• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM's Analysis and Transform Passes</title>
6  <link rel="stylesheet" href="llvm.css" type="text/css">
7  <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8</head>
9<body>
10
11<!--
12
13If Passes.html is up to date, the following "one-liner" should print
14an empty diff.
15
16egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17      -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
18perl >help <<'EOT' && diff -u help html; rm -f help html
19open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20while (<HTML>) {
21  m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22  $order{$1} = sprintf("%03d", 1 + int %order);
23}
24open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25while (<HELP>) {
26  m:^    -([^ ]+) +- (.*)$: or next;
27  my $o = $order{$1};
28  $o = "000" unless defined $o;
29  push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30  push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
31}
32@x = map { s/^\d\d\d//; $_ } sort @x;
33@y = map { s/^\d\d\d//; $_ } sort @y;
34print @x, @y;
35EOT
36
37This (real) one-liner can also be helpful when converting comments to HTML:
38
39perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
40
41  -->
42
43<h1>LLVM's Analysis and Transform Passes</h1>
44
45<ol>
46  <li><a href="#intro">Introduction</a></li>
47  <li><a href="#analyses">Analysis Passes</a>
48  <li><a href="#transforms">Transform Passes</a></li>
49  <li><a href="#utilities">Utility Passes</a></li>
50</ol>
51
52<div class="doc_author">
53  <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54            and Gordon Henriksen</p>
55</div>
56
57<!-- ======================================================================= -->
58<h2><a name="intro">Introduction</a></h2>
59<div>
60  <p>This document serves as a high level summary of the optimization features
61  that LLVM provides. Optimizations are implemented as Passes that traverse some
62  portion of a program to either collect information or transform the program.
63  The table below divides the passes that LLVM provides into three categories.
64  Analysis passes compute information that other passes can use or for debugging
65  or program visualization purposes. Transform passes can use (or invalidate)
66  the analysis passes. Transform passes all mutate the program in some way.
67  Utility passes provides some utility but don't otherwise fit categorization.
68  For example passes to extract functions to bitcode or write a module to
69  bitcode are neither analysis nor transform passes.
70  <p>The table below provides a quick summary of each pass and links to the more
71  complete pass description later in the document.</p>
72
73<table>
74<tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
75<tr><th>Option</th><th>Name</th></tr>
76<tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
77<tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
78<tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
79<tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
80<tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
81<tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
82<tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
83<tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
84<tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
85<tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
86<tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
87<tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
88<tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
89<tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
90<tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
91<tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
92<tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
93<tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
94<tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
95<tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
96<tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
97<tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
98<tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
99<tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
100<tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
101<tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
102<tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
103<tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
104<tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
105<tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
106<tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
107<tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
108<tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
109<tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
110<tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
111<tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
112<tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
113<tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
114<tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
115<tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
116<tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
117<tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
118<tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
119<tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
120<tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
121<tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
122
123
124<tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
125<tr><th>Option</th><th>Name</th></tr>
126<tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
127<tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
128<tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
129<tr><td><a href="#bb-vectorize">-bb-vectorize</a></td><td>Combine instructions to form vector instructions within basic blocks</td></tr>
130<tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
131<tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
132<tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
133<tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
134<tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
135<tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
136<tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
137<tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
138<tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
139<tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
140<tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
141<tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
142<tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
143<tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
144<tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
145<tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
146<tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
147<tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
148<tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
149<tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
150<tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
151<tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
152<tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
153<tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
154<tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
155<tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
156<tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
157<tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
158<tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
159<tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
160<tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
161<tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
162<tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
163<tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
164<tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
165<tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
166<tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
167<tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
168<tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
169<tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
170<tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
171<tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
172<tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
173<tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
174<tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
175<tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
176<tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
177<tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
178<tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
179<tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
180<tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
181<tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
182<tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
183<tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
184<tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
185<tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
186<tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
187
188
189<tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
190<tr><th>Option</th><th>Name</th></tr>
191<tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
192<tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
193<tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
194<tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
195<tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
196<tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
197<tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
198<tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
199<tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
200<tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
201<tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
202</table>
203
204</div>
205
206<!-- ======================================================================= -->
207<h2><a name="analyses">Analysis Passes</a></h2>
208<div>
209  <p>This section describes the LLVM Analysis Passes.</p>
210
211<!-------------------------------------------------------------------------- -->
212<h3>
213  <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
214</h3>
215<div>
216  <p>This is a simple N^2 alias analysis accuracy evaluator.
217  Basically, for each function in the program, it simply queries to see how the
218  alias analysis implementation answers alias queries between each pair of
219  pointers in the function.</p>
220
221  <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
222  Spadini, and Wojciech Stryjewski.</p>
223</div>
224
225<!-------------------------------------------------------------------------- -->
226<h3>
227  <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
228</h3>
229<div>
230  <p>A basic alias analysis pass that implements identities (two different
231  globals cannot alias, etc), but does no stateful analysis.</p>
232</div>
233
234<!-------------------------------------------------------------------------- -->
235<h3>
236  <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
237</h3>
238<div>
239  <p>Yet to be written.</p>
240</div>
241
242<!-------------------------------------------------------------------------- -->
243<h3>
244  <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
245</h3>
246<div>
247  <p>
248  A pass which can be used to count how many alias queries
249  are being made and how the alias analysis implementation being used responds.
250  </p>
251</div>
252
253<!-------------------------------------------------------------------------- -->
254<h3>
255  <a name="debug-aa">-debug-aa: AA use debugger</a>
256</h3>
257<div>
258  <p>
259  This simple pass checks alias analysis users to ensure that if they
260  create a new value, they do not query AA without informing it of the value.
261  It acts as a shim over any other AA pass you want.
262  </p>
263
264  <p>
265  Yes keeping track of every value in the program is expensive, but this is
266  a debugging pass.
267  </p>
268</div>
269
270<!-------------------------------------------------------------------------- -->
271<h3>
272  <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
273</h3>
274<div>
275  <p>
276  This pass is a simple dominator construction algorithm for finding forward
277  dominator frontiers.
278  </p>
279</div>
280
281<!-------------------------------------------------------------------------- -->
282<h3>
283  <a name="domtree">-domtree: Dominator Tree Construction</a>
284</h3>
285<div>
286  <p>
287  This pass is a simple dominator construction algorithm for finding forward
288  dominators.
289  </p>
290</div>
291
292<!-------------------------------------------------------------------------- -->
293<h3>
294  <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
295</h3>
296<div>
297  <p>
298  This pass, only available in <code>opt</code>, prints the call graph into a
299  <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
300  to convert it to postscript or some other suitable format.
301  </p>
302</div>
303
304<!-------------------------------------------------------------------------- -->
305<h3>
306  <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
307</h3>
308<div>
309  <p>
310  This pass, only available in <code>opt</code>, prints the control flow graph
311  into a <code>.dot</code> graph.  This graph can then be processed with the
312  "dot" tool to convert it to postscript or some other suitable format.
313  </p>
314</div>
315
316<!-------------------------------------------------------------------------- -->
317<h3>
318  <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
319</h3>
320<div>
321  <p>
322  This pass, only available in <code>opt</code>, prints the control flow graph
323  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
324  then be processed with the "dot" tool to convert it to postscript or some
325  other suitable format.
326  </p>
327</div>
328
329<!-------------------------------------------------------------------------- -->
330<h3>
331  <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
332</h3>
333<div>
334  <p>
335  This pass, only available in <code>opt</code>, prints the dominator tree
336  into a <code>.dot</code> graph.  This graph can then be processed with the
337  "dot" tool to convert it to postscript or some other suitable format.
338  </p>
339</div>
340
341<!-------------------------------------------------------------------------- -->
342<h3>
343  <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
344</h3>
345<div>
346  <p>
347  This pass, only available in <code>opt</code>, prints the dominator tree
348  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
349  then be processed with the "dot" tool to convert it to postscript or some
350  other suitable format.
351  </p>
352</div>
353
354<!-------------------------------------------------------------------------- -->
355<h3>
356  <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
357</h3>
358<div>
359  <p>
360  This pass, only available in <code>opt</code>, prints the post dominator tree
361  into a <code>.dot</code> graph.  This graph can then be processed with the
362  "dot" tool to convert it to postscript or some other suitable format.
363  </p>
364</div>
365
366<!-------------------------------------------------------------------------- -->
367<h3>
368  <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
369</h3>
370<div>
371  <p>
372  This pass, only available in <code>opt</code>, prints the post dominator tree
373  into a <code>.dot</code> graph, omitting the function bodies.  This graph can
374  then be processed with the "dot" tool to convert it to postscript or some
375  other suitable format.
376  </p>
377</div>
378
379<!-------------------------------------------------------------------------- -->
380<h3>
381  <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
382</h3>
383<div>
384  <p>
385  This simple pass provides alias and mod/ref information for global values
386  that do not have their address taken, and keeps track of whether functions
387  read or write memory (are "pure").  For this simple (but very common) case,
388  we can provide pretty accurate and useful information.
389  </p>
390</div>
391
392<!-------------------------------------------------------------------------- -->
393<h3>
394  <a name="instcount">-instcount: Counts the various types of Instructions</a>
395</h3>
396<div>
397  <p>
398  This pass collects the count of all instructions and reports them
399  </p>
400</div>
401
402<!-------------------------------------------------------------------------- -->
403<h3>
404  <a name="intervals">-intervals: Interval Partition Construction</a>
405</h3>
406<div>
407  <p>
408  This analysis calculates and represents the interval partition of a function,
409  or a preexisting interval partition.
410  </p>
411
412  <p>
413  In this way, the interval partition may be used to reduce a flow graph down
414  to its degenerate single node interval partition (unless it is irreducible).
415  </p>
416</div>
417
418<!-------------------------------------------------------------------------- -->
419<h3>
420  <a name="iv-users">-iv-users: Induction Variable Users</a>
421</h3>
422<div>
423  <p>Bookkeeping for "interesting" users of expressions computed from
424  induction variables.</p>
425</div>
426
427<!-------------------------------------------------------------------------- -->
428<h3>
429  <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
430</h3>
431<div>
432  <p>Interface for lazy computation of value constraint information.</p>
433</div>
434
435<!-------------------------------------------------------------------------- -->
436<h3>
437  <a name="lda">-lda: Loop Dependence Analysis</a>
438</h3>
439<div>
440  <p>Loop dependence analysis framework, which is used to detect dependences in
441  memory accesses in loops.</p>
442</div>
443
444<!-------------------------------------------------------------------------- -->
445<h3>
446  <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
447</h3>
448<div>
449  <p>LibCall Alias Analysis.</p>
450</div>
451
452<!-------------------------------------------------------------------------- -->
453<h3>
454  <a name="lint">-lint: Statically lint-checks LLVM IR</a>
455</h3>
456<div>
457  <p>This pass statically checks for common and easily-identified constructs
458  which produce undefined or likely unintended behavior in LLVM IR.</p>
459
460  <p>It is not a guarantee of correctness, in two ways. First, it isn't
461  comprehensive. There are checks which could be done statically which are
462  not yet implemented. Some of these are indicated by TODO comments, but
463  those aren't comprehensive either. Second, many conditions cannot be
464  checked statically. This pass does no dynamic instrumentation, so it
465  can't check for all possible problems.</p>
466
467  <p>Another limitation is that it assumes all code will be executed. A store
468  through a null pointer in a basic block which is never reached is harmless,
469  but this pass will warn about it anyway.</p>
470
471  <p>Optimization passes may make conditions that this pass checks for more or
472  less obvious. If an optimization pass appears to be introducing a warning,
473  it may be that the optimization pass is merely exposing an existing
474  condition in the code.</p>
475
476  <p>This code may be run before instcombine. In many cases, instcombine checks
477  for the same kinds of things and turns instructions with undefined behavior
478  into unreachable (or equivalent). Because of this, this pass makes some
479  effort to look through bitcasts and so on.
480  </p>
481</div>
482
483<!-------------------------------------------------------------------------- -->
484<h3>
485  <a name="loops">-loops: Natural Loop Information</a>
486</h3>
487<div>
488  <p>
489  This analysis is used to identify natural loops and determine the loop depth
490  of various nodes of the CFG.  Note that the loops identified may actually be
491  several natural loops that share the same header node... not just a single
492  natural loop.
493  </p>
494</div>
495
496<!-------------------------------------------------------------------------- -->
497<h3>
498  <a name="memdep">-memdep: Memory Dependence Analysis</a>
499</h3>
500<div>
501  <p>
502  An analysis that determines, for a given memory operation, what preceding
503  memory operations it depends on.  It builds on alias analysis information, and
504  tries to provide a lazy, caching interface to a common kind of alias
505  information query.
506  </p>
507</div>
508
509<!-------------------------------------------------------------------------- -->
510<h3>
511  <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
512</h3>
513<div>
514  <p>This pass decodes the debug info metadata in a module and prints in a
515 (sufficiently-prepared-) human-readable form.
516
517 For example, run this pass from opt along with the -analyze option, and
518 it'll print to standard output.
519  </p>
520</div>
521
522<!-------------------------------------------------------------------------- -->
523<h3>
524  <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
525</h3>
526<div>
527  <p>
528  This is the default implementation of the Alias Analysis interface. It always
529  returns "I don't know" for alias queries.  NoAA is unlike other alias analysis
530  implementations, in that it does not chain to a previous analysis. As such it
531  doesn't follow many of the rules that other alias analyses must.
532  </p>
533</div>
534
535<!-------------------------------------------------------------------------- -->
536<h3>
537  <a name="no-profile">-no-profile: No Profile Information</a>
538</h3>
539<div>
540  <p>
541  The default "no profile" implementation of the abstract
542  <code>ProfileInfo</code> interface.
543  </p>
544</div>
545
546<!-------------------------------------------------------------------------- -->
547<h3>
548  <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
549</h3>
550<div>
551  <p>
552  This pass is a simple post-dominator construction algorithm for finding
553  post-dominator frontiers.
554  </p>
555</div>
556
557<!-------------------------------------------------------------------------- -->
558<h3>
559  <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
560</h3>
561<div>
562  <p>
563  This pass is a simple post-dominator construction algorithm for finding
564  post-dominators.
565  </p>
566</div>
567
568<!-------------------------------------------------------------------------- -->
569<h3>
570  <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
571</h3>
572<div>
573  <p>Yet to be written.</p>
574</div>
575
576<!-------------------------------------------------------------------------- -->
577<h3>
578  <a name="print-callgraph">-print-callgraph: Print a call graph</a>
579</h3>
580<div>
581  <p>
582  This pass, only available in <code>opt</code>, prints the call graph to
583  standard error in a human-readable form.
584  </p>
585</div>
586
587<!-------------------------------------------------------------------------- -->
588<h3>
589  <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
590</h3>
591<div>
592  <p>
593  This pass, only available in <code>opt</code>, prints the SCCs of the call
594  graph to standard error in a human-readable form.
595  </p>
596</div>
597
598<!-------------------------------------------------------------------------- -->
599<h3>
600  <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
601</h3>
602<div>
603  <p>
604  This pass, only available in <code>opt</code>, prints the SCCs of each
605  function CFG to standard error in a human-readable form.
606  </p>
607</div>
608
609<!-------------------------------------------------------------------------- -->
610<h3>
611  <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
612</h3>
613<div>
614  <p>Pass that prints instructions, and associated debug info:</p>
615  <ul>
616
617  <li>source/line/col information</li>
618  <li>original variable name</li>
619  <li>original type name</li>
620  </ul>
621</div>
622
623<!-------------------------------------------------------------------------- -->
624<h3>
625  <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
626</h3>
627<div>
628  <p>Dominator Info Printer.</p>
629</div>
630
631<!-------------------------------------------------------------------------- -->
632<h3>
633  <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
634</h3>
635<div>
636  <p>
637  This pass, only available in <code>opt</code>, prints out call sites to
638  external functions that are called with constant arguments.  This can be
639  useful when looking for standard library functions we should constant fold
640  or handle in alias analyses.
641  </p>
642</div>
643
644<!-------------------------------------------------------------------------- -->
645<h3>
646  <a name="print-function">-print-function: Print function to stderr</a>
647</h3>
648<div>
649  <p>
650  The <code>PrintFunctionPass</code> class is designed to be pipelined with
651  other <code>FunctionPass</code>es, and prints out the functions of the module
652  as they are processed.
653  </p>
654</div>
655
656<!-------------------------------------------------------------------------- -->
657<h3>
658  <a name="print-module">-print-module: Print module to stderr</a>
659</h3>
660<div>
661  <p>
662  This pass simply prints out the entire module when it is executed.
663  </p>
664</div>
665
666<!-------------------------------------------------------------------------- -->
667<h3>
668  <a name="print-used-types">-print-used-types: Find Used Types</a>
669</h3>
670<div>
671  <p>
672  This pass is used to seek out all of the types in use by the program.  Note
673  that this analysis explicitly does not include types only used by the symbol
674  table.
675</div>
676
677<!-------------------------------------------------------------------------- -->
678<h3>
679  <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
680</h3>
681<div>
682  <p>Profiling information that estimates the profiling information
683  in a very crude and unimaginative way.
684  </p>
685</div>
686
687<!-------------------------------------------------------------------------- -->
688<h3>
689  <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
690</h3>
691<div>
692  <p>
693  A concrete implementation of profiling information that loads the information
694  from a profile dump file.
695  </p>
696</div>
697
698<!-------------------------------------------------------------------------- -->
699<h3>
700  <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
701</h3>
702<div>
703  <p>Pass that checks profiling information for plausibility.</p>
704</div>
705<h3>
706  <a name="regions">-regions: Detect single entry single exit regions</a>
707</h3>
708<div>
709  <p>
710  The <code>RegionInfo</code> pass detects single entry single exit regions in a
711  function, where a region is defined as any subgraph that is connected to the
712  remaining graph at only two spots. Furthermore, an hierarchical region tree is
713  built.
714  </p>
715</div>
716
717<!-------------------------------------------------------------------------- -->
718<h3>
719  <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
720</h3>
721<div>
722  <p>
723  The <code>ScalarEvolution</code> analysis can be used to analyze and
724  catagorize scalar expressions in loops.  It specializes in recognizing general
725  induction variables, representing them with the abstract and opaque
726  <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
727  important properties can be obtained.
728  </p>
729
730  <p>
731  This analysis is primarily useful for induction variable substitution and
732  strength reduction.
733  </p>
734</div>
735
736<!-------------------------------------------------------------------------- -->
737<h3>
738  <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
739</h3>
740<div>
741  <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
742
743  This differs from traditional loop dependence analysis in that it tests
744  for dependencies within a single iteration of a loop, rather than
745  dependencies between different iterations.
746
747  ScalarEvolution has a more complete understanding of pointer arithmetic
748  than BasicAliasAnalysis' collection of ad-hoc analyses.
749  </p>
750</div>
751
752<!-------------------------------------------------------------------------- -->
753<h3>
754  <a name="targetdata">-targetdata: Target Data Layout</a>
755</h3>
756<div>
757  <p>Provides other passes access to information on how the size and alignment
758  required by the the target ABI for various data types.</p>
759</div>
760
761</div>
762
763<!-- ======================================================================= -->
764<h2><a name="transforms">Transform Passes</a></h2>
765<div>
766  <p>This section describes the LLVM Transform Passes.</p>
767
768<!-------------------------------------------------------------------------- -->
769<h3>
770  <a name="adce">-adce: Aggressive Dead Code Elimination</a>
771</h3>
772<div>
773  <p>ADCE aggressively tries to eliminate code. This pass is similar to
774  <a href="#dce">DCE</a> but it assumes that values are dead until proven
775  otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to
776  the liveness of values.</p>
777</div>
778
779<!-------------------------------------------------------------------------- -->
780<h3>
781  <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
782</h3>
783<div>
784  <p>A custom inliner that handles only functions that are marked as
785  "always inline".</p>
786</div>
787
788<!-------------------------------------------------------------------------- -->
789<h3>
790  <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
791</h3>
792<div>
793  <p>
794  This pass promotes "by reference" arguments to be "by value" arguments.  In
795  practice, this means looking for internal functions that have pointer
796  arguments.  If it can prove, through the use of alias analysis, that an
797  argument is *only* loaded, then it can pass the value into the function
798  instead of the address of the value.  This can cause recursive simplification
799  of code and lead to the elimination of allocas (especially in C++ template
800  code like the STL).
801  </p>
802
803  <p>
804  This pass also handles aggregate arguments that are passed into a function,
805  scalarizing them if the elements of the aggregate are only loaded.  Note that
806  it refuses to scalarize aggregates which would require passing in more than
807  three operands to the function, because passing thousands of operands for a
808  large array or structure is unprofitable!
809  </p>
810
811  <p>
812  Note that this transformation could also be done for arguments that are only
813  stored to (returning the value instead), but does not currently.  This case
814  would be best handled when and if LLVM starts supporting multiple return
815  values from functions.
816  </p>
817</div>
818
819<!-------------------------------------------------------------------------- -->
820<h3>
821  <a name="bb-vectorize">-bb-vectorize: Basic-Block Vectorization</a>
822</h3>
823<div>
824  <p>This pass combines instructions inside basic blocks to form vector
825  instructions. It iterates over each basic block, attempting to pair
826  compatible instructions, repeating this process until no additional
827  pairs are selected for vectorization. When the outputs of some pair
828  of compatible instructions are used as inputs by some other pair of
829  compatible instructions, those pairs are part of a potential
830  vectorization chain. Instruction pairs are only fused into vector
831  instructions when they are part of a chain longer than some
832  threshold length. Moreover, the pass attempts to find the best
833  possible chain for each pair of compatible instructions. These
834  heuristics are intended to prevent vectorization in cases where
835  it would not yield a performance increase of the resulting code.
836  </p>
837</div>
838
839<!-------------------------------------------------------------------------- -->
840<h3>
841  <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
842</h3>
843<div>
844  <p>This pass is a very simple profile guided basic block placement algorithm.
845  The idea is to put frequently executed blocks together at the start of the
846  function and hopefully increase the number of fall-through conditional
847  branches.  If there is no profile information for a particular function, this
848  pass basically orders blocks in depth-first order.</p>
849</div>
850
851<!-------------------------------------------------------------------------- -->
852<h3>
853  <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
854</h3>
855<div>
856  <p>
857  Break all of the critical edges in the CFG by inserting a dummy basic block.
858  It may be "required" by passes that cannot deal with critical edges. This
859  transformation obviously invalidates the CFG, but can update forward dominator
860  (set, immediate dominators, tree, and frontier) information.
861  </p>
862</div>
863
864<!-------------------------------------------------------------------------- -->
865<h3>
866  <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
867</h3>
868<div>
869  This pass munges the code in the input function to better prepare it for
870  SelectionDAG-based code generation. This works around limitations in it's
871  basic-block-at-a-time approach. It should eventually be removed.
872</div>
873
874<!-------------------------------------------------------------------------- -->
875<h3>
876  <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
877</h3>
878<div>
879  <p>
880  Merges duplicate global constants together into a single constant that is
881  shared.  This is useful because some passes (ie TraceValues) insert a lot of
882  string constants into the program, regardless of whether or not an existing
883  string is available.
884  </p>
885</div>
886
887<!-------------------------------------------------------------------------- -->
888<h3>
889  <a name="constprop">-constprop: Simple constant propagation</a>
890</h3>
891<div>
892  <p>This file implements constant propagation and merging. It looks for
893  instructions involving only constant operands and replaces them with a
894  constant value instead of an instruction. For example:</p>
895  <blockquote><pre>add i32 1, 2</pre></blockquote>
896  <p>becomes</p>
897  <blockquote><pre>i32 3</pre></blockquote>
898  <p>NOTE: this pass has a habit of making definitions be dead.  It is a good
899  idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass
900  sometime after running this pass.</p>
901</div>
902
903<!-------------------------------------------------------------------------- -->
904<h3>
905  <a name="dce">-dce: Dead Code Elimination</a>
906</h3>
907<div>
908  <p>
909  Dead code elimination is similar to <a href="#die">dead instruction
910  elimination</a>, but it rechecks instructions that were used by removed
911  instructions to see if they are newly dead.
912  </p>
913</div>
914
915<!-------------------------------------------------------------------------- -->
916<h3>
917  <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
918</h3>
919<div>
920  <p>
921  This pass deletes dead arguments from internal functions.  Dead argument
922  elimination removes arguments which are directly dead, as well as arguments
923  only passed into function calls as dead arguments of other functions.  This
924  pass also deletes dead arguments in a similar way.
925  </p>
926
927  <p>
928  This pass is often useful as a cleanup pass to run after aggressive
929  interprocedural passes, which add possibly-dead arguments.
930  </p>
931</div>
932
933<!-------------------------------------------------------------------------- -->
934<h3>
935  <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
936</h3>
937<div>
938  <p>
939  This pass is used to cleanup the output of GCC.  It eliminate names for types
940  that are unused in the entire translation unit, using the <a
941  href="#findusedtypes">find used types</a> pass.
942  </p>
943</div>
944
945<!-------------------------------------------------------------------------- -->
946<h3>
947  <a name="die">-die: Dead Instruction Elimination</a>
948</h3>
949<div>
950  <p>
951  Dead instruction elimination performs a single pass over the function,
952  removing instructions that are obviously dead.
953  </p>
954</div>
955
956<!-------------------------------------------------------------------------- -->
957<h3>
958  <a name="dse">-dse: Dead Store Elimination</a>
959</h3>
960<div>
961  <p>
962  A trivial dead store elimination that only considers basic-block local
963  redundant stores.
964  </p>
965</div>
966
967<!-------------------------------------------------------------------------- -->
968<h3>
969  <a name="functionattrs">-functionattrs: Deduce function attributes</a>
970</h3>
971<div>
972  <p>A simple interprocedural pass which walks the call-graph, looking for
973  functions which do not access or only read non-local memory, and marking them
974  readnone/readonly.  In addition, it marks function arguments (of pointer type)
975  'nocapture' if a call to the function does not create any copies of the pointer
976  value that outlive the call. This more or less means that the pointer is only
977  dereferenced, and not returned from the function or stored in a global.
978  This pass is implemented as a bottom-up traversal of the call-graph.
979  </p>
980</div>
981
982<!-------------------------------------------------------------------------- -->
983<h3>
984  <a name="globaldce">-globaldce: Dead Global Elimination</a>
985</h3>
986<div>
987  <p>
988  This transform is designed to eliminate unreachable internal globals from the
989  program.  It uses an aggressive algorithm, searching out globals that are
990  known to be alive.  After it finds all of the globals which are needed, it
991  deletes whatever is left over.  This allows it to delete recursive chunks of
992  the program which are unreachable.
993  </p>
994</div>
995
996<!-------------------------------------------------------------------------- -->
997<h3>
998  <a name="globalopt">-globalopt: Global Variable Optimizer</a>
999</h3>
1000<div>
1001  <p>
1002  This pass transforms simple global variables that never have their address
1003  taken.  If obviously true, it marks read/write globals as constant, deletes
1004  variables only stored to, etc.
1005  </p>
1006</div>
1007
1008<!-------------------------------------------------------------------------- -->
1009<h3>
1010  <a name="gvn">-gvn: Global Value Numbering</a>
1011</h3>
1012<div>
1013  <p>
1014  This pass performs global value numbering to eliminate fully and partially
1015  redundant instructions.  It also performs redundant load elimination.
1016  </p>
1017</div>
1018
1019<!-------------------------------------------------------------------------- -->
1020<h3>
1021  <a name="indvars">-indvars: Canonicalize Induction Variables</a>
1022</h3>
1023<div>
1024  <p>
1025  This transformation analyzes and transforms the induction variables (and
1026  computations derived from them) into simpler forms suitable for subsequent
1027  analysis and transformation.
1028  </p>
1029
1030  <p>
1031  This transformation makes the following changes to each loop with an
1032  identifiable induction variable:
1033  </p>
1034
1035  <ol>
1036    <li>All loops are transformed to have a <em>single</em> canonical
1037        induction variable which starts at zero and steps by one.</li>
1038    <li>The canonical induction variable is guaranteed to be the first PHI node
1039        in the loop header block.</li>
1040    <li>Any pointer arithmetic recurrences are raised to use array
1041        subscripts.</li>
1042  </ol>
1043
1044  <p>
1045  If the trip count of a loop is computable, this pass also makes the following
1046  changes:
1047  </p>
1048
1049  <ol>
1050    <li>The exit condition for the loop is canonicalized to compare the
1051        induction value against the exit value.  This turns loops like:
1052        <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
1053        into
1054        <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
1055    <li>Any use outside of the loop of an expression derived from the indvar
1056        is changed to compute the derived value outside of the loop, eliminating
1057        the dependence on the exit value of the induction variable.  If the only
1058        purpose of the loop is to compute the exit value of some derived
1059        expression, this transformation will make the loop dead.</li>
1060  </ol>
1061
1062  <p>
1063  This transformation should be followed by strength reduction after all of the
1064  desired loop transformations have been performed.  Additionally, on targets
1065  where it is profitable, the loop could be transformed to count down to zero
1066  (the "do loop" optimization).
1067  </p>
1068</div>
1069
1070<!-------------------------------------------------------------------------- -->
1071<h3>
1072  <a name="inline">-inline: Function Integration/Inlining</a>
1073</h3>
1074<div>
1075  <p>
1076  Bottom-up inlining of functions into callees.
1077  </p>
1078</div>
1079
1080<!-------------------------------------------------------------------------- -->
1081<h3>
1082  <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
1083</h3>
1084<div>
1085  <p>
1086  This pass instruments the specified program with counters for edge profiling.
1087  Edge profiling can give a reasonable approximation of the hot paths through a
1088  program, and is used for a wide variety of program transformations.
1089  </p>
1090
1091  <p>
1092  Note that this implementation is very naïve.  It inserts a counter for
1093  <em>every</em> edge in the program, instead of using control flow information
1094  to prune the number of counters inserted.
1095  </p>
1096</div>
1097
1098<!-------------------------------------------------------------------------- -->
1099<h3>
1100  <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
1101</h3>
1102<div>
1103  <p>This pass instruments the specified program with counters for edge profiling.
1104  Edge profiling can give a reasonable approximation of the hot paths through a
1105  program, and is used for a wide variety of program transformations.
1106  </p>
1107</div>
1108
1109<!-------------------------------------------------------------------------- -->
1110<h3>
1111  <a name="instcombine">-instcombine: Combine redundant instructions</a>
1112</h3>
1113<div>
1114  <p>
1115  Combine instructions to form fewer, simple
1116  instructions.  This pass does not modify the CFG This pass is where algebraic
1117  simplification happens.
1118  </p>
1119
1120  <p>
1121  This pass combines things like:
1122  </p>
1123
1124<blockquote><pre
1125>%Y = add i32 %X, 1
1126%Z = add i32 %Y, 1</pre></blockquote>
1127
1128  <p>
1129  into:
1130  </p>
1131
1132<blockquote><pre
1133>%Z = add i32 %X, 2</pre></blockquote>
1134
1135  <p>
1136  This is a simple worklist driven algorithm.
1137  </p>
1138
1139  <p>
1140  This pass guarantees that the following canonicalizations are performed on
1141  the program:
1142  </p>
1143
1144  <ul>
1145    <li>If a binary operator has a constant operand, it is moved to the right-
1146        hand side.</li>
1147    <li>Bitwise operators with constant operands are always grouped so that
1148        shifts are performed first, then <code>or</code>s, then
1149        <code>and</code>s, then <code>xor</code>s.</li>
1150    <li>Compare instructions are converted from <code>&lt;</code>,
1151        <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1152        <code>=</code> or <code>≠</code> if possible.</li>
1153    <li>All <code>cmp</code> instructions on boolean values are replaced with
1154        logical operations.</li>
1155    <li><code>add <var>X</var>, <var>X</var></code> is represented as
1156        <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1157    <li>Multiplies with a constant power-of-two argument are transformed into
1158        shifts.</li>
1159    <li>… etc.</li>
1160  </ul>
1161</div>
1162
1163<!-------------------------------------------------------------------------- -->
1164<h3>
1165  <a name="internalize">-internalize: Internalize Global Symbols</a>
1166</h3>
1167<div>
1168  <p>
1169  This pass loops over all of the functions in the input module, looking for a
1170  main function.  If a main function is found, all other functions and all
1171  global variables with initializers are marked as internal.
1172  </p>
1173</div>
1174
1175<!-------------------------------------------------------------------------- -->
1176<h3>
1177  <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
1178</h3>
1179<div>
1180  <p>
1181  This pass implements an <em>extremely</em> simple interprocedural constant
1182  propagation pass.  It could certainly be improved in many different ways,
1183  like using a worklist.  This pass makes arguments dead, but does not remove
1184  them.  The existing dead argument elimination pass should be run after this
1185  to clean up the mess.
1186  </p>
1187</div>
1188
1189<!-------------------------------------------------------------------------- -->
1190<h3>
1191  <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
1192</h3>
1193<div>
1194  <p>
1195  An interprocedural variant of <a href="#sccp">Sparse Conditional Constant
1196  Propagation</a>.
1197  </p>
1198</div>
1199
1200<!-------------------------------------------------------------------------- -->
1201<h3>
1202  <a name="jump-threading">-jump-threading: Jump Threading</a>
1203</h3>
1204<div>
1205  <p>
1206  Jump threading tries to find distinct threads of control flow running through
1207  a basic block. This pass looks at blocks that have multiple predecessors and
1208  multiple successors.  If one or more of the predecessors of the block can be
1209  proven to always cause a jump to one of the successors, we forward the edge
1210  from the predecessor to the successor by duplicating the contents of this
1211  block.
1212  </p>
1213  <p>
1214  An example of when this can occur is code like this:
1215  </p>
1216
1217  <pre
1218>if () { ...
1219  X = 4;
1220}
1221if (X &lt; 3) {</pre>
1222
1223  <p>
1224  In this case, the unconditional branch at the end of the first if can be
1225  revectored to the false side of the second if.
1226  </p>
1227</div>
1228
1229<!-------------------------------------------------------------------------- -->
1230<h3>
1231  <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
1232</h3>
1233<div>
1234  <p>
1235  This pass transforms loops by placing phi nodes at the end of the loops for
1236  all values that are live across the loop boundary.  For example, it turns
1237  the left into the right code:
1238  </p>
1239
1240  <pre
1241>for (...)                for (...)
1242  if (c)                   if (c)
1243    X1 = ...                 X1 = ...
1244  else                     else
1245    X2 = ...                 X2 = ...
1246  X3 = phi(X1, X2)         X3 = phi(X1, X2)
1247... = X3 + 4              X4 = phi(X3)
1248                          ... = X4 + 4</pre>
1249
1250  <p>
1251  This is still valid LLVM; the extra phi nodes are purely redundant, and will
1252  be trivially eliminated by <code>InstCombine</code>.  The major benefit of
1253  this transformation is that it makes many other loop optimizations, such as
1254  LoopUnswitching, simpler.
1255  </p>
1256</div>
1257
1258<!-------------------------------------------------------------------------- -->
1259<h3>
1260  <a name="licm">-licm: Loop Invariant Code Motion</a>
1261</h3>
1262<div>
1263  <p>
1264  This pass performs loop invariant code motion, attempting to remove as much
1265  code from the body of a loop as possible.  It does this by either hoisting
1266  code into the preheader block, or by sinking code to the exit blocks if it is
1267  safe.  This pass also promotes must-aliased memory locations in the loop to
1268  live in registers, thus hoisting and sinking "invariant" loads and stores.
1269  </p>
1270
1271  <p>
1272  This pass uses alias analysis for two purposes:
1273  </p>
1274
1275  <ul>
1276    <li>Moving loop invariant loads and calls out of loops.  If we can determine
1277        that a load or call inside of a loop never aliases anything stored to,
1278        we can hoist it or sink it like any other instruction.</li>
1279    <li>Scalar Promotion of Memory - If there is a store instruction inside of
1280        the loop, we try to move the store to happen AFTER the loop instead of
1281        inside of the loop.  This can only happen if a few conditions are true:
1282        <ul>
1283          <li>The pointer stored through is loop invariant.</li>
1284          <li>There are no stores or loads in the loop which <em>may</em> alias
1285              the pointer.  There are no calls in the loop which mod/ref the
1286              pointer.</li>
1287        </ul>
1288        If these conditions are true, we can promote the loads and stores in the
1289        loop of the pointer to use a temporary alloca'd variable.  We then use
1290        the mem2reg functionality to construct the appropriate SSA form for the
1291        variable.</li>
1292  </ul>
1293</div>
1294
1295<!-------------------------------------------------------------------------- -->
1296<h3>
1297  <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
1298</h3>
1299<div>
1300  <p>
1301  This file implements the Dead Loop Deletion Pass.  This pass is responsible
1302  for eliminating loops with non-infinite computable trip counts that have no
1303  side effects or volatile instructions, and do not contribute to the
1304  computation of the function's return value.
1305  </p>
1306</div>
1307
1308<!-------------------------------------------------------------------------- -->
1309<h3>
1310  <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
1311</h3>
1312<div>
1313  <p>
1314  A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to
1315  extract each top-level loop into its own new function. If the loop is the
1316  <em>only</em> loop in a given function, it is not touched. This is a pass most
1317  useful for debugging via bugpoint.
1318  </p>
1319</div>
1320
1321<!-------------------------------------------------------------------------- -->
1322<h3>
1323  <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
1324</h3>
1325<div>
1326  <p>
1327  Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1328  this pass extracts one natural loop from the program into a function if it
1329  can. This is used by bugpoint.
1330  </p>
1331</div>
1332
1333<!-------------------------------------------------------------------------- -->
1334<h3>
1335  <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
1336</h3>
1337<div>
1338  <p>
1339  This pass performs a strength reduction on array references inside loops that
1340  have as one or more of their components the loop induction variable.  This is
1341  accomplished by creating a new value to hold the initial value of the array
1342  access for the first iteration, and then creating a new GEP instruction in
1343  the loop to increment the value by the appropriate amount.
1344  </p>
1345</div>
1346
1347<!-------------------------------------------------------------------------- -->
1348<h3>
1349  <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
1350</h3>
1351<div>
1352  <p>A simple loop rotation transformation.</p>
1353</div>
1354
1355<!-------------------------------------------------------------------------- -->
1356<h3>
1357  <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
1358</h3>
1359<div>
1360  <p>
1361  This pass performs several transformations to transform natural loops into a
1362  simpler form, which makes subsequent analyses and transformations simpler and
1363  more effective.
1364  </p>
1365
1366  <p>
1367  Loop pre-header insertion guarantees that there is a single, non-critical
1368  entry edge from outside of the loop to the loop header.  This simplifies a
1369  number of analyses and transformations, such as LICM.
1370  </p>
1371
1372  <p>
1373  Loop exit-block insertion guarantees that all exit blocks from the loop
1374  (blocks which are outside of the loop that have predecessors inside of the
1375  loop) only have predecessors from inside of the loop (and are thus dominated
1376  by the loop header).  This simplifies transformations such as store-sinking
1377  that are built into LICM.
1378  </p>
1379
1380  <p>
1381  This pass also guarantees that loops will have exactly one backedge.
1382  </p>
1383
1384  <p>
1385  Note that the simplifycfg pass will clean up blocks which are split out but
1386  end up being unnecessary, so usage of this pass should not pessimize
1387  generated code.
1388  </p>
1389
1390  <p>
1391  This pass obviously modifies the CFG, but updates loop information and
1392  dominator information.
1393  </p>
1394</div>
1395
1396<!-------------------------------------------------------------------------- -->
1397<h3>
1398  <a name="loop-unroll">-loop-unroll: Unroll loops</a>
1399</h3>
1400<div>
1401  <p>
1402  This pass implements a simple loop unroller.  It works best when loops have
1403  been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1404  allowing it to determine the trip counts of loops easily.
1405  </p>
1406</div>
1407
1408<!-------------------------------------------------------------------------- -->
1409<h3>
1410  <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
1411</h3>
1412<div>
1413  <p>
1414  This pass transforms loops that contain branches on loop-invariant conditions
1415  to have multiple loops.  For example, it turns the left into the right code:
1416  </p>
1417
1418  <pre
1419>for (...)                  if (lic)
1420  A                          for (...)
1421  if (lic)                     A; B; C
1422    B                      else
1423  C                          for (...)
1424                               A; C</pre>
1425
1426  <p>
1427  This can increase the size of the code exponentially (doubling it every time
1428  a loop is unswitched) so we only unswitch if the resultant code will be
1429  smaller than a threshold.
1430  </p>
1431
1432  <p>
1433  This pass expects LICM to be run before it to hoist invariant conditions out
1434  of the loop, to make the unswitching opportunity obvious.
1435  </p>
1436</div>
1437
1438<!-------------------------------------------------------------------------- -->
1439<h3>
1440  <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
1441</h3>
1442<div>
1443  <p>
1444  This pass lowers atomic intrinsics to non-atomic form for use in a known
1445  non-preemptible environment.
1446  </p>
1447
1448  <p>
1449  The pass does not verify that the environment is non-preemptible (in
1450  general this would require knowledge of the entire call graph of the
1451  program including any libraries which may not be available in bitcode form);
1452  it simply lowers every atomic intrinsic.
1453  </p>
1454</div>
1455
1456<!-------------------------------------------------------------------------- -->
1457<h3>
1458  <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
1459</h3>
1460<div>
1461  <p>
1462  This transformation is designed for use by code generators which do not yet
1463  support stack unwinding.  This pass supports two models of exception handling
1464  lowering, the 'cheap' support and the 'expensive' support.
1465  </p>
1466
1467  <p>
1468  'Cheap' exception handling support gives the program the ability to execute
1469  any program which does not "throw an exception", by turning 'invoke'
1470  instructions into calls and by turning 'unwind' instructions into calls to
1471  abort().  If the program does dynamically use the unwind instruction, the
1472  program will print a message then abort.
1473  </p>
1474
1475  <p>
1476  'Expensive' exception handling support gives the full exception handling
1477  support to the program at the cost of making the 'invoke' instruction
1478  really expensive.  It basically inserts setjmp/longjmp calls to emulate the
1479  exception handling as necessary.
1480  </p>
1481
1482  <p>
1483  Because the 'expensive' support slows down programs a lot, and EH is only
1484  used for a subset of the programs, it must be specifically enabled by the
1485  <tt>-enable-correct-eh-support</tt> option.
1486  </p>
1487
1488  <p>
1489  Note that after this pass runs the CFG is not entirely accurate (exceptional
1490  control flow edges are not correct anymore) so only very simple things should
1491  be done after the lowerinvoke pass has run (like generation of native code).
1492  This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1493  support the invoke instruction yet" lowering pass.
1494  </p>
1495</div>
1496
1497<!-------------------------------------------------------------------------- -->
1498<h3>
1499  <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
1500</h3>
1501<div>
1502  <p>
1503  Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1504  allows targets to get away with not implementing the switch instruction until
1505  it is convenient.
1506  </p>
1507</div>
1508
1509<!-------------------------------------------------------------------------- -->
1510<h3>
1511  <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
1512</h3>
1513<div>
1514  <p>
1515  This file promotes memory references to be register references.  It promotes
1516  <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1517  <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
1518  frontiers to place <tt>phi</tt> nodes, then traversing the function in
1519  depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1520  appropriate. This is just the standard SSA construction algorithm to construct
1521  "pruned" SSA form.
1522  </p>
1523</div>
1524
1525<!-------------------------------------------------------------------------- -->
1526<h3>
1527  <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
1528</h3>
1529<div>
1530  <p>
1531  This pass performs various transformations related to eliminating memcpy
1532  calls, or transforming sets of stores into memset's.
1533  </p>
1534</div>
1535
1536<!-------------------------------------------------------------------------- -->
1537<h3>
1538  <a name="mergefunc">-mergefunc: Merge Functions</a>
1539</h3>
1540<div>
1541  <p>This pass looks for equivalent functions that are mergable and folds them.
1542
1543  A hash is computed from the function, based on its type and number of
1544  basic blocks.
1545
1546  Once all hashes are computed, we perform an expensive equality comparison
1547  on each function pair. This takes n^2/2 comparisons per bucket, so it's
1548  important that the hash function be high quality. The equality comparison
1549  iterates through each instruction in each basic block.
1550
1551  When a match is found the functions are folded. If both functions are
1552  overridable, we move the functionality into a new internal function and
1553  leave two overridable thunks to it.
1554  </p>
1555</div>
1556
1557<!-------------------------------------------------------------------------- -->
1558<h3>
1559  <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
1560</h3>
1561<div>
1562  <p>
1563  Ensure that functions have at most one <tt>ret</tt> instruction in them.
1564  Additionally, it keeps track of which node is the new exit node of the CFG.
1565  </p>
1566</div>
1567
1568<!-------------------------------------------------------------------------- -->
1569<h3>
1570  <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
1571</h3>
1572<div>
1573  <p>This pass performs partial inlining, typically by inlining an if
1574  statement that surrounds the body of the function.
1575  </p>
1576</div>
1577
1578<!-------------------------------------------------------------------------- -->
1579<h3>
1580  <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
1581</h3>
1582<div>
1583  <p>
1584  This file implements a simple interprocedural pass which walks the call-graph,
1585  turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1586  only if the callee cannot throw an exception. It implements this as a
1587  bottom-up traversal of the call-graph.
1588  </p>
1589</div>
1590
1591<!-------------------------------------------------------------------------- -->
1592<h3>
1593  <a name="reassociate">-reassociate: Reassociate expressions</a>
1594</h3>
1595<div>
1596  <p>
1597  This pass reassociates commutative expressions in an order that is designed
1598  to promote better constant propagation, GCSE, LICM, PRE, etc.
1599  </p>
1600
1601  <p>
1602  For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1603  </p>
1604
1605  <p>
1606  In the implementation of this algorithm, constants are assigned rank = 0,
1607  function arguments are rank = 1, and other values are assigned ranks
1608  corresponding to the reverse post order traversal of current function
1609  (starting at 2), which effectively gives values in deep loops higher rank
1610  than values not in loops.
1611  </p>
1612</div>
1613
1614<!-------------------------------------------------------------------------- -->
1615<h3>
1616  <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
1617</h3>
1618<div>
1619  <p>
1620  This file demotes all registers to memory references.  It is intented to be
1621  the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
1622  <tt>load</tt> instructions, the only values live across basic blocks are
1623  <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1624  <tt>phi</tt> nodes. It is intended that this should make CFG hacking much
1625  easier. To make later hacking easier, the entry block is split into two, such
1626  that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1627  entry block.
1628  </p>
1629</div>
1630
1631<!-------------------------------------------------------------------------- -->
1632<h3>
1633  <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
1634</h3>
1635<div>
1636  <p>
1637  The well-known scalar replacement of aggregates transformation.  This
1638  transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1639  or array) into individual <tt>alloca</tt> instructions for each member if
1640  possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
1641  instructions into nice clean scalar SSA form.
1642  </p>
1643
1644  <p>
1645  This combines a simple scalar replacement of aggregates algorithm with the <a
1646  href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact,
1647  especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>,
1648  then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to
1649  promote works well.
1650  </p>
1651</div>
1652
1653<!-------------------------------------------------------------------------- -->
1654<h3>
1655  <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
1656</h3>
1657<div>
1658  <p>
1659  Sparse conditional constant propagation and merging, which can be summarized
1660  as:
1661  </p>
1662
1663  <ol>
1664    <li>Assumes values are constant unless proven otherwise</li>
1665    <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1666    <li>Proves values to be constant, and replaces them with constants</li>
1667    <li>Proves conditional branches to be unconditional</li>
1668  </ol>
1669
1670  <p>
1671  Note that this pass has a habit of making definitions be dead.  It is a good
1672  idea to to run a DCE pass sometime after running this pass.
1673  </p>
1674</div>
1675
1676<!-------------------------------------------------------------------------- -->
1677<h3>
1678  <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
1679</h3>
1680<div>
1681  <p>
1682  Applies a variety of small optimizations for calls to specific well-known
1683  function calls (e.g. runtime library functions). For example, a call
1684   <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be
1685   transformed into simply <tt>return 3</tt>.
1686  </p>
1687</div>
1688
1689<!-------------------------------------------------------------------------- -->
1690<h3>
1691  <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
1692</h3>
1693<div>
1694  <p>
1695  Performs dead code elimination and basic block merging. Specifically:
1696  </p>
1697
1698  <ol>
1699    <li>Removes basic blocks with no predecessors.</li>
1700    <li>Merges a basic block into its predecessor if there is only one and the
1701        predecessor only has one successor.</li>
1702    <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1703    <li>Eliminates a basic block that only contains an unconditional
1704        branch.</li>
1705  </ol>
1706</div>
1707
1708<!-------------------------------------------------------------------------- -->
1709<h3>
1710  <a name="sink">-sink: Code sinking</a>
1711</h3>
1712<div>
1713  <p>This pass moves instructions into successor blocks, when possible, so that
1714 they aren't executed on paths where their results aren't needed.
1715  </p>
1716</div>
1717
1718<!-------------------------------------------------------------------------- -->
1719<h3>
1720  <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
1721</h3>
1722<div>
1723  <p>
1724  This pass finds functions that return a struct (using a pointer to the struct
1725  as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1726  replaces them with a new function that simply returns each of the elements of
1727  that struct (using multiple return values).
1728  </p>
1729
1730  <p>
1731  This pass works under a number of conditions:
1732  </p>
1733
1734  <ul>
1735  <li>The returned struct must not contain other structs</li>
1736  <li>The returned struct must only be used to load values from</li>
1737  <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1738  </ul>
1739</div>
1740
1741<!-------------------------------------------------------------------------- -->
1742<h3>
1743  <a name="strip">-strip: Strip all symbols from a module</a>
1744</h3>
1745<div>
1746  <p>
1747  performs code stripping. this transformation can delete:
1748  </p>
1749
1750  <ol>
1751    <li>names for virtual registers</li>
1752    <li>symbols for internal globals and functions</li>
1753    <li>debug information</li>
1754  </ol>
1755
1756  <p>
1757  note that this transformation makes code much less readable, so it should
1758  only be used in situations where the <tt>strip</tt> utility would be used,
1759  such as reducing code size or making it harder to reverse engineer code.
1760  </p>
1761</div>
1762
1763<!-------------------------------------------------------------------------- -->
1764<h3>
1765  <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
1766</h3>
1767<div>
1768  <p>
1769  performs code stripping. this transformation can delete:
1770  </p>
1771
1772  <ol>
1773    <li>names for virtual registers</li>
1774    <li>symbols for internal globals and functions</li>
1775    <li>debug information</li>
1776  </ol>
1777
1778  <p>
1779  note that this transformation makes code much less readable, so it should
1780  only be used in situations where the <tt>strip</tt> utility would be used,
1781  such as reducing code size or making it harder to reverse engineer code.
1782  </p>
1783</div>
1784
1785<!-------------------------------------------------------------------------- -->
1786<h3>
1787  <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
1788</h3>
1789<div>
1790  <p>
1791  This pass loops over all of the functions in the input module, looking for
1792  dead declarations and removes them. Dead declarations are declarations of
1793  functions for which no implementation is available (i.e., declarations for
1794  unused library functions).
1795  </p>
1796</div>
1797
1798<!-------------------------------------------------------------------------- -->
1799<h3>
1800  <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
1801</h3>
1802<div>
1803  <p>This pass implements code stripping. Specifically, it can delete:</p>
1804  <ul>
1805  <li>names for virtual registers</li>
1806  <li>symbols for internal globals and functions</li>
1807  <li>debug information</li>
1808  </ul>
1809  <p>
1810  Note that this transformation makes code much less readable, so it should
1811  only be used in situations where the 'strip' utility would be used, such as
1812  reducing code size or making it harder to reverse engineer code.
1813  </p>
1814</div>
1815
1816<!-------------------------------------------------------------------------- -->
1817<h3>
1818  <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
1819</h3>
1820<div>
1821  <p>This pass implements code stripping. Specifically, it can delete:</p>
1822  <ul>
1823  <li>names for virtual registers</li>
1824  <li>symbols for internal globals and functions</li>
1825  <li>debug information</li>
1826  </ul>
1827  <p>
1828  Note that this transformation makes code much less readable, so it should
1829  only be used in situations where the 'strip' utility would be used, such as
1830  reducing code size or making it harder to reverse engineer code.
1831  </p>
1832</div>
1833
1834<!-------------------------------------------------------------------------- -->
1835<h3>
1836  <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
1837</h3>
1838<div>
1839  <p>
1840  This file transforms calls of the current function (self recursion) followed
1841  by a return instruction with a branch to the entry of the function, creating
1842  a loop.  This pass also implements the following extensions to the basic
1843  algorithm:
1844  </p>
1845
1846  <ul>
1847  <li>Trivial instructions between the call and return do not prevent the
1848      transformation from taking place, though currently the analysis cannot
1849      support moving any really useful instructions (only dead ones).
1850  <li>This pass transforms functions that are prevented from being tail
1851      recursive by an associative expression to use an accumulator variable,
1852      thus compiling the typical naive factorial or <tt>fib</tt> implementation
1853      into efficient code.
1854  <li>TRE is performed if the function returns void, if the return
1855      returns the result returned by the call, or if the function returns a
1856      run-time constant on all exits from the function.  It is possible, though
1857      unlikely, that the return returns something else (like constant 0), and
1858      can still be TRE'd.  It can be TRE'd if <em>all other</em> return
1859      instructions in the function return the exact same value.
1860  <li>If it can prove that callees do not access theier caller stack frame,
1861      they are marked as eligible for tail call elimination (by the code
1862      generator).
1863  </ul>
1864</div>
1865
1866<!-------------------------------------------------------------------------- -->
1867<h3>
1868  <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
1869</h3>
1870<div>
1871  <p>
1872  This pass performs a limited form of tail duplication, intended to simplify
1873  CFGs by removing some unconditional branches.  This pass is necessary to
1874  straighten out loops created by the C front-end, but also is capable of
1875  making other code nicer.  After this pass is run, the CFG simplify pass
1876  should be run to clean up the mess.
1877  </p>
1878</div>
1879
1880</div>
1881
1882<!-- ======================================================================= -->
1883<h2><a name="utilities">Utility Passes</a></h2>
1884<div>
1885  <p>This section describes the LLVM Utility Passes.</p>
1886
1887<!-------------------------------------------------------------------------- -->
1888<h3>
1889  <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1890</h3>
1891<div>
1892  <p>
1893  Same as dead argument elimination, but deletes arguments to functions which
1894  are external.  This is only for use by <a
1895  href="Bugpoint.html">bugpoint</a>.</p>
1896</div>
1897
1898<!-------------------------------------------------------------------------- -->
1899<h3>
1900  <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
1901</h3>
1902<div>
1903  <p>
1904  This pass is used by bugpoint to extract all blocks from the module into their
1905  own functions.</p>
1906</div>
1907
1908<!-------------------------------------------------------------------------- -->
1909<h3>
1910  <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
1911</h3>
1912<div>
1913  <p>This is a little utility pass that gives instructions names, this is mostly
1914 useful when diffing the effect of an optimization because deleting an
1915 unnamed instruction can change all other instruction numbering, making the
1916 diff very noisy.
1917  </p>
1918</div>
1919
1920<!-------------------------------------------------------------------------- -->
1921<h3>
1922  <a name="preverify">-preverify: Preliminary module verification</a>
1923</h3>
1924<div>
1925  <p>
1926  Ensures that the module is in the form required by the <a
1927  href="#verifier">Module Verifier</a> pass.
1928  </p>
1929
1930  <p>
1931  Running the verifier runs this pass automatically, so there should be no need
1932  to use it directly.
1933  </p>
1934</div>
1935
1936<!-------------------------------------------------------------------------- -->
1937<h3>
1938  <a name="verify">-verify: Module Verifier</a>
1939</h3>
1940<div>
1941  <p>
1942  Verifies an LLVM IR code. This is useful to run after an optimization which is
1943  undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1944  emitting bitcode, and also that malformed bitcode is likely to make LLVM
1945  crash. All language front-ends are therefore encouraged to verify their output
1946  before performing optimizing transformations.
1947  </p>
1948
1949  <ul>
1950    <li>Both of a binary operator's parameters are of the same type.</li>
1951    <li>Verify that the indices of mem access instructions match other
1952        operands.</li>
1953    <li>Verify that arithmetic and other things are only performed on
1954        first-class types.  Verify that shifts and logicals only happen on
1955        integrals f.e.</li>
1956    <li>All of the constants in a switch statement are of the correct type.</li>
1957    <li>The code is in valid SSA form.</li>
1958    <li>It is illegal to put a label into any other type (like a structure) or
1959        to return one.</li>
1960    <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1961        invalid.</li>
1962    <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1963    <li>PHI nodes must be the first thing in a basic block, all grouped
1964        together.</li>
1965    <li>PHI nodes must have at least one entry.</li>
1966    <li>All basic blocks should only end with terminator insts, not contain
1967        them.</li>
1968    <li>The entry node to a function must not have predecessors.</li>
1969    <li>All Instructions must be embedded into a basic block.</li>
1970    <li>Functions cannot take a void-typed parameter.</li>
1971    <li>Verify that a function's argument list agrees with its declared
1972        type.</li>
1973    <li>It is illegal to specify a name for a void value.</li>
1974    <li>It is illegal to have a internal global value with no initializer.</li>
1975    <li>It is illegal to have a ret instruction that returns a value that does
1976        not agree with the function return value type.</li>
1977    <li>Function call argument types match the function prototype.</li>
1978    <li>All other things that are tested by asserts spread about the code.</li>
1979  </ul>
1980
1981  <p>
1982  Note that this does not provide full security verification (like Java), but
1983  instead just tries to ensure that code is well-formed.
1984  </p>
1985</div>
1986
1987<!-------------------------------------------------------------------------- -->
1988<h3>
1989  <a name="view-cfg">-view-cfg: View CFG of function</a>
1990</h3>
1991<div>
1992  <p>
1993  Displays the control flow graph using the GraphViz tool.
1994  </p>
1995</div>
1996
1997<!-------------------------------------------------------------------------- -->
1998<h3>
1999  <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
2000</h3>
2001<div>
2002  <p>
2003  Displays the control flow graph using the GraphViz tool, but omitting function
2004  bodies.
2005  </p>
2006</div>
2007
2008<!-------------------------------------------------------------------------- -->
2009<h3>
2010  <a name="view-dom">-view-dom: View dominance tree of function</a>
2011</h3>
2012<div>
2013  <p>
2014  Displays the dominator tree using the GraphViz tool.
2015  </p>
2016</div>
2017
2018<!-------------------------------------------------------------------------- -->
2019<h3>
2020  <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
2021</h3>
2022<div>
2023  <p>
2024  Displays the dominator tree using the GraphViz tool, but omitting function
2025  bodies.
2026  </p>
2027</div>
2028
2029<!-------------------------------------------------------------------------- -->
2030<h3>
2031  <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
2032</h3>
2033<div>
2034  <p>
2035  Displays the post dominator tree using the GraphViz tool.
2036  </p>
2037</div>
2038
2039<!-------------------------------------------------------------------------- -->
2040<h3>
2041  <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
2042</h3>
2043<div>
2044  <p>
2045  Displays the post dominator tree using the GraphViz tool, but omitting
2046  function bodies.
2047  </p>
2048</div>
2049
2050</div>
2051
2052<!-- *********************************************************************** -->
2053
2054<hr>
2055<address>
2056  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2057  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2058  <a href="http://validator.w3.org/check/referer"><img
2059  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2060
2061  <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
2062  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
2063  Last modified: $Date$
2064</address>
2065
2066</body>
2067</html>
2068