• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM Assembly Language Reference Manual</title>
6  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7  <meta name="author" content="Chris Lattner">
8  <meta name="description"
9  content="LLVM Assembly Language Reference Manual.">
10  <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<h1>LLVM Language Reference Manual</h1>
16<ol>
17  <li><a href="#abstract">Abstract</a></li>
18  <li><a href="#introduction">Introduction</a></li>
19  <li><a href="#identifiers">Identifiers</a></li>
20  <li><a href="#highlevel">High Level Structure</a>
21    <ol>
22      <li><a href="#modulestructure">Module Structure</a></li>
23      <li><a href="#linkage">Linkage Types</a>
24        <ol>
25          <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26          <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27          <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
28          <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
29          <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30          <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31          <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32          <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33          <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34          <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35          <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
36          <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
37          <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38          <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
39          <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40          <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
41        </ol>
42      </li>
43      <li><a href="#callingconv">Calling Conventions</a></li>
44      <li><a href="#namedtypes">Named Types</a></li>
45      <li><a href="#globalvars">Global Variables</a></li>
46      <li><a href="#functionstructure">Functions</a></li>
47      <li><a href="#aliasstructure">Aliases</a></li>
48      <li><a href="#namedmetadatastructure">Named Metadata</a></li>
49      <li><a href="#paramattrs">Parameter Attributes</a></li>
50      <li><a href="#fnattrs">Function Attributes</a></li>
51      <li><a href="#gc">Garbage Collector Names</a></li>
52      <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
53      <li><a href="#datalayout">Data Layout</a></li>
54      <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
55      <li><a href="#volatile">Volatile Memory Accesses</a></li>
56      <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
57      <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
58    </ol>
59  </li>
60  <li><a href="#typesystem">Type System</a>
61    <ol>
62      <li><a href="#t_classifications">Type Classifications</a></li>
63      <li><a href="#t_primitive">Primitive Types</a>
64        <ol>
65          <li><a href="#t_integer">Integer Type</a></li>
66          <li><a href="#t_floating">Floating Point Types</a></li>
67          <li><a href="#t_x86mmx">X86mmx Type</a></li>
68          <li><a href="#t_void">Void Type</a></li>
69          <li><a href="#t_label">Label Type</a></li>
70          <li><a href="#t_metadata">Metadata Type</a></li>
71        </ol>
72      </li>
73      <li><a href="#t_derived">Derived Types</a>
74        <ol>
75          <li><a href="#t_aggregate">Aggregate Types</a>
76            <ol>
77              <li><a href="#t_array">Array Type</a></li>
78              <li><a href="#t_struct">Structure Type</a></li>
79              <li><a href="#t_opaque">Opaque Structure Types</a></li>
80              <li><a href="#t_vector">Vector Type</a></li>
81            </ol>
82          </li>
83          <li><a href="#t_function">Function Type</a></li>
84          <li><a href="#t_pointer">Pointer Type</a></li>
85        </ol>
86      </li>
87    </ol>
88  </li>
89  <li><a href="#constants">Constants</a>
90    <ol>
91      <li><a href="#simpleconstants">Simple Constants</a></li>
92      <li><a href="#complexconstants">Complex Constants</a></li>
93      <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94      <li><a href="#undefvalues">Undefined Values</a></li>
95      <li><a href="#poisonvalues">Poison Values</a></li>
96      <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
97      <li><a href="#constantexprs">Constant Expressions</a></li>
98    </ol>
99  </li>
100  <li><a href="#othervalues">Other Values</a>
101    <ol>
102      <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
103      <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104        <ol>
105          <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
106          <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
107          <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
108        </ol>
109      </li>
110    </ol>
111  </li>
112  <li><a href="#module_flags">Module Flags Metadata</a>
113    <ol>
114      <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
115    </ol>
116  </li>
117  <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
118    <ol>
119      <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
120      <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
121          Global Variable</a></li>
122      <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
123         Global Variable</a></li>
124      <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
125         Global Variable</a></li>
126    </ol>
127  </li>
128  <li><a href="#instref">Instruction Reference</a>
129    <ol>
130      <li><a href="#terminators">Terminator Instructions</a>
131        <ol>
132          <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
133          <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
134          <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
135          <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
136          <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
137          <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
138          <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
139        </ol>
140      </li>
141      <li><a href="#binaryops">Binary Operations</a>
142        <ol>
143          <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
144          <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
145          <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
146          <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
147          <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
148          <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
149          <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
150          <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
151          <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
152          <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
153          <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
154          <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
155        </ol>
156      </li>
157      <li><a href="#bitwiseops">Bitwise Binary Operations</a>
158        <ol>
159          <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
160          <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
161          <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
162          <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
163          <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
164          <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
165        </ol>
166      </li>
167      <li><a href="#vectorops">Vector Operations</a>
168        <ol>
169          <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
170          <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
171          <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
172        </ol>
173      </li>
174      <li><a href="#aggregateops">Aggregate Operations</a>
175        <ol>
176          <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
177          <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
178        </ol>
179      </li>
180      <li><a href="#memoryops">Memory Access and Addressing Operations</a>
181        <ol>
182          <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
183         <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
184         <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
185         <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
186         <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
187         <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
188         <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
189        </ol>
190      </li>
191      <li><a href="#convertops">Conversion Operations</a>
192        <ol>
193          <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
194          <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
195          <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
196          <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
197          <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
198          <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
199          <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
200          <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
201          <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
202          <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
203          <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
204          <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
205        </ol>
206      </li>
207      <li><a href="#otherops">Other Operations</a>
208        <ol>
209          <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
210          <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
211          <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
212          <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
213          <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
214          <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
215          <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
216        </ol>
217      </li>
218    </ol>
219  </li>
220  <li><a href="#intrinsics">Intrinsic Functions</a>
221    <ol>
222      <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
223        <ol>
224          <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
225          <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
226          <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
227        </ol>
228      </li>
229      <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
230        <ol>
231          <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
232          <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
233          <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
234        </ol>
235      </li>
236      <li><a href="#int_codegen">Code Generator Intrinsics</a>
237        <ol>
238          <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
239          <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
240          <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
241          <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
242          <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
243          <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
244          <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
245        </ol>
246      </li>
247      <li><a href="#int_libc">Standard C Library Intrinsics</a>
248        <ol>
249          <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
250          <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
251          <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
252          <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
253          <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
254          <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
255          <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
256          <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
257          <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
258          <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
259          <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
260        </ol>
261      </li>
262      <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
263        <ol>
264          <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
265          <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
266          <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
267          <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
268        </ol>
269      </li>
270      <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
271        <ol>
272          <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
273          <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
274          <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
275          <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
276          <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
277          <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
278        </ol>
279      </li>
280      <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
281        <ol>
282          <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
283          <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
284        </ol>
285      </li>
286      <li><a href="#int_debugger">Debugger intrinsics</a></li>
287      <li><a href="#int_eh">Exception Handling intrinsics</a></li>
288      <li><a href="#int_trampoline">Trampoline Intrinsics</a>
289        <ol>
290          <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
291          <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
292        </ol>
293      </li>
294      <li><a href="#int_memorymarkers">Memory Use Markers</a>
295        <ol>
296          <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
297          <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
298          <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
299          <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
300        </ol>
301      </li>
302      <li><a href="#int_general">General intrinsics</a>
303        <ol>
304          <li><a href="#int_var_annotation">
305            '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
306          <li><a href="#int_annotation">
307            '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
308          <li><a href="#int_trap">
309            '<tt>llvm.trap</tt>' Intrinsic</a></li>
310          <li><a href="#int_stackprotector">
311            '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
312	  <li><a href="#int_objectsize">
313            '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
314	  <li><a href="#int_expect">
315            '<tt>llvm.expect</tt>' Intrinsic</a></li>
316        </ol>
317      </li>
318    </ol>
319  </li>
320</ol>
321
322<div class="doc_author">
323  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
324            and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
325</div>
326
327<!-- *********************************************************************** -->
328<h2><a name="abstract">Abstract</a></h2>
329<!-- *********************************************************************** -->
330
331<div>
332
333<p>This document is a reference manual for the LLVM assembly language. LLVM is
334   a Static Single Assignment (SSA) based representation that provides type
335   safety, low-level operations, flexibility, and the capability of representing
336   'all' high-level languages cleanly.  It is the common code representation
337   used throughout all phases of the LLVM compilation strategy.</p>
338
339</div>
340
341<!-- *********************************************************************** -->
342<h2><a name="introduction">Introduction</a></h2>
343<!-- *********************************************************************** -->
344
345<div>
346
347<p>The LLVM code representation is designed to be used in three different forms:
348   as an in-memory compiler IR, as an on-disk bitcode representation (suitable
349   for fast loading by a Just-In-Time compiler), and as a human readable
350   assembly language representation.  This allows LLVM to provide a powerful
351   intermediate representation for efficient compiler transformations and
352   analysis, while providing a natural means to debug and visualize the
353   transformations.  The three different forms of LLVM are all equivalent.  This
354   document describes the human readable representation and notation.</p>
355
356<p>The LLVM representation aims to be light-weight and low-level while being
357   expressive, typed, and extensible at the same time.  It aims to be a
358   "universal IR" of sorts, by being at a low enough level that high-level ideas
359   may be cleanly mapped to it (similar to how microprocessors are "universal
360   IR's", allowing many source languages to be mapped to them).  By providing
361   type information, LLVM can be used as the target of optimizations: for
362   example, through pointer analysis, it can be proven that a C automatic
363   variable is never accessed outside of the current function, allowing it to
364   be promoted to a simple SSA value instead of a memory location.</p>
365
366<!-- _______________________________________________________________________ -->
367<h4>
368  <a name="wellformed">Well-Formedness</a>
369</h4>
370
371<div>
372
373<p>It is important to note that this document describes 'well formed' LLVM
374   assembly language.  There is a difference between what the parser accepts and
375   what is considered 'well formed'.  For example, the following instruction is
376   syntactically okay, but not well formed:</p>
377
378<pre class="doc_code">
379%x = <a href="#i_add">add</a> i32 1, %x
380</pre>
381
382<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
383   LLVM infrastructure provides a verification pass that may be used to verify
384   that an LLVM module is well formed.  This pass is automatically run by the
385   parser after parsing input assembly and by the optimizer before it outputs
386   bitcode.  The violations pointed out by the verifier pass indicate bugs in
387   transformation passes or input to the parser.</p>
388
389</div>
390
391</div>
392
393<!-- Describe the typesetting conventions here. -->
394
395<!-- *********************************************************************** -->
396<h2><a name="identifiers">Identifiers</a></h2>
397<!-- *********************************************************************** -->
398
399<div>
400
401<p>LLVM identifiers come in two basic types: global and local. Global
402   identifiers (functions, global variables) begin with the <tt>'@'</tt>
403   character. Local identifiers (register names, types) begin with
404   the <tt>'%'</tt> character. Additionally, there are three different formats
405   for identifiers, for different purposes:</p>
406
407<ol>
408  <li>Named values are represented as a string of characters with their prefix.
409      For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
410      <tt>%a.really.long.identifier</tt>. The actual regular expression used is
411      '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
412      other characters in their names can be surrounded with quotes. Special
413      characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
414      ASCII code for the character in hexadecimal.  In this way, any character
415      can be used in a name value, even quotes themselves.</li>
416
417  <li>Unnamed values are represented as an unsigned numeric value with their
418      prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
419
420  <li>Constants, which are described in a <a href="#constants">section about
421      constants</a>, below.</li>
422</ol>
423
424<p>LLVM requires that values start with a prefix for two reasons: Compilers
425   don't need to worry about name clashes with reserved words, and the set of
426   reserved words may be expanded in the future without penalty.  Additionally,
427   unnamed identifiers allow a compiler to quickly come up with a temporary
428   variable without having to avoid symbol table conflicts.</p>
429
430<p>Reserved words in LLVM are very similar to reserved words in other
431   languages. There are keywords for different opcodes
432   ('<tt><a href="#i_add">add</a></tt>',
433   '<tt><a href="#i_bitcast">bitcast</a></tt>',
434   '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
435   ('<tt><a href="#t_void">void</a></tt>',
436   '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
437   reserved words cannot conflict with variable names, because none of them
438   start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
439
440<p>Here is an example of LLVM code to multiply the integer variable
441   '<tt>%X</tt>' by 8:</p>
442
443<p>The easy way:</p>
444
445<pre class="doc_code">
446%result = <a href="#i_mul">mul</a> i32 %X, 8
447</pre>
448
449<p>After strength reduction:</p>
450
451<pre class="doc_code">
452%result = <a href="#i_shl">shl</a> i32 %X, i8 3
453</pre>
454
455<p>And the hard way:</p>
456
457<pre class="doc_code">
458%0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
459%1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
460%result = <a href="#i_add">add</a> i32 %1, %1
461</pre>
462
463<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
464   lexical features of LLVM:</p>
465
466<ol>
467  <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
468      line.</li>
469
470  <li>Unnamed temporaries are created when the result of a computation is not
471      assigned to a named value.</li>
472
473  <li>Unnamed temporaries are numbered sequentially</li>
474</ol>
475
476<p>It also shows a convention that we follow in this document.  When
477   demonstrating instructions, we will follow an instruction with a comment that
478   defines the type and name of value produced.  Comments are shown in italic
479   text.</p>
480
481</div>
482
483<!-- *********************************************************************** -->
484<h2><a name="highlevel">High Level Structure</a></h2>
485<!-- *********************************************************************** -->
486<div>
487<!-- ======================================================================= -->
488<h3>
489  <a name="modulestructure">Module Structure</a>
490</h3>
491
492<div>
493
494<p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
495   translation unit of the input programs.  Each module consists of functions,
496   global variables, and symbol table entries.  Modules may be combined together
497   with the LLVM linker, which merges function (and global variable)
498   definitions, resolves forward declarations, and merges symbol table
499   entries. Here is an example of the "hello world" module:</p>
500
501<pre class="doc_code">
502<i>; Declare the string constant as a global constant.</i>&nbsp;
503<a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a>&nbsp;<a href="#globalvars">unnamed_addr</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"&nbsp;
504
505<i>; External declaration of the puts function</i>&nbsp;
506<a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a>&nbsp;
507
508<i>; Definition of main function</i>
509define i32 @main() {   <i>; i32()* </i>&nbsp;
510  <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
511  %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
512
513  <i>; Call puts function to write out the string to stdout.</i>&nbsp;
514  <a href="#i_call">call</a> i32 @puts(i8* %cast210)
515  <a href="#i_ret">ret</a> i32 0&nbsp;
516}
517
518<i>; Named metadata</i>
519!1 = metadata !{i32 42}
520!foo = !{!1, null}
521</pre>
522
523<p>This example is made up of a <a href="#globalvars">global variable</a> named
524   "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
525   a <a href="#functionstructure">function definition</a> for
526   "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
527   "<tt>foo</tt>".</p>
528
529<p>In general, a module is made up of a list of global values (where both
530   functions and global variables are global values). Global values are
531   represented by a pointer to a memory location (in this case, a pointer to an
532   array of char, and a pointer to a function), and have one of the
533   following <a href="#linkage">linkage types</a>.</p>
534
535</div>
536
537<!-- ======================================================================= -->
538<h3>
539  <a name="linkage">Linkage Types</a>
540</h3>
541
542<div>
543
544<p>All Global Variables and Functions have one of the following types of
545   linkage:</p>
546
547<dl>
548  <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
549  <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
550      by objects in the current module. In particular, linking code into a
551      module with an private global value may cause the private to be renamed as
552      necessary to avoid collisions.  Because the symbol is private to the
553      module, all references can be updated. This doesn't show up in any symbol
554      table in the object file.</dd>
555
556  <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
557  <dd>Similar to <tt>private</tt>, but the symbol is passed through the
558      assembler and evaluated by the linker. Unlike normal strong symbols, they
559      are removed by the linker from the final linked image (executable or
560      dynamic library).</dd>
561
562  <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
563  <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
564      <tt>linker_private_weak</tt> symbols are subject to coalescing by the
565      linker. The symbols are removed by the linker from the final linked image
566      (executable or dynamic library).</dd>
567
568  <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
569  <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
570      of the object is not taken. For instance, functions that had an inline
571      definition, but the compiler decided not to inline it. Note,
572      unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
573      <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
574      visibility.  The symbols are removed by the linker from the final linked
575      image (executable or dynamic library).</dd>
576
577  <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
578  <dd>Similar to private, but the value shows as a local symbol
579      (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
580      corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
581
582  <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
583  <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
584      into the object file corresponding to the LLVM module.  They exist to
585      allow inlining and other optimizations to take place given knowledge of
586      the definition of the global, which is known to be somewhere outside the
587      module.  Globals with <tt>available_externally</tt> linkage are allowed to
588      be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
589      This linkage type is only allowed on definitions, not declarations.</dd>
590
591  <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
592  <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
593      the same name when linkage occurs.  This can be used to implement
594      some forms of inline functions, templates, or other code which must be
595      generated in each translation unit that uses it, but where the body may
596      be overridden with a more definitive definition later.  Unreferenced
597      <tt>linkonce</tt> globals are allowed to be discarded.  Note that
598      <tt>linkonce</tt> linkage does not actually allow the optimizer to
599      inline the body of this function into callers because it doesn't know if
600      this definition of the function is the definitive definition within the
601      program or whether it will be overridden by a stronger definition.
602      To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
603      linkage.</dd>
604
605  <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
606  <dd>"<tt>weak</tt>" linkage has the same merging semantics as
607      <tt>linkonce</tt> linkage, except that unreferenced globals with
608      <tt>weak</tt> linkage may not be discarded.  This is used for globals that
609      are declared "weak" in C source code.</dd>
610
611  <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
612  <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
613      they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
614      global scope.
615      Symbols with "<tt>common</tt>" linkage are merged in the same way as
616      <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
617      <tt>common</tt> symbols may not have an explicit section,
618      must have a zero initializer, and may not be marked '<a
619      href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
620      have common linkage.</dd>
621
622
623  <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
624  <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
625      pointer to array type.  When two global variables with appending linkage
626      are linked together, the two global arrays are appended together.  This is
627      the LLVM, typesafe, equivalent of having the system linker append together
628      "sections" with identical names when .o files are linked.</dd>
629
630  <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
631  <dd>The semantics of this linkage follow the ELF object file model: the symbol
632      is weak until linked, if not linked, the symbol becomes null instead of
633      being an undefined reference.</dd>
634
635  <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
636  <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
637  <dd>Some languages allow differing globals to be merged, such as two functions
638      with different semantics.  Other languages, such as <tt>C++</tt>, ensure
639      that only equivalent globals are ever merged (the "one definition rule"
640      &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
641      and <tt>weak_odr</tt> linkage types to indicate that the global will only
642      be merged with equivalent globals.  These linkage types are otherwise the
643      same as their non-<tt>odr</tt> versions.</dd>
644
645  <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
646  <dd>If none of the above identifiers are used, the global is externally
647      visible, meaning that it participates in linkage and can be used to
648      resolve external symbol references.</dd>
649</dl>
650
651<p>The next two types of linkage are targeted for Microsoft Windows platform
652   only. They are designed to support importing (exporting) symbols from (to)
653   DLLs (Dynamic Link Libraries).</p>
654
655<dl>
656  <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
657  <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
658      or variable via a global pointer to a pointer that is set up by the DLL
659      exporting the symbol. On Microsoft Windows targets, the pointer name is
660      formed by combining <code>__imp_</code> and the function or variable
661      name.</dd>
662
663  <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
664  <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
665      pointer to a pointer in a DLL, so that it can be referenced with the
666      <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
667      name is formed by combining <code>__imp_</code> and the function or
668      variable name.</dd>
669</dl>
670
671<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
672   another module defined a "<tt>.LC0</tt>" variable and was linked with this
673   one, one of the two would be renamed, preventing a collision.  Since
674   "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
675   declarations), they are accessible outside of the current module.</p>
676
677<p>It is illegal for a function <i>declaration</i> to have any linkage type
678   other than <tt>external</tt>, <tt>dllimport</tt>
679  or <tt>extern_weak</tt>.</p>
680
681<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
682   or <tt>weak_odr</tt> linkages.</p>
683
684</div>
685
686<!-- ======================================================================= -->
687<h3>
688  <a name="callingconv">Calling Conventions</a>
689</h3>
690
691<div>
692
693<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
694   and <a href="#i_invoke">invokes</a> can all have an optional calling
695   convention specified for the call.  The calling convention of any pair of
696   dynamic caller/callee must match, or the behavior of the program is
697   undefined.  The following calling conventions are supported by LLVM, and more
698   may be added in the future:</p>
699
700<dl>
701  <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
702  <dd>This calling convention (the default if no other calling convention is
703      specified) matches the target C calling conventions.  This calling
704      convention supports varargs function calls and tolerates some mismatch in
705      the declared prototype and implemented declaration of the function (as
706      does normal C).</dd>
707
708  <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
709  <dd>This calling convention attempts to make calls as fast as possible
710      (e.g. by passing things in registers).  This calling convention allows the
711      target to use whatever tricks it wants to produce fast code for the
712      target, without having to conform to an externally specified ABI
713      (Application Binary Interface).
714      <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
715      when this or the GHC convention is used.</a>  This calling convention
716      does not support varargs and requires the prototype of all callees to
717      exactly match the prototype of the function definition.</dd>
718
719  <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
720  <dd>This calling convention attempts to make code in the caller as efficient
721      as possible under the assumption that the call is not commonly executed.
722      As such, these calls often preserve all registers so that the call does
723      not break any live ranges in the caller side.  This calling convention
724      does not support varargs and requires the prototype of all callees to
725      exactly match the prototype of the function definition.</dd>
726
727  <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
728  <dd>This calling convention has been implemented specifically for use by the
729      <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
730      It passes everything in registers, going to extremes to achieve this by
731      disabling callee save registers. This calling convention should not be
732      used lightly but only for specific situations such as an alternative to
733      the <em>register pinning</em> performance technique often used when
734      implementing functional programming languages.At the moment only X86
735      supports this convention and it has the following limitations:
736      <ul>
737        <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
738            floating point types are supported.</li>
739        <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
740            6 floating point parameters.</li>
741      </ul>
742      This calling convention supports
743      <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
744      requires both the caller and callee are using it.
745  </dd>
746
747  <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
748  <dd>Any calling convention may be specified by number, allowing
749      target-specific calling conventions to be used.  Target specific calling
750      conventions start at 64.</dd>
751</dl>
752
753<p>More calling conventions can be added/defined on an as-needed basis, to
754   support Pascal conventions or any other well-known target-independent
755   convention.</p>
756
757</div>
758
759<!-- ======================================================================= -->
760<h3>
761  <a name="visibility">Visibility Styles</a>
762</h3>
763
764<div>
765
766<p>All Global Variables and Functions have one of the following visibility
767   styles:</p>
768
769<dl>
770  <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
771  <dd>On targets that use the ELF object file format, default visibility means
772      that the declaration is visible to other modules and, in shared libraries,
773      means that the declared entity may be overridden. On Darwin, default
774      visibility means that the declaration is visible to other modules. Default
775      visibility corresponds to "external linkage" in the language.</dd>
776
777  <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
778  <dd>Two declarations of an object with hidden visibility refer to the same
779      object if they are in the same shared object. Usually, hidden visibility
780      indicates that the symbol will not be placed into the dynamic symbol
781      table, so no other module (executable or shared library) can reference it
782      directly.</dd>
783
784  <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
785  <dd>On ELF, protected visibility indicates that the symbol will be placed in
786      the dynamic symbol table, but that references within the defining module
787      will bind to the local symbol. That is, the symbol cannot be overridden by
788      another module.</dd>
789</dl>
790
791</div>
792
793<!-- ======================================================================= -->
794<h3>
795  <a name="namedtypes">Named Types</a>
796</h3>
797
798<div>
799
800<p>LLVM IR allows you to specify name aliases for certain types.  This can make
801   it easier to read the IR and make the IR more condensed (particularly when
802   recursive types are involved).  An example of a name specification is:</p>
803
804<pre class="doc_code">
805%mytype = type { %mytype*, i32 }
806</pre>
807
808<p>You may give a name to any <a href="#typesystem">type</a> except
809   "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
810   is expected with the syntax "%mytype".</p>
811
812<p>Note that type names are aliases for the structural type that they indicate,
813   and that you can therefore specify multiple names for the same type.  This
814   often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
815   uses structural typing, the name is not part of the type.  When printing out
816   LLVM IR, the printer will pick <em>one name</em> to render all types of a
817   particular shape.  This means that if you have code where two different
818   source types end up having the same LLVM type, that the dumper will sometimes
819   print the "wrong" or unexpected type.  This is an important design point and
820   isn't going to change.</p>
821
822</div>
823
824<!-- ======================================================================= -->
825<h3>
826  <a name="globalvars">Global Variables</a>
827</h3>
828
829<div>
830
831<p>Global variables define regions of memory allocated at compilation time
832   instead of run-time.  Global variables may optionally be initialized, may
833   have an explicit section to be placed in, and may have an optional explicit
834   alignment specified.  A variable may be defined as "thread_local", which
835   means that it will not be shared by threads (each thread will have a
836   separated copy of the variable).  A variable may be defined as a global
837   "constant," which indicates that the contents of the variable
838   will <b>never</b> be modified (enabling better optimization, allowing the
839   global data to be placed in the read-only section of an executable, etc).
840   Note that variables that need runtime initialization cannot be marked
841   "constant" as there is a store to the variable.</p>
842
843<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
844   constant, even if the final definition of the global is not.  This capability
845   can be used to enable slightly better optimization of the program, but
846   requires the language definition to guarantee that optimizations based on the
847   'constantness' are valid for the translation units that do not include the
848   definition.</p>
849
850<p>As SSA values, global variables define pointer values that are in scope
851   (i.e. they dominate) all basic blocks in the program.  Global variables
852   always define a pointer to their "content" type because they describe a
853   region of memory, and all memory objects in LLVM are accessed through
854   pointers.</p>
855
856<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
857  that the address is not significant, only the content. Constants marked
858  like this can be merged with other constants if they have the same
859  initializer. Note that a constant with significant address <em>can</em>
860  be merged with a <tt>unnamed_addr</tt> constant, the result being a
861  constant whose address is significant.</p>
862
863<p>A global variable may be declared to reside in a target-specific numbered
864   address space. For targets that support them, address spaces may affect how
865   optimizations are performed and/or what target instructions are used to
866   access the variable. The default address space is zero. The address space
867   qualifier must precede any other attributes.</p>
868
869<p>LLVM allows an explicit section to be specified for globals.  If the target
870   supports it, it will emit globals to the section specified.</p>
871
872<p>An explicit alignment may be specified for a global, which must be a power
873   of 2.  If not present, or if the alignment is set to zero, the alignment of
874   the global is set by the target to whatever it feels convenient.  If an
875   explicit alignment is specified, the global is forced to have exactly that
876   alignment.  Targets and optimizers are not allowed to over-align the global
877   if the global has an assigned section.  In this case, the extra alignment
878   could be observable: for example, code could assume that the globals are
879   densely packed in their section and try to iterate over them as an array,
880   alignment padding would break this iteration.</p>
881
882<p>For example, the following defines a global in a numbered address space with
883   an initializer, section, and alignment:</p>
884
885<pre class="doc_code">
886@G = addrspace(5) constant float 1.0, section "foo", align 4
887</pre>
888
889</div>
890
891
892<!-- ======================================================================= -->
893<h3>
894  <a name="functionstructure">Functions</a>
895</h3>
896
897<div>
898
899<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
900   optional <a href="#linkage">linkage type</a>, an optional
901   <a href="#visibility">visibility style</a>, an optional
902   <a href="#callingconv">calling convention</a>,
903   an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
904   <a href="#paramattrs">parameter attribute</a> for the return type, a function
905   name, a (possibly empty) argument list (each with optional
906   <a href="#paramattrs">parameter attributes</a>), optional
907   <a href="#fnattrs">function attributes</a>, an optional section, an optional
908   alignment, an optional <a href="#gc">garbage collector name</a>, an opening
909   curly brace, a list of basic blocks, and a closing curly brace.</p>
910
911<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
912   optional <a href="#linkage">linkage type</a>, an optional
913   <a href="#visibility">visibility style</a>, an optional
914   <a href="#callingconv">calling convention</a>,
915   an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
916   <a href="#paramattrs">parameter attribute</a> for the return type, a function
917   name, a possibly empty list of arguments, an optional alignment, and an
918   optional <a href="#gc">garbage collector name</a>.</p>
919
920<p>A function definition contains a list of basic blocks, forming the CFG
921   (Control Flow Graph) for the function.  Each basic block may optionally start
922   with a label (giving the basic block a symbol table entry), contains a list
923   of instructions, and ends with a <a href="#terminators">terminator</a>
924   instruction (such as a branch or function return).</p>
925
926<p>The first basic block in a function is special in two ways: it is immediately
927   executed on entrance to the function, and it is not allowed to have
928   predecessor basic blocks (i.e. there can not be any branches to the entry
929   block of a function).  Because the block can have no predecessors, it also
930   cannot have any <a href="#i_phi">PHI nodes</a>.</p>
931
932<p>LLVM allows an explicit section to be specified for functions.  If the target
933   supports it, it will emit functions to the section specified.</p>
934
935<p>An explicit alignment may be specified for a function.  If not present, or if
936   the alignment is set to zero, the alignment of the function is set by the
937   target to whatever it feels convenient.  If an explicit alignment is
938   specified, the function is forced to have at least that much alignment.  All
939   alignments must be a power of 2.</p>
940
941<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
942   be significant and two identical functions can be merged.</p>
943
944<h5>Syntax:</h5>
945<pre class="doc_code">
946define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
947       [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
948       &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
949       [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
950       [<a href="#gc">gc</a>] { ... }
951</pre>
952
953</div>
954
955<!-- ======================================================================= -->
956<h3>
957  <a name="aliasstructure">Aliases</a>
958</h3>
959
960<div>
961
962<p>Aliases act as "second name" for the aliasee value (which can be either
963   function, global variable, another alias or bitcast of global value). Aliases
964   may have an optional <a href="#linkage">linkage type</a>, and an
965   optional <a href="#visibility">visibility style</a>.</p>
966
967<h5>Syntax:</h5>
968<pre class="doc_code">
969@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
970</pre>
971
972</div>
973
974<!-- ======================================================================= -->
975<h3>
976  <a name="namedmetadatastructure">Named Metadata</a>
977</h3>
978
979<div>
980
981<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
982   nodes</a> (but not metadata strings) are the only valid operands for
983   a named metadata.</p>
984
985<h5>Syntax:</h5>
986<pre class="doc_code">
987; Some unnamed metadata nodes, which are referenced by the named metadata.
988!0 = metadata !{metadata !"zero"}
989!1 = metadata !{metadata !"one"}
990!2 = metadata !{metadata !"two"}
991; A named metadata.
992!name = !{!0, !1, !2}
993</pre>
994
995</div>
996
997<!-- ======================================================================= -->
998<h3>
999  <a name="paramattrs">Parameter Attributes</a>
1000</h3>
1001
1002<div>
1003
1004<p>The return type and each parameter of a function type may have a set of
1005   <i>parameter attributes</i> associated with them. Parameter attributes are
1006   used to communicate additional information about the result or parameters of
1007   a function. Parameter attributes are considered to be part of the function,
1008   not of the function type, so functions with different parameter attributes
1009   can have the same function type.</p>
1010
1011<p>Parameter attributes are simple keywords that follow the type specified. If
1012   multiple parameter attributes are needed, they are space separated. For
1013   example:</p>
1014
1015<pre class="doc_code">
1016declare i32 @printf(i8* noalias nocapture, ...)
1017declare i32 @atoi(i8 zeroext)
1018declare signext i8 @returns_signed_char()
1019</pre>
1020
1021<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1022   <tt>readonly</tt>) come immediately after the argument list.</p>
1023
1024<p>Currently, only the following parameter attributes are defined:</p>
1025
1026<dl>
1027  <dt><tt><b>zeroext</b></tt></dt>
1028  <dd>This indicates to the code generator that the parameter or return value
1029      should be zero-extended to the extent required by the target's ABI (which
1030      is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1031      parameter) or the callee (for a return value).</dd>
1032
1033  <dt><tt><b>signext</b></tt></dt>
1034  <dd>This indicates to the code generator that the parameter or return value
1035      should be sign-extended to the extent required by the target's ABI (which
1036      is usually 32-bits) by the caller (for a parameter) or the callee (for a
1037      return value).</dd>
1038
1039  <dt><tt><b>inreg</b></tt></dt>
1040  <dd>This indicates that this parameter or return value should be treated in a
1041      special target-dependent fashion during while emitting code for a function
1042      call or return (usually, by putting it in a register as opposed to memory,
1043      though some targets use it to distinguish between two different kinds of
1044      registers).  Use of this attribute is target-specific.</dd>
1045
1046  <dt><tt><b><a name="byval">byval</a></b></tt></dt>
1047  <dd><p>This indicates that the pointer parameter should really be passed by
1048      value to the function.  The attribute implies that a hidden copy of the
1049      pointee
1050      is made between the caller and the callee, so the callee is unable to
1051      modify the value in the callee.  This attribute is only valid on LLVM
1052      pointer arguments.  It is generally used to pass structs and arrays by
1053      value, but is also valid on pointers to scalars.  The copy is considered
1054      to belong to the caller not the callee (for example,
1055      <tt><a href="#readonly">readonly</a></tt> functions should not write to
1056      <tt>byval</tt> parameters). This is not a valid attribute for return
1057      values.</p>
1058
1059      <p>The byval attribute also supports specifying an alignment with
1060      the align attribute.  It indicates the alignment of the stack slot to
1061      form and the known alignment of the pointer specified to the call site. If
1062      the alignment is not specified, then the code generator makes a
1063      target-specific assumption.</p></dd>
1064
1065  <dt><tt><b><a name="sret">sret</a></b></tt></dt>
1066  <dd>This indicates that the pointer parameter specifies the address of a
1067      structure that is the return value of the function in the source program.
1068      This pointer must be guaranteed by the caller to be valid: loads and
1069      stores to the structure may be assumed by the callee to not to trap.  This
1070      may only be applied to the first parameter. This is not a valid attribute
1071      for return values. </dd>
1072
1073  <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
1074  <dd>This indicates that pointer values
1075      <a href="#pointeraliasing"><i>based</i></a> on the argument or return
1076      value do not alias pointer values which are not <i>based</i> on it,
1077      ignoring certain "irrelevant" dependencies.
1078      For a call to the parent function, dependencies between memory
1079      references from before or after the call and from those during the call
1080      are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1081      return value used in that call.
1082      The caller shares the responsibility with the callee for ensuring that
1083      these requirements are met.
1084      For further details, please see the discussion of the NoAlias response in
1085      <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1086<br>
1087      Note that this definition of <tt>noalias</tt> is intentionally
1088      similar to the definition of <tt>restrict</tt> in C99 for function
1089      arguments, though it is slightly weaker.
1090<br>
1091      For function return values, C99's <tt>restrict</tt> is not meaningful,
1092      while LLVM's <tt>noalias</tt> is.
1093      </dd>
1094
1095  <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
1096  <dd>This indicates that the callee does not make any copies of the pointer
1097      that outlive the callee itself. This is not a valid attribute for return
1098      values.</dd>
1099
1100  <dt><tt><b><a name="nest">nest</a></b></tt></dt>
1101  <dd>This indicates that the pointer parameter can be excised using the
1102      <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1103      attribute for return values.</dd>
1104</dl>
1105
1106</div>
1107
1108<!-- ======================================================================= -->
1109<h3>
1110  <a name="gc">Garbage Collector Names</a>
1111</h3>
1112
1113<div>
1114
1115<p>Each function may specify a garbage collector name, which is simply a
1116   string:</p>
1117
1118<pre class="doc_code">
1119define void @f() gc "name" { ... }
1120</pre>
1121
1122<p>The compiler declares the supported values of <i>name</i>. Specifying a
1123   collector which will cause the compiler to alter its output in order to
1124   support the named garbage collection algorithm.</p>
1125
1126</div>
1127
1128<!-- ======================================================================= -->
1129<h3>
1130  <a name="fnattrs">Function Attributes</a>
1131</h3>
1132
1133<div>
1134
1135<p>Function attributes are set to communicate additional information about a
1136   function. Function attributes are considered to be part of the function, not
1137   of the function type, so functions with different parameter attributes can
1138   have the same function type.</p>
1139
1140<p>Function attributes are simple keywords that follow the type specified. If
1141   multiple attributes are needed, they are space separated. For example:</p>
1142
1143<pre class="doc_code">
1144define void @f() noinline { ... }
1145define void @f() alwaysinline { ... }
1146define void @f() alwaysinline optsize { ... }
1147define void @f() optsize { ... }
1148</pre>
1149
1150<dl>
1151  <dt><tt><b>address_safety</b></tt></dt>
1152  <dd>This attribute indicates that the address safety analysis
1153  is enabled for this function.  </dd>
1154
1155  <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1156  <dd>This attribute indicates that, when emitting the prologue and epilogue,
1157      the backend should forcibly align the stack pointer. Specify the
1158      desired alignment, which must be a power of two, in parentheses.
1159
1160  <dt><tt><b>alwaysinline</b></tt></dt>
1161  <dd>This attribute indicates that the inliner should attempt to inline this
1162      function into callers whenever possible, ignoring any active inlining size
1163      threshold for this caller.</dd>
1164
1165  <dt><tt><b>nonlazybind</b></tt></dt>
1166  <dd>This attribute suppresses lazy symbol binding for the function. This
1167      may make calls to the function faster, at the cost of extra program
1168      startup time if the function is not called during program startup.</dd>
1169
1170  <dt><tt><b>inlinehint</b></tt></dt>
1171  <dd>This attribute indicates that the source code contained a hint that inlining
1172      this function is desirable (such as the "inline" keyword in C/C++).  It
1173      is just a hint; it imposes no requirements on the inliner.</dd>
1174
1175  <dt><tt><b>naked</b></tt></dt>
1176  <dd>This attribute disables prologue / epilogue emission for the function.
1177      This can have very system-specific consequences.</dd>
1178
1179  <dt><tt><b>noimplicitfloat</b></tt></dt>
1180  <dd>This attributes disables implicit floating point instructions.</dd>
1181
1182  <dt><tt><b>noinline</b></tt></dt>
1183  <dd>This attribute indicates that the inliner should never inline this
1184      function in any situation. This attribute may not be used together with
1185      the <tt>alwaysinline</tt> attribute.</dd>
1186
1187  <dt><tt><b>noredzone</b></tt></dt>
1188  <dd>This attribute indicates that the code generator should not use a red
1189      zone, even if the target-specific ABI normally permits it.</dd>
1190
1191  <dt><tt><b>noreturn</b></tt></dt>
1192  <dd>This function attribute indicates that the function never returns
1193      normally.  This produces undefined behavior at runtime if the function
1194      ever does dynamically return.</dd>
1195
1196  <dt><tt><b>nounwind</b></tt></dt>
1197  <dd>This function attribute indicates that the function never returns with an
1198      unwind or exceptional control flow.  If the function does unwind, its
1199      runtime behavior is undefined.</dd>
1200
1201  <dt><tt><b>optsize</b></tt></dt>
1202  <dd>This attribute suggests that optimization passes and code generator passes
1203      make choices that keep the code size of this function low, and otherwise
1204      do optimizations specifically to reduce code size.</dd>
1205
1206  <dt><tt><b>readnone</b></tt></dt>
1207  <dd>This attribute indicates that the function computes its result (or decides
1208      to unwind an exception) based strictly on its arguments, without
1209      dereferencing any pointer arguments or otherwise accessing any mutable
1210      state (e.g. memory, control registers, etc) visible to caller functions.
1211      It does not write through any pointer arguments
1212      (including <tt><a href="#byval">byval</a></tt> arguments) and never
1213      changes any state visible to callers.  This means that it cannot unwind
1214      exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
1215
1216  <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
1217  <dd>This attribute indicates that the function does not write through any
1218      pointer arguments (including <tt><a href="#byval">byval</a></tt>
1219      arguments) or otherwise modify any state (e.g. memory, control registers,
1220      etc) visible to caller functions.  It may dereference pointer arguments
1221      and read state that may be set in the caller.  A readonly function always
1222      returns the same value (or unwinds an exception identically) when called
1223      with the same set of arguments and global state.  It cannot unwind an
1224      exception by calling the <tt>C++</tt> exception throwing methods.</dd>
1225
1226  <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1227  <dd>This attribute indicates that this function can return twice. The
1228      C <code>setjmp</code> is an example of such a function.  The compiler
1229      disables some optimizations (like tail calls) in the caller of these
1230      functions.</dd>
1231
1232  <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
1233  <dd>This attribute indicates that the function should emit a stack smashing
1234      protector. It is in the form of a "canary"&mdash;a random value placed on
1235      the stack before the local variables that's checked upon return from the
1236      function to see if it has been overwritten. A heuristic is used to
1237      determine if a function needs stack protectors or not.<br>
1238<br>
1239      If a function that has an <tt>ssp</tt> attribute is inlined into a
1240      function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1241      function will have an <tt>ssp</tt> attribute.</dd>
1242
1243  <dt><tt><b>sspreq</b></tt></dt>
1244  <dd>This attribute indicates that the function should <em>always</em> emit a
1245      stack smashing protector. This overrides
1246      the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1247<br>
1248      If a function that has an <tt>sspreq</tt> attribute is inlined into a
1249      function that doesn't have an <tt>sspreq</tt> attribute or which has
1250      an <tt>ssp</tt> attribute, then the resulting function will have
1251      an <tt>sspreq</tt> attribute.</dd>
1252
1253  <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1254  <dd>This attribute indicates that the ABI being targeted requires that
1255      an unwind table entry be produce for this function even if we can
1256      show that no exceptions passes by it. This is normally the case for
1257      the ELF x86-64 abi, but it can be disabled for some compilation
1258      units.</dd>
1259</dl>
1260
1261</div>
1262
1263<!-- ======================================================================= -->
1264<h3>
1265  <a name="moduleasm">Module-Level Inline Assembly</a>
1266</h3>
1267
1268<div>
1269
1270<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1271   the GCC "file scope inline asm" blocks.  These blocks are internally
1272   concatenated by LLVM and treated as a single unit, but may be separated in
1273   the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
1274
1275<pre class="doc_code">
1276module asm "inline asm code goes here"
1277module asm "more can go here"
1278</pre>
1279
1280<p>The strings can contain any character by escaping non-printable characters.
1281   The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1282   for the number.</p>
1283
1284<p>The inline asm code is simply printed to the machine code .s file when
1285   assembly code is generated.</p>
1286
1287</div>
1288
1289<!-- ======================================================================= -->
1290<h3>
1291  <a name="datalayout">Data Layout</a>
1292</h3>
1293
1294<div>
1295
1296<p>A module may specify a target specific data layout string that specifies how
1297   data is to be laid out in memory. The syntax for the data layout is
1298   simply:</p>
1299
1300<pre class="doc_code">
1301target datalayout = "<i>layout specification</i>"
1302</pre>
1303
1304<p>The <i>layout specification</i> consists of a list of specifications
1305   separated by the minus sign character ('-').  Each specification starts with
1306   a letter and may include other information after the letter to define some
1307   aspect of the data layout.  The specifications accepted are as follows:</p>
1308
1309<dl>
1310  <dt><tt>E</tt></dt>
1311  <dd>Specifies that the target lays out data in big-endian form. That is, the
1312      bits with the most significance have the lowest address location.</dd>
1313
1314  <dt><tt>e</tt></dt>
1315  <dd>Specifies that the target lays out data in little-endian form. That is,
1316      the bits with the least significance have the lowest address
1317      location.</dd>
1318
1319  <dt><tt>S<i>size</i></tt></dt>
1320  <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1321      of stack variables is limited to the natural stack alignment to avoid
1322      dynamic stack realignment. The stack alignment must be a multiple of
1323      8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1324      which does not prevent any alignment promotions.</dd>
1325
1326  <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1327  <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1328      <i>preferred</i> alignments. All sizes are in bits. Specifying
1329      the <i>pref</i> alignment is optional. If omitted, the
1330      preceding <tt>:</tt> should be omitted too.</dd>
1331
1332  <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1333  <dd>This specifies the alignment for an integer type of a given bit
1334      <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1335
1336  <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1337  <dd>This specifies the alignment for a vector type of a given bit
1338      <i>size</i>.</dd>
1339
1340  <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1341  <dd>This specifies the alignment for a floating point type of a given bit
1342      <i>size</i>. Only values of <i>size</i> that are supported by the target
1343      will work.  32 (float) and 64 (double) are supported on all targets;
1344      80 or 128 (different flavors of long double) are also supported on some
1345      targets.
1346
1347  <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1348  <dd>This specifies the alignment for an aggregate type of a given bit
1349      <i>size</i>.</dd>
1350
1351  <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1352  <dd>This specifies the alignment for a stack object of a given bit
1353      <i>size</i>.</dd>
1354
1355  <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1356  <dd>This specifies a set of native integer widths for the target CPU
1357      in bits.  For example, it might contain "n32" for 32-bit PowerPC,
1358      "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
1359      this set are considered to support most general arithmetic
1360      operations efficiently.</dd>
1361</dl>
1362
1363<p>When constructing the data layout for a given target, LLVM starts with a
1364   default set of specifications which are then (possibly) overridden by the
1365   specifications in the <tt>datalayout</tt> keyword. The default specifications
1366   are given in this list:</p>
1367
1368<ul>
1369  <li><tt>E</tt> - big endian</li>
1370  <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
1371  <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1372  <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1373  <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1374  <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1375  <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1376  alignment of 64-bits</li>
1377  <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1378  <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1379  <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1380  <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1381  <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1382  <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1383</ul>
1384
1385<p>When LLVM is determining the alignment for a given type, it uses the
1386   following rules:</p>
1387
1388<ol>
1389  <li>If the type sought is an exact match for one of the specifications, that
1390      specification is used.</li>
1391
1392  <li>If no match is found, and the type sought is an integer type, then the
1393      smallest integer type that is larger than the bitwidth of the sought type
1394      is used. If none of the specifications are larger than the bitwidth then
1395      the the largest integer type is used. For example, given the default
1396      specifications above, the i7 type will use the alignment of i8 (next
1397      largest) while both i65 and i256 will use the alignment of i64 (largest
1398      specified).</li>
1399
1400  <li>If no match is found, and the type sought is a vector type, then the
1401      largest vector type that is smaller than the sought vector type will be
1402      used as a fall back.  This happens because &lt;128 x double&gt; can be
1403      implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1404</ol>
1405
1406<p>The function of the data layout string may not be what you expect.  Notably,
1407   this is not a specification from the frontend of what alignment the code
1408   generator should use.</p>
1409
1410<p>Instead, if specified, the target data layout is required to match what the
1411   ultimate <em>code generator</em> expects.  This string is used by the
1412   mid-level optimizers to
1413   improve code, and this only works if it matches what the ultimate code
1414   generator uses.  If you would like to generate IR that does not embed this
1415   target-specific detail into the IR, then you don't have to specify the
1416   string.  This will disable some optimizations that require precise layout
1417   information, but this also prevents those optimizations from introducing
1418   target specificity into the IR.</p>
1419
1420
1421
1422</div>
1423
1424<!-- ======================================================================= -->
1425<h3>
1426  <a name="pointeraliasing">Pointer Aliasing Rules</a>
1427</h3>
1428
1429<div>
1430
1431<p>Any memory access must be done through a pointer value associated
1432with an address range of the memory access, otherwise the behavior
1433is undefined. Pointer values are associated with address ranges
1434according to the following rules:</p>
1435
1436<ul>
1437  <li>A pointer value is associated with the addresses associated with
1438      any value it is <i>based</i> on.
1439  <li>An address of a global variable is associated with the address
1440      range of the variable's storage.</li>
1441  <li>The result value of an allocation instruction is associated with
1442      the address range of the allocated storage.</li>
1443  <li>A null pointer in the default address-space is associated with
1444      no address.</li>
1445  <li>An integer constant other than zero or a pointer value returned
1446      from a function not defined within LLVM may be associated with address
1447      ranges allocated through mechanisms other than those provided by
1448      LLVM. Such ranges shall not overlap with any ranges of addresses
1449      allocated by mechanisms provided by LLVM.</li>
1450</ul>
1451
1452<p>A pointer value is <i>based</i> on another pointer value according
1453   to the following rules:</p>
1454
1455<ul>
1456  <li>A pointer value formed from a
1457      <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1458      is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1459  <li>The result value of a
1460      <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1461      of the <tt>bitcast</tt>.</li>
1462  <li>A pointer value formed by an
1463      <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1464      pointer values that contribute (directly or indirectly) to the
1465      computation of the pointer's value.</li>
1466  <li>The "<i>based</i> on" relationship is transitive.</li>
1467</ul>
1468
1469<p>Note that this definition of <i>"based"</i> is intentionally
1470   similar to the definition of <i>"based"</i> in C99, though it is
1471   slightly weaker.</p>
1472
1473<p>LLVM IR does not associate types with memory. The result type of a
1474<tt><a href="#i_load">load</a></tt> merely indicates the size and
1475alignment of the memory from which to load, as well as the
1476interpretation of the value. The first operand type of a
1477<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1478and alignment of the store.</p>
1479
1480<p>Consequently, type-based alias analysis, aka TBAA, aka
1481<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1482LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1483additional information which specialized optimization passes may use
1484to implement type-based alias analysis.</p>
1485
1486</div>
1487
1488<!-- ======================================================================= -->
1489<h3>
1490  <a name="volatile">Volatile Memory Accesses</a>
1491</h3>
1492
1493<div>
1494
1495<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1496href="#i_store"><tt>store</tt></a>s, and <a
1497href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1498The optimizers must not change the number of volatile operations or change their
1499order of execution relative to other volatile operations.  The optimizers
1500<i>may</i> change the order of volatile operations relative to non-volatile
1501operations.  This is not Java's "volatile" and has no cross-thread
1502synchronization behavior.</p>
1503
1504</div>
1505
1506<!-- ======================================================================= -->
1507<h3>
1508  <a name="memmodel">Memory Model for Concurrent Operations</a>
1509</h3>
1510
1511<div>
1512
1513<p>The LLVM IR does not define any way to start parallel threads of execution
1514or to register signal handlers. Nonetheless, there are platform-specific
1515ways to create them, and we define LLVM IR's behavior in their presence. This
1516model is inspired by the C++0x memory model.</p>
1517
1518<p>For a more informal introduction to this model, see the
1519<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1520
1521<p>We define a <i>happens-before</i> partial order as the least partial order
1522that</p>
1523<ul>
1524  <li>Is a superset of single-thread program order, and</li>
1525  <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1526      <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1527      by platform-specific techniques, like pthread locks, thread
1528      creation, thread joining, etc., and by atomic instructions.
1529      (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1530      </li>
1531</ul>
1532
1533<p>Note that program order does not introduce <i>happens-before</i> edges
1534between a thread and signals executing inside that thread.</p>
1535
1536<p>Every (defined) read operation (load instructions, memcpy, atomic
1537loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1538(defined) write operations (store instructions, atomic
1539stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1540initialized globals are considered to have a write of the initializer which is
1541atomic and happens before any other read or write of the memory in question.
1542For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1543any write to the same byte, except:</p>
1544
1545<ul>
1546  <li>If <var>write<sub>1</sub></var> happens before
1547      <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1548      before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
1549      does not see <var>write<sub>1</sub></var>.
1550  <li>If <var>R<sub>byte</sub></var> happens before
1551      <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1552      see <var>write<sub>3</sub></var>.
1553</ul>
1554
1555<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1556<ul>
1557  <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1558      is supposed to give guarantees which can support
1559      <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1560      addresses which do not behave like normal memory.  It does not generally
1561      provide cross-thread synchronization.)
1562  <li>Otherwise, if there is no write to the same byte that happens before
1563    <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1564    <tt>undef</tt> for that byte.
1565  <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
1566      <var>R<sub>byte</sub></var> returns the value written by that
1567      write.</li>
1568  <li>Otherwise, if <var>R</var> is atomic, and all the writes
1569      <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
1570      values written.  See the <a href="#ordering">Atomic Memory Ordering
1571      Constraints</a> section for additional constraints on how the choice
1572      is made.
1573  <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1574</ul>
1575
1576<p><var>R</var> returns the value composed of the series of bytes it read.
1577This implies that some bytes within the value may be <tt>undef</tt>
1578<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1579defines the semantics of the operation; it doesn't mean that targets will
1580emit more than one instruction to read the series of bytes.</p>
1581
1582<p>Note that in cases where none of the atomic intrinsics are used, this model
1583places only one restriction on IR transformations on top of what is required
1584for single-threaded execution: introducing a store to a byte which might not
1585otherwise be stored is not allowed in general.  (Specifically, in the case
1586where another thread might write to and read from an address, introducing a
1587store can change a load that may see exactly one write into a load that may
1588see multiple writes.)</p>
1589
1590<!-- FIXME: This model assumes all targets where concurrency is relevant have
1591a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
1592none of the backends currently in the tree fall into this category; however,
1593there might be targets which care.  If there are, we want a paragraph
1594like the following:
1595
1596Targets may specify that stores narrower than a certain width are not
1597available; on such a target, for the purposes of this model, treat any
1598non-atomic write with an alignment or width less than the minimum width
1599as if it writes to the relevant surrounding bytes.
1600-->
1601
1602</div>
1603
1604<!-- ======================================================================= -->
1605<h3>
1606      <a name="ordering">Atomic Memory Ordering Constraints</a>
1607</h3>
1608
1609<div>
1610
1611<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
1612<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1613<a href="#i_fence"><code>fence</code></a>,
1614<a href="#i_load"><code>atomic load</code></a>, and
1615<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
1616that determines which other atomic instructions on the same address they
1617<i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
1618but are somewhat more colloquial. If these descriptions aren't precise enough,
1619check those specs (see spec references in the
1620<a href="Atomics.html#introduction">atomics guide</a>).
1621<a href="#i_fence"><code>fence</code></a> instructions
1622treat these orderings somewhat differently since they don't take an address.
1623See that instruction's documentation for details.</p>
1624
1625<p>For a simpler introduction to the ordering constraints, see the
1626<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1627
1628<dl>
1629<dt><code>unordered</code></dt>
1630<dd>The set of values that can be read is governed by the happens-before
1631partial order. A value cannot be read unless some operation wrote it.
1632This is intended to provide a guarantee strong enough to model Java's
1633non-volatile shared variables.  This ordering cannot be specified for
1634read-modify-write operations; it is not strong enough to make them atomic
1635in any interesting way.</dd>
1636<dt><code>monotonic</code></dt>
1637<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1638total order for modifications by <code>monotonic</code> operations on each
1639address. All modification orders must be compatible with the happens-before
1640order. There is no guarantee that the modification orders can be combined to
1641a global total order for the whole program (and this often will not be
1642possible). The read in an atomic read-modify-write operation
1643(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1644<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1645reads the value in the modification order immediately before the value it
1646writes. If one atomic read happens before another atomic read of the same
1647address, the later read must see the same value or a later value in the
1648address's modification order. This disallows reordering of
1649<code>monotonic</code> (or stronger) operations on the same address. If an
1650address is written <code>monotonic</code>ally by one thread, and other threads
1651<code>monotonic</code>ally read that address repeatedly, the other threads must
1652eventually see the write. This corresponds to the C++0x/C1x
1653<code>memory_order_relaxed</code>.</dd>
1654<dt><code>acquire</code></dt>
1655<dd>In addition to the guarantees of <code>monotonic</code>,
1656a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1657operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1658<dt><code>release</code></dt>
1659<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1660writes a value which is subsequently read by an <code>acquire</code> operation,
1661it <i>synchronizes-with</i> that operation.  (This isn't a complete
1662description; see the C++0x definition of a release sequence.) This corresponds
1663to the C++0x/C1x <code>memory_order_release</code>.</dd>
1664<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
1665<code>acquire</code> and <code>release</code> operation on its address.
1666This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
1667<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1668<dd>In addition to the guarantees of <code>acq_rel</code>
1669(<code>acquire</code> for an operation which only reads, <code>release</code>
1670for an operation which only writes), there is a global total order on all
1671sequentially-consistent operations on all addresses, which is consistent with
1672the <i>happens-before</i> partial order and with the modification orders of
1673all the affected addresses. Each sequentially-consistent read sees the last
1674preceding write to the same address in this global order. This corresponds
1675to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
1676</dl>
1677
1678<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1679it only <i>synchronizes with</i> or participates in modification and seq_cst
1680total orderings with other operations running in the same thread (for example,
1681in signal handlers).</p>
1682
1683</div>
1684
1685</div>
1686
1687<!-- *********************************************************************** -->
1688<h2><a name="typesystem">Type System</a></h2>
1689<!-- *********************************************************************** -->
1690
1691<div>
1692
1693<p>The LLVM type system is one of the most important features of the
1694   intermediate representation.  Being typed enables a number of optimizations
1695   to be performed on the intermediate representation directly, without having
1696   to do extra analyses on the side before the transformation.  A strong type
1697   system makes it easier to read the generated code and enables novel analyses
1698   and transformations that are not feasible to perform on normal three address
1699   code representations.</p>
1700
1701<!-- ======================================================================= -->
1702<h3>
1703  <a name="t_classifications">Type Classifications</a>
1704</h3>
1705
1706<div>
1707
1708<p>The types fall into a few useful classifications:</p>
1709
1710<table border="1" cellspacing="0" cellpadding="4">
1711  <tbody>
1712    <tr><th>Classification</th><th>Types</th></tr>
1713    <tr>
1714      <td><a href="#t_integer">integer</a></td>
1715      <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1716    </tr>
1717    <tr>
1718      <td><a href="#t_floating">floating point</a></td>
1719      <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1720    </tr>
1721    <tr>
1722      <td><a name="t_firstclass">first class</a></td>
1723      <td><a href="#t_integer">integer</a>,
1724          <a href="#t_floating">floating point</a>,
1725          <a href="#t_pointer">pointer</a>,
1726          <a href="#t_vector">vector</a>,
1727          <a href="#t_struct">structure</a>,
1728          <a href="#t_array">array</a>,
1729          <a href="#t_label">label</a>,
1730          <a href="#t_metadata">metadata</a>.
1731      </td>
1732    </tr>
1733    <tr>
1734      <td><a href="#t_primitive">primitive</a></td>
1735      <td><a href="#t_label">label</a>,
1736          <a href="#t_void">void</a>,
1737          <a href="#t_integer">integer</a>,
1738          <a href="#t_floating">floating point</a>,
1739          <a href="#t_x86mmx">x86mmx</a>,
1740          <a href="#t_metadata">metadata</a>.</td>
1741    </tr>
1742    <tr>
1743      <td><a href="#t_derived">derived</a></td>
1744      <td><a href="#t_array">array</a>,
1745          <a href="#t_function">function</a>,
1746          <a href="#t_pointer">pointer</a>,
1747          <a href="#t_struct">structure</a>,
1748          <a href="#t_vector">vector</a>,
1749          <a href="#t_opaque">opaque</a>.
1750      </td>
1751    </tr>
1752  </tbody>
1753</table>
1754
1755<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1756   important.  Values of these types are the only ones which can be produced by
1757   instructions.</p>
1758
1759</div>
1760
1761<!-- ======================================================================= -->
1762<h3>
1763  <a name="t_primitive">Primitive Types</a>
1764</h3>
1765
1766<div>
1767
1768<p>The primitive types are the fundamental building blocks of the LLVM
1769   system.</p>
1770
1771<!-- _______________________________________________________________________ -->
1772<h4>
1773  <a name="t_integer">Integer Type</a>
1774</h4>
1775
1776<div>
1777
1778<h5>Overview:</h5>
1779<p>The integer type is a very simple type that simply specifies an arbitrary
1780   bit width for the integer type desired. Any bit width from 1 bit to
1781   2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1782
1783<h5>Syntax:</h5>
1784<pre>
1785  iN
1786</pre>
1787
1788<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1789   value.</p>
1790
1791<h5>Examples:</h5>
1792<table class="layout">
1793  <tr class="layout">
1794    <td class="left"><tt>i1</tt></td>
1795    <td class="left">a single-bit integer.</td>
1796  </tr>
1797  <tr class="layout">
1798    <td class="left"><tt>i32</tt></td>
1799    <td class="left">a 32-bit integer.</td>
1800  </tr>
1801  <tr class="layout">
1802    <td class="left"><tt>i1942652</tt></td>
1803    <td class="left">a really big integer of over 1 million bits.</td>
1804  </tr>
1805</table>
1806
1807</div>
1808
1809<!-- _______________________________________________________________________ -->
1810<h4>
1811  <a name="t_floating">Floating Point Types</a>
1812</h4>
1813
1814<div>
1815
1816<table>
1817  <tbody>
1818    <tr><th>Type</th><th>Description</th></tr>
1819    <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
1820    <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1821    <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1822    <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1823    <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1824    <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1825  </tbody>
1826</table>
1827
1828</div>
1829
1830<!-- _______________________________________________________________________ -->
1831<h4>
1832  <a name="t_x86mmx">X86mmx Type</a>
1833</h4>
1834
1835<div>
1836
1837<h5>Overview:</h5>
1838<p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
1839
1840<h5>Syntax:</h5>
1841<pre>
1842  x86mmx
1843</pre>
1844
1845</div>
1846
1847<!-- _______________________________________________________________________ -->
1848<h4>
1849  <a name="t_void">Void Type</a>
1850</h4>
1851
1852<div>
1853
1854<h5>Overview:</h5>
1855<p>The void type does not represent any value and has no size.</p>
1856
1857<h5>Syntax:</h5>
1858<pre>
1859  void
1860</pre>
1861
1862</div>
1863
1864<!-- _______________________________________________________________________ -->
1865<h4>
1866  <a name="t_label">Label Type</a>
1867</h4>
1868
1869<div>
1870
1871<h5>Overview:</h5>
1872<p>The label type represents code labels.</p>
1873
1874<h5>Syntax:</h5>
1875<pre>
1876  label
1877</pre>
1878
1879</div>
1880
1881<!-- _______________________________________________________________________ -->
1882<h4>
1883  <a name="t_metadata">Metadata Type</a>
1884</h4>
1885
1886<div>
1887
1888<h5>Overview:</h5>
1889<p>The metadata type represents embedded metadata. No derived types may be
1890   created from metadata except for <a href="#t_function">function</a>
1891   arguments.
1892
1893<h5>Syntax:</h5>
1894<pre>
1895  metadata
1896</pre>
1897
1898</div>
1899
1900</div>
1901
1902<!-- ======================================================================= -->
1903<h3>
1904  <a name="t_derived">Derived Types</a>
1905</h3>
1906
1907<div>
1908
1909<p>The real power in LLVM comes from the derived types in the system.  This is
1910   what allows a programmer to represent arrays, functions, pointers, and other
1911   useful types.  Each of these types contain one or more element types which
1912   may be a primitive type, or another derived type.  For example, it is
1913   possible to have a two dimensional array, using an array as the element type
1914   of another array.</p>
1915
1916<!-- _______________________________________________________________________ -->
1917<h4>
1918  <a name="t_aggregate">Aggregate Types</a>
1919</h4>
1920
1921<div>
1922
1923<p>Aggregate Types are a subset of derived types that can contain multiple
1924  member types. <a href="#t_array">Arrays</a> and
1925  <a href="#t_struct">structs</a> are aggregate types.
1926  <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
1927
1928</div>
1929
1930<!-- _______________________________________________________________________ -->
1931<h4>
1932  <a name="t_array">Array Type</a>
1933</h4>
1934
1935<div>
1936
1937<h5>Overview:</h5>
1938<p>The array type is a very simple derived type that arranges elements
1939   sequentially in memory.  The array type requires a size (number of elements)
1940   and an underlying data type.</p>
1941
1942<h5>Syntax:</h5>
1943<pre>
1944  [&lt;# elements&gt; x &lt;elementtype&gt;]
1945</pre>
1946
1947<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1948   be any type with a size.</p>
1949
1950<h5>Examples:</h5>
1951<table class="layout">
1952  <tr class="layout">
1953    <td class="left"><tt>[40 x i32]</tt></td>
1954    <td class="left">Array of 40 32-bit integer values.</td>
1955  </tr>
1956  <tr class="layout">
1957    <td class="left"><tt>[41 x i32]</tt></td>
1958    <td class="left">Array of 41 32-bit integer values.</td>
1959  </tr>
1960  <tr class="layout">
1961    <td class="left"><tt>[4 x i8]</tt></td>
1962    <td class="left">Array of 4 8-bit integer values.</td>
1963  </tr>
1964</table>
1965<p>Here are some examples of multidimensional arrays:</p>
1966<table class="layout">
1967  <tr class="layout">
1968    <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1969    <td class="left">3x4 array of 32-bit integer values.</td>
1970  </tr>
1971  <tr class="layout">
1972    <td class="left"><tt>[12 x [10 x float]]</tt></td>
1973    <td class="left">12x10 array of single precision floating point values.</td>
1974  </tr>
1975  <tr class="layout">
1976    <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1977    <td class="left">2x3x4 array of 16-bit integer  values.</td>
1978  </tr>
1979</table>
1980
1981<p>There is no restriction on indexing beyond the end of the array implied by
1982   a static type (though there are restrictions on indexing beyond the bounds
1983   of an allocated object in some cases). This means that single-dimension
1984   'variable sized array' addressing can be implemented in LLVM with a zero
1985   length array type. An implementation of 'pascal style arrays' in LLVM could
1986   use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
1987
1988</div>
1989
1990<!-- _______________________________________________________________________ -->
1991<h4>
1992  <a name="t_function">Function Type</a>
1993</h4>
1994
1995<div>
1996
1997<h5>Overview:</h5>
1998<p>The function type can be thought of as a function signature.  It consists of
1999   a return type and a list of formal parameter types. The return type of a
2000   function type is a first class type or a void type.</p>
2001
2002<h5>Syntax:</h5>
2003<pre>
2004  &lt;returntype&gt; (&lt;parameter list&gt;)
2005</pre>
2006
2007<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
2008   specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
2009   which indicates that the function takes a variable number of arguments.
2010   Variable argument functions can access their arguments with
2011   the <a href="#int_varargs">variable argument handling intrinsic</a>
2012   functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
2013   <a href="#t_label">label</a>.</p>
2014
2015<h5>Examples:</h5>
2016<table class="layout">
2017  <tr class="layout">
2018    <td class="left"><tt>i32 (i32)</tt></td>
2019    <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
2020    </td>
2021  </tr><tr class="layout">
2022    <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
2023    </tt></td>
2024    <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
2025      an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2026      returning <tt>float</tt>.
2027    </td>
2028  </tr><tr class="layout">
2029    <td class="left"><tt>i32 (i8*, ...)</tt></td>
2030    <td class="left">A vararg function that takes at least one
2031      <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2032      which returns an integer.  This is the signature for <tt>printf</tt> in
2033      LLVM.
2034    </td>
2035  </tr><tr class="layout">
2036    <td class="left"><tt>{i32, i32} (i32)</tt></td>
2037    <td class="left">A function taking an <tt>i32</tt>, returning a
2038        <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
2039    </td>
2040  </tr>
2041</table>
2042
2043</div>
2044
2045<!-- _______________________________________________________________________ -->
2046<h4>
2047  <a name="t_struct">Structure Type</a>
2048</h4>
2049
2050<div>
2051
2052<h5>Overview:</h5>
2053<p>The structure type is used to represent a collection of data members together
2054  in memory.  The elements of a structure may be any type that has a size.</p>
2055
2056<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2057   and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2058   with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2059   Structures in registers are accessed using the
2060   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2061   '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
2062
2063<p>Structures may optionally be "packed" structures, which indicate that the
2064  alignment of the struct is one byte, and that there is no padding between
2065  the elements.  In non-packed structs, padding between field types is inserted
2066  as defined by the TargetData string in the module, which is required to match
2067  what the underlying code generator expects.</p>
2068
2069<p>Structures can either be "literal" or "identified".  A literal structure is
2070  defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2071  types are always defined at the top level with a name.  Literal types are
2072  uniqued by their contents and can never be recursive or opaque since there is
2073  no way to write one.  Identified types can be recursive, can be opaqued, and are
2074  never uniqued.
2075</p>
2076
2077<h5>Syntax:</h5>
2078<pre>
2079  %T1 = type { &lt;type list&gt; }     <i>; Identified normal struct type</i>
2080  %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Identified packed struct type</i>
2081</pre>
2082
2083<h5>Examples:</h5>
2084<table class="layout">
2085  <tr class="layout">
2086    <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2087    <td class="left">A triple of three <tt>i32</tt> values</td>
2088  </tr>
2089  <tr class="layout">
2090    <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2091    <td class="left">A pair, where the first element is a <tt>float</tt> and the
2092      second element is a <a href="#t_pointer">pointer</a> to a
2093      <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2094      an <tt>i32</tt>.</td>
2095  </tr>
2096  <tr class="layout">
2097    <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2098    <td class="left">A packed struct known to be 5 bytes in size.</td>
2099  </tr>
2100</table>
2101
2102</div>
2103
2104<!-- _______________________________________________________________________ -->
2105<h4>
2106  <a name="t_opaque">Opaque Structure Types</a>
2107</h4>
2108
2109<div>
2110
2111<h5>Overview:</h5>
2112<p>Opaque structure types are used to represent named structure types that do
2113   not have a body specified.  This corresponds (for example) to the C notion of
2114   a forward declared structure.</p>
2115
2116<h5>Syntax:</h5>
2117<pre>
2118  %X = type opaque
2119  %52 = type opaque
2120</pre>
2121
2122<h5>Examples:</h5>
2123<table class="layout">
2124  <tr class="layout">
2125    <td class="left"><tt>opaque</tt></td>
2126    <td class="left">An opaque type.</td>
2127  </tr>
2128</table>
2129
2130</div>
2131
2132
2133
2134<!-- _______________________________________________________________________ -->
2135<h4>
2136  <a name="t_pointer">Pointer Type</a>
2137</h4>
2138
2139<div>
2140
2141<h5>Overview:</h5>
2142<p>The pointer type is used to specify memory locations.
2143   Pointers are commonly used to reference objects in memory.</p>
2144
2145<p>Pointer types may have an optional address space attribute defining the
2146   numbered address space where the pointed-to object resides. The default
2147   address space is number zero. The semantics of non-zero address
2148   spaces are target-specific.</p>
2149
2150<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2151   permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
2152
2153<h5>Syntax:</h5>
2154<pre>
2155  &lt;type&gt; *
2156</pre>
2157
2158<h5>Examples:</h5>
2159<table class="layout">
2160  <tr class="layout">
2161    <td class="left"><tt>[4 x i32]*</tt></td>
2162    <td class="left">A <a href="#t_pointer">pointer</a> to <a
2163                    href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2164  </tr>
2165  <tr class="layout">
2166    <td class="left"><tt>i32 (i32*) *</tt></td>
2167    <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
2168      href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
2169      <tt>i32</tt>.</td>
2170  </tr>
2171  <tr class="layout">
2172    <td class="left"><tt>i32 addrspace(5)*</tt></td>
2173    <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2174     that resides in address space #5.</td>
2175  </tr>
2176</table>
2177
2178</div>
2179
2180<!-- _______________________________________________________________________ -->
2181<h4>
2182  <a name="t_vector">Vector Type</a>
2183</h4>
2184
2185<div>
2186
2187<h5>Overview:</h5>
2188<p>A vector type is a simple derived type that represents a vector of elements.
2189   Vector types are used when multiple primitive data are operated in parallel
2190   using a single instruction (SIMD).  A vector type requires a size (number of
2191   elements) and an underlying primitive data type.  Vector types are considered
2192   <a href="#t_firstclass">first class</a>.</p>
2193
2194<h5>Syntax:</h5>
2195<pre>
2196  &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2197</pre>
2198
2199<p>The number of elements is a constant integer value larger than 0; elementtype
2200   may be any integer or floating point type, or a pointer to these types.
2201   Vectors of size zero are not allowed. </p>
2202
2203<h5>Examples:</h5>
2204<table class="layout">
2205  <tr class="layout">
2206    <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2207    <td class="left">Vector of 4 32-bit integer values.</td>
2208  </tr>
2209  <tr class="layout">
2210    <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2211    <td class="left">Vector of 8 32-bit floating-point values.</td>
2212  </tr>
2213  <tr class="layout">
2214    <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2215    <td class="left">Vector of 2 64-bit integer values.</td>
2216  </tr>
2217  <tr class="layout">
2218    <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
2219    <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
2220  </tr>
2221</table>
2222
2223</div>
2224
2225</div>
2226
2227</div>
2228
2229<!-- *********************************************************************** -->
2230<h2><a name="constants">Constants</a></h2>
2231<!-- *********************************************************************** -->
2232
2233<div>
2234
2235<p>LLVM has several different basic types of constants.  This section describes
2236   them all and their syntax.</p>
2237
2238<!-- ======================================================================= -->
2239<h3>
2240  <a name="simpleconstants">Simple Constants</a>
2241</h3>
2242
2243<div>
2244
2245<dl>
2246  <dt><b>Boolean constants</b></dt>
2247  <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
2248      constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
2249
2250  <dt><b>Integer constants</b></dt>
2251  <dd>Standard integers (such as '4') are constants of
2252      the <a href="#t_integer">integer</a> type.  Negative numbers may be used
2253      with integer types.</dd>
2254
2255  <dt><b>Floating point constants</b></dt>
2256  <dd>Floating point constants use standard decimal notation (e.g. 123.421),
2257      exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2258      notation (see below).  The assembler requires the exact decimal value of a
2259      floating-point constant.  For example, the assembler accepts 1.25 but
2260      rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
2261      constants must have a <a href="#t_floating">floating point</a> type. </dd>
2262
2263  <dt><b>Null pointer constants</b></dt>
2264  <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
2265      and must be of <a href="#t_pointer">pointer type</a>.</dd>
2266</dl>
2267
2268<p>The one non-intuitive notation for constants is the hexadecimal form of
2269   floating point constants.  For example, the form '<tt>double
2270   0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2271   '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
2272   constants are required (and the only time that they are generated by the
2273   disassembler) is when a floating point constant must be emitted but it cannot
2274   be represented as a decimal floating point number in a reasonable number of
2275   digits.  For example, NaN's, infinities, and other special values are
2276   represented in their IEEE hexadecimal format so that assembly and disassembly
2277   do not cause any bits to change in the constants.</p>
2278
2279<p>When using the hexadecimal form, constants of types half, float, and double are
2280   represented using the 16-digit form shown above (which matches the IEEE754
2281   representation for double); half and float values must, however, be exactly
2282   representable as IEE754 half and single precision, respectively.
2283   Hexadecimal format is always used
2284   for long double, and there are three forms of long double.  The 80-bit format
2285   used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2286   The 128-bit format used by PowerPC (two adjacent doubles) is represented
2287   by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
2288   is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2289   currently supported target uses this format.  Long doubles will only work if
2290   they match the long double format on your target.  All hexadecimal formats
2291   are big-endian (sign bit at the left).</p>
2292
2293<p>There are no constants of type x86mmx.</p>
2294</div>
2295
2296<!-- ======================================================================= -->
2297<h3>
2298<a name="aggregateconstants"></a> <!-- old anchor -->
2299<a name="complexconstants">Complex Constants</a>
2300</h3>
2301
2302<div>
2303
2304<p>Complex constants are a (potentially recursive) combination of simple
2305   constants and smaller complex constants.</p>
2306
2307<dl>
2308  <dt><b>Structure constants</b></dt>
2309  <dd>Structure constants are represented with notation similar to structure
2310      type definitions (a comma separated list of elements, surrounded by braces
2311      (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2312      where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2313      Structure constants must have <a href="#t_struct">structure type</a>, and
2314      the number and types of elements must match those specified by the
2315      type.</dd>
2316
2317  <dt><b>Array constants</b></dt>
2318  <dd>Array constants are represented with notation similar to array type
2319     definitions (a comma separated list of elements, surrounded by square
2320     brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
2321     ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
2322     the number and types of elements must match those specified by the
2323     type.</dd>
2324
2325  <dt><b>Vector constants</b></dt>
2326  <dd>Vector constants are represented with notation similar to vector type
2327      definitions (a comma separated list of elements, surrounded by
2328      less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
2329      42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
2330      have <a href="#t_vector">vector type</a>, and the number and types of
2331      elements must match those specified by the type.</dd>
2332
2333  <dt><b>Zero initialization</b></dt>
2334  <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
2335      value to zero of <em>any</em> type, including scalar and
2336      <a href="#t_aggregate">aggregate</a> types.
2337      This is often used to avoid having to print large zero initializers
2338      (e.g. for large arrays) and is always exactly equivalent to using explicit
2339      zero initializers.</dd>
2340
2341  <dt><b>Metadata node</b></dt>
2342  <dd>A metadata node is a structure-like constant with
2343      <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
2344      i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
2345      be interpreted as part of the instruction stream, metadata is a place to
2346      attach additional information such as debug info.</dd>
2347</dl>
2348
2349</div>
2350
2351<!-- ======================================================================= -->
2352<h3>
2353  <a name="globalconstants">Global Variable and Function Addresses</a>
2354</h3>
2355
2356<div>
2357
2358<p>The addresses of <a href="#globalvars">global variables</a>
2359   and <a href="#functionstructure">functions</a> are always implicitly valid
2360   (link-time) constants.  These constants are explicitly referenced when
2361   the <a href="#identifiers">identifier for the global</a> is used and always
2362   have <a href="#t_pointer">pointer</a> type. For example, the following is a
2363   legal LLVM file:</p>
2364
2365<pre class="doc_code">
2366@X = global i32 17
2367@Y = global i32 42
2368@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2369</pre>
2370
2371</div>
2372
2373<!-- ======================================================================= -->
2374<h3>
2375  <a name="undefvalues">Undefined Values</a>
2376</h3>
2377
2378<div>
2379
2380<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
2381   indicates that the user of the value may receive an unspecified bit-pattern.
2382   Undefined values may be of any type (other than '<tt>label</tt>'
2383   or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
2384
2385<p>Undefined values are useful because they indicate to the compiler that the
2386   program is well defined no matter what value is used.  This gives the
2387   compiler more freedom to optimize.  Here are some examples of (potentially
2388   surprising) transformations that are valid (in pseudo IR):</p>
2389
2390
2391<pre class="doc_code">
2392  %A = add %X, undef
2393  %B = sub %X, undef
2394  %C = xor %X, undef
2395Safe:
2396  %A = undef
2397  %B = undef
2398  %C = undef
2399</pre>
2400
2401<p>This is safe because all of the output bits are affected by the undef bits.
2402   Any output bit can have a zero or one depending on the input bits.</p>
2403
2404<pre class="doc_code">
2405  %A = or %X, undef
2406  %B = and %X, undef
2407Safe:
2408  %A = -1
2409  %B = 0
2410Unsafe:
2411  %A = undef
2412  %B = undef
2413</pre>
2414
2415<p>These logical operations have bits that are not always affected by the input.
2416   For example, if <tt>%X</tt> has a zero bit, then the output of the
2417   '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2418   the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2419   optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2420   However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2421   0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2422   all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2423   set, allowing the '<tt>or</tt>' to be folded to -1.</p>
2424
2425<pre class="doc_code">
2426  %A = select undef, %X, %Y
2427  %B = select undef, 42, %Y
2428  %C = select %X, %Y, undef
2429Safe:
2430  %A = %X     (or %Y)
2431  %B = 42     (or %Y)
2432  %C = %Y
2433Unsafe:
2434  %A = undef
2435  %B = undef
2436  %C = undef
2437</pre>
2438
2439<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2440   branch) conditions can go <em>either way</em>, but they have to come from one
2441   of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
2442   <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2443   have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2444   optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2445   same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2446   eliminated.</p>
2447
2448<pre class="doc_code">
2449  %A = xor undef, undef
2450
2451  %B = undef
2452  %C = xor %B, %B
2453
2454  %D = undef
2455  %E = icmp lt %D, 4
2456  %F = icmp gte %D, 4
2457
2458Safe:
2459  %A = undef
2460  %B = undef
2461  %C = undef
2462  %D = undef
2463  %E = undef
2464  %F = undef
2465</pre>
2466
2467<p>This example points out that two '<tt>undef</tt>' operands are not
2468   necessarily the same. This can be surprising to people (and also matches C
2469   semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2470   if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2471   short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2472   its value over its "live range".  This is true because the variable doesn't
2473   actually <em>have a live range</em>. Instead, the value is logically read
2474   from arbitrary registers that happen to be around when needed, so the value
2475   is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2476   need to have the same semantics or the core LLVM "replace all uses with"
2477   concept would not hold.</p>
2478
2479<pre class="doc_code">
2480  %A = fdiv undef, %X
2481  %B = fdiv %X, undef
2482Safe:
2483  %A = undef
2484b: unreachable
2485</pre>
2486
2487<p>These examples show the crucial difference between an <em>undefined
2488  value</em> and <em>undefined behavior</em>. An undefined value (like
2489  '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2490  the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2491  the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2492  defined on SNaN's. However, in the second example, we can make a more
2493  aggressive assumption: because the <tt>undef</tt> is allowed to be an
2494  arbitrary value, we are allowed to assume that it could be zero. Since a
2495  divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2496  the operation does not execute at all. This allows us to delete the divide and
2497  all code after it. Because the undefined operation "can't happen", the
2498  optimizer can assume that it occurs in dead code.</p>
2499
2500<pre class="doc_code">
2501a:  store undef -> %X
2502b:  store %X -> undef
2503Safe:
2504a: &lt;deleted&gt;
2505b: unreachable
2506</pre>
2507
2508<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2509   undefined value can be assumed to not have any effect; we can assume that the
2510   value is overwritten with bits that happen to match what was already there.
2511   However, a store <em>to</em> an undefined location could clobber arbitrary
2512   memory, therefore, it has undefined behavior.</p>
2513
2514</div>
2515
2516<!-- ======================================================================= -->
2517<h3>
2518  <a name="poisonvalues">Poison Values</a>
2519</h3>
2520
2521<div>
2522
2523<p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
2524   they also represent the fact that an instruction or constant expression which
2525   cannot evoke side effects has nevertheless detected a condition which results
2526   in undefined behavior.</p>
2527
2528<p>There is currently no way of representing a poison value in the IR; they
2529   only exist when produced by operations such as
2530   <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
2531
2532<p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
2533
2534<ul>
2535<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2536    their operands.</li>
2537
2538<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2539    to their dynamic predecessor basic block.</li>
2540
2541<li>Function arguments depend on the corresponding actual argument values in
2542    the dynamic callers of their functions.</li>
2543
2544<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2545    <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2546    control back to them.</li>
2547
2548<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2549    <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
2550    or exception-throwing call instructions that dynamically transfer control
2551    back to them.</li>
2552
2553<li>Non-volatile loads and stores depend on the most recent stores to all of the
2554    referenced memory addresses, following the order in the IR
2555    (including loads and stores implied by intrinsics such as
2556    <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2557
2558<!-- TODO: In the case of multiple threads, this only applies if the store
2559     "happens-before" the load or store. -->
2560
2561<!-- TODO: floating-point exception state -->
2562
2563<li>An instruction with externally visible side effects depends on the most
2564    recent preceding instruction with externally visible side effects, following
2565    the order in the IR. (This includes
2566    <a href="#volatile">volatile operations</a>.)</li>
2567
2568<li>An instruction <i>control-depends</i> on a
2569    <a href="#terminators">terminator instruction</a>
2570    if the terminator instruction has multiple successors and the instruction
2571    is always executed when control transfers to one of the successors, and
2572    may not be executed when control is transferred to another.</li>
2573
2574<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2575    instruction if the set of instructions it otherwise depends on would be
2576    different if the terminator had transferred control to a different
2577    successor.</li>
2578
2579<li>Dependence is transitive.</li>
2580
2581</ul>
2582
2583<p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
2584   with the additional affect that any instruction which has a <i>dependence</i>
2585   on a poison value has undefined behavior.</p>
2586
2587<p>Here are some examples:</p>
2588
2589<pre class="doc_code">
2590entry:
2591  %poison = sub nuw i32 0, 1           ; Results in a poison value.
2592  %still_poison = and i32 %poison, 0   ; 0, but also poison.
2593  %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2594  store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
2595
2596  store i32 %poison, i32* @g           ; Poison value stored to memory.
2597  %poison2 = load i32* @g              ; Poison value loaded back from memory.
2598
2599  store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
2600
2601  %narrowaddr = bitcast i32* @g to i16*
2602  %wideaddr = bitcast i32* @g to i64*
2603  %poison3 = load i16* %narrowaddr     ; Returns a poison value.
2604  %poison4 = load i64* %wideaddr       ; Returns a poison value.
2605
2606  %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
2607  br i1 %cmp, label %true, label %end  ; Branch to either destination.
2608
2609true:
2610  store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
2611                                       ; it has undefined behavior.
2612  br label %end
2613
2614end:
2615  %p = phi i32 [ 0, %entry ], [ 1, %true ]
2616                                       ; Both edges into this PHI are
2617                                       ; control-dependent on %cmp, so this
2618                                       ; always results in a poison value.
2619
2620  store volatile i32 0, i32* @g        ; This would depend on the store in %true
2621                                       ; if %cmp is true, or the store in %entry
2622                                       ; otherwise, so this is undefined behavior.
2623
2624  br i1 %cmp, label %second_true, label %second_end
2625                                       ; The same branch again, but this time the
2626                                       ; true block doesn't have side effects.
2627
2628second_true:
2629  ; No side effects!
2630  ret void
2631
2632second_end:
2633  store volatile i32 0, i32* @g        ; This time, the instruction always depends
2634                                       ; on the store in %end. Also, it is
2635                                       ; control-equivalent to %end, so this is
2636                                       ; well-defined (ignoring earlier undefined
2637                                       ; behavior in this example).
2638</pre>
2639
2640</div>
2641
2642<!-- ======================================================================= -->
2643<h3>
2644  <a name="blockaddress">Addresses of Basic Blocks</a>
2645</h3>
2646
2647<div>
2648
2649<p><b><tt>blockaddress(@function, %block)</tt></b></p>
2650
2651<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2652   basic block in the specified function, and always has an i8* type.  Taking
2653   the address of the entry block is illegal.</p>
2654
2655<p>This value only has defined behavior when used as an operand to the
2656   '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2657   comparisons against null. Pointer equality tests between labels addresses
2658   results in undefined behavior &mdash; though, again, comparison against null
2659   is ok, and no label is equal to the null pointer. This may be passed around
2660   as an opaque pointer sized value as long as the bits are not inspected. This
2661   allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2662   long as the original value is reconstituted before the <tt>indirectbr</tt>
2663   instruction.</p>
2664
2665<p>Finally, some targets may provide defined semantics when using the value as
2666   the operand to an inline assembly, but that is target specific.</p>
2667
2668</div>
2669
2670
2671<!-- ======================================================================= -->
2672<h3>
2673  <a name="constantexprs">Constant Expressions</a>
2674</h3>
2675
2676<div>
2677
2678<p>Constant expressions are used to allow expressions involving other constants
2679   to be used as constants.  Constant expressions may be of
2680   any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2681   operation that does not have side effects (e.g. load and call are not
2682   supported). The following is the syntax for constant expressions:</p>
2683
2684<dl>
2685  <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
2686  <dd>Truncate a constant to another type. The bit size of CST must be larger
2687      than the bit size of TYPE. Both types must be integers.</dd>
2688
2689  <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
2690  <dd>Zero extend a constant to another type. The bit size of CST must be
2691      smaller than the bit size of TYPE.  Both types must be integers.</dd>
2692
2693  <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
2694  <dd>Sign extend a constant to another type. The bit size of CST must be
2695      smaller than the bit size of TYPE.  Both types must be integers.</dd>
2696
2697  <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
2698  <dd>Truncate a floating point constant to another floating point type. The
2699      size of CST must be larger than the size of TYPE. Both types must be
2700      floating point.</dd>
2701
2702  <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
2703  <dd>Floating point extend a constant to another type. The size of CST must be
2704      smaller or equal to the size of TYPE. Both types must be floating
2705      point.</dd>
2706
2707  <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
2708  <dd>Convert a floating point constant to the corresponding unsigned integer
2709      constant. TYPE must be a scalar or vector integer type. CST must be of
2710      scalar or vector floating point type. Both CST and TYPE must be scalars,
2711      or vectors of the same number of elements. If the value won't fit in the
2712      integer type, the results are undefined.</dd>
2713
2714  <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
2715  <dd>Convert a floating point constant to the corresponding signed integer
2716      constant.  TYPE must be a scalar or vector integer type. CST must be of
2717      scalar or vector floating point type. Both CST and TYPE must be scalars,
2718      or vectors of the same number of elements. If the value won't fit in the
2719      integer type, the results are undefined.</dd>
2720
2721  <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
2722  <dd>Convert an unsigned integer constant to the corresponding floating point
2723      constant. TYPE must be a scalar or vector floating point type. CST must be
2724      of scalar or vector integer type. Both CST and TYPE must be scalars, or
2725      vectors of the same number of elements. If the value won't fit in the
2726      floating point type, the results are undefined.</dd>
2727
2728  <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
2729  <dd>Convert a signed integer constant to the corresponding floating point
2730      constant. TYPE must be a scalar or vector floating point type. CST must be
2731      of scalar or vector integer type. Both CST and TYPE must be scalars, or
2732      vectors of the same number of elements. If the value won't fit in the
2733      floating point type, the results are undefined.</dd>
2734
2735  <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
2736  <dd>Convert a pointer typed constant to the corresponding integer constant
2737      <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2738      type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2739      make it fit in <tt>TYPE</tt>.</dd>
2740
2741  <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
2742  <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
2743      type.  CST must be of integer type. The CST value is zero extended,
2744      truncated, or unchanged to make it fit in a pointer size. This one is
2745      <i>really</i> dangerous!</dd>
2746
2747  <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
2748  <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2749      are the same as those for the <a href="#i_bitcast">bitcast
2750      instruction</a>.</dd>
2751
2752  <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2753  <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2754  <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2755      constants.  As with the <a href="#i_getelementptr">getelementptr</a>
2756      instruction, the index list may have zero or more indexes, which are
2757      required to make sense for the type of "CSTPTR".</dd>
2758
2759  <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
2760  <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2761
2762  <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
2763  <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2764
2765  <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
2766  <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2767
2768  <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
2769  <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2770      constants.</dd>
2771
2772  <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
2773  <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2774    constants.</dd>
2775
2776  <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
2777  <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2778      constants.</dd>
2779
2780  <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2781  <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2782    constants. The index list is interpreted in a similar manner as indices in
2783    a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2784    index value must be specified.</dd>
2785
2786  <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2787  <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2788    constants. The index list is interpreted in a similar manner as indices in
2789    a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2790    index value must be specified.</dd>
2791
2792  <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
2793  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2794      be any of the <a href="#binaryops">binary</a>
2795      or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
2796      on operands are the same as those for the corresponding instruction
2797      (e.g. no bitwise operations on floating point values are allowed).</dd>
2798</dl>
2799
2800</div>
2801
2802</div>
2803
2804<!-- *********************************************************************** -->
2805<h2><a name="othervalues">Other Values</a></h2>
2806<!-- *********************************************************************** -->
2807<div>
2808<!-- ======================================================================= -->
2809<h3>
2810<a name="inlineasm">Inline Assembler Expressions</a>
2811</h3>
2812
2813<div>
2814
2815<p>LLVM supports inline assembler expressions (as opposed
2816   to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
2817   a special value.  This value represents the inline assembler as a string
2818   (containing the instructions to emit), a list of operand constraints (stored
2819   as a string), a flag that indicates whether or not the inline asm
2820   expression has side effects, and a flag indicating whether the function
2821   containing the asm needs to align its stack conservatively.  An example
2822   inline assembler expression is:</p>
2823
2824<pre class="doc_code">
2825i32 (i32) asm "bswap $0", "=r,r"
2826</pre>
2827
2828<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2829   a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
2830   have:</p>
2831
2832<pre class="doc_code">
2833%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2834</pre>
2835
2836<p>Inline asms with side effects not visible in the constraint list must be
2837   marked as having side effects.  This is done through the use of the
2838   '<tt>sideeffect</tt>' keyword, like so:</p>
2839
2840<pre class="doc_code">
2841call void asm sideeffect "eieio", ""()
2842</pre>
2843
2844<p>In some cases inline asms will contain code that will not work unless the
2845   stack is aligned in some way, such as calls or SSE instructions on x86,
2846   yet will not contain code that does that alignment within the asm.
2847   The compiler should make conservative assumptions about what the asm might
2848   contain and should generate its usual stack alignment code in the prologue
2849   if the '<tt>alignstack</tt>' keyword is present:</p>
2850
2851<pre class="doc_code">
2852call void asm alignstack "eieio", ""()
2853</pre>
2854
2855<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2856   first.</p>
2857
2858<!--
2859<p>TODO: The format of the asm and constraints string still need to be
2860   documented here.  Constraints on what can be done (e.g. duplication, moving,
2861   etc need to be documented).  This is probably best done by reference to
2862   another document that covers inline asm from a holistic perspective.</p>
2863  -->
2864
2865<!-- _______________________________________________________________________ -->
2866<h4>
2867  <a name="inlineasm_md">Inline Asm Metadata</a>
2868</h4>
2869
2870<div>
2871
2872<p>The call instructions that wrap inline asm nodes may have a
2873   "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
2874   integers.  If present, the code generator will use the integer as the
2875   location cookie value when report errors through the <tt>LLVMContext</tt>
2876   error reporting mechanisms.  This allows a front-end to correlate backend
2877   errors that occur with inline asm back to the source code that produced it.
2878   For example:</p>
2879
2880<pre class="doc_code">
2881call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2882...
2883!42 = !{ i32 1234567 }
2884</pre>
2885
2886<p>It is up to the front-end to make sense of the magic numbers it places in the
2887   IR. If the MDNode contains multiple constants, the code generator will use
2888   the one that corresponds to the line of the asm that the error occurs on.</p>
2889
2890</div>
2891
2892</div>
2893
2894<!-- ======================================================================= -->
2895<h3>
2896  <a name="metadata">Metadata Nodes and Metadata Strings</a>
2897</h3>
2898
2899<div>
2900
2901<p>LLVM IR allows metadata to be attached to instructions in the program that
2902   can convey extra information about the code to the optimizers and code
2903   generator.  One example application of metadata is source-level debug
2904   information.  There are two metadata primitives: strings and nodes. All
2905   metadata has the <tt>metadata</tt> type and is identified in syntax by a
2906   preceding exclamation point ('<tt>!</tt>').</p>
2907
2908<p>A metadata string is a string surrounded by double quotes.  It can contain
2909   any character by escaping non-printable characters with "<tt>\xx</tt>" where
2910   "<tt>xx</tt>" is the two digit hex code.  For example:
2911   "<tt>!"test\00"</tt>".</p>
2912
2913<p>Metadata nodes are represented with notation similar to structure constants
2914   (a comma separated list of elements, surrounded by braces and preceded by an
2915   exclamation point). Metadata nodes can have any values as their operand. For
2916   example:</p>
2917
2918<div class="doc_code">
2919<pre>
2920!{ metadata !"test\00", i32 10}
2921</pre>
2922</div>
2923
2924<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2925   metadata nodes, which can be looked up in the module symbol table. For
2926   example:</p>
2927
2928<div class="doc_code">
2929<pre>
2930!foo =  metadata !{!4, !3}
2931</pre>
2932</div>
2933
2934<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2935   function is using two metadata arguments:</p>
2936
2937<div class="doc_code">
2938<pre>
2939call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2940</pre>
2941</div>
2942
2943<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2944   attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
2945   identifier:</p>
2946
2947<div class="doc_code">
2948<pre>
2949%indvar.next = add i64 %indvar, 1, !dbg !21
2950</pre>
2951</div>
2952
2953<p>More information about specific metadata nodes recognized by the optimizers
2954   and code generator is found below.</p>
2955
2956<!-- _______________________________________________________________________ -->
2957<h4>
2958  <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
2959</h4>
2960
2961<div>
2962
2963<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
2964   suitable for doing TBAA. Instead, metadata is added to the IR to describe
2965   a type system of a higher level language. This can be used to implement
2966   typical C/C++ TBAA, but it can also be used to implement custom alias
2967   analysis behavior for other languages.</p>
2968
2969<p>The current metadata format is very simple. TBAA metadata nodes have up to
2970   three fields, e.g.:</p>
2971
2972<div class="doc_code">
2973<pre>
2974!0 = metadata !{ metadata !"an example type tree" }
2975!1 = metadata !{ metadata !"int", metadata !0 }
2976!2 = metadata !{ metadata !"float", metadata !0 }
2977!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2978</pre>
2979</div>
2980
2981<p>The first field is an identity field. It can be any value, usually
2982   a metadata string, which uniquely identifies the type. The most important
2983   name in the tree is the name of the root node. Two trees with
2984   different root node names are entirely disjoint, even if they
2985   have leaves with common names.</p>
2986
2987<p>The second field identifies the type's parent node in the tree, or
2988   is null or omitted for a root node. A type is considered to alias
2989   all of its descendants and all of its ancestors in the tree. Also,
2990   a type is considered to alias all types in other trees, so that
2991   bitcode produced from multiple front-ends is handled conservatively.</p>
2992
2993<p>If the third field is present, it's an integer which if equal to 1
2994   indicates that the type is "constant" (meaning
2995   <tt>pointsToConstantMemory</tt> should return true; see
2996   <a href="AliasAnalysis.html#OtherItfs">other useful
2997   <tt>AliasAnalysis</tt> methods</a>).</p>
2998
2999</div>
3000
3001<!-- _______________________________________________________________________ -->
3002<h4>
3003  <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
3004</h4>
3005
3006<div>
3007
3008<p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
3009  type.  It can be used to express the maximum acceptable error in the result of
3010  that instruction, in ULPs, thus potentially allowing the compiler to use a
3011  more efficient but less accurate method of computing it.  ULP is defined as
3012  follows:</p>
3013
3014<blockquote>
3015
3016<p>If <tt>x</tt> is a real number that lies between two finite consecutive
3017   floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
3018   of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
3019   distance between the two non-equal finite floating-point numbers nearest
3020   <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
3021
3022</blockquote>
3023
3024<p>The metadata node shall consist of a single positive floating point number
3025   representing the maximum relative error, for example:</p>
3026
3027<div class="doc_code">
3028<pre>
3029!0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
3030</pre>
3031</div>
3032
3033</div>
3034
3035<!-- _______________________________________________________________________ -->
3036<h4>
3037  <a name="range">'<tt>range</tt>' Metadata</a>
3038</h4>
3039
3040<div>
3041<p><tt>range</tt> metadata may be attached only to loads of integer types. It
3042   expresses the possible ranges the loaded value is in. The ranges are
3043   represented with a flattened list of integers. The loaded value is known to
3044   be in the union of the ranges defined by each consecutive pair. Each pair
3045   has the following properties:</p>
3046<ul>
3047   <li>The type must match the type loaded by the instruction.</li>
3048   <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
3049   <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
3050   <li>The range is allowed to wrap.</li>
3051   <li>The range should not represent the full or empty set. That is,
3052       <tt>a!=b</tt>. </li>
3053</ul>
3054
3055<p>Examples:</p>
3056<div class="doc_code">
3057<pre>
3058  %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3059  %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3060  %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
3061...
3062!0 = metadata !{ i8 0, i8 2 }
3063!1 = metadata !{ i8 255, i8 2 }
3064!2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3065</pre>
3066</div>
3067</div>
3068</div>
3069
3070</div>
3071
3072<!-- *********************************************************************** -->
3073<h2>
3074  <a name="module_flags">Module Flags Metadata</a>
3075</h2>
3076<!-- *********************************************************************** -->
3077
3078<div>
3079
3080<p>Information about the module as a whole is difficult to convey to LLVM's
3081   subsystems. The LLVM IR isn't sufficient to transmit this
3082   information. The <tt>llvm.module.flags</tt> named metadata exists in order to
3083   facilitate this. These flags are in the form of key / value pairs &mdash;
3084   much like a dictionary &mdash; making it easy for any subsystem who cares
3085   about a flag to look it up.</p>
3086
3087<p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
3088   triplets. Each triplet has the following form:</p>
3089
3090<ul>
3091  <li>The first element is a <i>behavior</i> flag, which specifies the behavior
3092      when two (or more) modules are merged together, and it encounters two (or
3093      more) metadata with the same ID. The supported behaviors are described
3094      below.</li>
3095
3096  <li>The second element is a metadata string that is a unique ID for the
3097      metadata. How each ID is interpreted is documented below.</li>
3098
3099  <li>The third element is the value of the flag.</li>
3100</ul>
3101
3102<p>When two (or more) modules are merged together, the resulting
3103   <tt>llvm.module.flags</tt> metadata is the union of the
3104   modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
3105   with the <i>Override</i> behavior, which may override another flag's value
3106   (see below).</p>
3107
3108<p>The following behaviors are supported:</p>
3109
3110<table border="1" cellspacing="0" cellpadding="4">
3111  <tbody>
3112    <tr>
3113      <th>Value</th>
3114      <th>Behavior</th>
3115    </tr>
3116    <tr>
3117      <td>1</td>
3118      <td align="left">
3119        <dl>
3120          <dt><b>Error</b></dt>
3121          <dd>Emits an error if two values disagree. It is an error to have an ID
3122              with both an Error and a Warning behavior.</dd>
3123        </dl>
3124      </td>
3125    </tr>
3126    <tr>
3127      <td>2</td>
3128      <td align="left">
3129        <dl>
3130          <dt><b>Warning</b></dt>
3131          <dd>Emits a warning if two values disagree.</dd>
3132        </dl>
3133      </td>
3134    </tr>
3135    <tr>
3136      <td>3</td>
3137      <td align="left">
3138        <dl>
3139          <dt><b>Require</b></dt>
3140          <dd>Emits an error when the specified value is not present or doesn't
3141              have the specified value. It is an error for two (or more)
3142              <tt>llvm.module.flags</tt> with the same ID to have the Require
3143              behavior but different values. There may be multiple Require flags
3144              per ID.</dd>
3145        </dl>
3146      </td>
3147    </tr>
3148    <tr>
3149      <td>4</td>
3150      <td align="left">
3151        <dl>
3152          <dt><b>Override</b></dt>
3153          <dd>Uses the specified value if the two values disagree. It is an
3154              error for two (or more) <tt>llvm.module.flags</tt> with the same
3155              ID to have the Override behavior but different values.</dd>
3156        </dl>
3157      </td>
3158    </tr>
3159  </tbody>
3160</table>
3161
3162<p>An example of module flags:</p>
3163
3164<pre class="doc_code">
3165!0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3166!1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3167!2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3168!3 = metadata !{ i32 3, metadata !"qux",
3169  metadata !{
3170    metadata !"foo", i32 1
3171  }
3172}
3173!llvm.module.flags = !{ !0, !1, !2, !3 }
3174</pre>
3175
3176<ul>
3177  <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
3178         behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
3179         error if their values are not equal.</p></li>
3180
3181  <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
3182         behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
3183         value '37' if their values are not equal.</p></li>
3184
3185  <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
3186         behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
3187         warning if their values are not equal.</p></li>
3188
3189  <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
3190
3191<pre class="doc_code">
3192metadata !{ metadata !"foo", i32 1 }
3193</pre>
3194
3195      <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
3196         not contain a flag with the ID <tt>!"foo"</tt> that has the value
3197         '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
3198         the same value or an error will be issued.</p></li>
3199</ul>
3200
3201
3202<!-- ======================================================================= -->
3203<h3>
3204<a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
3205</h3>
3206
3207<div>
3208
3209<p>On the Mach-O platform, Objective-C stores metadata about garbage collection
3210   in a special section called "image info". The metadata consists of a version
3211   number and a bitmask specifying what types of garbage collection are
3212   supported (if any) by the file. If two or more modules are linked together
3213   their garbage collection metadata needs to be merged rather than appended
3214   together.</p>
3215
3216<p>The Objective-C garbage collection module flags metadata consists of the
3217   following key-value pairs:</p>
3218
3219<table border="1" cellspacing="0" cellpadding="4">
3220  <col width="30%">
3221  <tbody>
3222    <tr>
3223      <th>Key</th>
3224      <th>Value</th>
3225    </tr>
3226    <tr>
3227      <td><tt>Objective-C&nbsp;Version</tt></td>
3228      <td align="left"><b>[Required]</b> &mdash; The Objective-C ABI
3229         version. Valid values are 1 and 2.</td>
3230    </tr>
3231    <tr>
3232      <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Version</tt></td>
3233      <td align="left"><b>[Required]</b> &mdash; The version of the image info
3234         section. Currently always 0.</td>
3235    </tr>
3236    <tr>
3237      <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Section</tt></td>
3238      <td align="left"><b>[Required]</b> &mdash; The section to place the
3239         metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
3240         Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
3241         no_dead_strip"</tt> for Objective-C ABI version 2.</td>
3242    </tr>
3243    <tr>
3244      <td><tt>Objective-C&nbsp;Garbage&nbsp;Collection</tt></td>
3245      <td align="left"><b>[Required]</b> &mdash; Specifies whether garbage
3246          collection is supported or not. Valid values are 0, for no garbage
3247          collection, and 2, for garbage collection supported.</td>
3248    </tr>
3249    <tr>
3250      <td><tt>Objective-C&nbsp;GC&nbsp;Only</tt></td>
3251      <td align="left"><b>[Optional]</b> &mdash; Specifies that only garbage
3252         collection is supported. If present, its value must be 6. This flag
3253         requires that the <tt>Objective-C Garbage Collection</tt> flag have the
3254         value 2.</td>
3255    </tr>
3256  </tbody>
3257</table>
3258
3259<p>Some important flag interactions:</p>
3260
3261<ul>
3262  <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
3263      merged with a module with <tt>Objective-C Garbage Collection</tt> set to
3264      2, then the resulting module has the <tt>Objective-C Garbage
3265      Collection</tt> flag set to 0.</li>
3266
3267  <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
3268      merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
3269</ul>
3270
3271</div>
3272
3273</div>
3274
3275<!-- *********************************************************************** -->
3276<h2>
3277  <a name="intrinsic_globals">Intrinsic Global Variables</a>
3278</h2>
3279<!-- *********************************************************************** -->
3280<div>
3281<p>LLVM has a number of "magic" global variables that contain data that affect
3282code generation or other IR semantics.  These are documented here.  All globals
3283of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
3284section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3285by LLVM.</p>
3286
3287<!-- ======================================================================= -->
3288<h3>
3289<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
3290</h3>
3291
3292<div>
3293
3294<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3295href="#linkage_appending">appending linkage</a>.  This array contains a list of
3296pointers to global variables and functions which may optionally have a pointer
3297cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
3298
3299<div class="doc_code">
3300<pre>
3301@X = global i8 4
3302@Y = global i32 123
3303
3304@llvm.used = appending global [2 x i8*] [
3305   i8* @X,
3306   i8* bitcast (i32* @Y to i8*)
3307], section "llvm.metadata"
3308</pre>
3309</div>
3310
3311<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
3312   compiler, assembler, and linker are required to treat the symbol as if there
3313   is a reference to the global that it cannot see.  For example, if a variable
3314   has internal linkage and no references other than that from
3315   the <tt>@llvm.used</tt> list, it cannot be deleted.  This is commonly used to
3316   represent references from inline asms and other things the compiler cannot
3317   "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
3318
3319<p>On some targets, the code generator must emit a directive to the assembler or
3320   object file to prevent the assembler and linker from molesting the
3321   symbol.</p>
3322
3323</div>
3324
3325<!-- ======================================================================= -->
3326<h3>
3327  <a name="intg_compiler_used">
3328    The '<tt>llvm.compiler.used</tt>' Global Variable
3329  </a>
3330</h3>
3331
3332<div>
3333
3334<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
3335   <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3336   touching the symbol.  On targets that support it, this allows an intelligent
3337   linker to optimize references to the symbol without being impeded as it would
3338   be by <tt>@llvm.used</tt>.</p>
3339
3340<p>This is a rare construct that should only be used in rare circumstances, and
3341   should not be exposed to source languages.</p>
3342
3343</div>
3344
3345<!-- ======================================================================= -->
3346<h3>
3347<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
3348</h3>
3349
3350<div>
3351
3352<div class="doc_code">
3353<pre>
3354%0 = type { i32, void ()* }
3355@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3356</pre>
3357</div>
3358
3359<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3360   functions and associated priorities.  The functions referenced by this array
3361   will be called in ascending order of priority (i.e. lowest first) when the
3362   module is loaded.  The order of functions with the same priority is not
3363   defined.</p>
3364
3365</div>
3366
3367<!-- ======================================================================= -->
3368<h3>
3369<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
3370</h3>
3371
3372<div>
3373
3374<div class="doc_code">
3375<pre>
3376%0 = type { i32, void ()* }
3377@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3378</pre>
3379</div>
3380
3381<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3382   and associated priorities.  The functions referenced by this array will be
3383   called in descending order of priority (i.e. highest first) when the module
3384   is loaded.  The order of functions with the same priority is not defined.</p>
3385
3386</div>
3387
3388</div>
3389
3390<!-- *********************************************************************** -->
3391<h2><a name="instref">Instruction Reference</a></h2>
3392<!-- *********************************************************************** -->
3393
3394<div>
3395
3396<p>The LLVM instruction set consists of several different classifications of
3397   instructions: <a href="#terminators">terminator
3398   instructions</a>, <a href="#binaryops">binary instructions</a>,
3399   <a href="#bitwiseops">bitwise binary instructions</a>,
3400   <a href="#memoryops">memory instructions</a>, and
3401   <a href="#otherops">other instructions</a>.</p>
3402
3403<!-- ======================================================================= -->
3404<h3>
3405  <a name="terminators">Terminator Instructions</a>
3406</h3>
3407
3408<div>
3409
3410<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3411   in a program ends with a "Terminator" instruction, which indicates which
3412   block should be executed after the current block is finished. These
3413   terminator instructions typically yield a '<tt>void</tt>' value: they produce
3414   control flow, not values (the one exception being the
3415   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3416
3417<p>The terminator instructions are:
3418   '<a href="#i_ret"><tt>ret</tt></a>',
3419   '<a href="#i_br"><tt>br</tt></a>',
3420   '<a href="#i_switch"><tt>switch</tt></a>',
3421   '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3422   '<a href="#i_invoke"><tt>invoke</tt></a>',
3423   '<a href="#i_resume"><tt>resume</tt></a>', and
3424   '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
3425
3426<!-- _______________________________________________________________________ -->
3427<h4>
3428  <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3429</h4>
3430
3431<div>
3432
3433<h5>Syntax:</h5>
3434<pre>
3435  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
3436  ret void                 <i>; Return from void function</i>
3437</pre>
3438
3439<h5>Overview:</h5>
3440<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3441   a value) from a function back to the caller.</p>
3442
3443<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3444   value and then causes control flow, and one that just causes control flow to
3445   occur.</p>
3446
3447<h5>Arguments:</h5>
3448<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3449   return value. The type of the return value must be a
3450   '<a href="#t_firstclass">first class</a>' type.</p>
3451
3452<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3453   non-void return type and contains a '<tt>ret</tt>' instruction with no return
3454   value or a return value with a type that does not match its type, or if it
3455   has a void return type and contains a '<tt>ret</tt>' instruction with a
3456   return value.</p>
3457
3458<h5>Semantics:</h5>
3459<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3460   the calling function's context.  If the caller is a
3461   "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3462   instruction after the call.  If the caller was an
3463   "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3464   the beginning of the "normal" destination block.  If the instruction returns
3465   a value, that value shall set the call or invoke instruction's return
3466   value.</p>
3467
3468<h5>Example:</h5>
3469<pre>
3470  ret i32 5                       <i>; Return an integer value of 5</i>
3471  ret void                        <i>; Return from a void function</i>
3472  ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
3473</pre>
3474
3475</div>
3476<!-- _______________________________________________________________________ -->
3477<h4>
3478  <a name="i_br">'<tt>br</tt>' Instruction</a>
3479</h4>
3480
3481<div>
3482
3483<h5>Syntax:</h5>
3484<pre>
3485  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3486  br label &lt;dest&gt;          <i>; Unconditional branch</i>
3487</pre>
3488
3489<h5>Overview:</h5>
3490<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3491   different basic block in the current function.  There are two forms of this
3492   instruction, corresponding to a conditional branch and an unconditional
3493   branch.</p>
3494
3495<h5>Arguments:</h5>
3496<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3497   '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
3498   of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3499   target.</p>
3500
3501<h5>Semantics:</h5>
3502<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
3503   argument is evaluated.  If the value is <tt>true</tt>, control flows to the
3504   '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
3505   control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3506
3507<h5>Example:</h5>
3508<pre>
3509Test:
3510  %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3511  br i1 %cond, label %IfEqual, label %IfUnequal
3512IfEqual:
3513  <a href="#i_ret">ret</a> i32 1
3514IfUnequal:
3515  <a href="#i_ret">ret</a> i32 0
3516</pre>
3517
3518</div>
3519
3520<!-- _______________________________________________________________________ -->
3521<h4>
3522   <a name="i_switch">'<tt>switch</tt>' Instruction</a>
3523</h4>
3524
3525<div>
3526
3527<h5>Syntax:</h5>
3528<pre>
3529  switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3530</pre>
3531
3532<h5>Overview:</h5>
3533<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
3534   several different places.  It is a generalization of the '<tt>br</tt>'
3535   instruction, allowing a branch to occur to one of many possible
3536   destinations.</p>
3537
3538<h5>Arguments:</h5>
3539<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
3540   comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3541   and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3542   The table is not allowed to contain duplicate constant entries.</p>
3543
3544<h5>Semantics:</h5>
3545<p>The <tt>switch</tt> instruction specifies a table of values and
3546   destinations. When the '<tt>switch</tt>' instruction is executed, this table
3547   is searched for the given value.  If the value is found, control flow is
3548   transferred to the corresponding destination; otherwise, control flow is
3549   transferred to the default destination.</p>
3550
3551<h5>Implementation:</h5>
3552<p>Depending on properties of the target machine and the particular
3553   <tt>switch</tt> instruction, this instruction may be code generated in
3554   different ways.  For example, it could be generated as a series of chained
3555   conditional branches or with a lookup table.</p>
3556
3557<h5>Example:</h5>
3558<pre>
3559 <i>; Emulate a conditional br instruction</i>
3560 %Val = <a href="#i_zext">zext</a> i1 %value to i32
3561 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3562
3563 <i>; Emulate an unconditional br instruction</i>
3564 switch i32 0, label %dest [ ]
3565
3566 <i>; Implement a jump table:</i>
3567 switch i32 %val, label %otherwise [ i32 0, label %onzero
3568                                     i32 1, label %onone
3569                                     i32 2, label %ontwo ]
3570</pre>
3571
3572</div>
3573
3574
3575<!-- _______________________________________________________________________ -->
3576<h4>
3577   <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
3578</h4>
3579
3580<div>
3581
3582<h5>Syntax:</h5>
3583<pre>
3584  indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
3585</pre>
3586
3587<h5>Overview:</h5>
3588
3589<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
3590   within the current function, whose address is specified by
3591   "<tt>address</tt>".  Address must be derived from a <a
3592   href="#blockaddress">blockaddress</a> constant.</p>
3593
3594<h5>Arguments:</h5>
3595
3596<p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
3597   rest of the arguments indicate the full set of possible destinations that the
3598   address may point to.  Blocks are allowed to occur multiple times in the
3599   destination list, though this isn't particularly useful.</p>
3600
3601<p>This destination list is required so that dataflow analysis has an accurate
3602   understanding of the CFG.</p>
3603
3604<h5>Semantics:</h5>
3605
3606<p>Control transfers to the block specified in the address argument.  All
3607   possible destination blocks must be listed in the label list, otherwise this
3608   instruction has undefined behavior.  This implies that jumps to labels
3609   defined in other functions have undefined behavior as well.</p>
3610
3611<h5>Implementation:</h5>
3612
3613<p>This is typically implemented with a jump through a register.</p>
3614
3615<h5>Example:</h5>
3616<pre>
3617 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3618</pre>
3619
3620</div>
3621
3622
3623<!-- _______________________________________________________________________ -->
3624<h4>
3625  <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3626</h4>
3627
3628<div>
3629
3630<h5>Syntax:</h5>
3631<pre>
3632  &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
3633                to label &lt;normal label&gt; unwind label &lt;exception label&gt;
3634</pre>
3635
3636<h5>Overview:</h5>
3637<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
3638   function, with the possibility of control flow transfer to either the
3639   '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
3640   function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3641   control flow will return to the "normal" label.  If the callee (or any
3642   indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
3643   instruction or other exception handling mechanism, control is interrupted and
3644   continued at the dynamically nearest "exception" label.</p>
3645
3646<p>The '<tt>exception</tt>' label is a
3647   <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3648   exception. As such, '<tt>exception</tt>' label is required to have the
3649   "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3650   the information about the behavior of the program after unwinding
3651   happens, as its first non-PHI instruction. The restrictions on the
3652   "<tt>landingpad</tt>" instruction's tightly couples it to the
3653   "<tt>invoke</tt>" instruction, so that the important information contained
3654   within the "<tt>landingpad</tt>" instruction can't be lost through normal
3655   code motion.</p>
3656
3657<h5>Arguments:</h5>
3658<p>This instruction requires several arguments:</p>
3659
3660<ol>
3661  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3662      convention</a> the call should use.  If none is specified, the call
3663      defaults to using C calling conventions.</li>
3664
3665  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
3666      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3667      '<tt>inreg</tt>' attributes are valid here.</li>
3668
3669  <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
3670      function value being invoked.  In most cases, this is a direct function
3671      invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3672      off an arbitrary pointer to function value.</li>
3673
3674  <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
3675      function to be invoked. </li>
3676
3677  <li>'<tt>function args</tt>': argument list whose types match the function
3678      signature argument types and parameter attributes. All arguments must be
3679      of <a href="#t_firstclass">first class</a> type. If the function
3680      signature indicates the function accepts a variable number of arguments,
3681      the extra arguments can be specified.</li>
3682
3683  <li>'<tt>normal label</tt>': the label reached when the called function
3684      executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
3685
3686  <li>'<tt>exception label</tt>': the label reached when a callee returns via
3687      the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
3688      handling mechanism.</li>
3689
3690  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
3691      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3692      '<tt>readnone</tt>' attributes are valid here.</li>
3693</ol>
3694
3695<h5>Semantics:</h5>
3696<p>This instruction is designed to operate as a standard
3697   '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
3698   primary difference is that it establishes an association with a label, which
3699   is used by the runtime library to unwind the stack.</p>
3700
3701<p>This instruction is used in languages with destructors to ensure that proper
3702   cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3703   exception.  Additionally, this is important for implementation of
3704   '<tt>catch</tt>' clauses in high-level languages that support them.</p>
3705
3706<p>For the purposes of the SSA form, the definition of the value returned by the
3707   '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3708   block to the "normal" label. If the callee unwinds then no return value is
3709   available.</p>
3710
3711<h5>Example:</h5>
3712<pre>
3713  %retval = invoke i32 @Test(i32 15) to label %Continue
3714              unwind label %TestCleanup              <i>; {i32}:retval set</i>
3715  %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
3716              unwind label %TestCleanup              <i>; {i32}:retval set</i>
3717</pre>
3718
3719</div>
3720
3721 <!-- _______________________________________________________________________ -->
3722
3723<h4>
3724  <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3725</h4>
3726
3727<div>
3728
3729<h5>Syntax:</h5>
3730<pre>
3731  resume &lt;type&gt; &lt;value&gt;
3732</pre>
3733
3734<h5>Overview:</h5>
3735<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3736   successors.</p>
3737
3738<h5>Arguments:</h5>
3739<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
3740   same type as the result of any '<tt>landingpad</tt>' instruction in the same
3741   function.</p>
3742
3743<h5>Semantics:</h5>
3744<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3745   (in-flight) exception whose unwinding was interrupted with
3746   a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
3747
3748<h5>Example:</h5>
3749<pre>
3750  resume { i8*, i32 } %exn
3751</pre>
3752
3753</div>
3754
3755<!-- _______________________________________________________________________ -->
3756
3757<h4>
3758  <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3759</h4>
3760
3761<div>
3762
3763<h5>Syntax:</h5>
3764<pre>
3765  unreachable
3766</pre>
3767
3768<h5>Overview:</h5>
3769<p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
3770   instruction is used to inform the optimizer that a particular portion of the
3771   code is not reachable.  This can be used to indicate that the code after a
3772   no-return function cannot be reached, and other facts.</p>
3773
3774<h5>Semantics:</h5>
3775<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
3776
3777</div>
3778
3779</div>
3780
3781<!-- ======================================================================= -->
3782<h3>
3783  <a name="binaryops">Binary Operations</a>
3784</h3>
3785
3786<div>
3787
3788<p>Binary operators are used to do most of the computation in a program.  They
3789   require two operands of the same type, execute an operation on them, and
3790   produce a single value.  The operands might represent multiple data, as is
3791   the case with the <a href="#t_vector">vector</a> data type.  The result value
3792   has the same type as its operands.</p>
3793
3794<p>There are several different binary operators:</p>
3795
3796<!-- _______________________________________________________________________ -->
3797<h4>
3798  <a name="i_add">'<tt>add</tt>' Instruction</a>
3799</h4>
3800
3801<div>
3802
3803<h5>Syntax:</h5>
3804<pre>
3805  &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3806  &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3807  &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3808  &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3809</pre>
3810
3811<h5>Overview:</h5>
3812<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
3813
3814<h5>Arguments:</h5>
3815<p>The two arguments to the '<tt>add</tt>' instruction must
3816   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3817   integer values. Both arguments must have identical types.</p>
3818
3819<h5>Semantics:</h5>
3820<p>The value produced is the integer sum of the two operands.</p>
3821
3822<p>If the sum has unsigned overflow, the result returned is the mathematical
3823   result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
3824
3825<p>Because LLVM integers use a two's complement representation, this instruction
3826   is appropriate for both signed and unsigned integers.</p>
3827
3828<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3829   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3830   <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3831   is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
3832   respectively, occurs.</p>
3833
3834<h5>Example:</h5>
3835<pre>
3836  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
3837</pre>
3838
3839</div>
3840
3841<!-- _______________________________________________________________________ -->
3842<h4>
3843  <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3844</h4>
3845
3846<div>
3847
3848<h5>Syntax:</h5>
3849<pre>
3850  &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3851</pre>
3852
3853<h5>Overview:</h5>
3854<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3855
3856<h5>Arguments:</h5>
3857<p>The two arguments to the '<tt>fadd</tt>' instruction must be
3858   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3859   floating point values. Both arguments must have identical types.</p>
3860
3861<h5>Semantics:</h5>
3862<p>The value produced is the floating point sum of the two operands.</p>
3863
3864<h5>Example:</h5>
3865<pre>
3866  &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
3867</pre>
3868
3869</div>
3870
3871<!-- _______________________________________________________________________ -->
3872<h4>
3873   <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3874</h4>
3875
3876<div>
3877
3878<h5>Syntax:</h5>
3879<pre>
3880  &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3881  &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3882  &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3883  &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3884</pre>
3885
3886<h5>Overview:</h5>
3887<p>The '<tt>sub</tt>' instruction returns the difference of its two
3888   operands.</p>
3889
3890<p>Note that the '<tt>sub</tt>' instruction is used to represent the
3891   '<tt>neg</tt>' instruction present in most other intermediate
3892   representations.</p>
3893
3894<h5>Arguments:</h5>
3895<p>The two arguments to the '<tt>sub</tt>' instruction must
3896   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3897   integer values.  Both arguments must have identical types.</p>
3898
3899<h5>Semantics:</h5>
3900<p>The value produced is the integer difference of the two operands.</p>
3901
3902<p>If the difference has unsigned overflow, the result returned is the
3903   mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3904   result.</p>
3905
3906<p>Because LLVM integers use a two's complement representation, this instruction
3907   is appropriate for both signed and unsigned integers.</p>
3908
3909<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3910   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3911   <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3912   is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
3913   respectively, occurs.</p>
3914
3915<h5>Example:</h5>
3916<pre>
3917  &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
3918  &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
3919</pre>
3920
3921</div>
3922
3923<!-- _______________________________________________________________________ -->
3924<h4>
3925   <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3926</h4>
3927
3928<div>
3929
3930<h5>Syntax:</h5>
3931<pre>
3932  &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3933</pre>
3934
3935<h5>Overview:</h5>
3936<p>The '<tt>fsub</tt>' instruction returns the difference of its two
3937   operands.</p>
3938
3939<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
3940   '<tt>fneg</tt>' instruction present in most other intermediate
3941   representations.</p>
3942
3943<h5>Arguments:</h5>
3944<p>The two arguments to the '<tt>fsub</tt>' instruction must be
3945   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3946   floating point values.  Both arguments must have identical types.</p>
3947
3948<h5>Semantics:</h5>
3949<p>The value produced is the floating point difference of the two operands.</p>
3950
3951<h5>Example:</h5>
3952<pre>
3953  &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
3954  &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
3955</pre>
3956
3957</div>
3958
3959<!-- _______________________________________________________________________ -->
3960<h4>
3961  <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3962</h4>
3963
3964<div>
3965
3966<h5>Syntax:</h5>
3967<pre>
3968  &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3969  &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3970  &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3971  &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3972</pre>
3973
3974<h5>Overview:</h5>
3975<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
3976
3977<h5>Arguments:</h5>
3978<p>The two arguments to the '<tt>mul</tt>' instruction must
3979   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3980   integer values.  Both arguments must have identical types.</p>
3981
3982<h5>Semantics:</h5>
3983<p>The value produced is the integer product of the two operands.</p>
3984
3985<p>If the result of the multiplication has unsigned overflow, the result
3986   returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3987   width of the result.</p>
3988
3989<p>Because LLVM integers use a two's complement representation, and the result
3990   is the same width as the operands, this instruction returns the correct
3991   result for both signed and unsigned integers.  If a full product
3992   (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3993   be sign-extended or zero-extended as appropriate to the width of the full
3994   product.</p>
3995
3996<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3997   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3998   <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3999   is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
4000   respectively, occurs.</p>
4001
4002<h5>Example:</h5>
4003<pre>
4004  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
4005</pre>
4006
4007</div>
4008
4009<!-- _______________________________________________________________________ -->
4010<h4>
4011  <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
4012</h4>
4013
4014<div>
4015
4016<h5>Syntax:</h5>
4017<pre>
4018  &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4019</pre>
4020
4021<h5>Overview:</h5>
4022<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
4023
4024<h5>Arguments:</h5>
4025<p>The two arguments to the '<tt>fmul</tt>' instruction must be
4026   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4027   floating point values.  Both arguments must have identical types.</p>
4028
4029<h5>Semantics:</h5>
4030<p>The value produced is the floating point product of the two operands.</p>
4031
4032<h5>Example:</h5>
4033<pre>
4034  &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
4035</pre>
4036
4037</div>
4038
4039<!-- _______________________________________________________________________ -->
4040<h4>
4041  <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
4042</h4>
4043
4044<div>
4045
4046<h5>Syntax:</h5>
4047<pre>
4048  &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4049  &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4050</pre>
4051
4052<h5>Overview:</h5>
4053<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
4054
4055<h5>Arguments:</h5>
4056<p>The two arguments to the '<tt>udiv</tt>' instruction must be
4057   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4058   values.  Both arguments must have identical types.</p>
4059
4060<h5>Semantics:</h5>
4061<p>The value produced is the unsigned integer quotient of the two operands.</p>
4062
4063<p>Note that unsigned integer division and signed integer division are distinct
4064   operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
4065
4066<p>Division by zero leads to undefined behavior.</p>
4067
4068<p>If the <tt>exact</tt> keyword is present, the result value of the
4069   <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
4070  multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
4071
4072
4073<h5>Example:</h5>
4074<pre>
4075  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
4076</pre>
4077
4078</div>
4079
4080<!-- _______________________________________________________________________ -->
4081<h4>
4082  <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
4083</h4>
4084
4085<div>
4086
4087<h5>Syntax:</h5>
4088<pre>
4089  &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4090  &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4091</pre>
4092
4093<h5>Overview:</h5>
4094<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
4095
4096<h5>Arguments:</h5>
4097<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
4098   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4099   values.  Both arguments must have identical types.</p>
4100
4101<h5>Semantics:</h5>
4102<p>The value produced is the signed integer quotient of the two operands rounded
4103   towards zero.</p>
4104
4105<p>Note that signed integer division and unsigned integer division are distinct
4106   operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
4107
4108<p>Division by zero leads to undefined behavior. Overflow also leads to
4109   undefined behavior; this is a rare case, but can occur, for example, by doing
4110   a 32-bit division of -2147483648 by -1.</p>
4111
4112<p>If the <tt>exact</tt> keyword is present, the result value of the
4113   <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
4114   be rounded.</p>
4115
4116<h5>Example:</h5>
4117<pre>
4118  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
4119</pre>
4120
4121</div>
4122
4123<!-- _______________________________________________________________________ -->
4124<h4>
4125  <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
4126</h4>
4127
4128<div>
4129
4130<h5>Syntax:</h5>
4131<pre>
4132  &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4133</pre>
4134
4135<h5>Overview:</h5>
4136<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
4137
4138<h5>Arguments:</h5>
4139<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
4140   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4141   floating point values.  Both arguments must have identical types.</p>
4142
4143<h5>Semantics:</h5>
4144<p>The value produced is the floating point quotient of the two operands.</p>
4145
4146<h5>Example:</h5>
4147<pre>
4148  &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
4149</pre>
4150
4151</div>
4152
4153<!-- _______________________________________________________________________ -->
4154<h4>
4155  <a name="i_urem">'<tt>urem</tt>' Instruction</a>
4156</h4>
4157
4158<div>
4159
4160<h5>Syntax:</h5>
4161<pre>
4162  &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4163</pre>
4164
4165<h5>Overview:</h5>
4166<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
4167   division of its two arguments.</p>
4168
4169<h5>Arguments:</h5>
4170<p>The two arguments to the '<tt>urem</tt>' instruction must be
4171   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4172   values.  Both arguments must have identical types.</p>
4173
4174<h5>Semantics:</h5>
4175<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
4176   This instruction always performs an unsigned division to get the
4177   remainder.</p>
4178
4179<p>Note that unsigned integer remainder and signed integer remainder are
4180   distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
4181
4182<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
4183
4184<h5>Example:</h5>
4185<pre>
4186  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
4187</pre>
4188
4189</div>
4190
4191<!-- _______________________________________________________________________ -->
4192<h4>
4193  <a name="i_srem">'<tt>srem</tt>' Instruction</a>
4194</h4>
4195
4196<div>
4197
4198<h5>Syntax:</h5>
4199<pre>
4200  &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4201</pre>
4202
4203<h5>Overview:</h5>
4204<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
4205   division of its two operands. This instruction can also take
4206   <a href="#t_vector">vector</a> versions of the values in which case the
4207   elements must be integers.</p>
4208
4209<h5>Arguments:</h5>
4210<p>The two arguments to the '<tt>srem</tt>' instruction must be
4211   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4212   values.  Both arguments must have identical types.</p>
4213
4214<h5>Semantics:</h5>
4215<p>This instruction returns the <i>remainder</i> of a division (where the result
4216   is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
4217   <i>modulo</i> operator (where the result is either zero or has the same sign
4218   as the divisor, <tt>op2</tt>) of a value.
4219   For more information about the difference,
4220   see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
4221   Math Forum</a>. For a table of how this is implemented in various languages,
4222   please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
4223   Wikipedia: modulo operation</a>.</p>
4224
4225<p>Note that signed integer remainder and unsigned integer remainder are
4226   distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
4227
4228<p>Taking the remainder of a division by zero leads to undefined behavior.
4229   Overflow also leads to undefined behavior; this is a rare case, but can
4230   occur, for example, by taking the remainder of a 32-bit division of
4231   -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
4232   lets srem be implemented using instructions that return both the result of
4233   the division and the remainder.)</p>
4234
4235<h5>Example:</h5>
4236<pre>
4237  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
4238</pre>
4239
4240</div>
4241
4242<!-- _______________________________________________________________________ -->
4243<h4>
4244  <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4245</h4>
4246
4247<div>
4248
4249<h5>Syntax:</h5>
4250<pre>
4251  &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4252</pre>
4253
4254<h5>Overview:</h5>
4255<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4256   its two operands.</p>
4257
4258<h5>Arguments:</h5>
4259<p>The two arguments to the '<tt>frem</tt>' instruction must be
4260   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4261   floating point values.  Both arguments must have identical types.</p>
4262
4263<h5>Semantics:</h5>
4264<p>This instruction returns the <i>remainder</i> of a division.  The remainder
4265   has the same sign as the dividend.</p>
4266
4267<h5>Example:</h5>
4268<pre>
4269  &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
4270</pre>
4271
4272</div>
4273
4274</div>
4275
4276<!-- ======================================================================= -->
4277<h3>
4278  <a name="bitwiseops">Bitwise Binary Operations</a>
4279</h3>
4280
4281<div>
4282
4283<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4284   program.  They are generally very efficient instructions and can commonly be
4285   strength reduced from other instructions.  They require two operands of the
4286   same type, execute an operation on them, and produce a single value.  The
4287   resulting value is the same type as its operands.</p>
4288
4289<!-- _______________________________________________________________________ -->
4290<h4>
4291  <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4292</h4>
4293
4294<div>
4295
4296<h5>Syntax:</h5>
4297<pre>
4298  &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
4299  &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
4300  &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
4301  &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4302</pre>
4303
4304<h5>Overview:</h5>
4305<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4306   a specified number of bits.</p>
4307
4308<h5>Arguments:</h5>
4309<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4310    same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4311    integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
4312
4313<h5>Semantics:</h5>
4314<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4315   2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
4316   is (statically or dynamically) negative or equal to or larger than the number
4317   of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
4318   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4319   shift amount in <tt>op2</tt>.</p>
4320
4321<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
4322   <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits.  If
4323   the <tt>nsw</tt> keyword is present, then the shift produces a
4324   <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
4325   with the resultant sign bit.  As such, NUW/NSW have the same semantics as
4326   they would if the shift were expressed as a mul instruction with the same
4327   nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4328
4329<h5>Example:</h5>
4330<pre>
4331  &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
4332  &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
4333  &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
4334  &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
4335  &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
4336</pre>
4337
4338</div>
4339
4340<!-- _______________________________________________________________________ -->
4341<h4>
4342  <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4343</h4>
4344
4345<div>
4346
4347<h5>Syntax:</h5>
4348<pre>
4349  &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4350  &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4351</pre>
4352
4353<h5>Overview:</h5>
4354<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4355   operand shifted to the right a specified number of bits with zero fill.</p>
4356
4357<h5>Arguments:</h5>
4358<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
4359   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4360   type. '<tt>op2</tt>' is treated as an unsigned value.</p>
4361
4362<h5>Semantics:</h5>
4363<p>This instruction always performs a logical shift right operation. The most
4364   significant bits of the result will be filled with zero bits after the shift.
4365   If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4366   number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4367   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4368   shift amount in <tt>op2</tt>.</p>
4369
4370<p>If the <tt>exact</tt> keyword is present, the result value of the
4371   <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
4372   shifted out are non-zero.</p>
4373
4374
4375<h5>Example:</h5>
4376<pre>
4377  &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
4378  &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
4379  &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
4380  &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
4381  &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
4382  &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
4383</pre>
4384
4385</div>
4386
4387<!-- _______________________________________________________________________ -->
4388<h4>
4389  <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4390</h4>
4391
4392<div>
4393
4394<h5>Syntax:</h5>
4395<pre>
4396  &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4397  &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4398</pre>
4399
4400<h5>Overview:</h5>
4401<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4402   operand shifted to the right a specified number of bits with sign
4403   extension.</p>
4404
4405<h5>Arguments:</h5>
4406<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
4407   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4408   type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
4409
4410<h5>Semantics:</h5>
4411<p>This instruction always performs an arithmetic shift right operation, The
4412   most significant bits of the result will be filled with the sign bit
4413   of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
4414   larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4415   the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4416   the corresponding shift amount in <tt>op2</tt>.</p>
4417
4418<p>If the <tt>exact</tt> keyword is present, the result value of the
4419   <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
4420   shifted out are non-zero.</p>
4421
4422<h5>Example:</h5>
4423<pre>
4424  &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
4425  &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
4426  &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
4427  &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
4428  &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
4429  &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
4430</pre>
4431
4432</div>
4433
4434<!-- _______________________________________________________________________ -->
4435<h4>
4436  <a name="i_and">'<tt>and</tt>' Instruction</a>
4437</h4>
4438
4439<div>
4440
4441<h5>Syntax:</h5>
4442<pre>
4443  &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4444</pre>
4445
4446<h5>Overview:</h5>
4447<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4448   operands.</p>
4449
4450<h5>Arguments:</h5>
4451<p>The two arguments to the '<tt>and</tt>' instruction must be
4452   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4453   values.  Both arguments must have identical types.</p>
4454
4455<h5>Semantics:</h5>
4456<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
4457
4458<table border="1" cellspacing="0" cellpadding="4">
4459  <tbody>
4460    <tr>
4461      <th>In0</th>
4462      <th>In1</th>
4463      <th>Out</th>
4464    </tr>
4465    <tr>
4466      <td>0</td>
4467      <td>0</td>
4468      <td>0</td>
4469    </tr>
4470    <tr>
4471      <td>0</td>
4472      <td>1</td>
4473      <td>0</td>
4474    </tr>
4475    <tr>
4476      <td>1</td>
4477      <td>0</td>
4478      <td>0</td>
4479    </tr>
4480    <tr>
4481      <td>1</td>
4482      <td>1</td>
4483      <td>1</td>
4484    </tr>
4485  </tbody>
4486</table>
4487
4488<h5>Example:</h5>
4489<pre>
4490  &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
4491  &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
4492  &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
4493</pre>
4494</div>
4495<!-- _______________________________________________________________________ -->
4496<h4>
4497  <a name="i_or">'<tt>or</tt>' Instruction</a>
4498</h4>
4499
4500<div>
4501
4502<h5>Syntax:</h5>
4503<pre>
4504  &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4505</pre>
4506
4507<h5>Overview:</h5>
4508<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4509   two operands.</p>
4510
4511<h5>Arguments:</h5>
4512<p>The two arguments to the '<tt>or</tt>' instruction must be
4513   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4514   values.  Both arguments must have identical types.</p>
4515
4516<h5>Semantics:</h5>
4517<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
4518
4519<table border="1" cellspacing="0" cellpadding="4">
4520  <tbody>
4521    <tr>
4522      <th>In0</th>
4523      <th>In1</th>
4524      <th>Out</th>
4525    </tr>
4526    <tr>
4527      <td>0</td>
4528      <td>0</td>
4529      <td>0</td>
4530    </tr>
4531    <tr>
4532      <td>0</td>
4533      <td>1</td>
4534      <td>1</td>
4535    </tr>
4536    <tr>
4537      <td>1</td>
4538      <td>0</td>
4539      <td>1</td>
4540    </tr>
4541    <tr>
4542      <td>1</td>
4543      <td>1</td>
4544      <td>1</td>
4545    </tr>
4546  </tbody>
4547</table>
4548
4549<h5>Example:</h5>
4550<pre>
4551  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
4552  &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
4553  &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
4554</pre>
4555
4556</div>
4557
4558<!-- _______________________________________________________________________ -->
4559<h4>
4560  <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4561</h4>
4562
4563<div>
4564
4565<h5>Syntax:</h5>
4566<pre>
4567  &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4568</pre>
4569
4570<h5>Overview:</h5>
4571<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4572   its two operands.  The <tt>xor</tt> is used to implement the "one's
4573   complement" operation, which is the "~" operator in C.</p>
4574
4575<h5>Arguments:</h5>
4576<p>The two arguments to the '<tt>xor</tt>' instruction must be
4577   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4578   values.  Both arguments must have identical types.</p>
4579
4580<h5>Semantics:</h5>
4581<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
4582
4583<table border="1" cellspacing="0" cellpadding="4">
4584  <tbody>
4585    <tr>
4586      <th>In0</th>
4587      <th>In1</th>
4588      <th>Out</th>
4589    </tr>
4590    <tr>
4591      <td>0</td>
4592      <td>0</td>
4593      <td>0</td>
4594    </tr>
4595    <tr>
4596      <td>0</td>
4597      <td>1</td>
4598      <td>1</td>
4599    </tr>
4600    <tr>
4601      <td>1</td>
4602      <td>0</td>
4603      <td>1</td>
4604    </tr>
4605    <tr>
4606      <td>1</td>
4607      <td>1</td>
4608      <td>0</td>
4609    </tr>
4610  </tbody>
4611</table>
4612
4613<h5>Example:</h5>
4614<pre>
4615  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
4616  &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
4617  &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
4618  &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
4619</pre>
4620
4621</div>
4622
4623</div>
4624
4625<!-- ======================================================================= -->
4626<h3>
4627  <a name="vectorops">Vector Operations</a>
4628</h3>
4629
4630<div>
4631
4632<p>LLVM supports several instructions to represent vector operations in a
4633   target-independent manner.  These instructions cover the element-access and
4634   vector-specific operations needed to process vectors effectively.  While LLVM
4635   does directly support these vector operations, many sophisticated algorithms
4636   will want to use target-specific intrinsics to take full advantage of a
4637   specific target.</p>
4638
4639<!-- _______________________________________________________________________ -->
4640<h4>
4641   <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
4642</h4>
4643
4644<div>
4645
4646<h5>Syntax:</h5>
4647<pre>
4648  &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
4649</pre>
4650
4651<h5>Overview:</h5>
4652<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4653   from a vector at a specified index.</p>
4654
4655
4656<h5>Arguments:</h5>
4657<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4658   of <a href="#t_vector">vector</a> type.  The second operand is an index
4659   indicating the position from which to extract the element.  The index may be
4660   a variable.</p>
4661
4662<h5>Semantics:</h5>
4663<p>The result is a scalar of the same type as the element type of
4664   <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
4665   <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4666   results are undefined.</p>
4667
4668<h5>Example:</h5>
4669<pre>
4670  &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
4671</pre>
4672
4673</div>
4674
4675<!-- _______________________________________________________________________ -->
4676<h4>
4677   <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4678</h4>
4679
4680<div>
4681
4682<h5>Syntax:</h5>
4683<pre>
4684  &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
4685</pre>
4686
4687<h5>Overview:</h5>
4688<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4689   vector at a specified index.</p>
4690
4691<h5>Arguments:</h5>
4692<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4693   of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
4694   whose type must equal the element type of the first operand.  The third
4695   operand is an index indicating the position at which to insert the value.
4696   The index may be a variable.</p>
4697
4698<h5>Semantics:</h5>
4699<p>The result is a vector of the same type as <tt>val</tt>.  Its element values
4700   are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4701   value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4702   results are undefined.</p>
4703
4704<h5>Example:</h5>
4705<pre>
4706  &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
4707</pre>
4708
4709</div>
4710
4711<!-- _______________________________________________________________________ -->
4712<h4>
4713   <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4714</h4>
4715
4716<div>
4717
4718<h5>Syntax:</h5>
4719<pre>
4720  &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
4721</pre>
4722
4723<h5>Overview:</h5>
4724<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4725   from two input vectors, returning a vector with the same element type as the
4726   input and length that is the same as the shuffle mask.</p>
4727
4728<h5>Arguments:</h5>
4729<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4730   with types that match each other. The third argument is a shuffle mask whose
4731   element type is always 'i32'.  The result of the instruction is a vector
4732   whose length is the same as the shuffle mask and whose element type is the
4733   same as the element type of the first two operands.</p>
4734
4735<p>The shuffle mask operand is required to be a constant vector with either
4736   constant integer or undef values.</p>
4737
4738<h5>Semantics:</h5>
4739<p>The elements of the two input vectors are numbered from left to right across
4740   both of the vectors.  The shuffle mask operand specifies, for each element of
4741   the result vector, which element of the two input vectors the result element
4742   gets.  The element selector may be undef (meaning "don't care") and the
4743   second operand may be undef if performing a shuffle from only one vector.</p>
4744
4745<h5>Example:</h5>
4746<pre>
4747  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4748                          &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
4749  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
4750                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
4751  &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
4752                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
4753  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4754                          &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
4755</pre>
4756
4757</div>
4758
4759</div>
4760
4761<!-- ======================================================================= -->
4762<h3>
4763  <a name="aggregateops">Aggregate Operations</a>
4764</h3>
4765
4766<div>
4767
4768<p>LLVM supports several instructions for working with
4769  <a href="#t_aggregate">aggregate</a> values.</p>
4770
4771<!-- _______________________________________________________________________ -->
4772<h4>
4773   <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4774</h4>
4775
4776<div>
4777
4778<h5>Syntax:</h5>
4779<pre>
4780  &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4781</pre>
4782
4783<h5>Overview:</h5>
4784<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4785   from an <a href="#t_aggregate">aggregate</a> value.</p>
4786
4787<h5>Arguments:</h5>
4788<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
4789   of <a href="#t_struct">struct</a> or
4790   <a href="#t_array">array</a> type.  The operands are constant indices to
4791   specify which value to extract in a similar manner as indices in a
4792   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
4793   <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4794     <ul>
4795       <li>Since the value being indexed is not a pointer, the first index is
4796           omitted and assumed to be zero.</li>
4797       <li>At least one index must be specified.</li>
4798       <li>Not only struct indices but also array indices must be in
4799           bounds.</li>
4800     </ul>
4801
4802<h5>Semantics:</h5>
4803<p>The result is the value at the position in the aggregate specified by the
4804   index operands.</p>
4805
4806<h5>Example:</h5>
4807<pre>
4808  &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
4809</pre>
4810
4811</div>
4812
4813<!-- _______________________________________________________________________ -->
4814<h4>
4815   <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4816</h4>
4817
4818<div>
4819
4820<h5>Syntax:</h5>
4821<pre>
4822  &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}*    <i>; yields &lt;aggregate type&gt;</i>
4823</pre>
4824
4825<h5>Overview:</h5>
4826<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4827   in an <a href="#t_aggregate">aggregate</a> value.</p>
4828
4829<h5>Arguments:</h5>
4830<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
4831   of <a href="#t_struct">struct</a> or
4832   <a href="#t_array">array</a> type.  The second operand is a first-class
4833   value to insert.  The following operands are constant indices indicating
4834   the position at which to insert the value in a similar manner as indices in a
4835   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
4836   value to insert must have the same type as the value identified by the
4837   indices.</p>
4838
4839<h5>Semantics:</h5>
4840<p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
4841   that of <tt>val</tt> except that the value at the position specified by the
4842   indices is that of <tt>elt</tt>.</p>
4843
4844<h5>Example:</h5>
4845<pre>
4846  %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
4847  %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
4848  %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
4849</pre>
4850
4851</div>
4852
4853</div>
4854
4855<!-- ======================================================================= -->
4856<h3>
4857  <a name="memoryops">Memory Access and Addressing Operations</a>
4858</h3>
4859
4860<div>
4861
4862<p>A key design point of an SSA-based representation is how it represents
4863   memory.  In LLVM, no memory locations are in SSA form, which makes things
4864   very simple.  This section describes how to read, write, and allocate
4865   memory in LLVM.</p>
4866
4867<!-- _______________________________________________________________________ -->
4868<h4>
4869  <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4870</h4>
4871
4872<div>
4873
4874<h5>Syntax:</h5>
4875<pre>
4876  &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
4877</pre>
4878
4879<h5>Overview:</h5>
4880<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
4881   currently executing function, to be automatically released when this function
4882   returns to its caller. The object is always allocated in the generic address
4883   space (address space zero).</p>
4884
4885<h5>Arguments:</h5>
4886<p>The '<tt>alloca</tt>' instruction
4887   allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4888   runtime stack, returning a pointer of the appropriate type to the program.
4889   If "NumElements" is specified, it is the number of elements allocated,
4890   otherwise "NumElements" is defaulted to be one.  If a constant alignment is
4891   specified, the value result of the allocation is guaranteed to be aligned to
4892   at least that boundary.  If not specified, or if zero, the target can choose
4893   to align the allocation on any convenient boundary compatible with the
4894   type.</p>
4895
4896<p>'<tt>type</tt>' may be any sized type.</p>
4897
4898<h5>Semantics:</h5>
4899<p>Memory is allocated; a pointer is returned.  The operation is undefined if
4900   there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
4901   memory is automatically released when the function returns.  The
4902   '<tt>alloca</tt>' instruction is commonly used to represent automatic
4903   variables that must have an address available.  When the function returns
4904   (either with the <tt><a href="#i_ret">ret</a></tt>
4905   or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
4906   reclaimed.  Allocating zero bytes is legal, but the result is undefined.
4907   The order in which memory is allocated (ie., which way the stack grows) is
4908   not specified.</p>
4909
4910<p>
4911
4912<h5>Example:</h5>
4913<pre>
4914  %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
4915  %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
4916  %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
4917  %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
4918</pre>
4919
4920</div>
4921
4922<!-- _______________________________________________________________________ -->
4923<h4>
4924  <a name="i_load">'<tt>load</tt>' Instruction</a>
4925</h4>
4926
4927<div>
4928
4929<h5>Syntax:</h5>
4930<pre>
4931  &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;][, !invariant.load !&lt;index&gt;]
4932  &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
4933  !&lt;index&gt; = !{ i32 1 }
4934</pre>
4935
4936<h5>Overview:</h5>
4937<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
4938
4939<h5>Arguments:</h5>
4940<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4941   from which to load.  The pointer must point to
4942   a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
4943   marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4944   number or order of execution of this <tt>load</tt> with other <a
4945   href="#volatile">volatile operations</a>.</p>
4946
4947<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4948   <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4949   argument.  The <code>release</code> and <code>acq_rel</code> orderings are
4950   not valid on <code>load</code> instructions.  Atomic loads produce <a
4951   href="#memorymodel">defined</a> results when they may see multiple atomic
4952   stores.  The type of the pointee must be an integer type whose bit width
4953   is a power of two greater than or equal to eight and less than or equal
4954   to a target-specific size limit. <code>align</code> must be explicitly
4955   specified on atomic loads, and the load has undefined behavior if the
4956   alignment is not set to a value which is at least the size in bytes of
4957   the pointee. <code>!nontemporal</code> does not have any defined semantics
4958   for atomic loads.</p>
4959
4960<p>The optional constant <tt>align</tt> argument specifies the alignment of the
4961   operation (that is, the alignment of the memory address). A value of 0 or an
4962   omitted <tt>align</tt> argument means that the operation has the preferential
4963   alignment for the target. It is the responsibility of the code emitter to
4964   ensure that the alignment information is correct. Overestimating the
4965   alignment results in undefined behavior. Underestimating the alignment may
4966   produce less efficient code. An alignment of 1 is always safe.</p>
4967
4968<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4969   metatadata name &lt;index&gt; corresponding to a metadata node with
4970   one <tt>i32</tt> entry of value 1.  The existence of
4971   the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4972   and code generator that this load is not expected to be reused in the cache.
4973   The code generator may select special instructions to save cache bandwidth,
4974   such as the <tt>MOVNT</tt> instruction on x86.</p>
4975
4976<p>The optional <tt>!invariant.load</tt> metadata must reference a single
4977   metatadata name &lt;index&gt; corresponding to a metadata node with no
4978   entries.  The existence of the <tt>!invariant.load</tt> metatadata on the
4979   instruction tells the optimizer and code generator that this load address
4980   points to memory which does not change value during program execution.
4981   The optimizer may then move this load around, for example, by hoisting it
4982   out of loops using loop invariant code motion.</p>
4983
4984<h5>Semantics:</h5>
4985<p>The location of memory pointed to is loaded.  If the value being loaded is of
4986   scalar type then the number of bytes read does not exceed the minimum number
4987   of bytes needed to hold all bits of the type.  For example, loading an
4988   <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
4989   <tt>i20</tt> with a size that is not an integral number of bytes, the result
4990   is undefined if the value was not originally written using a store of the
4991   same type.</p>
4992
4993<h5>Examples:</h5>
4994<pre>
4995  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
4996  <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
4997  %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
4998</pre>
4999
5000</div>
5001
5002<!-- _______________________________________________________________________ -->
5003<h4>
5004  <a name="i_store">'<tt>store</tt>' Instruction</a>
5005</h4>
5006
5007<div>
5008
5009<h5>Syntax:</h5>
5010<pre>
5011  store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]        <i>; yields {void}</i>
5012  store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;  <i>; yields {void}</i>
5013</pre>
5014
5015<h5>Overview:</h5>
5016<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
5017
5018<h5>Arguments:</h5>
5019<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
5020   and an address at which to store it.  The type of the
5021   '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
5022   the <a href="#t_firstclass">first class</a> type of the
5023   '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
5024   <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
5025   order of execution of this <tt>store</tt> with other <a
5026   href="#volatile">volatile operations</a>.</p>
5027
5028<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
5029   <a href="#ordering">ordering</a> and optional <code>singlethread</code>
5030   argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
5031   valid on <code>store</code> instructions.  Atomic loads produce <a
5032   href="#memorymodel">defined</a> results when they may see multiple atomic
5033   stores. The type of the pointee must be an integer type whose bit width
5034   is a power of two greater than or equal to eight and less than or equal
5035   to a target-specific size limit. <code>align</code> must be explicitly
5036   specified on atomic stores, and the store has undefined behavior if the
5037   alignment is not set to a value which is at least the size in bytes of
5038   the pointee. <code>!nontemporal</code> does not have any defined semantics
5039   for atomic stores.</p>
5040
5041<p>The optional constant "align" argument specifies the alignment of the
5042   operation (that is, the alignment of the memory address). A value of 0 or an
5043   omitted "align" argument means that the operation has the preferential
5044   alignment for the target. It is the responsibility of the code emitter to
5045   ensure that the alignment information is correct. Overestimating the
5046   alignment results in an undefined behavior. Underestimating the alignment may
5047   produce less efficient code. An alignment of 1 is always safe.</p>
5048
5049<p>The optional !nontemporal metadata must reference a single metatadata
5050   name &lt;index&gt; corresponding to a metadata node with one i32 entry of
5051   value 1.  The existence of the !nontemporal metatadata on the
5052   instruction tells the optimizer and code generator that this load is
5053   not expected to be reused in the cache.  The code generator may
5054   select special instructions to save cache bandwidth, such as the
5055   MOVNT instruction on x86.</p>
5056
5057
5058<h5>Semantics:</h5>
5059<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
5060   location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
5061   '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
5062   does not exceed the minimum number of bytes needed to hold all bits of the
5063   type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
5064   writing a value of a type like <tt>i20</tt> with a size that is not an
5065   integral number of bytes, it is unspecified what happens to the extra bits
5066   that do not belong to the type, but they will typically be overwritten.</p>
5067
5068<h5>Example:</h5>
5069<pre>
5070  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
5071  store i32 3, i32* %ptr                          <i>; yields {void}</i>
5072  %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
5073</pre>
5074
5075</div>
5076
5077<!-- _______________________________________________________________________ -->
5078<h4>
5079<a name="i_fence">'<tt>fence</tt>' Instruction</a>
5080</h4>
5081
5082<div>
5083
5084<h5>Syntax:</h5>
5085<pre>
5086  fence [singlethread] &lt;ordering&gt;                   <i>; yields {void}</i>
5087</pre>
5088
5089<h5>Overview:</h5>
5090<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
5091between operations.</p>
5092
5093<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
5094href="#ordering">ordering</a> argument which defines what
5095<i>synchronizes-with</i> edges they add.  They can only be given
5096<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
5097<code>seq_cst</code> orderings.</p>
5098
5099<h5>Semantics:</h5>
5100<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
5101semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
5102<code>acquire</code> ordering semantics if and only if there exist atomic
5103operations <var>X</var> and <var>Y</var>, both operating on some atomic object
5104<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
5105<var>X</var> modifies <var>M</var> (either directly or through some side effect
5106of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
5107<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
5108<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
5109than an explicit <code>fence</code>, one (but not both) of the atomic operations
5110<var>X</var> or <var>Y</var> might provide a <code>release</code> or
5111<code>acquire</code> (resp.) ordering constraint and still
5112<i>synchronize-with</i> the explicit <code>fence</code> and establish the
5113<i>happens-before</i> edge.</p>
5114
5115<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
5116having both <code>acquire</code> and <code>release</code> semantics specified
5117above, participates in the global program order of other <code>seq_cst</code>
5118operations and/or fences.</p>
5119
5120<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
5121specifies that the fence only synchronizes with other fences in the same
5122thread.  (This is useful for interacting with signal handlers.)</p>
5123
5124<h5>Example:</h5>
5125<pre>
5126  fence acquire                          <i>; yields {void}</i>
5127  fence singlethread seq_cst             <i>; yields {void}</i>
5128</pre>
5129
5130</div>
5131
5132<!-- _______________________________________________________________________ -->
5133<h4>
5134<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
5135</h4>
5136
5137<div>
5138
5139<h5>Syntax:</h5>
5140<pre>
5141  cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt;  <i>; yields {ty}</i>
5142</pre>
5143
5144<h5>Overview:</h5>
5145<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
5146It loads a value in memory and compares it to a given value. If they are
5147equal, it stores a new value into the memory.</p>
5148
5149<h5>Arguments:</h5>
5150<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
5151address to operate on, a value to compare to the value currently be at that
5152address, and a new value to place at that address if the compared values are
5153equal.  The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
5154bit width is a power of two greater than or equal to eight and less than
5155or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
5156'<var>&lt;new&gt;</var>' must have the same type, and the type of
5157'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
5158<code>cmpxchg</code> is marked as <code>volatile</code>, then the
5159optimizer is not allowed to modify the number or order of execution
5160of this <code>cmpxchg</code> with other <a href="#volatile">volatile
5161operations</a>.</p>
5162
5163<!-- FIXME: Extend allowed types. -->
5164
5165<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
5166<code>cmpxchg</code> synchronizes with other atomic operations.</p>
5167
5168<p>The optional "<code>singlethread</code>" argument declares that the
5169<code>cmpxchg</code> is only atomic with respect to code (usually signal
5170handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
5171cmpxchg is atomic with respect to all other code in the system.</p>
5172
5173<p>The pointer passed into cmpxchg must have alignment greater than or equal to
5174the size in memory of the operand.
5175
5176<h5>Semantics:</h5>
5177<p>The contents of memory at the location specified by the
5178'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
5179'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
5180'<tt>&lt;new&gt;</tt>' is written.  The original value at the location
5181is returned.
5182
5183<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
5184purpose of identifying <a href="#release_sequence">release sequences</a>.  A
5185failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
5186parameter determined by dropping any <code>release</code> part of the
5187<code>cmpxchg</code>'s ordering.</p>
5188
5189<!--
5190FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
5191optimization work on ARM.)
5192
5193FIXME: Is a weaker ordering constraint on failure helpful in practice?
5194-->
5195
5196<h5>Example:</h5>
5197<pre>
5198entry:
5199  %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                   <i>; yields {i32}</i>
5200  <a href="#i_br">br</a> label %loop
5201
5202loop:
5203  %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
5204  %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
5205  %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          <i>; yields {i32}</i>
5206  %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
5207  <a href="#i_br">br</a> i1 %success, label %done, label %loop
5208
5209done:
5210  ...
5211</pre>
5212
5213</div>
5214
5215<!-- _______________________________________________________________________ -->
5216<h4>
5217<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
5218</h4>
5219
5220<div>
5221
5222<h5>Syntax:</h5>
5223<pre>
5224  atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
5225</pre>
5226
5227<h5>Overview:</h5>
5228<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
5229
5230<h5>Arguments:</h5>
5231<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
5232operation to apply, an address whose value to modify, an argument to the
5233operation.  The operation must be one of the following keywords:</p>
5234<ul>
5235  <li>xchg</li>
5236  <li>add</li>
5237  <li>sub</li>
5238  <li>and</li>
5239  <li>nand</li>
5240  <li>or</li>
5241  <li>xor</li>
5242  <li>max</li>
5243  <li>min</li>
5244  <li>umax</li>
5245  <li>umin</li>
5246</ul>
5247
5248<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
5249bit width is a power of two greater than or equal to eight and less than
5250or equal to a target-specific size limit.  The type of the
5251'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5252If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5253optimizer is not allowed to modify the number or order of execution of this
5254<code>atomicrmw</code> with other <a href="#volatile">volatile
5255  operations</a>.</p>
5256
5257<!-- FIXME: Extend allowed types. -->
5258
5259<h5>Semantics:</h5>
5260<p>The contents of memory at the location specified by the
5261'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5262back.  The original value at the location is returned.  The modification is
5263specified by the <var>operation</var> argument:</p>
5264
5265<ul>
5266  <li>xchg: <code>*ptr = val</code></li>
5267  <li>add: <code>*ptr = *ptr + val</code></li>
5268  <li>sub: <code>*ptr = *ptr - val</code></li>
5269  <li>and: <code>*ptr = *ptr &amp; val</code></li>
5270  <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5271  <li>or: <code>*ptr = *ptr | val</code></li>
5272  <li>xor: <code>*ptr = *ptr ^ val</code></li>
5273  <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5274  <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5275  <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5276  <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5277</ul>
5278
5279<h5>Example:</h5>
5280<pre>
5281  %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
5282</pre>
5283
5284</div>
5285
5286<!-- _______________________________________________________________________ -->
5287<h4>
5288   <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
5289</h4>
5290
5291<div>
5292
5293<h5>Syntax:</h5>
5294<pre>
5295  &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
5296  &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
5297  &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx
5298</pre>
5299
5300<h5>Overview:</h5>
5301<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
5302   subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5303   It performs address calculation only and does not access memory.</p>
5304
5305<h5>Arguments:</h5>
5306<p>The first argument is always a pointer or a vector of pointers,
5307   and forms the basis of the
5308   calculation. The remaining arguments are indices that indicate which of the
5309   elements of the aggregate object are indexed. The interpretation of each
5310   index is dependent on the type being indexed into. The first index always
5311   indexes the pointer value given as the first argument, the second index
5312   indexes a value of the type pointed to (not necessarily the value directly
5313   pointed to, since the first index can be non-zero), etc. The first type
5314   indexed into must be a pointer value, subsequent types can be arrays,
5315   vectors, and structs. Note that subsequent types being indexed into
5316   can never be pointers, since that would require loading the pointer before
5317   continuing calculation.</p>
5318
5319<p>The type of each index argument depends on the type it is indexing into.
5320   When indexing into a (optionally packed) structure, only <tt>i32</tt>
5321   integer <b>constants</b> are allowed.  When indexing into an array, pointer
5322   or vector, integers of any width are allowed, and they are not required to be
5323   constant.  These integers are treated as signed values where relevant.</p>
5324
5325<p>For example, let's consider a C code fragment and how it gets compiled to
5326   LLVM:</p>
5327
5328<pre class="doc_code">
5329struct RT {
5330  char A;
5331  int B[10][20];
5332  char C;
5333};
5334struct ST {
5335  int X;
5336  double Y;
5337  struct RT Z;
5338};
5339
5340int *foo(struct ST *s) {
5341  return &amp;s[1].Z.B[5][13];
5342}
5343</pre>
5344
5345<p>The LLVM code generated by Clang is:</p>
5346
5347<pre class="doc_code">
5348%struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
5349%struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
5350
5351define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5352entry:
5353  %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5354  ret i32* %arrayidx
5355}
5356</pre>
5357
5358<h5>Semantics:</h5>
5359<p>In the example above, the first index is indexing into the
5360   '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
5361   '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
5362   structure. The second index indexes into the third element of the structure,
5363   yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
5364   type, another structure. The third index indexes into the second element of
5365   the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
5366   two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
5367   type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
5368   element, thus computing a value of '<tt>i32*</tt>' type.</p>
5369
5370<p>Note that it is perfectly legal to index partially through a structure,
5371   returning a pointer to an inner element.  Because of this, the LLVM code for
5372   the given testcase is equivalent to:</p>
5373
5374<pre class="doc_code">
5375define i32* @foo(%struct.ST* %s) {
5376  %t1 = getelementptr %struct.ST* %s, i32 1                 <i>; yields %struct.ST*:%t1</i>
5377  %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         <i>; yields %struct.RT*:%t2</i>
5378  %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         <i>; yields [10 x [20 x i32]]*:%t3</i>
5379  %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
5380  %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
5381  ret i32* %t5
5382}
5383</pre>
5384
5385<p>If the <tt>inbounds</tt> keyword is present, the result value of the
5386   <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
5387   base pointer is not an <i>in bounds</i> address of an allocated object,
5388   or if any of the addresses that would be formed by successive addition of
5389   the offsets implied by the indices to the base address with infinitely
5390   precise signed arithmetic are not an <i>in bounds</i> address of that
5391   allocated object. The <i>in bounds</i> addresses for an allocated object
5392   are all the addresses that point into the object, plus the address one
5393   byte past the end.
5394   In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
5395   applies to each of the computations element-wise. </p>
5396
5397<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
5398   the base address with silently-wrapping two's complement arithmetic. If the
5399   offsets have a different width from the pointer, they are sign-extended or
5400   truncated to the width of the pointer. The result value of the
5401   <tt>getelementptr</tt> may be outside the object pointed to by the base
5402   pointer. The result value may not necessarily be used to access memory
5403   though, even if it happens to point into allocated storage. See the
5404   <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5405   information.</p>
5406
5407<p>The getelementptr instruction is often confusing.  For some more insight into
5408   how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
5409
5410<h5>Example:</h5>
5411<pre>
5412    <i>; yields [12 x i8]*:aptr</i>
5413    %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5414    <i>; yields i8*:vptr</i>
5415    %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
5416    <i>; yields i8*:eptr</i>
5417    %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5418    <i>; yields i32*:iptr</i>
5419    %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5420</pre>
5421
5422<p>In cases where the pointer argument is a vector of pointers, only a
5423   single index may be used, and the number of vector elements has to be
5424   the same.  For example: </p>
5425<pre class="doc_code">
5426 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5427</pre>
5428
5429</div>
5430
5431</div>
5432
5433<!-- ======================================================================= -->
5434<h3>
5435  <a name="convertops">Conversion Operations</a>
5436</h3>
5437
5438<div>
5439
5440<p>The instructions in this category are the conversion instructions (casting)
5441   which all take a single operand and a type. They perform various bit
5442   conversions on the operand.</p>
5443
5444<!-- _______________________________________________________________________ -->
5445<h4>
5446   <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
5447</h4>
5448
5449<div>
5450
5451<h5>Syntax:</h5>
5452<pre>
5453  &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5454</pre>
5455
5456<h5>Overview:</h5>
5457<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5458   type <tt>ty2</tt>.</p>
5459
5460<h5>Arguments:</h5>
5461<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5462   Both types must be of <a href="#t_integer">integer</a> types, or vectors
5463   of the same number of integers.
5464   The bit size of the <tt>value</tt> must be larger than
5465   the bit size of the destination type, <tt>ty2</tt>.
5466   Equal sized types are not allowed.</p>
5467
5468<h5>Semantics:</h5>
5469<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5470   in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5471   source size must be larger than the destination size, <tt>trunc</tt> cannot
5472   be a <i>no-op cast</i>.  It will always truncate bits.</p>
5473
5474<h5>Example:</h5>
5475<pre>
5476  %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
5477  %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
5478  %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
5479  %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
5480</pre>
5481
5482</div>
5483
5484<!-- _______________________________________________________________________ -->
5485<h4>
5486   <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
5487</h4>
5488
5489<div>
5490
5491<h5>Syntax:</h5>
5492<pre>
5493  &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5494</pre>
5495
5496<h5>Overview:</h5>
5497<p>The '<tt>zext</tt>' instruction zero extends its operand to type
5498   <tt>ty2</tt>.</p>
5499
5500
5501<h5>Arguments:</h5>
5502<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5503   Both types must be of <a href="#t_integer">integer</a> types, or vectors
5504   of the same number of integers.
5505   The bit size of the <tt>value</tt> must be smaller than
5506   the bit size of the destination type,
5507   <tt>ty2</tt>.</p>
5508
5509<h5>Semantics:</h5>
5510<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
5511   bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
5512
5513<p>When zero extending from i1, the result will always be either 0 or 1.</p>
5514
5515<h5>Example:</h5>
5516<pre>
5517  %X = zext i32 257 to i64              <i>; yields i64:257</i>
5518  %Y = zext i1 true to i32              <i>; yields i32:1</i>
5519  %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
5520</pre>
5521
5522</div>
5523
5524<!-- _______________________________________________________________________ -->
5525<h4>
5526   <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
5527</h4>
5528
5529<div>
5530
5531<h5>Syntax:</h5>
5532<pre>
5533  &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5534</pre>
5535
5536<h5>Overview:</h5>
5537<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5538
5539<h5>Arguments:</h5>
5540<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5541   Both types must be of <a href="#t_integer">integer</a> types, or vectors
5542   of the same number of integers.
5543   The bit size of the <tt>value</tt> must be smaller than
5544   the bit size of the destination type,
5545   <tt>ty2</tt>.</p>
5546
5547<h5>Semantics:</h5>
5548<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5549   bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5550   of the type <tt>ty2</tt>.</p>
5551
5552<p>When sign extending from i1, the extension always results in -1 or 0.</p>
5553
5554<h5>Example:</h5>
5555<pre>
5556  %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
5557  %Y = sext i1 true to i32             <i>; yields i32:-1</i>
5558  %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
5559</pre>
5560
5561</div>
5562
5563<!-- _______________________________________________________________________ -->
5564<h4>
5565   <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
5566</h4>
5567
5568<div>
5569
5570<h5>Syntax:</h5>
5571<pre>
5572  &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5573</pre>
5574
5575<h5>Overview:</h5>
5576<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
5577   <tt>ty2</tt>.</p>
5578
5579<h5>Arguments:</h5>
5580<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
5581   point</a> value to cast and a <a href="#t_floating">floating point</a> type
5582   to cast it to. The size of <tt>value</tt> must be larger than the size of
5583   <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
5584   <i>no-op cast</i>.</p>
5585
5586<h5>Semantics:</h5>
5587<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
5588   <a href="#t_floating">floating point</a> type to a smaller
5589   <a href="#t_floating">floating point</a> type.  If the value cannot fit
5590   within the destination type, <tt>ty2</tt>, then the results are
5591   undefined.</p>
5592
5593<h5>Example:</h5>
5594<pre>
5595  %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
5596  %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
5597</pre>
5598
5599</div>
5600
5601<!-- _______________________________________________________________________ -->
5602<h4>
5603   <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
5604</h4>
5605
5606<div>
5607
5608<h5>Syntax:</h5>
5609<pre>
5610  &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5611</pre>
5612
5613<h5>Overview:</h5>
5614<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
5615   floating point value.</p>
5616
5617<h5>Arguments:</h5>
5618<p>The '<tt>fpext</tt>' instruction takes a
5619   <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5620   a <a href="#t_floating">floating point</a> type to cast it to. The source
5621   type must be smaller than the destination type.</p>
5622
5623<h5>Semantics:</h5>
5624<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
5625   <a href="#t_floating">floating point</a> type to a larger
5626   <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5627   used to make a <i>no-op cast</i> because it always changes bits. Use
5628   <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
5629
5630<h5>Example:</h5>
5631<pre>
5632  %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
5633  %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
5634</pre>
5635
5636</div>
5637
5638<!-- _______________________________________________________________________ -->
5639<h4>
5640   <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
5641</h4>
5642
5643<div>
5644
5645<h5>Syntax:</h5>
5646<pre>
5647  &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5648</pre>
5649
5650<h5>Overview:</h5>
5651<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
5652   unsigned integer equivalent of type <tt>ty2</tt>.</p>
5653
5654<h5>Arguments:</h5>
5655<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5656   scalar or vector <a href="#t_floating">floating point</a> value, and a type
5657   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5658   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5659   vector integer type with the same number of elements as <tt>ty</tt></p>
5660
5661<h5>Semantics:</h5>
5662<p>The '<tt>fptoui</tt>' instruction converts its
5663   <a href="#t_floating">floating point</a> operand into the nearest (rounding
5664   towards zero) unsigned integer value. If the value cannot fit
5665   in <tt>ty2</tt>, the results are undefined.</p>
5666
5667<h5>Example:</h5>
5668<pre>
5669  %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
5670  %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
5671  %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
5672</pre>
5673
5674</div>
5675
5676<!-- _______________________________________________________________________ -->
5677<h4>
5678   <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
5679</h4>
5680
5681<div>
5682
5683<h5>Syntax:</h5>
5684<pre>
5685  &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5686</pre>
5687
5688<h5>Overview:</h5>
5689<p>The '<tt>fptosi</tt>' instruction converts
5690   <a href="#t_floating">floating point</a> <tt>value</tt> to
5691   type <tt>ty2</tt>.</p>
5692
5693<h5>Arguments:</h5>
5694<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5695   scalar or vector <a href="#t_floating">floating point</a> value, and a type
5696   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5697   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5698   vector integer type with the same number of elements as <tt>ty</tt></p>
5699
5700<h5>Semantics:</h5>
5701<p>The '<tt>fptosi</tt>' instruction converts its
5702   <a href="#t_floating">floating point</a> operand into the nearest (rounding
5703   towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5704   the results are undefined.</p>
5705
5706<h5>Example:</h5>
5707<pre>
5708  %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
5709  %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
5710  %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
5711</pre>
5712
5713</div>
5714
5715<!-- _______________________________________________________________________ -->
5716<h4>
5717   <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
5718</h4>
5719
5720<div>
5721
5722<h5>Syntax:</h5>
5723<pre>
5724  &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5725</pre>
5726
5727<h5>Overview:</h5>
5728<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
5729   integer and converts that value to the <tt>ty2</tt> type.</p>
5730
5731<h5>Arguments:</h5>
5732<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
5733   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5734   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5735   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5736   floating point type with the same number of elements as <tt>ty</tt></p>
5737
5738<h5>Semantics:</h5>
5739<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
5740   integer quantity and converts it to the corresponding floating point
5741   value. If the value cannot fit in the floating point value, the results are
5742   undefined.</p>
5743
5744<h5>Example:</h5>
5745<pre>
5746  %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
5747  %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
5748</pre>
5749
5750</div>
5751
5752<!-- _______________________________________________________________________ -->
5753<h4>
5754   <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
5755</h4>
5756
5757<div>
5758
5759<h5>Syntax:</h5>
5760<pre>
5761  &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5762</pre>
5763
5764<h5>Overview:</h5>
5765<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5766   and converts that value to the <tt>ty2</tt> type.</p>
5767
5768<h5>Arguments:</h5>
5769<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
5770   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5771   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5772   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5773   floating point type with the same number of elements as <tt>ty</tt></p>
5774
5775<h5>Semantics:</h5>
5776<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5777   quantity and converts it to the corresponding floating point value. If the
5778   value cannot fit in the floating point value, the results are undefined.</p>
5779
5780<h5>Example:</h5>
5781<pre>
5782  %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
5783  %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
5784</pre>
5785
5786</div>
5787
5788<!-- _______________________________________________________________________ -->
5789<h4>
5790   <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
5791</h4>
5792
5793<div>
5794
5795<h5>Syntax:</h5>
5796<pre>
5797  &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5798</pre>
5799
5800<h5>Overview:</h5>
5801<p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
5802   pointers <tt>value</tt> to
5803   the integer (or vector of integers) type <tt>ty2</tt>.</p>
5804
5805<h5>Arguments:</h5>
5806<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5807   must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
5808    pointers, and a type to cast it to
5809   <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
5810   of integers type.</p>
5811
5812<h5>Semantics:</h5>
5813<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
5814   <tt>ty2</tt> by interpreting the pointer value as an integer and either
5815   truncating or zero extending that value to the size of the integer type. If
5816   <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5817   <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5818   are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5819   change.</p>
5820
5821<h5>Example:</h5>
5822<pre>
5823  %X = ptrtoint i32* %P to i8                         <i>; yields truncation on 32-bit architecture</i>
5824  %Y = ptrtoint i32* %P to i64                        <i>; yields zero extension on 32-bit architecture</i>
5825  %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
5826</pre>
5827
5828</div>
5829
5830<!-- _______________________________________________________________________ -->
5831<h4>
5832   <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
5833</h4>
5834
5835<div>
5836
5837<h5>Syntax:</h5>
5838<pre>
5839  &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5840</pre>
5841
5842<h5>Overview:</h5>
5843<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5844   pointer type, <tt>ty2</tt>.</p>
5845
5846<h5>Arguments:</h5>
5847<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
5848   value to cast, and a type to cast it to, which must be a
5849   <a href="#t_pointer">pointer</a> type.</p>
5850
5851<h5>Semantics:</h5>
5852<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
5853   <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5854   the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5855   size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5856   than the size of a pointer then a zero extension is done. If they are the
5857   same size, nothing is done (<i>no-op cast</i>).</p>
5858
5859<h5>Example:</h5>
5860<pre>
5861  %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
5862  %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
5863  %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
5864  %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
5865</pre>
5866
5867</div>
5868
5869<!-- _______________________________________________________________________ -->
5870<h4>
5871   <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
5872</h4>
5873
5874<div>
5875
5876<h5>Syntax:</h5>
5877<pre>
5878  &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5879</pre>
5880
5881<h5>Overview:</h5>
5882<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5883   <tt>ty2</tt> without changing any bits.</p>
5884
5885<h5>Arguments:</h5>
5886<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5887   non-aggregate first class value, and a type to cast it to, which must also be
5888   a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5889   of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5890   identical. If the source type is a pointer, the destination type must also be
5891   a pointer.  This instruction supports bitwise conversion of vectors to
5892   integers and to vectors of other types (as long as they have the same
5893   size).</p>
5894
5895<h5>Semantics:</h5>
5896<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5897   <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5898   this conversion.  The conversion is done as if the <tt>value</tt> had been
5899   stored to memory and read back as type <tt>ty2</tt>.
5900   Pointer (or vector of pointers) types may only be converted to other pointer
5901   (or vector of pointers) types with this instruction. To convert
5902   pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5903   <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
5904
5905<h5>Example:</h5>
5906<pre>
5907  %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
5908  %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
5909  %Z = bitcast &lt;2 x int&gt; %V to i64;        <i>; yields i64: %V</i>
5910  %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
5911</pre>
5912
5913</div>
5914
5915</div>
5916
5917<!-- ======================================================================= -->
5918<h3>
5919  <a name="otherops">Other Operations</a>
5920</h3>
5921
5922<div>
5923
5924<p>The instructions in this category are the "miscellaneous" instructions, which
5925   defy better classification.</p>
5926
5927<!-- _______________________________________________________________________ -->
5928<h4>
5929  <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5930</h4>
5931
5932<div>
5933
5934<h5>Syntax:</h5>
5935<pre>
5936  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5937</pre>
5938
5939<h5>Overview:</h5>
5940<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5941   boolean values based on comparison of its two integer, integer vector,
5942   pointer, or pointer vector operands.</p>
5943
5944<h5>Arguments:</h5>
5945<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
5946   the condition code indicating the kind of comparison to perform. It is not a
5947   value, just a keyword. The possible condition code are:</p>
5948
5949<ol>
5950  <li><tt>eq</tt>: equal</li>
5951  <li><tt>ne</tt>: not equal </li>
5952  <li><tt>ugt</tt>: unsigned greater than</li>
5953  <li><tt>uge</tt>: unsigned greater or equal</li>
5954  <li><tt>ult</tt>: unsigned less than</li>
5955  <li><tt>ule</tt>: unsigned less or equal</li>
5956  <li><tt>sgt</tt>: signed greater than</li>
5957  <li><tt>sge</tt>: signed greater or equal</li>
5958  <li><tt>slt</tt>: signed less than</li>
5959  <li><tt>sle</tt>: signed less or equal</li>
5960</ol>
5961
5962<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
5963   <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5964   typed.  They must also be identical types.</p>
5965
5966<h5>Semantics:</h5>
5967<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5968   condition code given as <tt>cond</tt>. The comparison performed always yields
5969   either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
5970   result, as follows:</p>
5971
5972<ol>
5973  <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
5974      <tt>false</tt> otherwise. No sign interpretation is necessary or
5975      performed.</li>
5976
5977  <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
5978      <tt>false</tt> otherwise. No sign interpretation is necessary or
5979      performed.</li>
5980
5981  <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
5982      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5983
5984  <li><tt>uge</tt>: interprets the operands as unsigned values and yields
5985      <tt>true</tt> if <tt>op1</tt> is greater than or equal
5986      to <tt>op2</tt>.</li>
5987
5988  <li><tt>ult</tt>: interprets the operands as unsigned values and yields
5989      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5990
5991  <li><tt>ule</tt>: interprets the operands as unsigned values and yields
5992      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5993
5994  <li><tt>sgt</tt>: interprets the operands as signed values and yields
5995      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5996
5997  <li><tt>sge</tt>: interprets the operands as signed values and yields
5998      <tt>true</tt> if <tt>op1</tt> is greater than or equal
5999      to <tt>op2</tt>.</li>
6000
6001  <li><tt>slt</tt>: interprets the operands as signed values and yields
6002      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
6003
6004  <li><tt>sle</tt>: interprets the operands as signed values and yields
6005      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6006</ol>
6007
6008<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
6009   values are compared as if they were integers.</p>
6010
6011<p>If the operands are integer vectors, then they are compared element by
6012   element. The result is an <tt>i1</tt> vector with the same number of elements
6013   as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
6014
6015<h5>Example:</h5>
6016<pre>
6017  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
6018  &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
6019  &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
6020  &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
6021  &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
6022  &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
6023</pre>
6024
6025<p>Note that the code generator does not yet support vector types with
6026   the <tt>icmp</tt> instruction.</p>
6027
6028</div>
6029
6030<!-- _______________________________________________________________________ -->
6031<h4>
6032  <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
6033</h4>
6034
6035<div>
6036
6037<h5>Syntax:</h5>
6038<pre>
6039  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
6040</pre>
6041
6042<h5>Overview:</h5>
6043<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
6044   values based on comparison of its operands.</p>
6045
6046<p>If the operands are floating point scalars, then the result type is a boolean
6047(<a href="#t_integer"><tt>i1</tt></a>).</p>
6048
6049<p>If the operands are floating point vectors, then the result type is a vector
6050   of boolean with the same number of elements as the operands being
6051   compared.</p>
6052
6053<h5>Arguments:</h5>
6054<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
6055   the condition code indicating the kind of comparison to perform. It is not a
6056   value, just a keyword. The possible condition code are:</p>
6057
6058<ol>
6059  <li><tt>false</tt>: no comparison, always returns false</li>
6060  <li><tt>oeq</tt>: ordered and equal</li>
6061  <li><tt>ogt</tt>: ordered and greater than </li>
6062  <li><tt>oge</tt>: ordered and greater than or equal</li>
6063  <li><tt>olt</tt>: ordered and less than </li>
6064  <li><tt>ole</tt>: ordered and less than or equal</li>
6065  <li><tt>one</tt>: ordered and not equal</li>
6066  <li><tt>ord</tt>: ordered (no nans)</li>
6067  <li><tt>ueq</tt>: unordered or equal</li>
6068  <li><tt>ugt</tt>: unordered or greater than </li>
6069  <li><tt>uge</tt>: unordered or greater than or equal</li>
6070  <li><tt>ult</tt>: unordered or less than </li>
6071  <li><tt>ule</tt>: unordered or less than or equal</li>
6072  <li><tt>une</tt>: unordered or not equal</li>
6073  <li><tt>uno</tt>: unordered (either nans)</li>
6074  <li><tt>true</tt>: no comparison, always returns true</li>
6075</ol>
6076
6077<p><i>Ordered</i> means that neither operand is a QNAN while
6078   <i>unordered</i> means that either operand may be a QNAN.</p>
6079
6080<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
6081   a <a href="#t_floating">floating point</a> type or
6082   a <a href="#t_vector">vector</a> of floating point type.  They must have
6083   identical types.</p>
6084
6085<h5>Semantics:</h5>
6086<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
6087   according to the condition code given as <tt>cond</tt>.  If the operands are
6088   vectors, then the vectors are compared element by element.  Each comparison
6089   performed always yields an <a href="#t_integer">i1</a> result, as
6090   follows:</p>
6091
6092<ol>
6093  <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
6094
6095  <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6096      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6097
6098  <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6099      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6100
6101  <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6102      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6103
6104  <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6105      <tt>op1</tt> is less than <tt>op2</tt>.</li>
6106
6107  <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6108      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6109
6110  <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6111      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6112
6113  <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
6114
6115  <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
6116      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6117
6118  <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
6119      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6120
6121  <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
6122      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6123
6124  <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
6125      <tt>op1</tt> is less than <tt>op2</tt>.</li>
6126
6127  <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
6128      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6129
6130  <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
6131      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6132
6133  <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
6134
6135  <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
6136</ol>
6137
6138<h5>Example:</h5>
6139<pre>
6140  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
6141  &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
6142  &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
6143  &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
6144</pre>
6145
6146<p>Note that the code generator does not yet support vector types with
6147   the <tt>fcmp</tt> instruction.</p>
6148
6149</div>
6150
6151<!-- _______________________________________________________________________ -->
6152<h4>
6153  <a name="i_phi">'<tt>phi</tt>' Instruction</a>
6154</h4>
6155
6156<div>
6157
6158<h5>Syntax:</h5>
6159<pre>
6160  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
6161</pre>
6162
6163<h5>Overview:</h5>
6164<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
6165   SSA graph representing the function.</p>
6166
6167<h5>Arguments:</h5>
6168<p>The type of the incoming values is specified with the first type field. After
6169   this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
6170   one pair for each predecessor basic block of the current block.  Only values
6171   of <a href="#t_firstclass">first class</a> type may be used as the value
6172   arguments to the PHI node.  Only labels may be used as the label
6173   arguments.</p>
6174
6175<p>There must be no non-phi instructions between the start of a basic block and
6176   the PHI instructions: i.e. PHI instructions must be first in a basic
6177   block.</p>
6178
6179<p>For the purposes of the SSA form, the use of each incoming value is deemed to
6180   occur on the edge from the corresponding predecessor block to the current
6181   block (but after any definition of an '<tt>invoke</tt>' instruction's return
6182   value on the same edge).</p>
6183
6184<h5>Semantics:</h5>
6185<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
6186   specified by the pair corresponding to the predecessor basic block that
6187   executed just prior to the current block.</p>
6188
6189<h5>Example:</h5>
6190<pre>
6191Loop:       ; Infinite loop that counts from 0 on up...
6192  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6193  %nextindvar = add i32 %indvar, 1
6194  br label %Loop
6195</pre>
6196
6197</div>
6198
6199<!-- _______________________________________________________________________ -->
6200<h4>
6201   <a name="i_select">'<tt>select</tt>' Instruction</a>
6202</h4>
6203
6204<div>
6205
6206<h5>Syntax:</h5>
6207<pre>
6208  &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
6209
6210  <i>selty</i> is either i1 or {&lt;N x i1&gt;}
6211</pre>
6212
6213<h5>Overview:</h5>
6214<p>The '<tt>select</tt>' instruction is used to choose one value based on a
6215   condition, without branching.</p>
6216
6217
6218<h5>Arguments:</h5>
6219<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
6220   values indicating the condition, and two values of the
6221   same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
6222   vectors and the condition is a scalar, then entire vectors are selected, not
6223   individual elements.</p>
6224
6225<h5>Semantics:</h5>
6226<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
6227   first value argument; otherwise, it returns the second value argument.</p>
6228
6229<p>If the condition is a vector of i1, then the value arguments must be vectors
6230   of the same size, and the selection is done element by element.</p>
6231
6232<h5>Example:</h5>
6233<pre>
6234  %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
6235</pre>
6236
6237</div>
6238
6239<!-- _______________________________________________________________________ -->
6240<h4>
6241  <a name="i_call">'<tt>call</tt>' Instruction</a>
6242</h4>
6243
6244<div>
6245
6246<h5>Syntax:</h5>
6247<pre>
6248  &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
6249</pre>
6250
6251<h5>Overview:</h5>
6252<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
6253
6254<h5>Arguments:</h5>
6255<p>This instruction requires several arguments:</p>
6256
6257<ol>
6258  <li>The optional "tail" marker indicates that the callee function does not
6259      access any allocas or varargs in the caller.  Note that calls may be
6260      marked "tail" even if they do not occur before
6261      a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
6262      present, the function call is eligible for tail call optimization,
6263      but <a href="CodeGenerator.html#tailcallopt">might not in fact be
6264      optimized into a jump</a>.  The code generator may optimize calls marked
6265      "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6266      sibling call optimization</a> when the caller and callee have
6267      matching signatures, or 2) forced tail call optimization when the
6268      following extra requirements are met:
6269      <ul>
6270        <li>Caller and callee both have the calling
6271            convention <tt>fastcc</tt>.</li>
6272        <li>The call is in tail position (ret immediately follows call and ret
6273            uses value of call or is void).</li>
6274        <li>Option <tt>-tailcallopt</tt> is enabled,
6275            or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
6276        <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6277            constraints are met.</a></li>
6278      </ul>
6279  </li>
6280
6281  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6282      convention</a> the call should use.  If none is specified, the call
6283      defaults to using C calling conventions.  The calling convention of the
6284      call must match the calling convention of the target function, or else the
6285      behavior is undefined.</li>
6286
6287  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6288      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6289      '<tt>inreg</tt>' attributes are valid here.</li>
6290
6291  <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6292      type of the return value.  Functions that return no value are marked
6293      <tt><a href="#t_void">void</a></tt>.</li>
6294
6295  <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6296      being invoked.  The argument types must match the types implied by this
6297      signature.  This type can be omitted if the function is not varargs and if
6298      the function type does not return a pointer to a function.</li>
6299
6300  <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6301      be invoked. In most cases, this is a direct function invocation, but
6302      indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6303      to function value.</li>
6304
6305  <li>'<tt>function args</tt>': argument list whose types match the function
6306      signature argument types and parameter attributes. All arguments must be
6307      of <a href="#t_firstclass">first class</a> type. If the function
6308      signature indicates the function accepts a variable number of arguments,
6309      the extra arguments can be specified.</li>
6310
6311  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6312      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6313      '<tt>readnone</tt>' attributes are valid here.</li>
6314</ol>
6315
6316<h5>Semantics:</h5>
6317<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6318   a specified function, with its incoming arguments bound to the specified
6319   values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6320   function, control flow continues with the instruction after the function
6321   call, and the return value of the function is bound to the result
6322   argument.</p>
6323
6324<h5>Example:</h5>
6325<pre>
6326  %retval = call i32 @test(i32 %argc)
6327  call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
6328  %X = tail call i32 @foo()                                    <i>; yields i32</i>
6329  %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
6330  call void %foo(i8 97 signext)
6331
6332  %struct.A = type { i32, i8 }
6333  %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
6334  %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
6335  %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
6336  %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
6337  %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
6338</pre>
6339
6340<p>llvm treats calls to some functions with names and arguments that match the
6341standard C99 library as being the C99 library functions, and may perform
6342optimizations or generate code for them under that assumption.  This is
6343something we'd like to change in the future to provide better support for
6344freestanding environments and non-C-based languages.</p>
6345
6346</div>
6347
6348<!-- _______________________________________________________________________ -->
6349<h4>
6350  <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
6351</h4>
6352
6353<div>
6354
6355<h5>Syntax:</h5>
6356<pre>
6357  &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
6358</pre>
6359
6360<h5>Overview:</h5>
6361<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
6362   the "variable argument" area of a function call.  It is used to implement the
6363   <tt>va_arg</tt> macro in C.</p>
6364
6365<h5>Arguments:</h5>
6366<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6367   argument. It returns a value of the specified argument type and increments
6368   the <tt>va_list</tt> to point to the next argument.  The actual type
6369   of <tt>va_list</tt> is target specific.</p>
6370
6371<h5>Semantics:</h5>
6372<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6373   from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6374   to the next argument.  For more information, see the variable argument
6375   handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
6376
6377<p>It is legal for this instruction to be called in a function which does not
6378   take a variable number of arguments, for example, the <tt>vfprintf</tt>
6379   function.</p>
6380
6381<p><tt>va_arg</tt> is an LLVM instruction instead of
6382   an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6383   argument.</p>
6384
6385<h5>Example:</h5>
6386<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6387
6388<p>Note that the code generator does not yet fully support va_arg on many
6389   targets. Also, it does not currently support va_arg with aggregate types on
6390   any target.</p>
6391
6392</div>
6393
6394<!-- _______________________________________________________________________ -->
6395<h4>
6396  <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6397</h4>
6398
6399<div>
6400
6401<h5>Syntax:</h5>
6402<pre>
6403  &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6404  &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6405
6406  &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
6407  &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
6408</pre>
6409
6410<h5>Overview:</h5>
6411<p>The '<tt>landingpad</tt>' instruction is used by
6412   <a href="ExceptionHandling.html#overview">LLVM's exception handling
6413   system</a> to specify that a basic block is a landing pad &mdash; one where
6414   the exception lands, and corresponds to the code found in the
6415   <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6416   defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6417   re-entry to the function. The <tt>resultval</tt> has the
6418   type <tt>resultty</tt>.</p>
6419
6420<h5>Arguments:</h5>
6421<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6422   function associated with the unwinding mechanism. The optional
6423   <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6424
6425<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
6426   or <tt>filter</tt> &mdash; and contains the global variable representing the
6427   "type" that may be caught or filtered respectively. Unlike the
6428   <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6429   its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6430   throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
6431   one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6432
6433<h5>Semantics:</h5>
6434<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6435   personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6436   therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6437   calling conventions, how the personality function results are represented in
6438   LLVM IR is target specific.</p>
6439
6440<p>The clauses are applied in order from top to bottom. If two
6441   <tt>landingpad</tt> instructions are merged together through inlining, the
6442   clauses from the calling function are appended to the list of clauses.
6443   When the call stack is being unwound due to an exception being thrown, the
6444   exception is compared against each <tt>clause</tt> in turn.  If it doesn't
6445   match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
6446   unwinding continues further up the call stack.</p>
6447
6448<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6449
6450<ul>
6451  <li>A landing pad block is a basic block which is the unwind destination of an
6452      '<tt>invoke</tt>' instruction.</li>
6453  <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6454      first non-PHI instruction.</li>
6455  <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6456      pad block.</li>
6457  <li>A basic block that is not a landing pad block may not include a
6458      '<tt>landingpad</tt>' instruction.</li>
6459  <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6460      personality function.</li>
6461</ul>
6462
6463<h5>Example:</h5>
6464<pre>
6465  ;; A landing pad which can catch an integer.
6466  %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6467           catch i8** @_ZTIi
6468  ;; A landing pad that is a cleanup.
6469  %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6470           cleanup
6471  ;; A landing pad which can catch an integer and can only throw a double.
6472  %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6473           catch i8** @_ZTIi
6474           filter [1 x i8**] [@_ZTId]
6475</pre>
6476
6477</div>
6478
6479</div>
6480
6481</div>
6482
6483<!-- *********************************************************************** -->
6484<h2><a name="intrinsics">Intrinsic Functions</a></h2>
6485<!-- *********************************************************************** -->
6486
6487<div>
6488
6489<p>LLVM supports the notion of an "intrinsic function".  These functions have
6490   well known names and semantics and are required to follow certain
6491   restrictions.  Overall, these intrinsics represent an extension mechanism for
6492   the LLVM language that does not require changing all of the transformations
6493   in LLVM when adding to the language (or the bitcode reader/writer, the
6494   parser, etc...).</p>
6495
6496<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
6497   prefix is reserved in LLVM for intrinsic names; thus, function names may not
6498   begin with this prefix.  Intrinsic functions must always be external
6499   functions: you cannot define the body of intrinsic functions.  Intrinsic
6500   functions may only be used in call or invoke instructions: it is illegal to
6501   take the address of an intrinsic function.  Additionally, because intrinsic
6502   functions are part of the LLVM language, it is required if any are added that
6503   they be documented here.</p>
6504
6505<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6506   family of functions that perform the same operation but on different data
6507   types. Because LLVM can represent over 8 million different integer types,
6508   overloading is used commonly to allow an intrinsic function to operate on any
6509   integer type. One or more of the argument types or the result type can be
6510   overloaded to accept any integer type. Argument types may also be defined as
6511   exactly matching a previous argument's type or the result type. This allows
6512   an intrinsic function which accepts multiple arguments, but needs all of them
6513   to be of the same type, to only be overloaded with respect to a single
6514   argument or the result.</p>
6515
6516<p>Overloaded intrinsics will have the names of its overloaded argument types
6517   encoded into its function name, each preceded by a period. Only those types
6518   which are overloaded result in a name suffix. Arguments whose type is matched
6519   against another type do not. For example, the <tt>llvm.ctpop</tt> function
6520   can take an integer of any width and returns an integer of exactly the same
6521   integer width. This leads to a family of functions such as
6522   <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6523   %val)</tt>.  Only one type, the return type, is overloaded, and only one type
6524   suffix is required. Because the argument's type is matched against the return
6525   type, it does not require its own name suffix.</p>
6526
6527<p>To learn how to add an intrinsic function, please see the
6528   <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
6529
6530<!-- ======================================================================= -->
6531<h3>
6532  <a name="int_varargs">Variable Argument Handling Intrinsics</a>
6533</h3>
6534
6535<div>
6536
6537<p>Variable argument support is defined in LLVM with
6538   the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6539   intrinsic functions.  These functions are related to the similarly named
6540   macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
6541
6542<p>All of these functions operate on arguments that use a target-specific value
6543   type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
6544   not define what this type is, so all transformations should be prepared to
6545   handle these functions regardless of the type used.</p>
6546
6547<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
6548   instruction and the variable argument handling intrinsic functions are
6549   used.</p>
6550
6551<pre class="doc_code">
6552define i32 @test(i32 %X, ...) {
6553  ; Initialize variable argument processing
6554  %ap = alloca i8*
6555  %ap2 = bitcast i8** %ap to i8*
6556  call void @llvm.va_start(i8* %ap2)
6557
6558  ; Read a single integer argument
6559  %tmp = va_arg i8** %ap, i32
6560
6561  ; Demonstrate usage of llvm.va_copy and llvm.va_end
6562  %aq = alloca i8*
6563  %aq2 = bitcast i8** %aq to i8*
6564  call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6565  call void @llvm.va_end(i8* %aq2)
6566
6567  ; Stop processing of arguments.
6568  call void @llvm.va_end(i8* %ap2)
6569  ret i32 %tmp
6570}
6571
6572declare void @llvm.va_start(i8*)
6573declare void @llvm.va_copy(i8*, i8*)
6574declare void @llvm.va_end(i8*)
6575</pre>
6576
6577<!-- _______________________________________________________________________ -->
6578<h4>
6579  <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
6580</h4>
6581
6582
6583<div>
6584
6585<h5>Syntax:</h5>
6586<pre>
6587  declare void %llvm.va_start(i8* &lt;arglist&gt;)
6588</pre>
6589
6590<h5>Overview:</h5>
6591<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6592   for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
6593
6594<h5>Arguments:</h5>
6595<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
6596
6597<h5>Semantics:</h5>
6598<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
6599   macro available in C.  In a target-dependent way, it initializes
6600   the <tt>va_list</tt> element to which the argument points, so that the next
6601   call to <tt>va_arg</tt> will produce the first variable argument passed to
6602   the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6603   need to know the last argument of the function as the compiler can figure
6604   that out.</p>
6605
6606</div>
6607
6608<!-- _______________________________________________________________________ -->
6609<h4>
6610 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
6611</h4>
6612
6613<div>
6614
6615<h5>Syntax:</h5>
6616<pre>
6617  declare void @llvm.va_end(i8* &lt;arglist&gt;)
6618</pre>
6619
6620<h5>Overview:</h5>
6621<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
6622   which has been initialized previously
6623   with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6624   or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
6625
6626<h5>Arguments:</h5>
6627<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
6628
6629<h5>Semantics:</h5>
6630<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
6631   macro available in C.  In a target-dependent way, it destroys
6632   the <tt>va_list</tt> element to which the argument points.  Calls
6633   to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6634   and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6635   with calls to <tt>llvm.va_end</tt>.</p>
6636
6637</div>
6638
6639<!-- _______________________________________________________________________ -->
6640<h4>
6641  <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
6642</h4>
6643
6644<div>
6645
6646<h5>Syntax:</h5>
6647<pre>
6648  declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
6649</pre>
6650
6651<h5>Overview:</h5>
6652<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
6653   from the source argument list to the destination argument list.</p>
6654
6655<h5>Arguments:</h5>
6656<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
6657   The second argument is a pointer to a <tt>va_list</tt> element to copy
6658   from.</p>
6659
6660<h5>Semantics:</h5>
6661<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
6662   macro available in C.  In a target-dependent way, it copies the
6663   source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6664   element.  This intrinsic is necessary because
6665   the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6666   arbitrarily complex and require, for example, memory allocation.</p>
6667
6668</div>
6669
6670</div>
6671
6672<!-- ======================================================================= -->
6673<h3>
6674  <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
6675</h3>
6676
6677<div>
6678
6679<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
6680Collection</a> (GC) requires the implementation and generation of these
6681intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6682roots on the stack</a>, as well as garbage collector implementations that
6683require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6684barriers.  Front-ends for type-safe garbage collected languages should generate
6685these intrinsics to make use of the LLVM garbage collectors.  For more details,
6686see <a href="GarbageCollection.html">Accurate Garbage Collection with
6687LLVM</a>.</p>
6688
6689<p>The garbage collection intrinsics only operate on objects in the generic
6690   address space (address space zero).</p>
6691
6692<!-- _______________________________________________________________________ -->
6693<h4>
6694  <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
6695</h4>
6696
6697<div>
6698
6699<h5>Syntax:</h5>
6700<pre>
6701  declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6702</pre>
6703
6704<h5>Overview:</h5>
6705<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
6706   the code generator, and allows some metadata to be associated with it.</p>
6707
6708<h5>Arguments:</h5>
6709<p>The first argument specifies the address of a stack object that contains the
6710   root pointer.  The second pointer (which must be either a constant or a
6711   global value address) contains the meta-data to be associated with the
6712   root.</p>
6713
6714<h5>Semantics:</h5>
6715<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
6716   location.  At compile-time, the code generator generates information to allow
6717   the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6718   intrinsic may only be used in a function which <a href="#gc">specifies a GC
6719   algorithm</a>.</p>
6720
6721</div>
6722
6723<!-- _______________________________________________________________________ -->
6724<h4>
6725  <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
6726</h4>
6727
6728<div>
6729
6730<h5>Syntax:</h5>
6731<pre>
6732  declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6733</pre>
6734
6735<h5>Overview:</h5>
6736<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
6737   locations, allowing garbage collector implementations that require read
6738   barriers.</p>
6739
6740<h5>Arguments:</h5>
6741<p>The second argument is the address to read from, which should be an address
6742   allocated from the garbage collector.  The first object is a pointer to the
6743   start of the referenced object, if needed by the language runtime (otherwise
6744   null).</p>
6745
6746<h5>Semantics:</h5>
6747<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
6748   instruction, but may be replaced with substantially more complex code by the
6749   garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6750   may only be used in a function which <a href="#gc">specifies a GC
6751   algorithm</a>.</p>
6752
6753</div>
6754
6755<!-- _______________________________________________________________________ -->
6756<h4>
6757  <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
6758</h4>
6759
6760<div>
6761
6762<h5>Syntax:</h5>
6763<pre>
6764  declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6765</pre>
6766
6767<h5>Overview:</h5>
6768<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
6769   locations, allowing garbage collector implementations that require write
6770   barriers (such as generational or reference counting collectors).</p>
6771
6772<h5>Arguments:</h5>
6773<p>The first argument is the reference to store, the second is the start of the
6774   object to store it to, and the third is the address of the field of Obj to
6775   store to.  If the runtime does not require a pointer to the object, Obj may
6776   be null.</p>
6777
6778<h5>Semantics:</h5>
6779<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
6780   instruction, but may be replaced with substantially more complex code by the
6781   garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6782   may only be used in a function which <a href="#gc">specifies a GC
6783   algorithm</a>.</p>
6784
6785</div>
6786
6787</div>
6788
6789<!-- ======================================================================= -->
6790<h3>
6791  <a name="int_codegen">Code Generator Intrinsics</a>
6792</h3>
6793
6794<div>
6795
6796<p>These intrinsics are provided by LLVM to expose special features that may
6797   only be implemented with code generator support.</p>
6798
6799<!-- _______________________________________________________________________ -->
6800<h4>
6801  <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
6802</h4>
6803
6804<div>
6805
6806<h5>Syntax:</h5>
6807<pre>
6808  declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
6809</pre>
6810
6811<h5>Overview:</h5>
6812<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6813   target-specific value indicating the return address of the current function
6814   or one of its callers.</p>
6815
6816<h5>Arguments:</h5>
6817<p>The argument to this intrinsic indicates which function to return the address
6818   for.  Zero indicates the calling function, one indicates its caller, etc.
6819   The argument is <b>required</b> to be a constant integer value.</p>
6820
6821<h5>Semantics:</h5>
6822<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6823   indicating the return address of the specified call frame, or zero if it
6824   cannot be identified.  The value returned by this intrinsic is likely to be
6825   incorrect or 0 for arguments other than zero, so it should only be used for
6826   debugging purposes.</p>
6827
6828<p>Note that calling this intrinsic does not prevent function inlining or other
6829   aggressive transformations, so the value returned may not be that of the
6830   obvious source-language caller.</p>
6831
6832</div>
6833
6834<!-- _______________________________________________________________________ -->
6835<h4>
6836  <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
6837</h4>
6838
6839<div>
6840
6841<h5>Syntax:</h5>
6842<pre>
6843  declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
6844</pre>
6845
6846<h5>Overview:</h5>
6847<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6848   target-specific frame pointer value for the specified stack frame.</p>
6849
6850<h5>Arguments:</h5>
6851<p>The argument to this intrinsic indicates which function to return the frame
6852   pointer for.  Zero indicates the calling function, one indicates its caller,
6853   etc.  The argument is <b>required</b> to be a constant integer value.</p>
6854
6855<h5>Semantics:</h5>
6856<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6857   indicating the frame address of the specified call frame, or zero if it
6858   cannot be identified.  The value returned by this intrinsic is likely to be
6859   incorrect or 0 for arguments other than zero, so it should only be used for
6860   debugging purposes.</p>
6861
6862<p>Note that calling this intrinsic does not prevent function inlining or other
6863   aggressive transformations, so the value returned may not be that of the
6864   obvious source-language caller.</p>
6865
6866</div>
6867
6868<!-- _______________________________________________________________________ -->
6869<h4>
6870  <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
6871</h4>
6872
6873<div>
6874
6875<h5>Syntax:</h5>
6876<pre>
6877  declare i8* @llvm.stacksave()
6878</pre>
6879
6880<h5>Overview:</h5>
6881<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6882   of the function stack, for use
6883   with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
6884   useful for implementing language features like scoped automatic variable
6885   sized arrays in C99.</p>
6886
6887<h5>Semantics:</h5>
6888<p>This intrinsic returns a opaque pointer value that can be passed
6889   to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
6890   an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6891   from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6892   to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6893   In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6894   stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
6895
6896</div>
6897
6898<!-- _______________________________________________________________________ -->
6899<h4>
6900  <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
6901</h4>
6902
6903<div>
6904
6905<h5>Syntax:</h5>
6906<pre>
6907  declare void @llvm.stackrestore(i8* %ptr)
6908</pre>
6909
6910<h5>Overview:</h5>
6911<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6912   the function stack to the state it was in when the
6913   corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6914   executed.  This is useful for implementing language features like scoped
6915   automatic variable sized arrays in C99.</p>
6916
6917<h5>Semantics:</h5>
6918<p>See the description
6919   for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
6920
6921</div>
6922
6923<!-- _______________________________________________________________________ -->
6924<h4>
6925  <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
6926</h4>
6927
6928<div>
6929
6930<h5>Syntax:</h5>
6931<pre>
6932  declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
6933</pre>
6934
6935<h5>Overview:</h5>
6936<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6937   insert a prefetch instruction if supported; otherwise, it is a noop.
6938   Prefetches have no effect on the behavior of the program but can change its
6939   performance characteristics.</p>
6940
6941<h5>Arguments:</h5>
6942<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6943   specifier determining if the fetch should be for a read (0) or write (1),
6944   and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
6945   locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6946   specifies whether the prefetch is performed on the data (1) or instruction (0)
6947   cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6948   must be constant integers.</p>
6949
6950<h5>Semantics:</h5>
6951<p>This intrinsic does not modify the behavior of the program.  In particular,
6952   prefetches cannot trap and do not produce a value.  On targets that support
6953   this intrinsic, the prefetch can provide hints to the processor cache for
6954   better performance.</p>
6955
6956</div>
6957
6958<!-- _______________________________________________________________________ -->
6959<h4>
6960  <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
6961</h4>
6962
6963<div>
6964
6965<h5>Syntax:</h5>
6966<pre>
6967  declare void @llvm.pcmarker(i32 &lt;id&gt;)
6968</pre>
6969
6970<h5>Overview:</h5>
6971<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6972   Counter (PC) in a region of code to simulators and other tools.  The method
6973   is target specific, but it is expected that the marker will use exported
6974   symbols to transmit the PC of the marker.  The marker makes no guarantees
6975   that it will remain with any specific instruction after optimizations.  It is
6976   possible that the presence of a marker will inhibit optimizations.  The
6977   intended use is to be inserted after optimizations to allow correlations of
6978   simulation runs.</p>
6979
6980<h5>Arguments:</h5>
6981<p><tt>id</tt> is a numerical id identifying the marker.</p>
6982
6983<h5>Semantics:</h5>
6984<p>This intrinsic does not modify the behavior of the program.  Backends that do
6985   not support this intrinsic may ignore it.</p>
6986
6987</div>
6988
6989<!-- _______________________________________________________________________ -->
6990<h4>
6991  <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
6992</h4>
6993
6994<div>
6995
6996<h5>Syntax:</h5>
6997<pre>
6998  declare i64 @llvm.readcyclecounter()
6999</pre>
7000
7001<h5>Overview:</h5>
7002<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
7003   counter register (or similar low latency, high accuracy clocks) on those
7004   targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
7005   should map to RPCC.  As the backing counters overflow quickly (on the order
7006   of 9 seconds on alpha), this should only be used for small timings.</p>
7007
7008<h5>Semantics:</h5>
7009<p>When directly supported, reading the cycle counter should not modify any
7010   memory.  Implementations are allowed to either return a application specific
7011   value or a system wide value.  On backends without support, this is lowered
7012   to a constant 0.</p>
7013
7014</div>
7015
7016</div>
7017
7018<!-- ======================================================================= -->
7019<h3>
7020  <a name="int_libc">Standard C Library Intrinsics</a>
7021</h3>
7022
7023<div>
7024
7025<p>LLVM provides intrinsics for a few important standard C library functions.
7026   These intrinsics allow source-language front-ends to pass information about
7027   the alignment of the pointer arguments to the code generator, providing
7028   opportunity for more efficient code generation.</p>
7029
7030<!-- _______________________________________________________________________ -->
7031<h4>
7032  <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
7033</h4>
7034
7035<div>
7036
7037<h5>Syntax:</h5>
7038<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
7039   integer bit width and for different address spaces. Not all targets support
7040   all bit widths however.</p>
7041
7042<pre>
7043  declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7044                                          i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7045  declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7046                                          i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7047</pre>
7048
7049<h5>Overview:</h5>
7050<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7051   source location to the destination location.</p>
7052
7053<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
7054   intrinsics do not return a value, takes extra alignment/isvolatile arguments
7055   and the pointers can be in specified address spaces.</p>
7056
7057<h5>Arguments:</h5>
7058
7059<p>The first argument is a pointer to the destination, the second is a pointer
7060   to the source.  The third argument is an integer argument specifying the
7061   number of bytes to copy, the fourth argument is the alignment of the
7062   source and destination locations, and the fifth is a boolean indicating a
7063   volatile access.</p>
7064
7065<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
7066   then the caller guarantees that both the source and destination pointers are
7067   aligned to that boundary.</p>
7068
7069<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7070   <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
7071   The detailed access behavior is not very cleanly specified and it is unwise
7072   to depend on it.</p>
7073
7074<h5>Semantics:</h5>
7075
7076<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7077   source location to the destination location, which are not allowed to
7078   overlap.  It copies "len" bytes of memory over.  If the argument is known to
7079   be aligned to some boundary, this can be specified as the fourth argument,
7080   otherwise it should be set to 0 or 1.</p>
7081
7082</div>
7083
7084<!-- _______________________________________________________________________ -->
7085<h4>
7086  <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
7087</h4>
7088
7089<div>
7090
7091<h5>Syntax:</h5>
7092<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
7093   width and for different address space. Not all targets support all bit
7094   widths however.</p>
7095
7096<pre>
7097  declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7098                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7099  declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7100                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7101</pre>
7102
7103<h5>Overview:</h5>
7104<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
7105   source location to the destination location. It is similar to the
7106   '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
7107   overlap.</p>
7108
7109<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
7110   intrinsics do not return a value, takes extra alignment/isvolatile arguments
7111   and the pointers can be in specified address spaces.</p>
7112
7113<h5>Arguments:</h5>
7114
7115<p>The first argument is a pointer to the destination, the second is a pointer
7116   to the source.  The third argument is an integer argument specifying the
7117   number of bytes to copy, the fourth argument is the alignment of the
7118   source and destination locations, and the fifth is a boolean indicating a
7119   volatile access.</p>
7120
7121<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
7122   then the caller guarantees that the source and destination pointers are
7123   aligned to that boundary.</p>
7124
7125<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7126   <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
7127   The detailed access behavior is not very cleanly specified and it is unwise
7128   to depend on it.</p>
7129
7130<h5>Semantics:</h5>
7131
7132<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
7133   source location to the destination location, which may overlap.  It copies
7134   "len" bytes of memory over.  If the argument is known to be aligned to some
7135   boundary, this can be specified as the fourth argument, otherwise it should
7136   be set to 0 or 1.</p>
7137
7138</div>
7139
7140<!-- _______________________________________________________________________ -->
7141<h4>
7142  <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
7143</h4>
7144
7145<div>
7146
7147<h5>Syntax:</h5>
7148<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
7149   width and for different address spaces. However, not all targets support all
7150   bit widths.</p>
7151
7152<pre>
7153  declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
7154                                     i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7155  declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
7156                                     i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7157</pre>
7158
7159<h5>Overview:</h5>
7160<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
7161   particular byte value.</p>
7162
7163<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
7164   intrinsic does not return a value and takes extra alignment/volatile
7165   arguments.  Also, the destination can be in an arbitrary address space.</p>
7166
7167<h5>Arguments:</h5>
7168<p>The first argument is a pointer to the destination to fill, the second is the
7169   byte value with which to fill it, the third argument is an integer argument
7170   specifying the number of bytes to fill, and the fourth argument is the known
7171   alignment of the destination location.</p>
7172
7173<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
7174   then the caller guarantees that the destination pointer is aligned to that
7175   boundary.</p>
7176
7177<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7178   <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
7179   The detailed access behavior is not very cleanly specified and it is unwise
7180   to depend on it.</p>
7181
7182<h5>Semantics:</h5>
7183<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
7184   at the destination location.  If the argument is known to be aligned to some
7185   boundary, this can be specified as the fourth argument, otherwise it should
7186   be set to 0 or 1.</p>
7187
7188</div>
7189
7190<!-- _______________________________________________________________________ -->
7191<h4>
7192  <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
7193</h4>
7194
7195<div>
7196
7197<h5>Syntax:</h5>
7198<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
7199   floating point or vector of floating point type. Not all targets support all
7200   types however.</p>
7201
7202<pre>
7203  declare float     @llvm.sqrt.f32(float %Val)
7204  declare double    @llvm.sqrt.f64(double %Val)
7205  declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
7206  declare fp128     @llvm.sqrt.f128(fp128 %Val)
7207  declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7208</pre>
7209
7210<h5>Overview:</h5>
7211<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
7212   returning the same value as the libm '<tt>sqrt</tt>' functions would.
7213   Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
7214   behavior for negative numbers other than -0.0 (which allows for better
7215   optimization, because there is no need to worry about errno being
7216   set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
7217
7218<h5>Arguments:</h5>
7219<p>The argument and return value are floating point numbers of the same
7220   type.</p>
7221
7222<h5>Semantics:</h5>
7223<p>This function returns the sqrt of the specified operand if it is a
7224   nonnegative floating point number.</p>
7225
7226</div>
7227
7228<!-- _______________________________________________________________________ -->
7229<h4>
7230  <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
7231</h4>
7232
7233<div>
7234
7235<h5>Syntax:</h5>
7236<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
7237   floating point or vector of floating point type. Not all targets support all
7238   types however.</p>
7239
7240<pre>
7241  declare float     @llvm.powi.f32(float  %Val, i32 %power)
7242  declare double    @llvm.powi.f64(double %Val, i32 %power)
7243  declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
7244  declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
7245  declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
7246</pre>
7247
7248<h5>Overview:</h5>
7249<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
7250   specified (positive or negative) power.  The order of evaluation of
7251   multiplications is not defined.  When a vector of floating point type is
7252   used, the second argument remains a scalar integer value.</p>
7253
7254<h5>Arguments:</h5>
7255<p>The second argument is an integer power, and the first is a value to raise to
7256   that power.</p>
7257
7258<h5>Semantics:</h5>
7259<p>This function returns the first value raised to the second power with an
7260   unspecified sequence of rounding operations.</p>
7261
7262</div>
7263
7264<!-- _______________________________________________________________________ -->
7265<h4>
7266  <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
7267</h4>
7268
7269<div>
7270
7271<h5>Syntax:</h5>
7272<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7273   floating point or vector of floating point type. Not all targets support all
7274   types however.</p>
7275
7276<pre>
7277  declare float     @llvm.sin.f32(float  %Val)
7278  declare double    @llvm.sin.f64(double %Val)
7279  declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
7280  declare fp128     @llvm.sin.f128(fp128 %Val)
7281  declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
7282</pre>
7283
7284<h5>Overview:</h5>
7285<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
7286
7287<h5>Arguments:</h5>
7288<p>The argument and return value are floating point numbers of the same
7289   type.</p>
7290
7291<h5>Semantics:</h5>
7292<p>This function returns the sine of the specified operand, returning the same
7293   values as the libm <tt>sin</tt> functions would, and handles error conditions
7294   in the same way.</p>
7295
7296</div>
7297
7298<!-- _______________________________________________________________________ -->
7299<h4>
7300  <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
7301</h4>
7302
7303<div>
7304
7305<h5>Syntax:</h5>
7306<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7307   floating point or vector of floating point type. Not all targets support all
7308   types however.</p>
7309
7310<pre>
7311  declare float     @llvm.cos.f32(float  %Val)
7312  declare double    @llvm.cos.f64(double %Val)
7313  declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
7314  declare fp128     @llvm.cos.f128(fp128 %Val)
7315  declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
7316</pre>
7317
7318<h5>Overview:</h5>
7319<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
7320
7321<h5>Arguments:</h5>
7322<p>The argument and return value are floating point numbers of the same
7323   type.</p>
7324
7325<h5>Semantics:</h5>
7326<p>This function returns the cosine of the specified operand, returning the same
7327   values as the libm <tt>cos</tt> functions would, and handles error conditions
7328   in the same way.</p>
7329
7330</div>
7331
7332<!-- _______________________________________________________________________ -->
7333<h4>
7334  <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
7335</h4>
7336
7337<div>
7338
7339<h5>Syntax:</h5>
7340<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7341   floating point or vector of floating point type. Not all targets support all
7342   types however.</p>
7343
7344<pre>
7345  declare float     @llvm.pow.f32(float  %Val, float %Power)
7346  declare double    @llvm.pow.f64(double %Val, double %Power)
7347  declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
7348  declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
7349  declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
7350</pre>
7351
7352<h5>Overview:</h5>
7353<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7354   specified (positive or negative) power.</p>
7355
7356<h5>Arguments:</h5>
7357<p>The second argument is a floating point power, and the first is a value to
7358   raise to that power.</p>
7359
7360<h5>Semantics:</h5>
7361<p>This function returns the first value raised to the second power, returning
7362   the same values as the libm <tt>pow</tt> functions would, and handles error
7363   conditions in the same way.</p>
7364
7365</div>
7366
7367<!-- _______________________________________________________________________ -->
7368<h4>
7369  <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7370</h4>
7371
7372<div>
7373
7374<h5>Syntax:</h5>
7375<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7376   floating point or vector of floating point type. Not all targets support all
7377   types however.</p>
7378
7379<pre>
7380  declare float     @llvm.exp.f32(float  %Val)
7381  declare double    @llvm.exp.f64(double %Val)
7382  declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
7383  declare fp128     @llvm.exp.f128(fp128 %Val)
7384  declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
7385</pre>
7386
7387<h5>Overview:</h5>
7388<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7389
7390<h5>Arguments:</h5>
7391<p>The argument and return value are floating point numbers of the same
7392   type.</p>
7393
7394<h5>Semantics:</h5>
7395<p>This function returns the same values as the libm <tt>exp</tt> functions
7396   would, and handles error conditions in the same way.</p>
7397
7398</div>
7399
7400<!-- _______________________________________________________________________ -->
7401<h4>
7402  <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7403</h4>
7404
7405<div>
7406
7407<h5>Syntax:</h5>
7408<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7409   floating point or vector of floating point type. Not all targets support all
7410   types however.</p>
7411
7412<pre>
7413  declare float     @llvm.log.f32(float  %Val)
7414  declare double    @llvm.log.f64(double %Val)
7415  declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
7416  declare fp128     @llvm.log.f128(fp128 %Val)
7417  declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
7418</pre>
7419
7420<h5>Overview:</h5>
7421<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7422
7423<h5>Arguments:</h5>
7424<p>The argument and return value are floating point numbers of the same
7425   type.</p>
7426
7427<h5>Semantics:</h5>
7428<p>This function returns the same values as the libm <tt>log</tt> functions
7429   would, and handles error conditions in the same way.</p>
7430
7431</div>
7432
7433<!-- _______________________________________________________________________ -->
7434<h4>
7435  <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7436</h4>
7437
7438<div>
7439
7440<h5>Syntax:</h5>
7441<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7442   floating point or vector of floating point type. Not all targets support all
7443   types however.</p>
7444
7445<pre>
7446  declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
7447  declare double    @llvm.fma.f64(double %a, double %b, double %c)
7448  declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7449  declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7450  declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7451</pre>
7452
7453<h5>Overview:</h5>
7454<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
7455   operation.</p>
7456
7457<h5>Arguments:</h5>
7458<p>The argument and return value are floating point numbers of the same
7459   type.</p>
7460
7461<h5>Semantics:</h5>
7462<p>This function returns the same values as the libm <tt>fma</tt> functions
7463   would.</p>
7464
7465</div>
7466
7467</div>
7468
7469<!-- ======================================================================= -->
7470<h3>
7471  <a name="int_manip">Bit Manipulation Intrinsics</a>
7472</h3>
7473
7474<div>
7475
7476<p>LLVM provides intrinsics for a few important bit manipulation operations.
7477   These allow efficient code generation for some algorithms.</p>
7478
7479<!-- _______________________________________________________________________ -->
7480<h4>
7481  <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
7482</h4>
7483
7484<div>
7485
7486<h5>Syntax:</h5>
7487<p>This is an overloaded intrinsic function. You can use bswap on any integer
7488   type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7489
7490<pre>
7491  declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7492  declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7493  declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
7494</pre>
7495
7496<h5>Overview:</h5>
7497<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7498   values with an even number of bytes (positive multiple of 16 bits).  These
7499   are useful for performing operations on data that is not in the target's
7500   native byte order.</p>
7501
7502<h5>Semantics:</h5>
7503<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7504   and low byte of the input i16 swapped.  Similarly,
7505   the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7506   bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7507   2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7508   The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7509   extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7510   more, respectively).</p>
7511
7512</div>
7513
7514<!-- _______________________________________________________________________ -->
7515<h4>
7516  <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
7517</h4>
7518
7519<div>
7520
7521<h5>Syntax:</h5>
7522<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
7523   width, or on any vector with integer elements. Not all targets support all
7524  bit widths or vector types, however.</p>
7525
7526<pre>
7527  declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
7528  declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
7529  declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
7530  declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7531  declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
7532  declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
7533</pre>
7534
7535<h5>Overview:</h5>
7536<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7537   in a value.</p>
7538
7539<h5>Arguments:</h5>
7540<p>The only argument is the value to be counted.  The argument may be of any
7541   integer type, or a vector with integer elements.
7542   The return type must match the argument type.</p>
7543
7544<h5>Semantics:</h5>
7545<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7546   element of a vector.</p>
7547
7548</div>
7549
7550<!-- _______________________________________________________________________ -->
7551<h4>
7552  <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
7553</h4>
7554
7555<div>
7556
7557<h5>Syntax:</h5>
7558<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
7559   integer bit width, or any vector whose elements are integers. Not all
7560   targets support all bit widths or vector types, however.</p>
7561
7562<pre>
7563  declare i8   @llvm.ctlz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7564  declare i16  @llvm.ctlz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7565  declare i32  @llvm.ctlz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7566  declare i64  @llvm.ctlz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7567  declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7568  declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7569</pre>
7570
7571<h5>Overview:</h5>
7572<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7573   leading zeros in a variable.</p>
7574
7575<h5>Arguments:</h5>
7576<p>The first argument is the value to be counted. This argument may be of any
7577   integer type, or a vectory with integer element type. The return type
7578   must match the first argument type.</p>
7579
7580<p>The second argument must be a constant and is a flag to indicate whether the
7581   intrinsic should ensure that a zero as the first argument produces a defined
7582   result. Historically some architectures did not provide a defined result for
7583   zero values as efficiently, and many algorithms are now predicated on
7584   avoiding zero-value inputs.</p>
7585
7586<h5>Semantics:</h5>
7587<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
7588   zeros in a variable, or within each element of the vector.
7589   If <tt>src == 0</tt> then the result is the size in bits of the type of
7590   <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7591   For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
7592
7593</div>
7594
7595<!-- _______________________________________________________________________ -->
7596<h4>
7597  <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
7598</h4>
7599
7600<div>
7601
7602<h5>Syntax:</h5>
7603<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
7604   integer bit width, or any vector of integer elements. Not all targets
7605   support all bit widths or vector types, however.</p>
7606
7607<pre>
7608  declare i8   @llvm.cttz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7609  declare i16  @llvm.cttz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7610  declare i32  @llvm.cttz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7611  declare i64  @llvm.cttz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7612  declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7613  declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7614</pre>
7615
7616<h5>Overview:</h5>
7617<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7618   trailing zeros.</p>
7619
7620<h5>Arguments:</h5>
7621<p>The first argument is the value to be counted. This argument may be of any
7622   integer type, or a vectory with integer element type. The return type
7623   must match the first argument type.</p>
7624
7625<p>The second argument must be a constant and is a flag to indicate whether the
7626   intrinsic should ensure that a zero as the first argument produces a defined
7627   result. Historically some architectures did not provide a defined result for
7628   zero values as efficiently, and many algorithms are now predicated on
7629   avoiding zero-value inputs.</p>
7630
7631<h5>Semantics:</h5>
7632<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
7633   zeros in a variable, or within each element of a vector.
7634   If <tt>src == 0</tt> then the result is the size in bits of the type of
7635   <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7636   For example, <tt>llvm.cttz(2) = 1</tt>.</p>
7637
7638</div>
7639
7640</div>
7641
7642<!-- ======================================================================= -->
7643<h3>
7644  <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
7645</h3>
7646
7647<div>
7648
7649<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
7650
7651<!-- _______________________________________________________________________ -->
7652<h4>
7653  <a name="int_sadd_overflow">
7654    '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7655  </a>
7656</h4>
7657
7658<div>
7659
7660<h5>Syntax:</h5>
7661<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
7662   on any integer bit width.</p>
7663
7664<pre>
7665  declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7666  declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7667  declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7668</pre>
7669
7670<h5>Overview:</h5>
7671<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
7672   a signed addition of the two arguments, and indicate whether an overflow
7673   occurred during the signed summation.</p>
7674
7675<h5>Arguments:</h5>
7676<p>The arguments (%a and %b) and the first element of the result structure may
7677   be of integer types of any bit width, but they must have the same bit
7678   width. The second element of the result structure must be of
7679   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7680   undergo signed addition.</p>
7681
7682<h5>Semantics:</h5>
7683<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
7684   a signed addition of the two variables. They return a structure &mdash; the
7685   first element of which is the signed summation, and the second element of
7686   which is a bit specifying if the signed summation resulted in an
7687   overflow.</p>
7688
7689<h5>Examples:</h5>
7690<pre>
7691  %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7692  %sum = extractvalue {i32, i1} %res, 0
7693  %obit = extractvalue {i32, i1} %res, 1
7694  br i1 %obit, label %overflow, label %normal
7695</pre>
7696
7697</div>
7698
7699<!-- _______________________________________________________________________ -->
7700<h4>
7701  <a name="int_uadd_overflow">
7702    '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7703  </a>
7704</h4>
7705
7706<div>
7707
7708<h5>Syntax:</h5>
7709<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
7710   on any integer bit width.</p>
7711
7712<pre>
7713  declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7714  declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7715  declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7716</pre>
7717
7718<h5>Overview:</h5>
7719<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
7720   an unsigned addition of the two arguments, and indicate whether a carry
7721   occurred during the unsigned summation.</p>
7722
7723<h5>Arguments:</h5>
7724<p>The arguments (%a and %b) and the first element of the result structure may
7725   be of integer types of any bit width, but they must have the same bit
7726   width. The second element of the result structure must be of
7727   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7728   undergo unsigned addition.</p>
7729
7730<h5>Semantics:</h5>
7731<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
7732   an unsigned addition of the two arguments. They return a structure &mdash;
7733   the first element of which is the sum, and the second element of which is a
7734   bit specifying if the unsigned summation resulted in a carry.</p>
7735
7736<h5>Examples:</h5>
7737<pre>
7738  %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7739  %sum = extractvalue {i32, i1} %res, 0
7740  %obit = extractvalue {i32, i1} %res, 1
7741  br i1 %obit, label %carry, label %normal
7742</pre>
7743
7744</div>
7745
7746<!-- _______________________________________________________________________ -->
7747<h4>
7748  <a name="int_ssub_overflow">
7749    '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7750  </a>
7751</h4>
7752
7753<div>
7754
7755<h5>Syntax:</h5>
7756<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
7757   on any integer bit width.</p>
7758
7759<pre>
7760  declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7761  declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7762  declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7763</pre>
7764
7765<h5>Overview:</h5>
7766<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
7767   a signed subtraction of the two arguments, and indicate whether an overflow
7768   occurred during the signed subtraction.</p>
7769
7770<h5>Arguments:</h5>
7771<p>The arguments (%a and %b) and the first element of the result structure may
7772   be of integer types of any bit width, but they must have the same bit
7773   width. The second element of the result structure must be of
7774   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7775   undergo signed subtraction.</p>
7776
7777<h5>Semantics:</h5>
7778<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
7779   a signed subtraction of the two arguments. They return a structure &mdash;
7780   the first element of which is the subtraction, and the second element of
7781   which is a bit specifying if the signed subtraction resulted in an
7782   overflow.</p>
7783
7784<h5>Examples:</h5>
7785<pre>
7786  %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7787  %sum = extractvalue {i32, i1} %res, 0
7788  %obit = extractvalue {i32, i1} %res, 1
7789  br i1 %obit, label %overflow, label %normal
7790</pre>
7791
7792</div>
7793
7794<!-- _______________________________________________________________________ -->
7795<h4>
7796  <a name="int_usub_overflow">
7797    '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7798  </a>
7799</h4>
7800
7801<div>
7802
7803<h5>Syntax:</h5>
7804<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
7805   on any integer bit width.</p>
7806
7807<pre>
7808  declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7809  declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7810  declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7811</pre>
7812
7813<h5>Overview:</h5>
7814<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
7815   an unsigned subtraction of the two arguments, and indicate whether an
7816   overflow occurred during the unsigned subtraction.</p>
7817
7818<h5>Arguments:</h5>
7819<p>The arguments (%a and %b) and the first element of the result structure may
7820   be of integer types of any bit width, but they must have the same bit
7821   width. The second element of the result structure must be of
7822   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7823   undergo unsigned subtraction.</p>
7824
7825<h5>Semantics:</h5>
7826<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
7827   an unsigned subtraction of the two arguments. They return a structure &mdash;
7828   the first element of which is the subtraction, and the second element of
7829   which is a bit specifying if the unsigned subtraction resulted in an
7830   overflow.</p>
7831
7832<h5>Examples:</h5>
7833<pre>
7834  %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7835  %sum = extractvalue {i32, i1} %res, 0
7836  %obit = extractvalue {i32, i1} %res, 1
7837  br i1 %obit, label %overflow, label %normal
7838</pre>
7839
7840</div>
7841
7842<!-- _______________________________________________________________________ -->
7843<h4>
7844  <a name="int_smul_overflow">
7845    '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7846  </a>
7847</h4>
7848
7849<div>
7850
7851<h5>Syntax:</h5>
7852<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
7853   on any integer bit width.</p>
7854
7855<pre>
7856  declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7857  declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7858  declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7859</pre>
7860
7861<h5>Overview:</h5>
7862
7863<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
7864   a signed multiplication of the two arguments, and indicate whether an
7865   overflow occurred during the signed multiplication.</p>
7866
7867<h5>Arguments:</h5>
7868<p>The arguments (%a and %b) and the first element of the result structure may
7869   be of integer types of any bit width, but they must have the same bit
7870   width. The second element of the result structure must be of
7871   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7872   undergo signed multiplication.</p>
7873
7874<h5>Semantics:</h5>
7875<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
7876   a signed multiplication of the two arguments. They return a structure &mdash;
7877   the first element of which is the multiplication, and the second element of
7878   which is a bit specifying if the signed multiplication resulted in an
7879   overflow.</p>
7880
7881<h5>Examples:</h5>
7882<pre>
7883  %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7884  %sum = extractvalue {i32, i1} %res, 0
7885  %obit = extractvalue {i32, i1} %res, 1
7886  br i1 %obit, label %overflow, label %normal
7887</pre>
7888
7889</div>
7890
7891<!-- _______________________________________________________________________ -->
7892<h4>
7893  <a name="int_umul_overflow">
7894    '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7895  </a>
7896</h4>
7897
7898<div>
7899
7900<h5>Syntax:</h5>
7901<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
7902   on any integer bit width.</p>
7903
7904<pre>
7905  declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7906  declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7907  declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7908</pre>
7909
7910<h5>Overview:</h5>
7911<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
7912   a unsigned multiplication of the two arguments, and indicate whether an
7913   overflow occurred during the unsigned multiplication.</p>
7914
7915<h5>Arguments:</h5>
7916<p>The arguments (%a and %b) and the first element of the result structure may
7917   be of integer types of any bit width, but they must have the same bit
7918   width. The second element of the result structure must be of
7919   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7920   undergo unsigned multiplication.</p>
7921
7922<h5>Semantics:</h5>
7923<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
7924   an unsigned multiplication of the two arguments. They return a structure
7925   &mdash; the first element of which is the multiplication, and the second
7926   element of which is a bit specifying if the unsigned multiplication resulted
7927   in an overflow.</p>
7928
7929<h5>Examples:</h5>
7930<pre>
7931  %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7932  %sum = extractvalue {i32, i1} %res, 0
7933  %obit = extractvalue {i32, i1} %res, 1
7934  br i1 %obit, label %overflow, label %normal
7935</pre>
7936
7937</div>
7938
7939</div>
7940
7941<!-- ======================================================================= -->
7942<h3>
7943  <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
7944</h3>
7945
7946<div>
7947
7948<p>Half precision floating point is a storage-only format. This means that it is
7949   a dense encoding (in memory) but does not support computation in the
7950   format.</p>
7951
7952<p>This means that code must first load the half-precision floating point
7953   value as an i16, then convert it to float with <a
7954   href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7955   Computation can then be performed on the float value (including extending to
7956   double etc).  To store the value back to memory, it is first converted to
7957   float if needed, then converted to i16 with
7958   <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7959   storing as an i16 value.</p>
7960
7961<!-- _______________________________________________________________________ -->
7962<h4>
7963  <a name="int_convert_to_fp16">
7964    '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7965  </a>
7966</h4>
7967
7968<div>
7969
7970<h5>Syntax:</h5>
7971<pre>
7972  declare i16 @llvm.convert.to.fp16(f32 %a)
7973</pre>
7974
7975<h5>Overview:</h5>
7976<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7977   a conversion from single precision floating point format to half precision
7978   floating point format.</p>
7979
7980<h5>Arguments:</h5>
7981<p>The intrinsic function contains single argument - the value to be
7982   converted.</p>
7983
7984<h5>Semantics:</h5>
7985<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7986   a conversion from single precision floating point format to half precision
7987   floating point format. The return value is an <tt>i16</tt> which
7988   contains the converted number.</p>
7989
7990<h5>Examples:</h5>
7991<pre>
7992  %res = call i16 @llvm.convert.to.fp16(f32 %a)
7993  store i16 %res, i16* @x, align 2
7994</pre>
7995
7996</div>
7997
7998<!-- _______________________________________________________________________ -->
7999<h4>
8000  <a name="int_convert_from_fp16">
8001    '<tt>llvm.convert.from.fp16</tt>' Intrinsic
8002  </a>
8003</h4>
8004
8005<div>
8006
8007<h5>Syntax:</h5>
8008<pre>
8009  declare f32 @llvm.convert.from.fp16(i16 %a)
8010</pre>
8011
8012<h5>Overview:</h5>
8013<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
8014   a conversion from half precision floating point format to single precision
8015   floating point format.</p>
8016
8017<h5>Arguments:</h5>
8018<p>The intrinsic function contains single argument - the value to be
8019   converted.</p>
8020
8021<h5>Semantics:</h5>
8022<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
8023   conversion from half single precision floating point format to single
8024   precision floating point format. The input half-float value is represented by
8025   an <tt>i16</tt> value.</p>
8026
8027<h5>Examples:</h5>
8028<pre>
8029  %a = load i16* @x, align 2
8030  %res = call f32 @llvm.convert.from.fp16(i16 %a)
8031</pre>
8032
8033</div>
8034
8035</div>
8036
8037<!-- ======================================================================= -->
8038<h3>
8039  <a name="int_debugger">Debugger Intrinsics</a>
8040</h3>
8041
8042<div>
8043
8044<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
8045   prefix), are described in
8046   the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
8047   Level Debugging</a> document.</p>
8048
8049</div>
8050
8051<!-- ======================================================================= -->
8052<h3>
8053  <a name="int_eh">Exception Handling Intrinsics</a>
8054</h3>
8055
8056<div>
8057
8058<p>The LLVM exception handling intrinsics (which all start with
8059   <tt>llvm.eh.</tt> prefix), are described in
8060   the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
8061   Handling</a> document.</p>
8062
8063</div>
8064
8065<!-- ======================================================================= -->
8066<h3>
8067  <a name="int_trampoline">Trampoline Intrinsics</a>
8068</h3>
8069
8070<div>
8071
8072<p>These intrinsics make it possible to excise one parameter, marked with
8073   the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
8074   The result is a callable
8075   function pointer lacking the nest parameter - the caller does not need to
8076   provide a value for it.  Instead, the value to use is stored in advance in a
8077   "trampoline", a block of memory usually allocated on the stack, which also
8078   contains code to splice the nest value into the argument list.  This is used
8079   to implement the GCC nested function address extension.</p>
8080
8081<p>For example, if the function is
8082   <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
8083   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
8084   follows:</p>
8085
8086<pre class="doc_code">
8087  %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8088  %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8089  call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8090  %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8091  %fp = bitcast i8* %p to i32 (i32, i32)*
8092</pre>
8093
8094<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
8095   to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
8096
8097<!-- _______________________________________________________________________ -->
8098<h4>
8099  <a name="int_it">
8100    '<tt>llvm.init.trampoline</tt>' Intrinsic
8101  </a>
8102</h4>
8103
8104<div>
8105
8106<h5>Syntax:</h5>
8107<pre>
8108  declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
8109</pre>
8110
8111<h5>Overview:</h5>
8112<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
8113   turning it into a trampoline.</p>
8114
8115<h5>Arguments:</h5>
8116<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
8117   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
8118   sufficiently aligned block of memory; this memory is written to by the
8119   intrinsic.  Note that the size and the alignment are target-specific - LLVM
8120   currently provides no portable way of determining them, so a front-end that
8121   generates this intrinsic needs to have some target-specific knowledge.
8122   The <tt>func</tt> argument must hold a function bitcast to
8123   an <tt>i8*</tt>.</p>
8124
8125<h5>Semantics:</h5>
8126<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
8127   dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
8128   passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
8129   which can be <a href="#int_trampoline">bitcast (to a new function) and
8130   called</a>.  The new function's signature is the same as that of
8131   <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
8132   removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
8133   pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
8134   with the same argument list, but with <tt>nval</tt> used for the missing
8135   <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
8136   memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
8137   to the returned function pointer is undefined.</p>
8138</div>
8139
8140<!-- _______________________________________________________________________ -->
8141<h4>
8142  <a name="int_at">
8143    '<tt>llvm.adjust.trampoline</tt>' Intrinsic
8144  </a>
8145</h4>
8146
8147<div>
8148
8149<h5>Syntax:</h5>
8150<pre>
8151  declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
8152</pre>
8153
8154<h5>Overview:</h5>
8155<p>This performs any required machine-specific adjustment to the address of a
8156   trampoline (passed as <tt>tramp</tt>).</p>
8157
8158<h5>Arguments:</h5>
8159<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
8160   filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
8161   </a>.</p>
8162
8163<h5>Semantics:</h5>
8164<p>On some architectures the address of the code to be executed needs to be
8165   different to the address where the trampoline is actually stored.  This
8166   intrinsic returns the executable address corresponding to <tt>tramp</tt>
8167   after performing the required machine specific adjustments.
8168   The pointer returned can then be <a href="#int_trampoline"> bitcast and
8169   executed</a>.
8170</p>
8171
8172</div>
8173
8174</div>
8175
8176<!-- ======================================================================= -->
8177<h3>
8178  <a name="int_memorymarkers">Memory Use Markers</a>
8179</h3>
8180
8181<div>
8182
8183<p>This class of intrinsics exists to information about the lifetime of memory
8184   objects and ranges where variables are immutable.</p>
8185
8186<!-- _______________________________________________________________________ -->
8187<h4>
8188  <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
8189</h4>
8190
8191<div>
8192
8193<h5>Syntax:</h5>
8194<pre>
8195  declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8196</pre>
8197
8198<h5>Overview:</h5>
8199<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
8200   object's lifetime.</p>
8201
8202<h5>Arguments:</h5>
8203<p>The first argument is a constant integer representing the size of the
8204   object, or -1 if it is variable sized.  The second argument is a pointer to
8205   the object.</p>
8206
8207<h5>Semantics:</h5>
8208<p>This intrinsic indicates that before this point in the code, the value of the
8209   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
8210   never be used and has an undefined value.  A load from the pointer that
8211   precedes this intrinsic can be replaced with
8212   <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
8213
8214</div>
8215
8216<!-- _______________________________________________________________________ -->
8217<h4>
8218  <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
8219</h4>
8220
8221<div>
8222
8223<h5>Syntax:</h5>
8224<pre>
8225  declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8226</pre>
8227
8228<h5>Overview:</h5>
8229<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
8230   object's lifetime.</p>
8231
8232<h5>Arguments:</h5>
8233<p>The first argument is a constant integer representing the size of the
8234   object, or -1 if it is variable sized.  The second argument is a pointer to
8235   the object.</p>
8236
8237<h5>Semantics:</h5>
8238<p>This intrinsic indicates that after this point in the code, the value of the
8239   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
8240   never be used and has an undefined value.  Any stores into the memory object
8241   following this intrinsic may be removed as dead.
8242
8243</div>
8244
8245<!-- _______________________________________________________________________ -->
8246<h4>
8247  <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
8248</h4>
8249
8250<div>
8251
8252<h5>Syntax:</h5>
8253<pre>
8254  declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8255</pre>
8256
8257<h5>Overview:</h5>
8258<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
8259   a memory object will not change.</p>
8260
8261<h5>Arguments:</h5>
8262<p>The first argument is a constant integer representing the size of the
8263   object, or -1 if it is variable sized.  The second argument is a pointer to
8264   the object.</p>
8265
8266<h5>Semantics:</h5>
8267<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
8268   the return value, the referenced memory location is constant and
8269   unchanging.</p>
8270
8271</div>
8272
8273<!-- _______________________________________________________________________ -->
8274<h4>
8275  <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
8276</h4>
8277
8278<div>
8279
8280<h5>Syntax:</h5>
8281<pre>
8282  declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8283</pre>
8284
8285<h5>Overview:</h5>
8286<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8287   a memory object are mutable.</p>
8288
8289<h5>Arguments:</h5>
8290<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
8291   The second argument is a constant integer representing the size of the
8292   object, or -1 if it is variable sized and the third argument is a pointer
8293   to the object.</p>
8294
8295<h5>Semantics:</h5>
8296<p>This intrinsic indicates that the memory is mutable again.</p>
8297
8298</div>
8299
8300</div>
8301
8302<!-- ======================================================================= -->
8303<h3>
8304  <a name="int_general">General Intrinsics</a>
8305</h3>
8306
8307<div>
8308
8309<p>This class of intrinsics is designed to be generic and has no specific
8310   purpose.</p>
8311
8312<!-- _______________________________________________________________________ -->
8313<h4>
8314  <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
8315</h4>
8316
8317<div>
8318
8319<h5>Syntax:</h5>
8320<pre>
8321  declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8322</pre>
8323
8324<h5>Overview:</h5>
8325<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
8326
8327<h5>Arguments:</h5>
8328<p>The first argument is a pointer to a value, the second is a pointer to a
8329   global string, the third is a pointer to a global string which is the source
8330   file name, and the last argument is the line number.</p>
8331
8332<h5>Semantics:</h5>
8333<p>This intrinsic allows annotation of local variables with arbitrary strings.
8334   This can be useful for special purpose optimizations that want to look for
8335   these annotations.  These have no other defined use; they are ignored by code
8336   generation and optimization.</p>
8337
8338</div>
8339
8340<!-- _______________________________________________________________________ -->
8341<h4>
8342  <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
8343</h4>
8344
8345<div>
8346
8347<h5>Syntax:</h5>
8348<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8349   any integer bit width.</p>
8350
8351<pre>
8352  declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8353  declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8354  declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8355  declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8356  declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8357</pre>
8358
8359<h5>Overview:</h5>
8360<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
8361
8362<h5>Arguments:</h5>
8363<p>The first argument is an integer value (result of some expression), the
8364   second is a pointer to a global string, the third is a pointer to a global
8365   string which is the source file name, and the last argument is the line
8366   number.  It returns the value of the first argument.</p>
8367
8368<h5>Semantics:</h5>
8369<p>This intrinsic allows annotations to be put on arbitrary expressions with
8370   arbitrary strings.  This can be useful for special purpose optimizations that
8371   want to look for these annotations.  These have no other defined use; they
8372   are ignored by code generation and optimization.</p>
8373
8374</div>
8375
8376<!-- _______________________________________________________________________ -->
8377<h4>
8378  <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
8379</h4>
8380
8381<div>
8382
8383<h5>Syntax:</h5>
8384<pre>
8385  declare void @llvm.trap()
8386</pre>
8387
8388<h5>Overview:</h5>
8389<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
8390
8391<h5>Arguments:</h5>
8392<p>None.</p>
8393
8394<h5>Semantics:</h5>
8395<p>This intrinsics is lowered to the target dependent trap instruction. If the
8396   target does not have a trap instruction, this intrinsic will be lowered to
8397   the call of the <tt>abort()</tt> function.</p>
8398
8399</div>
8400
8401<!-- _______________________________________________________________________ -->
8402<h4>
8403  <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
8404</h4>
8405
8406<div>
8407
8408<h5>Syntax:</h5>
8409<pre>
8410  declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
8411</pre>
8412
8413<h5>Overview:</h5>
8414<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8415   stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8416   ensure that it is placed on the stack before local variables.</p>
8417
8418<h5>Arguments:</h5>
8419<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8420   arguments. The first argument is the value loaded from the stack
8421   guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8422   that has enough space to hold the value of the guard.</p>
8423
8424<h5>Semantics:</h5>
8425<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8426   the <tt>AllocaInst</tt> stack slot to be before local variables on the
8427   stack. This is to ensure that if a local variable on the stack is
8428   overwritten, it will destroy the value of the guard. When the function exits,
8429   the guard on the stack is checked against the original guard. If they are
8430   different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8431   function.</p>
8432
8433</div>
8434
8435<!-- _______________________________________________________________________ -->
8436<h4>
8437  <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
8438</h4>
8439
8440<div>
8441
8442<h5>Syntax:</h5>
8443<pre>
8444  declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8445  declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
8446</pre>
8447
8448<h5>Overview:</h5>
8449<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8450   the optimizers to determine at compile time whether a) an operation (like
8451   memcpy) will overflow a buffer that corresponds to an object, or b) that a
8452   runtime check for overflow isn't necessary. An object in this context means
8453   an allocation of a specific class, structure, array, or other object.</p>
8454
8455<h5>Arguments:</h5>
8456<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
8457   argument is a pointer to or into the <tt>object</tt>. The second argument
8458   is a boolean 0 or 1. This argument determines whether you want the
8459   maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
8460   1, variables are not allowed.</p>
8461
8462<h5>Semantics:</h5>
8463<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
8464   representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8465   depending on the <tt>type</tt> argument, if the size cannot be determined at
8466   compile time.</p>
8467
8468</div>
8469<!-- _______________________________________________________________________ -->
8470<h4>
8471  <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
8472</h4>
8473
8474<div>
8475
8476<h5>Syntax:</h5>
8477<pre>
8478  declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
8479  declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
8480</pre>
8481
8482<h5>Overview:</h5>
8483<p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
8484   most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
8485
8486<h5>Arguments:</h5>
8487<p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
8488   argument is a value. The second argument is an expected value, this needs to
8489   be a constant value, variables are not allowed.</p>
8490
8491<h5>Semantics:</h5>
8492<p>This intrinsic is lowered to the <tt>val</tt>.</p>
8493</div>
8494
8495</div>
8496
8497</div>
8498<!-- *********************************************************************** -->
8499<hr>
8500<address>
8501  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
8502  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
8503  <a href="http://validator.w3.org/check/referer"><img
8504  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
8505
8506  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
8507  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
8508  Last modified: $Date$
8509</address>
8510
8511</body>
8512</html>
8513