• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6  <title>TableGen Fundamentals</title>
7  <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<h1>TableGen Fundamentals</h1>
12
13<div>
14<ul>
15  <li><a href="#introduction">Introduction</a>
16  <ol>
17    <li><a href="#concepts">Basic concepts</a></li>
18    <li><a href="#example">An example record</a></li>
19    <li><a href="#running">Running TableGen</a></li>
20  </ol></li>
21  <li><a href="#syntax">TableGen syntax</a>
22  <ol>
23    <li><a href="#primitives">TableGen primitives</a>
24    <ol>
25      <li><a href="#comments">TableGen comments</a></li>
26      <li><a href="#types">The TableGen type system</a></li>
27      <li><a href="#values">TableGen values and expressions</a></li>
28    </ol></li>
29    <li><a href="#classesdefs">Classes and definitions</a>
30    <ol>
31      <li><a href="#valuedef">Value definitions</a></li>
32      <li><a href="#recordlet">'let' expressions</a></li>
33      <li><a href="#templateargs">Class template arguments</a></li>
34      <li><a href="#multiclass">Multiclass definitions and instances</a></li>
35    </ol></li>
36    <li><a href="#filescope">File scope entities</a>
37    <ol>
38      <li><a href="#include">File inclusion</a></li>
39      <li><a href="#globallet">'let' expressions</a></li>
40      <li><a href="#foreach">'foreach' blocks</a></li>
41    </ol></li>
42  </ol></li>
43  <li><a href="#backends">TableGen backends</a>
44  <ol>
45    <li><a href="#">todo</a></li>
46  </ol></li>
47</ul>
48</div>
49
50<div class="doc_author">
51  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
52</div>
53
54<!-- *********************************************************************** -->
55<h2><a name="introduction">Introduction</a></h2>
56<!-- *********************************************************************** -->
57
58<div>
59
60<p>TableGen's purpose is to help a human develop and maintain records of
61domain-specific information.  Because there may be a large number of these
62records, it is specifically designed to allow writing flexible descriptions and
63for common features of these records to be factored out.  This reduces the
64amount of duplication in the description, reduces the chance of error, and
65makes it easier to structure domain specific information.</p>
66
67<p>The core part of TableGen <a href="#syntax">parses a file</a>, instantiates
68the declarations, and hands the result off to a domain-specific "<a
69href="#backends">TableGen backend</a>" for processing.  The current major user
70of TableGen is the <a href="CodeGenerator.html">LLVM code generator</a>.</p>
71
72<p>Note that if you work on TableGen much, and use emacs or vim, that you can
73find an emacs "TableGen mode" and a vim language file in the
74<tt>llvm/utils/emacs</tt> and <tt>llvm/utils/vim</tt> directories of your LLVM
75distribution, respectively.</p>
76
77<!-- ======================================================================= -->
78<h3><a name="concepts">Basic concepts</a></h3>
79
80<div>
81
82<p>TableGen files consist of two key parts: 'classes' and 'definitions', both
83of which are considered 'records'.</p>
84
85<p><b>TableGen records</b> have a unique name, a list of values, and a list of
86superclasses.  The list of values is the main data that TableGen builds for each
87record; it is this that holds the domain specific information for the
88application.  The interpretation of this data is left to a specific <a
89href="#backends">TableGen backend</a>, but the structure and format rules are
90taken care of and are fixed by TableGen.</p>
91
92<p><b>TableGen definitions</b> are the concrete form of 'records'.  These
93generally do not have any undefined values, and are marked with the
94'<tt>def</tt>' keyword.</p>
95
96<p><b>TableGen classes</b> are abstract records that are used to build and
97describe other records.  These 'classes' allow the end-user to build
98abstractions for either the domain they are targeting (such as "Register",
99"RegisterClass", and "Instruction" in the LLVM code generator) or for the
100implementor to help factor out common properties of records (such as "FPInst",
101which is used to represent floating point instructions in the X86 backend).
102TableGen keeps track of all of the classes that are used to build up a
103definition, so the backend can find all definitions of a particular class, such
104as "Instruction".</p>
105
106<p><b>TableGen multiclasses</b> are groups of abstract records that are
107instantiated all at once.  Each instantiation can result in multiple
108TableGen definitions.  If a multiclass inherits from another multiclass,
109the definitions in the sub-multiclass become part of the current
110multiclass, as if they were declared in the current multiclass.</p>
111
112</div>
113
114<!-- ======================================================================= -->
115<h3><a name="example">An example record</a></h3>
116
117<div>
118
119<p>With no other arguments, TableGen parses the specified file and prints out
120all of the classes, then all of the definitions.  This is a good way to see what
121the various definitions expand to fully.  Running this on the <tt>X86.td</tt>
122file prints this (at the time of this writing):</p>
123
124<div class="doc_code">
125<pre>
126...
127<b>def</b> ADD32rr {   <i>// Instruction X86Inst I</i>
128  <b>string</b> Namespace = "X86";
129  <b>dag</b> OutOperandList = (outs GR32:$dst);
130  <b>dag</b> InOperandList = (ins GR32:$src1, GR32:$src2);
131  <b>string</b> AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
132  <b>list</b>&lt;dag&gt; Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
133  <b>list</b>&lt;Register&gt; Uses = [];
134  <b>list</b>&lt;Register&gt; Defs = [EFLAGS];
135  <b>list</b>&lt;Predicate&gt; Predicates = [];
136  <b>int</b> CodeSize = 3;
137  <b>int</b> AddedComplexity = 0;
138  <b>bit</b> isReturn = 0;
139  <b>bit</b> isBranch = 0;
140  <b>bit</b> isIndirectBranch = 0;
141  <b>bit</b> isBarrier = 0;
142  <b>bit</b> isCall = 0;
143  <b>bit</b> canFoldAsLoad = 0;
144  <b>bit</b> mayLoad = 0;
145  <b>bit</b> mayStore = 0;
146  <b>bit</b> isImplicitDef = 0;
147  <b>bit</b> isConvertibleToThreeAddress = 1;
148  <b>bit</b> isCommutable = 1;
149  <b>bit</b> isTerminator = 0;
150  <b>bit</b> isReMaterializable = 0;
151  <b>bit</b> isPredicable = 0;
152  <b>bit</b> hasDelaySlot = 0;
153  <b>bit</b> usesCustomInserter = 0;
154  <b>bit</b> hasCtrlDep = 0;
155  <b>bit</b> isNotDuplicable = 0;
156  <b>bit</b> hasSideEffects = 0;
157  <b>bit</b> neverHasSideEffects = 0;
158  InstrItinClass Itinerary = NoItinerary;
159  <b>string</b> Constraints = "";
160  <b>string</b> DisableEncoding = "";
161  <b>bits</b>&lt;8&gt; Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
162  Format Form = MRMDestReg;
163  <b>bits</b>&lt;6&gt; FormBits = { 0, 0, 0, 0, 1, 1 };
164  ImmType ImmT = NoImm;
165  <b>bits</b>&lt;3&gt; ImmTypeBits = { 0, 0, 0 };
166  <b>bit</b> hasOpSizePrefix = 0;
167  <b>bit</b> hasAdSizePrefix = 0;
168  <b>bits</b>&lt;4&gt; Prefix = { 0, 0, 0, 0 };
169  <b>bit</b> hasREX_WPrefix = 0;
170  FPFormat FPForm = ?;
171  <b>bits</b>&lt;3&gt; FPFormBits = { 0, 0, 0 };
172}
173...
174</pre>
175</div>
176
177<p>This definition corresponds to a 32-bit register-register add instruction in
178the X86.  The string after the '<tt>def</tt>' string indicates the name of the
179record&mdash;"<tt>ADD32rr</tt>" in this case&mdash;and the comment at the end of
180the line indicates the superclasses of the definition.  The body of the record
181contains all of the data that TableGen assembled for the record, indicating that
182the instruction is part of the "X86" namespace, the pattern indicating how the
183the instruction should be emitted into the assembly file, that it is a
184two-address instruction, has a particular encoding, etc.  The contents and
185semantics of the information in the record is specific to the needs of the X86
186backend, and is only shown as an example.</p>
187
188<p>As you can see, a lot of information is needed for every instruction
189supported by the code generator, and specifying it all manually would be
190unmaintainable, prone to bugs, and tiring to do in the first place.  Because we
191are using TableGen, all of the information was derived from the following
192definition:</p>
193
194<div class="doc_code">
195<pre>
196let Defs = [EFLAGS],
197    isCommutable = 1,                  <i>// X = ADD Y,Z --&gt; X = ADD Z,Y</i>
198    isConvertibleToThreeAddress = 1 <b>in</b> <i>// Can transform into LEA.</i>
199def ADD32rr  : I&lt;0x01, MRMDestReg, (outs GR32:$dst),
200                                   (ins GR32:$src1, GR32:$src2),
201                 "add{l}\t{$src2, $dst|$dst, $src2}",
202                 [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]&gt;;
203</pre>
204</div>
205
206<p>This definition makes use of the custom class <tt>I</tt> (extended from the
207custom class <tt>X86Inst</tt>), which is defined in the X86-specific TableGen
208file, to factor out the common features that instructions of its class share.  A
209key feature of TableGen is that it allows the end-user to define the
210abstractions they prefer to use when describing their information.</p>
211
212<p>Each def record has a special entry called "NAME."  This is the
213name of the def ("ADD32rr" above).  In the general case def names can
214be formed from various kinds of string processing expressions and NAME
215resolves to the final value obtained after resolving all of those
216expressions.  The user may refer to NAME anywhere she desires to use
217the ultimate name of the def.  NAME should not be defined anywhere
218else in user code to avoid conflict problems.</p>
219
220</div>
221
222<!-- ======================================================================= -->
223<h3><a name="running">Running TableGen</a></h3>
224
225<div>
226
227<p>TableGen runs just like any other LLVM tool.  The first (optional) argument
228specifies the file to read.  If a filename is not specified, <tt>tblgen</tt>
229reads from standard input.</p>
230
231<p>To be useful, one of the <a href="#backends">TableGen backends</a> must be
232used.  These backends are selectable on the command line (type '<tt>tblgen
233-help</tt>' for a list).  For example, to get a list of all of the definitions
234that subclass a particular type (which can be useful for building up an enum
235list of these records), use the <tt>-print-enums</tt> option:</p>
236
237<div class="doc_code">
238<pre>
239$ tblgen X86.td -print-enums -class=Register
240AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
241ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
242MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
243R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
244R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
245RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
246XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
247XMM6, XMM7, XMM8, XMM9,
248
249$ tblgen X86.td -print-enums -class=Instruction
250ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
251ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
252ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
253ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
254ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...
255</pre>
256</div>
257
258<p>The default backend prints out all of the records, as described <a
259href="#example">above</a>.</p>
260
261<p>If you plan to use TableGen, you will most likely have to <a
262href="#backends">write a backend</a> that extracts the information specific to
263what you need and formats it in the appropriate way.</p>
264
265</div>
266
267</div>
268
269<!-- *********************************************************************** -->
270<h2><a name="syntax">TableGen syntax</a></h2>
271<!-- *********************************************************************** -->
272
273<div>
274
275<p>TableGen doesn't care about the meaning of data (that is up to the backend to
276define), but it does care about syntax, and it enforces a simple type system.
277This section describes the syntax and the constructs allowed in a TableGen file.
278</p>
279
280<!-- ======================================================================= -->
281<h3><a name="primitives">TableGen primitives</a></h3>
282
283<div>
284
285<!-- -------------------------------------------------------------------------->
286<h4><a name="comments">TableGen comments</a></h4>
287
288<div>
289
290<p>TableGen supports BCPL style "<tt>//</tt>" comments, which run to the end of
291the line, and it also supports <b>nestable</b> "<tt>/* */</tt>" comments.</p>
292
293</div>
294
295<!-- -------------------------------------------------------------------------->
296<h4>
297  <a name="types">The TableGen type system</a>
298</h4>
299
300<div>
301
302<p>TableGen files are strongly typed, in a simple (but complete) type-system.
303These types are used to perform automatic conversions, check for errors, and to
304help interface designers constrain the input that they allow.  Every <a
305href="#valuedef">value definition</a> is required to have an associated type.
306</p>
307
308<p>TableGen supports a mixture of very low-level types (such as <tt>bit</tt>)
309and very high-level types (such as <tt>dag</tt>).  This flexibility is what
310allows it to describe a wide range of information conveniently and compactly.
311The TableGen types are:</p>
312
313<dl>
314<dt><tt><b>bit</b></tt></dt>
315  <dd>A 'bit' is a boolean value that can hold either 0 or 1.</dd>
316
317<dt><tt><b>int</b></tt></dt>
318  <dd>The 'int' type represents a simple 32-bit integer value, such as 5.</dd>
319
320<dt><tt><b>string</b></tt></dt>
321  <dd>The 'string' type represents an ordered sequence of characters of
322  arbitrary length.</dd>
323
324<dt><tt><b>bits</b>&lt;n&gt;</tt></dt>
325  <dd>A 'bits' type is an arbitrary, but fixed, size integer that is broken up
326  into individual bits.  This type is useful because it can handle some bits
327  being defined while others are undefined.</dd>
328
329<dt><tt><b>list</b>&lt;ty&gt;</tt></dt>
330  <dd>This type represents a list whose elements are some other type.  The
331  contained type is arbitrary: it can even be another list type.</dd>
332
333<dt>Class type</dt>
334  <dd>Specifying a class name in a type context means that the defined value
335  must be a subclass of the specified class.  This is useful in conjunction with
336  the <b><tt>list</tt></b> type, for example, to constrain the elements of the
337  list to a common base class (e.g., a <tt><b>list</b>&lt;Register&gt;</tt> can
338  only contain definitions derived from the "<tt>Register</tt>" class).</dd>
339
340<dt><tt><b>dag</b></tt></dt>
341  <dd>This type represents a nestable directed graph of elements.</dd>
342
343<dt><tt><b>code</b></tt></dt>
344  <dd>This represents a big hunk of text.  This is lexically distinct from
345  string values because it doesn't require escapeing double quotes and other
346  common characters that occur in code.</dd>
347</dl>
348
349<p>To date, these types have been sufficient for describing things that
350TableGen has been used for, but it is straight-forward to extend this list if
351needed.</p>
352
353</div>
354
355<!-- -------------------------------------------------------------------------->
356<h4>
357  <a name="values">TableGen values and expressions</a>
358</h4>
359
360<div>
361
362<p>TableGen allows for a pretty reasonable number of different expression forms
363when building up values.  These forms allow the TableGen file to be written in a
364natural syntax and flavor for the application.  The current expression forms
365supported include:</p>
366
367<dl>
368<dt><tt>?</tt></dt>
369  <dd>uninitialized field</dd>
370<dt><tt>0b1001011</tt></dt>
371  <dd>binary integer value</dd>
372<dt><tt>07654321</tt></dt>
373  <dd>octal integer value (indicated by a leading 0)</dd>
374<dt><tt>7</tt></dt>
375  <dd>decimal integer value</dd>
376<dt><tt>0x7F</tt></dt>
377  <dd>hexadecimal integer value</dd>
378<dt><tt>"foo"</tt></dt>
379  <dd>string value</dd>
380<dt><tt>[{ ... }]</tt></dt>
381  <dd>code fragment</dd>
382<dt><tt>[ X, Y, Z ]&lt;type&gt;</tt></dt>
383  <dd>list value.  &lt;type&gt; is the type of the list
384element and is usually optional.  In rare cases,
385TableGen is unable to deduce the element type in
386which case the user must specify it explicitly.</dd>
387<dt><tt>{ a, b, c }</tt></dt>
388  <dd>initializer for a "bits&lt;3&gt;" value</dd>
389<dt><tt>value</tt></dt>
390  <dd>value reference</dd>
391<dt><tt>value{17}</tt></dt>
392  <dd>access to one bit of a value</dd>
393<dt><tt>value{15-17}</tt></dt>
394  <dd>access to multiple bits of a value</dd>
395<dt><tt>DEF</tt></dt>
396  <dd>reference to a record definition</dd>
397<dt><tt>CLASS&lt;val list&gt;</tt></dt>
398  <dd>reference to a new anonymous definition of CLASS with the specified
399      template arguments.</dd>
400<dt><tt>X.Y</tt></dt>
401  <dd>reference to the subfield of a value</dd>
402<dt><tt>list[4-7,17,2-3]</tt></dt>
403  <dd>A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from
404  it.  Elements may be included multiple times.</dd>
405<dt><tt>foreach &lt;var&gt; = &lt;list&gt; in { &lt;body&gt; }</tt></dt>
406<dt><tt>foreach &lt;var&gt; = &lt;list&gt; in &lt;def&gt;</tt></dt>
407  <dd> Replicate &lt;body&gt; or &lt;def&gt;, replacing instances of
408  &lt;var&gt; with each value in &lt;list&gt;.  &lt;var&gt; is scoped at the
409  level of the <tt>foreach</tt> loop and must not conflict with any other object
410  introduced in &lt;body&gt; or &lt;def&gt;.  Currently only <tt>def</tt>s are
411  expanded within &lt;body&gt;.
412  </dd>
413<dt><tt>(DEF a, b)</tt></dt>
414  <dd>a dag value.  The first element is required to be a record definition, the
415  remaining elements in the list may be arbitrary other values, including nested
416  `<tt>dag</tt>' values.</dd>
417<dt><tt>!strconcat(a, b)</tt></dt>
418  <dd>A string value that is the result of concatenating the 'a' and 'b'
419  strings.</dd>
420<dt><tt>str1#str2</tt></dt>
421  <dd>"#" (paste) is a shorthand for !strconcat.  It may concatenate
422  things that are not quoted strings, in which case an implicit
423  !cast&lt;string&gt; is done on the operand of the paste.</dd>
424<dt><tt>!cast&lt;type&gt;(a)</tt></dt>
425  <dd>A symbol of type <em>type</em> obtained by looking up the string 'a' in
426the symbol table.  If the type of 'a' does not match <em>type</em>, TableGen
427aborts with an error. !cast&lt;string&gt; is a special case in that the argument must
428be an object defined by a 'def' construct.</dd>
429<dt><tt>!subst(a, b, c)</tt></dt>
430  <dd>If 'a' and 'b' are of string type or are symbol references, substitute
431'b' for 'a' in 'c.'  This operation is analogous to $(subst) in GNU make.</dd>
432<dt><tt>!foreach(a, b, c)</tt></dt>
433  <dd>For each member 'b' of dag or list 'a' apply operator 'c.'  'b' is a
434dummy variable that should be declared as a member variable of an instantiated
435class.  This operation is analogous to $(foreach) in GNU make.</dd>
436<dt><tt>!head(a)</tt></dt>
437  <dd>The first element of list 'a.'</dd>
438<dt><tt>!tail(a)</tt></dt>
439  <dd>The 2nd-N elements of list 'a.'</dd>
440<dt><tt>!empty(a)</tt></dt>
441  <dd>An integer {0,1} indicating whether list 'a' is empty.</dd>
442<dt><tt>!if(a,b,c)</tt></dt>
443  <dd>'b' if the result of 'int' or 'bit' operator 'a' is nonzero,
444      'c' otherwise.</dd>
445<dt><tt>!eq(a,b)</tt></dt>
446  <dd>'bit 1' if string a is equal to string b, 0 otherwise.  This
447      only operates on string, int and bit objects.  Use !cast&lt;string&gt; to
448      compare other types of objects.</dd>
449</dl>
450
451<p>Note that all of the values have rules specifying how they convert to values
452for different types.  These rules allow you to assign a value like "<tt>7</tt>"
453to a "<tt>bits&lt;4&gt;</tt>" value, for example.</p>
454
455</div>
456
457</div>
458
459<!-- ======================================================================= -->
460<h3>
461  <a name="classesdefs">Classes and definitions</a>
462</h3>
463
464<div>
465
466<p>As mentioned in the <a href="#concepts">intro</a>, classes and definitions
467(collectively known as 'records') in TableGen are the main high-level unit of
468information that TableGen collects.  Records are defined with a <tt>def</tt> or
469<tt>class</tt> keyword, the record name, and an optional list of "<a
470href="#templateargs">template arguments</a>".  If the record has superclasses,
471they are specified as a comma separated list that starts with a colon character
472("<tt>:</tt>").  If <a href="#valuedef">value definitions</a> or <a
473href="#recordlet">let expressions</a> are needed for the class, they are
474enclosed in curly braces ("<tt>{}</tt>"); otherwise, the record ends with a
475semicolon.</p>
476
477<p>Here is a simple TableGen file:</p>
478
479<div class="doc_code">
480<pre>
481<b>class</b> C { <b>bit</b> V = 1; }
482<b>def</b> X : C;
483<b>def</b> Y : C {
484  <b>string</b> Greeting = "hello";
485}
486</pre>
487</div>
488
489<p>This example defines two definitions, <tt>X</tt> and <tt>Y</tt>, both of
490which derive from the <tt>C</tt> class.  Because of this, they both get the
491<tt>V</tt> bit value.  The <tt>Y</tt> definition also gets the Greeting member
492as well.</p>
493
494<p>In general, classes are useful for collecting together the commonality
495between a group of records and isolating it in a single place.  Also, classes
496permit the specification of default values for their subclasses, allowing the
497subclasses to override them as they wish.</p>
498
499<!---------------------------------------------------------------------------->
500<h4>
501  <a name="valuedef">Value definitions</a>
502</h4>
503
504<div>
505
506<p>Value definitions define named entries in records.  A value must be defined
507before it can be referred to as the operand for another value definition or
508before the value is reset with a <a href="#recordlet">let expression</a>.  A
509value is defined by specifying a <a href="#types">TableGen type</a> and a name.
510If an initial value is available, it may be specified after the type with an
511equal sign.  Value definitions require terminating semicolons.</p>
512
513</div>
514
515<!-- -------------------------------------------------------------------------->
516<h4>
517  <a name="recordlet">'let' expressions</a>
518</h4>
519
520<div>
521
522<p>A record-level let expression is used to change the value of a value
523definition in a record.  This is primarily useful when a superclass defines a
524value that a derived class or definition wants to override.  Let expressions
525consist of the '<tt>let</tt>' keyword followed by a value name, an equal sign
526("<tt>=</tt>"), and a new value.  For example, a new class could be added to the
527example above, redefining the <tt>V</tt> field for all of its subclasses:</p>
528
529<div class="doc_code">
530<pre>
531<b>class</b> D : C { let V = 0; }
532<b>def</b> Z : D;
533</pre>
534</div>
535
536<p>In this case, the <tt>Z</tt> definition will have a zero value for its "V"
537value, despite the fact that it derives (indirectly) from the <tt>C</tt> class,
538because the <tt>D</tt> class overrode its value.</p>
539
540</div>
541
542<!-- -------------------------------------------------------------------------->
543<h4>
544  <a name="templateargs">Class template arguments</a>
545</h4>
546
547<div>
548
549<p>TableGen permits the definition of parameterized classes as well as normal
550concrete classes.  Parameterized TableGen classes specify a list of variable
551bindings (which may optionally have defaults) that are bound when used.  Here is
552a simple example:</p>
553
554<div class="doc_code">
555<pre>
556<b>class</b> FPFormat&lt;<b>bits</b>&lt;3&gt; val&gt; {
557  <b>bits</b>&lt;3&gt; Value = val;
558}
559<b>def</b> NotFP      : FPFormat&lt;0&gt;;
560<b>def</b> ZeroArgFP  : FPFormat&lt;1&gt;;
561<b>def</b> OneArgFP   : FPFormat&lt;2&gt;;
562<b>def</b> OneArgFPRW : FPFormat&lt;3&gt;;
563<b>def</b> TwoArgFP   : FPFormat&lt;4&gt;;
564<b>def</b> CompareFP  : FPFormat&lt;5&gt;;
565<b>def</b> CondMovFP  : FPFormat&lt;6&gt;;
566<b>def</b> SpecialFP  : FPFormat&lt;7&gt;;
567</pre>
568</div>
569
570<p>In this case, template arguments are used as a space efficient way to specify
571a list of "enumeration values", each with a "<tt>Value</tt>" field set to the
572specified integer.</p>
573
574<p>The more esoteric forms of <a href="#values">TableGen expressions</a> are
575useful in conjunction with template arguments.  As an example:</p>
576
577<div class="doc_code">
578<pre>
579<b>class</b> ModRefVal&lt;<b>bits</b>&lt;2&gt; val&gt; {
580  <b>bits</b>&lt;2&gt; Value = val;
581}
582
583<b>def</b> None   : ModRefVal&lt;0&gt;;
584<b>def</b> Mod    : ModRefVal&lt;1&gt;;
585<b>def</b> Ref    : ModRefVal&lt;2&gt;;
586<b>def</b> ModRef : ModRefVal&lt;3&gt;;
587
588<b>class</b> Value&lt;ModRefVal MR&gt; {
589  <i>// Decode some information into a more convenient format, while providing
590  // a nice interface to the user of the "Value" class.</i>
591  <b>bit</b> isMod = MR.Value{0};
592  <b>bit</b> isRef = MR.Value{1};
593
594  <i>// other stuff...</i>
595}
596
597<i>// Example uses</i>
598<b>def</b> bork : Value&lt;Mod&gt;;
599<b>def</b> zork : Value&lt;Ref&gt;;
600<b>def</b> hork : Value&lt;ModRef&gt;;
601</pre>
602</div>
603
604<p>This is obviously a contrived example, but it shows how template arguments
605can be used to decouple the interface provided to the user of the class from the
606actual internal data representation expected by the class.  In this case,
607running <tt>tblgen</tt> on the example prints the following definitions:</p>
608
609<div class="doc_code">
610<pre>
611<b>def</b> bork {      <i>// Value</i>
612  <b>bit</b> isMod = 1;
613  <b>bit</b> isRef = 0;
614}
615<b>def</b> hork {      <i>// Value</i>
616  <b>bit</b> isMod = 1;
617  <b>bit</b> isRef = 1;
618}
619<b>def</b> zork {      <i>// Value</i>
620  <b>bit</b> isMod = 0;
621  <b>bit</b> isRef = 1;
622}
623</pre>
624</div>
625
626<p> This shows that TableGen was able to dig into the argument and extract a
627piece of information that was requested by the designer of the "Value" class.
628For more realistic examples, please see existing users of TableGen, such as the
629X86 backend.</p>
630
631</div>
632
633<!-- -------------------------------------------------------------------------->
634<h4>
635  <a name="multiclass">Multiclass definitions and instances</a>
636</h4>
637
638<div>
639
640<p>
641While classes with template arguments are a good way to factor commonality
642between two instances of a definition, multiclasses allow a convenient notation
643for defining multiple definitions at once (instances of implicitly constructed
644classes).  For example, consider an 3-address instruction set whose instructions
645come in two forms: "<tt>reg = reg op reg</tt>" and "<tt>reg = reg op imm</tt>"
646(e.g. SPARC). In this case, you'd like to specify in one place that this
647commonality exists, then in a separate place indicate what all the ops are.
648</p>
649
650<p>
651Here is an example TableGen fragment that shows this idea:
652</p>
653
654<div class="doc_code">
655<pre>
656<b>def</b> ops;
657<b>def</b> GPR;
658<b>def</b> Imm;
659<b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
660
661<b>multiclass</b> ri_inst&lt;<b>int</b> opc, <b>string</b> asmstr&gt; {
662  def _rr : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
663                 (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
664  def _ri : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
665                 (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
666}
667
668<i>// Instantiations of the ri_inst multiclass.</i>
669<b>defm</b> ADD : ri_inst&lt;0b111, "add"&gt;;
670<b>defm</b> SUB : ri_inst&lt;0b101, "sub"&gt;;
671<b>defm</b> MUL : ri_inst&lt;0b100, "mul"&gt;;
672...
673</pre>
674</div>
675
676<p>The name of the resultant definitions has the multidef fragment names
677   appended to them, so this defines <tt>ADD_rr</tt>, <tt>ADD_ri</tt>,
678   <tt>SUB_rr</tt>, etc.  A defm may inherit from multiple multiclasses,
679   instantiating definitions from each multiclass.  Using a multiclass
680   this way is exactly equivalent to instantiating the classes multiple
681   times yourself, e.g. by writing:</p>
682
683<div class="doc_code">
684<pre>
685<b>def</b> ops;
686<b>def</b> GPR;
687<b>def</b> Imm;
688<b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
689
690<b>class</b> rrinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
691  : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
692         (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
693
694<b>class</b> riinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
695  : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
696         (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
697
698<i>// Instantiations of the ri_inst multiclass.</i>
699<b>def</b> ADD_rr : rrinst&lt;0b111, "add"&gt;;
700<b>def</b> ADD_ri : riinst&lt;0b111, "add"&gt;;
701<b>def</b> SUB_rr : rrinst&lt;0b101, "sub"&gt;;
702<b>def</b> SUB_ri : riinst&lt;0b101, "sub"&gt;;
703<b>def</b> MUL_rr : rrinst&lt;0b100, "mul"&gt;;
704<b>def</b> MUL_ri : riinst&lt;0b100, "mul"&gt;;
705...
706</pre>
707</div>
708
709<p>
710A defm can also be used inside a multiclass providing several levels of
711multiclass instanciations.
712</p>
713
714<div class="doc_code">
715<pre>
716<b>class</b> Instruction&lt;bits&lt;4&gt; opc, string Name&gt; {
717  bits&lt;4&gt; opcode = opc;
718  string name = Name;
719}
720
721<b>multiclass</b> basic_r&lt;bits&lt;4&gt; opc&gt; {
722  <b>def</b> rr : Instruction&lt;opc, "rr"&gt;;
723  <b>def</b> rm : Instruction&lt;opc, "rm"&gt;;
724}
725
726<b>multiclass</b> basic_s&lt;bits&lt;4&gt; opc&gt; {
727  <b>defm</b> SS : basic_r&lt;opc&gt;;
728  <b>defm</b> SD : basic_r&lt;opc&gt;;
729  <b>def</b> X : Instruction&lt;opc, "x"&gt;;
730}
731
732<b>multiclass</b> basic_p&lt;bits&lt;4&gt; opc&gt; {
733  <b>defm</b> PS : basic_r&lt;opc&gt;;
734  <b>defm</b> PD : basic_r&lt;opc&gt;;
735  <b>def</b> Y : Instruction&lt;opc, "y"&gt;;
736}
737
738<b>defm</b> ADD : basic_s&lt;0xf&gt;, basic_p&lt;0xf&gt;;
739...
740
741<i>// Results</i>
742<b>def</b> ADDPDrm { ...
743<b>def</b> ADDPDrr { ...
744<b>def</b> ADDPSrm { ...
745<b>def</b> ADDPSrr { ...
746<b>def</b> ADDSDrm { ...
747<b>def</b> ADDSDrr { ...
748<b>def</b> ADDY { ...
749<b>def</b> ADDX { ...
750</pre>
751</div>
752
753<p>
754defm declarations can inherit from classes too, the
755rule to follow is that the class list must start after the
756last multiclass, and there must be at least one multiclass
757before them.
758</p>
759
760<div class="doc_code">
761<pre>
762<b>class</b> XD { bits&lt;4&gt; Prefix = 11; }
763<b>class</b> XS { bits&lt;4&gt; Prefix = 12; }
764
765<b>class</b> I&lt;bits<4&gt; op> {
766  bits&lt;4&gt; opcode = op;
767}
768
769<b>multiclass</b> R {
770  <b>def</b> rr : I&lt;4&gt;;
771  <b>def</b> rm : I&lt;2&gt;;
772}
773
774<b>multiclass</b> Y {
775  <b>defm</b> SS : R, XD;
776  <b>defm</b> SD : R, XS;
777}
778
779<b>defm</b> Instr : Y;
780
781<i>// Results</i>
782<b>def</b> InstrSDrm {
783  bits&lt;4&gt; opcode = { 0, 0, 1, 0 };
784  bits&lt;4&gt; Prefix = { 1, 1, 0, 0 };
785}
786...
787<b>def</b> InstrSSrr {
788  bits&lt;4&gt; opcode = { 0, 1, 0, 0 };
789  bits&lt;4&gt; Prefix = { 1, 0, 1, 1 };
790}
791</pre>
792</div>
793
794</div>
795
796</div>
797
798<!-- ======================================================================= -->
799<h3>
800  <a name="filescope">File scope entities</a>
801</h3>
802
803<div>
804
805<!-- -------------------------------------------------------------------------->
806<h4>
807  <a name="include">File inclusion</a>
808</h4>
809
810<div>
811<p>TableGen supports the '<tt>include</tt>' token, which textually substitutes
812the specified file in place of the include directive.  The filename should be
813specified as a double quoted string immediately after the '<tt>include</tt>'
814keyword.  Example:</p>
815
816<div class="doc_code">
817<pre>
818<b>include</b> "foo.td"
819</pre>
820</div>
821
822</div>
823
824<!-- -------------------------------------------------------------------------->
825<h4>
826  <a name="globallet">'let' expressions</a>
827</h4>
828
829<div>
830
831<p>"Let" expressions at file scope are similar to <a href="#recordlet">"let"
832expressions within a record</a>, except they can specify a value binding for
833multiple records at a time, and may be useful in certain other cases.
834File-scope let expressions are really just another way that TableGen allows the
835end-user to factor out commonality from the records.</p>
836
837<p>File-scope "let" expressions take a comma-separated list of bindings to
838apply, and one or more records to bind the values in.  Here are some
839examples:</p>
840
841<div class="doc_code">
842<pre>
843<b>let</b> isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 <b>in</b>
844  <b>def</b> RET : I&lt;0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]&gt;;
845
846<b>let</b> isCall = 1 <b>in</b>
847  <i>// All calls clobber the non-callee saved registers...</i>
848  <b>let</b> Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
849              MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
850              XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] <b>in</b> {
851    <b>def</b> CALLpcrel32 : Ii32&lt;0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
852                           "call\t${dst:call}", []&gt;;
853    <b>def</b> CALL32r     : I&lt;0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
854                        "call\t{*}$dst", [(X86call GR32:$dst)]&gt;;
855    <b>def</b> CALL32m     : I&lt;0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
856                        "call\t{*}$dst", []&gt;;
857  }
858</pre>
859</div>
860
861<p>File-scope "let" expressions are often useful when a couple of definitions
862need to be added to several records, and the records do not otherwise need to be
863opened, as in the case with the <tt>CALL*</tt> instructions above.</p>
864
865<p>It's also possible to use "let" expressions inside multiclasses, providing
866more ways to factor out commonality from the records, specially if using
867several levels of multiclass instanciations. This also avoids the need of using
868"let" expressions within subsequent records inside a multiclass.</p>
869
870<pre class="doc_code">
871<b>multiclass </b>basic_r&lt;bits&lt;4&gt; opc&gt; {
872  <b>let </b>Predicates = [HasSSE2] in {
873    <b>def </b>rr : Instruction&lt;opc, "rr"&gt;;
874    <b>def </b>rm : Instruction&lt;opc, "rm"&gt;;
875  }
876  <b>let </b>Predicates = [HasSSE3] in
877    <b>def </b>rx : Instruction&lt;opc, "rx"&gt;;
878}
879
880<b>multiclass </b>basic_ss&lt;bits&lt;4&gt; opc&gt; {
881  <b>let </b>IsDouble = 0 in
882    <b>defm </b>SS : basic_r&lt;opc&gt;;
883
884  <b>let </b>IsDouble = 1 in
885    <b>defm </b>SD : basic_r&lt;opc&gt;;
886}
887
888<b>defm </b>ADD : basic_ss&lt;0xf&gt;;
889</pre>
890</div>
891
892<!-- -------------------------------------------------------------------------->
893<h4>
894  <a name="foreach">Looping</a>
895</h4>
896
897<div>
898<p>TableGen supports the '<tt>foreach</tt>' block, which textually replicates
899the loop body, substituting iterator values for iterator references in the
900body.  Example:</p>
901
902<div class="doc_code">
903<pre>
904<b>foreach</b> i = [0, 1, 2, 3] in {
905  <b>def</b> R#i : Register&lt;...&gt;;
906  <b>def</b> F#i : Register&lt;...&gt;;
907}
908</pre>
909</div>
910
911<p>This will create objects <tt>R0</tt>, <tt>R1</tt>, <tt>R2</tt> and
912<tt>R3</tt>.  <tt>foreach</tt> blocks may be nested. If there is only
913one item in the body the braces may be elided:</p>
914
915<div class="doc_code">
916<pre>
917<b>foreach</b> i = [0, 1, 2, 3] in
918  <b>def</b> R#i : Register&lt;...&gt;;
919
920</pre>
921</div>
922
923</div>
924
925</div>
926
927</div>
928
929<!-- *********************************************************************** -->
930<h2><a name="codegen">Code Generator backend info</a></h2>
931<!-- *********************************************************************** -->
932
933<div>
934
935<p>Expressions used by code generator to describe instructions and isel
936patterns:</p>
937
938<dl>
939<dt><tt>(implicit a)</tt></dt>
940  <dd>an implicitly defined physical register.  This tells the dag instruction
941  selection emitter the input pattern's extra definitions matches implicit
942  physical register definitions.</dd>
943</dl>
944</div>
945
946<!-- *********************************************************************** -->
947<h2><a name="backends">TableGen backends</a></h2>
948<!-- *********************************************************************** -->
949
950<div>
951
952<p>TODO: How they work, how to write one.  This section should not contain
953details about any particular backend, except maybe -print-enums as an example.
954This should highlight the APIs in <tt>TableGen/Record.h</tt>.</p>
955
956</div>
957
958<!-- *********************************************************************** -->
959
960<hr>
961<address>
962  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
963  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
964  <a href="http://validator.w3.org/check/referer"><img
965  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
966
967  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
968  <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
969  Last modified: $Date$
970</address>
971
972</body>
973</html>
974