign);
167 }
168 }
169