• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <tommath.h>
2 #ifdef BN_MP_EXPTMOD_FAST_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4  *
5  * LibTomMath is a library that provides multiple-precision
6  * integer arithmetic as well as number theoretic functionality.
7  *
8  * The library was designed directly after the MPI library by
9  * Michael Fromberger but has been written from scratch with
10  * additional optimizations in place.
11  *
12  * The library is free for all purposes without any express
13  * guarantee it works.
14  *
15  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
16  */
17 
18 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
19  *
20  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
21  * The value of k changes based on the size of the exponent.
22  *
23  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
24  */
25 
26 #ifdef MP_LOW_MEM
27    #define TAB_SIZE 32
28 #else
29    #define TAB_SIZE 256
30 #endif
31 
mp_exptmod_fast(mp_int * G,mp_int * X,mp_int * P,mp_int * Y,int redmode)32 int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
33 {
34   mp_int  M[TAB_SIZE], res;
35   mp_digit buf, mp;
36   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
37 
38   /* use a pointer to the reduction algorithm.  This allows us to use
39    * one of many reduction algorithms without modding the guts of
40    * the code with if statements everywhere.
41    */
42   int     (*redux)(mp_int*,mp_int*,mp_digit);
43 
44   /* find window size */
45   x = mp_count_bits (X);
46   if (x <= 7) {
47     winsize = 2;
48   } else if (x <= 36) {
49     winsize = 3;
50   } else if (x <= 140) {
51     winsize = 4;
52   } else if (x <= 450) {
53     winsize = 5;
54   } else if (x <= 1303) {
55     winsize = 6;
56   } else if (x <= 3529) {
57     winsize = 7;
58   } else {
59     winsize = 8;
60   }
61 
62 #ifdef MP_LOW_MEM
63   if (winsize > 5) {
64      winsize = 5;
65   }
66 #endif
67 
68   /* init M array */
69   /* init first cell */
70   if ((err = mp_init(&M[1])) != MP_OKAY) {
71      return err;
72   }
73 
74   /* now init the second half of the array */
75   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
76     if ((err = mp_init(&M[x])) != MP_OKAY) {
77       for (y = 1<<(winsize-1); y < x; y++) {
78         mp_clear (&M[y]);
79       }
80       mp_clear(&M[1]);
81       return err;
82     }
83   }
84 
85   /* determine and setup reduction code */
86   if (redmode == 0) {
87 #ifdef BN_MP_MONTGOMERY_SETUP_C
88      /* now setup montgomery  */
89      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
90         goto LBL_M;
91      }
92 #else
93      err = MP_VAL;
94      goto LBL_M;
95 #endif
96 
97      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
98 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
99      if (((P->used * 2 + 1) < MP_WARRAY) &&
100           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
101         redux = fast_mp_montgomery_reduce;
102      } else
103 #endif
104      {
105 #ifdef BN_MP_MONTGOMERY_REDUCE_C
106         /* use slower baseline Montgomery method */
107         redux = mp_montgomery_reduce;
108 #else
109         err = MP_VAL;
110         goto LBL_M;
111 #endif
112      }
113   } else if (redmode == 1) {
114 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
115      /* setup DR reduction for moduli of the form B**k - b */
116      mp_dr_setup(P, &mp);
117      redux = mp_dr_reduce;
118 #else
119      err = MP_VAL;
120      goto LBL_M;
121 #endif
122   } else {
123 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
124      /* setup DR reduction for moduli of the form 2**k - b */
125      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
126         goto LBL_M;
127      }
128      redux = mp_reduce_2k;
129 #else
130      err = MP_VAL;
131      goto LBL_M;
132 #endif
133   }
134 
135   /* setup result */
136   if ((err = mp_init (&res)) != MP_OKAY) {
137     goto LBL_M;
138   }
139 
140   /* create M table
141    *
142 
143    *
144    * The first half of the table is not computed though accept for M[0] and M[1]
145    */
146 
147   if (redmode == 0) {
148 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
149      /* now we need R mod m */
150      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
151        goto LBL_RES;
152      }
153 #else
154      err = MP_VAL;
155      goto LBL_RES;
156 #endif
157 
158      /* now set M[1] to G * R mod m */
159      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
160        goto LBL_RES;
161      }
162   } else {
163      mp_set(&res, 1);
164      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
165         goto LBL_RES;
166      }
167   }
168 
169   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
170   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
171     goto LBL_RES;
172   }
173 
174   for (x = 0; x < (winsize - 1); x++) {
175     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
176       goto LBL_RES;
177     }
178     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
179       goto LBL_RES;
180     }
181   }
182 
183   /* create upper table */
184   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
185     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
186       goto LBL_RES;
187     }
188     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
189       goto LBL_RES;
190     }
191   }
192 
193   /* set initial mode and bit cnt */
194   mode   = 0;
195   bitcnt = 1;
196   buf    = 0;
197   digidx = X->used - 1;
198   bitcpy = 0;
199   bitbuf = 0;
200 
201   for (;;) {
202     /* grab next digit as required */
203     if (--bitcnt == 0) {
204       /* if digidx == -1 we are out of digits so break */
205       if (digidx == -1) {
206         break;
207       }
208       /* read next digit and reset bitcnt */
209       buf    = X->dp[digidx--];
210       bitcnt = (int)DIGIT_BIT;
211     }
212 
213     /* grab the next msb from the exponent */
214     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
215     buf <<= (mp_digit)1;
216 
217     /* if the bit is zero and mode == 0 then we ignore it
218      * These represent the leading zero bits before the first 1 bit
219      * in the exponent.  Technically this opt is not required but it
220      * does lower the # of trivial squaring/reductions used
221      */
222     if (mode == 0 && y == 0) {
223       continue;
224     }
225 
226     /* if the bit is zero and mode == 1 then we square */
227     if (mode == 1 && y == 0) {
228       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
229         goto LBL_RES;
230       }
231       if ((err = redux (&res, P, mp)) != MP_OKAY) {
232         goto LBL_RES;
233       }
234       continue;
235     }
236 
237     /* else we add it to the window */
238     bitbuf |= (y << (winsize - ++bitcpy));
239     mode    = 2;
240 
241     if (bitcpy == winsize) {
242       /* ok window is filled so square as required and multiply  */
243       /* square first */
244       for (x = 0; x < winsize; x++) {
245         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
246           goto LBL_RES;
247         }
248         if ((err = redux (&res, P, mp)) != MP_OKAY) {
249           goto LBL_RES;
250         }
251       }
252 
253       /* then multiply */
254       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
255         goto LBL_RES;
256       }
257       if ((err = redux (&res, P, mp)) != MP_OKAY) {
258         goto LBL_RES;
259       }
260 
261       /* empty window and reset */
262       bitcpy = 0;
263       bitbuf = 0;
264       mode   = 1;
265     }
266   }
267 
268   /* if bits remain then square/multiply */
269   if (mode == 2 && bitcpy > 0) {
270     /* square then multiply if the bit is set */
271     for (x = 0; x < bitcpy; x++) {
272       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
273         goto LBL_RES;
274       }
275       if ((err = redux (&res, P, mp)) != MP_OKAY) {
276         goto LBL_RES;
277       }
278 
279       /* get next bit of the window */
280       bitbuf <<= 1;
281       if ((bitbuf & (1 << winsize)) != 0) {
282         /* then multiply */
283         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
284           goto LBL_RES;
285         }
286         if ((err = redux (&res, P, mp)) != MP_OKAY) {
287           goto LBL_RES;
288         }
289       }
290     }
291   }
292 
293   if (redmode == 0) {
294      /* fixup result if Montgomery reduction is used
295       * recall that any value in a Montgomery system is
296       * actually multiplied by R mod n.  So we have
297       * to reduce one more time to cancel out the factor
298       * of R.
299       */
300      if ((err = redux(&res, P, mp)) != MP_OKAY) {
301        goto LBL_RES;
302      }
303   }
304 
305   /* swap res with Y */
306   mp_exch (&res, Y);
307   err = MP_OKAY;
308 LBL_RES:mp_clear (&res);
309 LBL_M:
310   mp_clear(&M[1]);
311   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
312     mp_clear (&M[x]);
313   }
314   return err;
315 }
316 #endif
317 
318 
319 /* $Source: /cvs/libtom/libtommath/bn_mp_exptmod_fast.c,v $ */
320 /* $Revision: 1.3 $ */
321 /* $Date: 2006/03/31 14:18:44 $ */
322