• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>LLVM Link Time Optimization: Design and Implementation</title>
7  <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9
10<h1>
11  LLVM Link Time Optimization: Design and Implementation
12</h1>
13
14<ul>
15  <li><a href="#desc">Description</a></li>
16  <li><a href="#design">Design Philosophy</a>
17  <ul>
18    <li><a href="#example1">Example of link time optimization</a></li>
19    <li><a href="#alternative_approaches">Alternative Approaches</a></li>
20  </ul></li>
21  <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
22  <ul>
23    <li><a href="#phase1">Phase 1 : Read LLVM Bitcode Files</a></li>
24    <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
25    <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
26    <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
27  </ul></li>
28  <li><a href="#lto">libLTO</a>
29  <ul>
30    <li><a href="#lto_module_t">lto_module_t</a></li>
31    <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
32  </ul>
33</ul>
34
35<div class="doc_author">
36<p>Written by Devang Patel and Nick Kledzik</p>
37</div>
38
39<!-- *********************************************************************** -->
40<h2>
41<a name="desc">Description</a>
42</h2>
43<!-- *********************************************************************** -->
44
45<div>
46<p>
47LLVM features powerful intermodular optimizations which can be used at link
48time.  Link Time Optimization (LTO) is another name for intermodular optimization
49when performed during the link stage. This document describes the interface
50and design between the LTO optimizer and the linker.</p>
51</div>
52
53<!-- *********************************************************************** -->
54<h2>
55<a name="design">Design Philosophy</a>
56</h2>
57<!-- *********************************************************************** -->
58
59<div>
60<p>
61The LLVM Link Time Optimizer provides complete transparency, while doing
62intermodular optimization, in the compiler tool chain. Its main goal is to let
63the developer take advantage of intermodular optimizations without making any
64significant changes to the developer's makefiles or build system. This is
65achieved through tight integration with the linker. In this model, the linker
66treates LLVM bitcode files like native object files and allows mixing and
67matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
68object, to handle LLVM bitcode files. This tight integration between
69the linker and LLVM optimizer helps to do optimizations that are not possible
70in other models. The linker input allows the optimizer to avoid relying on
71conservative escape analysis.
72</p>
73
74<!-- ======================================================================= -->
75<h3>
76  <a name="example1">Example of link time optimization</a>
77</h3>
78
79<div>
80  <p>The following example illustrates the advantages of LTO's integrated
81  approach and clean interface. This example requires a system linker which
82  supports LTO through the interface described in this document.  Here,
83  clang transparently invokes system linker. </p>
84  <ul>
85    <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
86    <li> Input source file <tt>main.c</tt> is compiled into native object code.
87  </ul>
88<pre class="doc_code">
89--- a.h ---
90extern int foo1(void);
91extern void foo2(void);
92extern void foo4(void);
93
94--- a.c ---
95#include "a.h"
96
97static signed int i = 0;
98
99void foo2(void) {
100  i = -1;
101}
102
103static int foo3() {
104  foo4();
105  return 10;
106}
107
108int foo1(void) {
109  int data = 0;
110
111  if (i &lt; 0)
112    data = foo3();
113
114  data = data + 42;
115  return data;
116}
117
118--- main.c ---
119#include &lt;stdio.h&gt;
120#include "a.h"
121
122void foo4(void) {
123  printf("Hi\n");
124}
125
126int main() {
127  return foo1();
128}
129
130--- command lines ---
131$ clang -emit-llvm -c a.c -o a.o   # &lt;-- a.o is LLVM bitcode file
132$ clang -c main.c -o main.o        # &lt;-- main.o is native object file
133$ clang a.o main.o -o main         # &lt;-- standard link command without any modifications
134</pre>
135
136<ul>
137  <li>In this example, the linker recognizes that <tt>foo2()</tt> is an
138      externally visible symbol defined in LLVM bitcode file. The linker
139      completes its usual symbol resolution pass and finds that <tt>foo2()</tt>
140      is not used anywhere. This information is used by the LLVM optimizer and
141      it removes <tt>foo2()</tt>.</li>
142  <li>As soon as <tt>foo2()</tt> is removed, the optimizer recognizes that condition
143      <tt>i &lt; 0</tt> is always false, which means <tt>foo3()</tt> is never
144      used. Hence, the optimizer also removes <tt>foo3()</tt>.</li>
145  <li>And this in turn, enables linker to remove <tt>foo4()</tt>.</li>
146</ul>
147
148<p>This example illustrates the advantage of tight integration with the
149   linker. Here, the optimizer can not remove <tt>foo3()</tt> without the
150   linker's input.</p>
151
152</div>
153
154<!-- ======================================================================= -->
155<h3>
156  <a name="alternative_approaches">Alternative Approaches</a>
157</h3>
158
159<div>
160  <dl>
161    <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
162    <dd>In this model the link time optimizer is not able to take advantage of
163    information collected during the linker's normal symbol resolution phase.
164    In the above example, the optimizer can not remove <tt>foo2()</tt> without
165    the linker's input because it is externally visible. This in turn prohibits
166    the optimizer from removing <tt>foo3()</tt>.</dd>
167    <dt><b>Use separate tool to collect symbol information from all object
168    files.</b></dt>
169    <dd>In this model, a new, separate, tool or library replicates the linker's
170    capability to collect information for link time optimization. Not only is
171    this code duplication difficult to justify, but it also has several other
172    disadvantages.  For example, the linking semantics and the features
173    provided by the linker on various platform are not unique. This means,
174    this new tool needs to support all such features and platforms in one
175    super tool or a separate tool per platform is required. This increases
176    maintenance cost for link time optimizer significantly, which is not
177    necessary. This approach also requires staying synchronized with linker
178    developements on various platforms, which is not the main focus of the link
179    time optimizer. Finally, this approach increases end user's build time due
180    to the duplication of work done by this separate tool and the linker itself.
181    </dd>
182  </dl>
183</div>
184
185</div>
186
187<!-- *********************************************************************** -->
188<h2>
189  <a name="multiphase">Multi-phase communication between libLTO and linker</a>
190</h2>
191
192<div>
193  <p>The linker collects information about symbol defininitions and uses in
194  various link objects which is more accurate than any information collected
195  by other tools during typical build cycles.  The linker collects this
196  information by looking at the definitions and uses of symbols in native .o
197  files and using symbol visibility information. The linker also uses
198  user-supplied information, such as a list of exported symbols. LLVM
199  optimizer collects control flow information, data flow information and knows
200  much more about program structure from the optimizer's point of view.
201  Our goal is to take advantage of tight integration between the linker and
202  the optimizer by sharing this information during various linking phases.
203</p>
204
205<!-- ======================================================================= -->
206<h3>
207  <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
208</h3>
209
210<div>
211  <p>The linker first reads all object files in natural order and collects
212  symbol information. This includes native object files as well as LLVM bitcode
213  files.  To minimize the cost to the linker in the case that all .o files
214  are native object files, the linker only calls <tt>lto_module_create()</tt>
215  when a supplied object file is found to not be a native object file.  If
216  <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file,
217  the linker
218  then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
219  <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and
220  referenced.
221  This information is added to the linker's global symbol table.
222</p>
223  <p>The lto* functions are all implemented in a shared object libLTO.  This
224  allows the LLVM LTO code to be updated independently of the linker tool.
225  On platforms that support it, the shared object is lazily loaded.
226</p>
227</div>
228
229<!-- ======================================================================= -->
230<h3>
231  <a name="phase2">Phase 2 : Symbol Resolution</a>
232</h3>
233
234<div>
235  <p>In this stage, the linker resolves symbols using global symbol table.
236  It may report undefined symbol errors, read archive members, replace
237  weak symbols, etc.  The linker is able to do this seamlessly even though it
238  does not know the exact content of input LLVM bitcode files.  If dead code
239  stripping is enabled then the linker collects the list of live symbols.
240  </p>
241</div>
242
243<!-- ======================================================================= -->
244<h3>
245  <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
246</h3>
247<div>
248  <p>After symbol resolution, the linker tells the LTO shared object which
249  symbols are needed by native object files.  In the example above, the linker
250  reports that only <tt>foo1()</tt> is used by native object files using
251  <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
252  the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
253  which returns a native object file creating by merging the LLVM bitcode files
254  and applying various optimization passes.
255</p>
256</div>
257
258<!-- ======================================================================= -->
259<h3>
260  <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
261</h3>
262
263<div>
264  <p>In this phase, the linker reads optimized a native object file and
265  updates the internal global symbol table to reflect any changes. The linker
266  also collects information about any changes in use of external symbols by
267  LLVM bitcode files. In the example above, the linker notes that
268  <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then
269  the linker refreshes the live symbol information appropriately and performs
270  dead code stripping.</p>
271  <p>After this phase, the linker continues linking as if it never saw LLVM
272  bitcode files.</p>
273</div>
274
275</div>
276
277<!-- *********************************************************************** -->
278<h2>
279<a name="lto">libLTO</a>
280</h2>
281
282<div>
283  <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and
284  is intended for use by a linker. <tt>libLTO</tt> provides an abstract C
285  interface to use the LLVM interprocedural optimizer without exposing details
286  of LLVM's internals. The intention is to keep the interface as stable as
287  possible even when the LLVM optimizer continues to evolve. It should even
288  be possible for a completely different compilation technology to provide
289  a different libLTO that works with their object files and the standard
290  linker tool.</p>
291
292<!-- ======================================================================= -->
293<h3>
294  <a name="lto_module_t">lto_module_t</a>
295</h3>
296
297<div>
298
299<p>A non-native object file is handled via an <tt>lto_module_t</tt>.
300The following functions allow the linker to check if a file (on disk
301or in a memory buffer) is a file which libLTO can process:</p>
302
303<pre class="doc_code">
304lto_module_is_object_file(const char*)
305lto_module_is_object_file_for_target(const char*, const char*)
306lto_module_is_object_file_in_memory(const void*, size_t)
307lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
308</pre>
309
310<p>If the object file can be processed by libLTO, the linker creates a
311<tt>lto_module_t</tt> by using one of</p>
312
313<pre class="doc_code">
314lto_module_create(const char*)
315lto_module_create_from_memory(const void*, size_t)
316</pre>
317
318<p>and when done, the handle is released via</p>
319
320<pre class="doc_code">
321lto_module_dispose(lto_module_t)
322</pre>
323
324<p>The linker can introspect the non-native object file by getting the number of
325symbols and getting the name and attributes of each symbol via:</p>
326
327<pre class="doc_code">
328lto_module_get_num_symbols(lto_module_t)
329lto_module_get_symbol_name(lto_module_t, unsigned int)
330lto_module_get_symbol_attribute(lto_module_t, unsigned int)
331</pre>
332
333<p>The attributes of a symbol include the alignment, visibility, and kind.</p>
334</div>
335
336<!-- ======================================================================= -->
337<h3>
338  <a name="lto_code_gen_t">lto_code_gen_t</a>
339</h3>
340
341<div>
342
343<p>Once the linker has loaded each non-native object files into an
344<tt>lto_module_t</tt>, it can request libLTO to process them all and
345generate a native object file.  This is done in a couple of steps.
346First, a code generator is created with:</p>
347
348<pre class="doc_code">lto_codegen_create()</pre>
349
350<p>Then, each non-native object file is added to the code generator with:</p>
351
352<pre class="doc_code">
353lto_codegen_add_module(lto_code_gen_t, lto_module_t)
354</pre>
355
356<p>The linker then has the option of setting some codegen options.  Whether or
357not to generate DWARF debug info is set with:</p>
358
359<pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
360
361<p>Which kind of position independence is set with:</p>
362
363<pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
364
365<p>And each symbol that is referenced by a native object file or otherwise must
366not be optimized away is set with:</p>
367
368<pre class="doc_code">
369lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
370</pre>
371
372<p>After all these settings are done, the linker requests that a native object
373file be created from the modules with the settings using:</p>
374
375<pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
376
377<p>which returns a pointer to a buffer containing the generated native
378object file.  The linker then parses that and links it with the rest
379of the native object files.</p>
380
381</div>
382
383</div>
384
385<!-- *********************************************************************** -->
386
387<hr>
388<address>
389  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
390  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
391  <a href="http://validator.w3.org/check/referer"><img
392  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
393
394  Devang Patel and Nick Kledzik<br>
395  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
396  Last modified: $Date$
397</address>
398
399</body>
400</html>
401
402