1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Test - The Google C++ Testing Framework
33 //
34 // This file implements a universal value printer that can print a
35 // value of any type T:
36 //
37 // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
38 //
39 // A user can teach this function how to print a class type T by
40 // defining either operator<<() or PrintTo() in the namespace that
41 // defines T. More specifically, the FIRST defined function in the
42 // following list will be used (assuming T is defined in namespace
43 // foo):
44 //
45 // 1. foo::PrintTo(const T&, ostream*)
46 // 2. operator<<(ostream&, const T&) defined in either foo or the
47 // global namespace.
48 //
49 // If none of the above is defined, it will print the debug string of
50 // the value if it is a protocol buffer, or print the raw bytes in the
51 // value otherwise.
52 //
53 // To aid debugging: when T is a reference type, the address of the
54 // value is also printed; when T is a (const) char pointer, both the
55 // pointer value and the NUL-terminated string it points to are
56 // printed.
57 //
58 // We also provide some convenient wrappers:
59 //
60 // // Prints a value to a string. For a (const or not) char
61 // // pointer, the NUL-terminated string (but not the pointer) is
62 // // printed.
63 // std::string ::testing::PrintToString(const T& value);
64 //
65 // // Prints a value tersely: for a reference type, the referenced
66 // // value (but not the address) is printed; for a (const or not) char
67 // // pointer, the NUL-terminated string (but not the pointer) is
68 // // printed.
69 // void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
70 //
71 // // Prints value using the type inferred by the compiler. The difference
72 // // from UniversalTersePrint() is that this function prints both the
73 // // pointer and the NUL-terminated string for a (const or not) char pointer.
74 // void ::testing::internal::UniversalPrint(const T& value, ostream*);
75 //
76 // // Prints the fields of a tuple tersely to a string vector, one
77 // // element for each field. Tuple support must be enabled in
78 // // gtest-port.h.
79 // std::vector<string> UniversalTersePrintTupleFieldsToStrings(
80 // const Tuple& value);
81 //
82 // Known limitation:
83 //
84 // The print primitives print the elements of an STL-style container
85 // using the compiler-inferred type of *iter where iter is a
86 // const_iterator of the container. When const_iterator is an input
87 // iterator but not a forward iterator, this inferred type may not
88 // match value_type, and the print output may be incorrect. In
89 // practice, this is rarely a problem as for most containers
90 // const_iterator is a forward iterator. We'll fix this if there's an
91 // actual need for it. Note that this fix cannot rely on value_type
92 // being defined as many user-defined container types don't have
93 // value_type.
94
95 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
96 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
97
98 #include <ostream> // NOLINT
99 #include <sstream>
100 #include <string>
101 #include <utility>
102 #include <vector>
103 #include "gtest/internal/gtest-port.h"
104 #include "gtest/internal/gtest-internal.h"
105
106 namespace testing {
107
108 // Definitions in the 'internal' and 'internal2' name spaces are
109 // subject to change without notice. DO NOT USE THEM IN USER CODE!
110 namespace internal2 {
111
112 // Prints the given number of bytes in the given object to the given
113 // ostream.
114 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
115 size_t count,
116 ::std::ostream* os);
117
118 // For selecting which printer to use when a given type has neither <<
119 // nor PrintTo().
120 enum TypeKind {
121 kProtobuf, // a protobuf type
122 kConvertibleToInteger, // a type implicitly convertible to BiggestInt
123 // (e.g. a named or unnamed enum type)
124 kOtherType // anything else
125 };
126
127 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
128 // by the universal printer to print a value of type T when neither
129 // operator<< nor PrintTo() is defined for T, where kTypeKind is the
130 // "kind" of T as defined by enum TypeKind.
131 template <typename T, TypeKind kTypeKind>
132 class TypeWithoutFormatter {
133 public:
134 // This default version is called when kTypeKind is kOtherType.
PrintValue(const T & value,::std::ostream * os)135 static void PrintValue(const T& value, ::std::ostream* os) {
136 PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
137 sizeof(value), os);
138 }
139 };
140
141 // We print a protobuf using its ShortDebugString() when the string
142 // doesn't exceed this many characters; otherwise we print it using
143 // DebugString() for better readability.
144 const size_t kProtobufOneLinerMaxLength = 50;
145
146 template <typename T>
147 class TypeWithoutFormatter<T, kProtobuf> {
148 public:
PrintValue(const T & value,::std::ostream * os)149 static void PrintValue(const T& value, ::std::ostream* os) {
150 const ::testing::internal::string short_str = value.ShortDebugString();
151 const ::testing::internal::string pretty_str =
152 short_str.length() <= kProtobufOneLinerMaxLength ?
153 short_str : ("\n" + value.DebugString());
154 *os << ("<" + pretty_str + ">");
155 }
156 };
157
158 template <typename T>
159 class TypeWithoutFormatter<T, kConvertibleToInteger> {
160 public:
161 // Since T has no << operator or PrintTo() but can be implicitly
162 // converted to BiggestInt, we print it as a BiggestInt.
163 //
164 // Most likely T is an enum type (either named or unnamed), in which
165 // case printing it as an integer is the desired behavior. In case
166 // T is not an enum, printing it as an integer is the best we can do
167 // given that it has no user-defined printer.
PrintValue(const T & value,::std::ostream * os)168 static void PrintValue(const T& value, ::std::ostream* os) {
169 const internal::BiggestInt kBigInt = value;
170 *os << kBigInt;
171 }
172 };
173
174 // Prints the given value to the given ostream. If the value is a
175 // protocol message, its debug string is printed; if it's an enum or
176 // of a type implicitly convertible to BiggestInt, it's printed as an
177 // integer; otherwise the bytes in the value are printed. This is
178 // what UniversalPrinter<T>::Print() does when it knows nothing about
179 // type T and T has neither << operator nor PrintTo().
180 //
181 // A user can override this behavior for a class type Foo by defining
182 // a << operator in the namespace where Foo is defined.
183 //
184 // We put this operator in namespace 'internal2' instead of 'internal'
185 // to simplify the implementation, as much code in 'internal' needs to
186 // use << in STL, which would conflict with our own << were it defined
187 // in 'internal'.
188 //
189 // Note that this operator<< takes a generic std::basic_ostream<Char,
190 // CharTraits> type instead of the more restricted std::ostream. If
191 // we define it to take an std::ostream instead, we'll get an
192 // "ambiguous overloads" compiler error when trying to print a type
193 // Foo that supports streaming to std::basic_ostream<Char,
194 // CharTraits>, as the compiler cannot tell whether
195 // operator<<(std::ostream&, const T&) or
196 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
197 // specific.
198 template <typename Char, typename CharTraits, typename T>
199 ::std::basic_ostream<Char, CharTraits>& operator<<(
200 ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
201 TypeWithoutFormatter<T,
202 (internal::IsAProtocolMessage<T>::value ? kProtobuf :
203 internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
204 kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
205 return os;
206 }
207
208 } // namespace internal2
209 } // namespace testing
210
211 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
212 // magic needed for implementing UniversalPrinter won't work.
213 namespace testing_internal {
214
215 // Used to print a value that is not an STL-style container when the
216 // user doesn't define PrintTo() for it.
217 template <typename T>
DefaultPrintNonContainerTo(const T & value,::std::ostream * os)218 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
219 // With the following statement, during unqualified name lookup,
220 // testing::internal2::operator<< appears as if it was declared in
221 // the nearest enclosing namespace that contains both
222 // ::testing_internal and ::testing::internal2, i.e. the global
223 // namespace. For more details, refer to the C++ Standard section
224 // 7.3.4-1 [namespace.udir]. This allows us to fall back onto
225 // testing::internal2::operator<< in case T doesn't come with a <<
226 // operator.
227 //
228 // We cannot write 'using ::testing::internal2::operator<<;', which
229 // gcc 3.3 fails to compile due to a compiler bug.
230 using namespace ::testing::internal2; // NOLINT
231
232 // Assuming T is defined in namespace foo, in the next statement,
233 // the compiler will consider all of:
234 //
235 // 1. foo::operator<< (thanks to Koenig look-up),
236 // 2. ::operator<< (as the current namespace is enclosed in ::),
237 // 3. testing::internal2::operator<< (thanks to the using statement above).
238 //
239 // The operator<< whose type matches T best will be picked.
240 //
241 // We deliberately allow #2 to be a candidate, as sometimes it's
242 // impossible to define #1 (e.g. when foo is ::std, defining
243 // anything in it is undefined behavior unless you are a compiler
244 // vendor.).
245 *os << value;
246 }
247
248 } // namespace testing_internal
249
250 namespace testing {
251 namespace internal {
252
253 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
254 // value to the given ostream. The caller must ensure that
255 // 'ostream_ptr' is not NULL, or the behavior is undefined.
256 //
257 // We define UniversalPrinter as a class template (as opposed to a
258 // function template), as we need to partially specialize it for
259 // reference types, which cannot be done with function templates.
260 template <typename T>
261 class UniversalPrinter;
262
263 template <typename T>
264 void UniversalPrint(const T& value, ::std::ostream* os);
265
266 // Used to print an STL-style container when the user doesn't define
267 // a PrintTo() for it.
268 template <typename C>
DefaultPrintTo(IsContainer,false_type,const C & container,::std::ostream * os)269 void DefaultPrintTo(IsContainer /* dummy */,
270 false_type /* is not a pointer */,
271 const C& container, ::std::ostream* os) {
272 const size_t kMaxCount = 32; // The maximum number of elements to print.
273 *os << '{';
274 size_t count = 0;
275 for (typename C::const_iterator it = container.begin();
276 it != container.end(); ++it, ++count) {
277 if (count > 0) {
278 *os << ',';
279 if (count == kMaxCount) { // Enough has been printed.
280 *os << " ...";
281 break;
282 }
283 }
284 *os << ' ';
285 // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
286 // handle *it being a native array.
287 internal::UniversalPrint(*it, os);
288 }
289
290 if (count > 0) {
291 *os << ' ';
292 }
293 *os << '}';
294 }
295
296 // Used to print a pointer that is neither a char pointer nor a member
297 // pointer, when the user doesn't define PrintTo() for it. (A member
298 // variable pointer or member function pointer doesn't really point to
299 // a location in the address space. Their representation is
300 // implementation-defined. Therefore they will be printed as raw
301 // bytes.)
302 template <typename T>
DefaultPrintTo(IsNotContainer,true_type,T * p,::std::ostream * os)303 void DefaultPrintTo(IsNotContainer /* dummy */,
304 true_type /* is a pointer */,
305 T* p, ::std::ostream* os) {
306 if (p == NULL) {
307 *os << "NULL";
308 } else {
309 // C++ doesn't allow casting from a function pointer to any object
310 // pointer.
311 //
312 // IsTrue() silences warnings: "Condition is always true",
313 // "unreachable code".
314 if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
315 // T is not a function type. We just call << to print p,
316 // relying on ADL to pick up user-defined << for their pointer
317 // types, if any.
318 *os << p;
319 } else {
320 // T is a function type, so '*os << p' doesn't do what we want
321 // (it just prints p as bool). We want to print p as a const
322 // void*. However, we cannot cast it to const void* directly,
323 // even using reinterpret_cast, as earlier versions of gcc
324 // (e.g. 3.4.5) cannot compile the cast when p is a function
325 // pointer. Casting to UInt64 first solves the problem.
326 *os << reinterpret_cast<const void*>(
327 reinterpret_cast<internal::UInt64>(p));
328 }
329 }
330 }
331
332 // Used to print a non-container, non-pointer value when the user
333 // doesn't define PrintTo() for it.
334 template <typename T>
DefaultPrintTo(IsNotContainer,false_type,const T & value,::std::ostream * os)335 void DefaultPrintTo(IsNotContainer /* dummy */,
336 false_type /* is not a pointer */,
337 const T& value, ::std::ostream* os) {
338 ::testing_internal::DefaultPrintNonContainerTo(value, os);
339 }
340
341 // Prints the given value using the << operator if it has one;
342 // otherwise prints the bytes in it. This is what
343 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized
344 // or overloaded for type T.
345 //
346 // A user can override this behavior for a class type Foo by defining
347 // an overload of PrintTo() in the namespace where Foo is defined. We
348 // give the user this option as sometimes defining a << operator for
349 // Foo is not desirable (e.g. the coding style may prevent doing it,
350 // or there is already a << operator but it doesn't do what the user
351 // wants).
352 template <typename T>
PrintTo(const T & value,::std::ostream * os)353 void PrintTo(const T& value, ::std::ostream* os) {
354 // DefaultPrintTo() is overloaded. The type of its first two
355 // arguments determine which version will be picked. If T is an
356 // STL-style container, the version for container will be called; if
357 // T is a pointer, the pointer version will be called; otherwise the
358 // generic version will be called.
359 //
360 // Note that we check for container types here, prior to we check
361 // for protocol message types in our operator<<. The rationale is:
362 //
363 // For protocol messages, we want to give people a chance to
364 // override Google Mock's format by defining a PrintTo() or
365 // operator<<. For STL containers, other formats can be
366 // incompatible with Google Mock's format for the container
367 // elements; therefore we check for container types here to ensure
368 // that our format is used.
369 //
370 // The second argument of DefaultPrintTo() is needed to bypass a bug
371 // in Symbian's C++ compiler that prevents it from picking the right
372 // overload between:
373 //
374 // PrintTo(const T& x, ...);
375 // PrintTo(T* x, ...);
376 DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
377 }
378
379 // The following list of PrintTo() overloads tells
380 // UniversalPrinter<T>::Print() how to print standard types (built-in
381 // types, strings, plain arrays, and pointers).
382
383 // Overloads for various char types.
384 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
385 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
PrintTo(char c,::std::ostream * os)386 inline void PrintTo(char c, ::std::ostream* os) {
387 // When printing a plain char, we always treat it as unsigned. This
388 // way, the output won't be affected by whether the compiler thinks
389 // char is signed or not.
390 PrintTo(static_cast<unsigned char>(c), os);
391 }
392
393 // Overloads for other simple built-in types.
PrintTo(bool x,::std::ostream * os)394 inline void PrintTo(bool x, ::std::ostream* os) {
395 *os << (x ? "true" : "false");
396 }
397
398 // Overload for wchar_t type.
399 // Prints a wchar_t as a symbol if it is printable or as its internal
400 // code otherwise and also as its decimal code (except for L'\0').
401 // The L'\0' char is printed as "L'\\0'". The decimal code is printed
402 // as signed integer when wchar_t is implemented by the compiler
403 // as a signed type and is printed as an unsigned integer when wchar_t
404 // is implemented as an unsigned type.
405 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
406
407 // Overloads for C strings.
408 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
PrintTo(char * s,::std::ostream * os)409 inline void PrintTo(char* s, ::std::ostream* os) {
410 PrintTo(ImplicitCast_<const char*>(s), os);
411 }
412
413 // signed/unsigned char is often used for representing binary data, so
414 // we print pointers to it as void* to be safe.
PrintTo(const signed char * s,::std::ostream * os)415 inline void PrintTo(const signed char* s, ::std::ostream* os) {
416 PrintTo(ImplicitCast_<const void*>(s), os);
417 }
PrintTo(signed char * s,::std::ostream * os)418 inline void PrintTo(signed char* s, ::std::ostream* os) {
419 PrintTo(ImplicitCast_<const void*>(s), os);
420 }
PrintTo(const unsigned char * s,::std::ostream * os)421 inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
422 PrintTo(ImplicitCast_<const void*>(s), os);
423 }
PrintTo(unsigned char * s,::std::ostream * os)424 inline void PrintTo(unsigned char* s, ::std::ostream* os) {
425 PrintTo(ImplicitCast_<const void*>(s), os);
426 }
427
428 // MSVC can be configured to define wchar_t as a typedef of unsigned
429 // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
430 // type. When wchar_t is a typedef, defining an overload for const
431 // wchar_t* would cause unsigned short* be printed as a wide string,
432 // possibly causing invalid memory accesses.
433 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
434 // Overloads for wide C strings
435 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
PrintTo(wchar_t * s,::std::ostream * os)436 inline void PrintTo(wchar_t* s, ::std::ostream* os) {
437 PrintTo(ImplicitCast_<const wchar_t*>(s), os);
438 }
439 #endif
440
441 // Overload for C arrays. Multi-dimensional arrays are printed
442 // properly.
443
444 // Prints the given number of elements in an array, without printing
445 // the curly braces.
446 template <typename T>
PrintRawArrayTo(const T a[],size_t count,::std::ostream * os)447 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
448 UniversalPrint(a[0], os);
449 for (size_t i = 1; i != count; i++) {
450 *os << ", ";
451 UniversalPrint(a[i], os);
452 }
453 }
454
455 // Overloads for ::string and ::std::string.
456 #if GTEST_HAS_GLOBAL_STRING
457 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
PrintTo(const::string & s,::std::ostream * os)458 inline void PrintTo(const ::string& s, ::std::ostream* os) {
459 PrintStringTo(s, os);
460 }
461 #endif // GTEST_HAS_GLOBAL_STRING
462
463 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
PrintTo(const::std::string & s,::std::ostream * os)464 inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
465 PrintStringTo(s, os);
466 }
467
468 // Overloads for ::wstring and ::std::wstring.
469 #if GTEST_HAS_GLOBAL_WSTRING
470 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
PrintTo(const::wstring & s,::std::ostream * os)471 inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
472 PrintWideStringTo(s, os);
473 }
474 #endif // GTEST_HAS_GLOBAL_WSTRING
475
476 #if GTEST_HAS_STD_WSTRING
477 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
PrintTo(const::std::wstring & s,::std::ostream * os)478 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
479 PrintWideStringTo(s, os);
480 }
481 #endif // GTEST_HAS_STD_WSTRING
482
483 #if GTEST_HAS_TR1_TUPLE
484 // Overload for ::std::tr1::tuple. Needed for printing function arguments,
485 // which are packed as tuples.
486
487 // Helper function for printing a tuple. T must be instantiated with
488 // a tuple type.
489 template <typename T>
490 void PrintTupleTo(const T& t, ::std::ostream* os);
491
492 // Overloaded PrintTo() for tuples of various arities. We support
493 // tuples of up-to 10 fields. The following implementation works
494 // regardless of whether tr1::tuple is implemented using the
495 // non-standard variadic template feature or not.
496
PrintTo(const::std::tr1::tuple<> & t,::std::ostream * os)497 inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
498 PrintTupleTo(t, os);
499 }
500
501 template <typename T1>
PrintTo(const::std::tr1::tuple<T1> & t,::std::ostream * os)502 void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
503 PrintTupleTo(t, os);
504 }
505
506 template <typename T1, typename T2>
PrintTo(const::std::tr1::tuple<T1,T2> & t,::std::ostream * os)507 void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
508 PrintTupleTo(t, os);
509 }
510
511 template <typename T1, typename T2, typename T3>
PrintTo(const::std::tr1::tuple<T1,T2,T3> & t,::std::ostream * os)512 void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
513 PrintTupleTo(t, os);
514 }
515
516 template <typename T1, typename T2, typename T3, typename T4>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4> & t,::std::ostream * os)517 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
518 PrintTupleTo(t, os);
519 }
520
521 template <typename T1, typename T2, typename T3, typename T4, typename T5>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4,T5> & t,::std::ostream * os)522 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
523 ::std::ostream* os) {
524 PrintTupleTo(t, os);
525 }
526
527 template <typename T1, typename T2, typename T3, typename T4, typename T5,
528 typename T6>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4,T5,T6> & t,::std::ostream * os)529 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
530 ::std::ostream* os) {
531 PrintTupleTo(t, os);
532 }
533
534 template <typename T1, typename T2, typename T3, typename T4, typename T5,
535 typename T6, typename T7>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4,T5,T6,T7> & t,::std::ostream * os)536 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
537 ::std::ostream* os) {
538 PrintTupleTo(t, os);
539 }
540
541 template <typename T1, typename T2, typename T3, typename T4, typename T5,
542 typename T6, typename T7, typename T8>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4,T5,T6,T7,T8> & t,::std::ostream * os)543 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
544 ::std::ostream* os) {
545 PrintTupleTo(t, os);
546 }
547
548 template <typename T1, typename T2, typename T3, typename T4, typename T5,
549 typename T6, typename T7, typename T8, typename T9>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4,T5,T6,T7,T8,T9> & t,::std::ostream * os)550 void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
551 ::std::ostream* os) {
552 PrintTupleTo(t, os);
553 }
554
555 template <typename T1, typename T2, typename T3, typename T4, typename T5,
556 typename T6, typename T7, typename T8, typename T9, typename T10>
PrintTo(const::std::tr1::tuple<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10> & t,::std::ostream * os)557 void PrintTo(
558 const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
559 ::std::ostream* os) {
560 PrintTupleTo(t, os);
561 }
562 #endif // GTEST_HAS_TR1_TUPLE
563
564 // Overload for std::pair.
565 template <typename T1, typename T2>
PrintTo(const::std::pair<T1,T2> & value,::std::ostream * os)566 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
567 *os << '(';
568 // We cannot use UniversalPrint(value.first, os) here, as T1 may be
569 // a reference type. The same for printing value.second.
570 UniversalPrinter<T1>::Print(value.first, os);
571 *os << ", ";
572 UniversalPrinter<T2>::Print(value.second, os);
573 *os << ')';
574 }
575
576 // Implements printing a non-reference type T by letting the compiler
577 // pick the right overload of PrintTo() for T.
578 template <typename T>
579 class UniversalPrinter {
580 public:
581 // MSVC warns about adding const to a function type, so we want to
582 // disable the warning.
583 #ifdef _MSC_VER
584 # pragma warning(push) // Saves the current warning state.
585 # pragma warning(disable:4180) // Temporarily disables warning 4180.
586 #endif // _MSC_VER
587
588 // Note: we deliberately don't call this PrintTo(), as that name
589 // conflicts with ::testing::internal::PrintTo in the body of the
590 // function.
Print(const T & value,::std::ostream * os)591 static void Print(const T& value, ::std::ostream* os) {
592 // By default, ::testing::internal::PrintTo() is used for printing
593 // the value.
594 //
595 // Thanks to Koenig look-up, if T is a class and has its own
596 // PrintTo() function defined in its namespace, that function will
597 // be visible here. Since it is more specific than the generic ones
598 // in ::testing::internal, it will be picked by the compiler in the
599 // following statement - exactly what we want.
600 PrintTo(value, os);
601 }
602
603 #ifdef _MSC_VER
604 # pragma warning(pop) // Restores the warning state.
605 #endif // _MSC_VER
606 };
607
608 // UniversalPrintArray(begin, len, os) prints an array of 'len'
609 // elements, starting at address 'begin'.
610 template <typename T>
UniversalPrintArray(const T * begin,size_t len,::std::ostream * os)611 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
612 if (len == 0) {
613 *os << "{}";
614 } else {
615 *os << "{ ";
616 const size_t kThreshold = 18;
617 const size_t kChunkSize = 8;
618 // If the array has more than kThreshold elements, we'll have to
619 // omit some details by printing only the first and the last
620 // kChunkSize elements.
621 // TODO(wan@google.com): let the user control the threshold using a flag.
622 if (len <= kThreshold) {
623 PrintRawArrayTo(begin, len, os);
624 } else {
625 PrintRawArrayTo(begin, kChunkSize, os);
626 *os << ", ..., ";
627 PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
628 }
629 *os << " }";
630 }
631 }
632 // This overload prints a (const) char array compactly.
633 GTEST_API_ void UniversalPrintArray(const char* begin,
634 size_t len,
635 ::std::ostream* os);
636
637 // Implements printing an array type T[N].
638 template <typename T, size_t N>
639 class UniversalPrinter<T[N]> {
640 public:
641 // Prints the given array, omitting some elements when there are too
642 // many.
Print(const T (& a)[N],::std::ostream * os)643 static void Print(const T (&a)[N], ::std::ostream* os) {
644 UniversalPrintArray(a, N, os);
645 }
646 };
647
648 // Implements printing a reference type T&.
649 template <typename T>
650 class UniversalPrinter<T&> {
651 public:
652 // MSVC warns about adding const to a function type, so we want to
653 // disable the warning.
654 #ifdef _MSC_VER
655 # pragma warning(push) // Saves the current warning state.
656 # pragma warning(disable:4180) // Temporarily disables warning 4180.
657 #endif // _MSC_VER
658
Print(const T & value,::std::ostream * os)659 static void Print(const T& value, ::std::ostream* os) {
660 // Prints the address of the value. We use reinterpret_cast here
661 // as static_cast doesn't compile when T is a function type.
662 *os << "@" << reinterpret_cast<const void*>(&value) << " ";
663
664 // Then prints the value itself.
665 UniversalPrint(value, os);
666 }
667
668 #ifdef _MSC_VER
669 # pragma warning(pop) // Restores the warning state.
670 #endif // _MSC_VER
671 };
672
673 // Prints a value tersely: for a reference type, the referenced value
674 // (but not the address) is printed; for a (const) char pointer, the
675 // NUL-terminated string (but not the pointer) is printed.
676 template <typename T>
UniversalTersePrint(const T & value,::std::ostream * os)677 void UniversalTersePrint(const T& value, ::std::ostream* os) {
678 UniversalPrint(value, os);
679 }
UniversalTersePrint(const char * str,::std::ostream * os)680 inline void UniversalTersePrint(const char* str, ::std::ostream* os) {
681 if (str == NULL) {
682 *os << "NULL";
683 } else {
684 UniversalPrint(string(str), os);
685 }
686 }
UniversalTersePrint(char * str,::std::ostream * os)687 inline void UniversalTersePrint(char* str, ::std::ostream* os) {
688 UniversalTersePrint(static_cast<const char*>(str), os);
689 }
690
691 // Prints a value using the type inferred by the compiler. The
692 // difference between this and UniversalTersePrint() is that for a
693 // (const) char pointer, this prints both the pointer and the
694 // NUL-terminated string.
695 template <typename T>
UniversalPrint(const T & value,::std::ostream * os)696 void UniversalPrint(const T& value, ::std::ostream* os) {
697 UniversalPrinter<T>::Print(value, os);
698 }
699
700 #if GTEST_HAS_TR1_TUPLE
701 typedef ::std::vector<string> Strings;
702
703 // This helper template allows PrintTo() for tuples and
704 // UniversalTersePrintTupleFieldsToStrings() to be defined by
705 // induction on the number of tuple fields. The idea is that
706 // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
707 // fields in tuple t, and can be defined in terms of
708 // TuplePrefixPrinter<N - 1>.
709
710 // The inductive case.
711 template <size_t N>
712 struct TuplePrefixPrinter {
713 // Prints the first N fields of a tuple.
714 template <typename Tuple>
PrintPrefixToTuplePrefixPrinter715 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
716 TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
717 *os << ", ";
718 UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type>
719 ::Print(::std::tr1::get<N - 1>(t), os);
720 }
721
722 // Tersely prints the first N fields of a tuple to a string vector,
723 // one element for each field.
724 template <typename Tuple>
TersePrintPrefixToStringsTuplePrefixPrinter725 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
726 TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
727 ::std::stringstream ss;
728 UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss);
729 strings->push_back(ss.str());
730 }
731 };
732
733 // Base cases.
734 template <>
735 struct TuplePrefixPrinter<0> {
736 template <typename Tuple>
737 static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
738
739 template <typename Tuple>
740 static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
741 };
742 // We have to specialize the entire TuplePrefixPrinter<> class
743 // template here, even though the definition of
744 // TersePrintPrefixToStrings() is the same as the generic version, as
745 // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't
746 // support specializing a method template of a class template.
747 template <>
748 struct TuplePrefixPrinter<1> {
749 template <typename Tuple>
750 static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
751 UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>::
752 Print(::std::tr1::get<0>(t), os);
753 }
754
755 template <typename Tuple>
756 static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
757 ::std::stringstream ss;
758 UniversalTersePrint(::std::tr1::get<0>(t), &ss);
759 strings->push_back(ss.str());
760 }
761 };
762
763 // Helper function for printing a tuple. T must be instantiated with
764 // a tuple type.
765 template <typename T>
766 void PrintTupleTo(const T& t, ::std::ostream* os) {
767 *os << "(";
768 TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>::
769 PrintPrefixTo(t, os);
770 *os << ")";
771 }
772
773 // Prints the fields of a tuple tersely to a string vector, one
774 // element for each field. See the comment before
775 // UniversalTersePrint() for how we define "tersely".
776 template <typename Tuple>
777 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
778 Strings result;
779 TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>::
780 TersePrintPrefixToStrings(value, &result);
781 return result;
782 }
783 #endif // GTEST_HAS_TR1_TUPLE
784
785 } // namespace internal
786
787 template <typename T>
788 ::std::string PrintToString(const T& value) {
789 ::std::stringstream ss;
790 internal::UniversalTersePrint(value, &ss);
791 return ss.str();
792 }
793
794 } // namespace testing
795
796 #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
797