1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "iv-users"
16 #include "llvm/Analysis/IVUsers.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 char IVUsers::ID = 0;
33 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
34 "Induction Variable Users", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)35 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
36 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
37 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
38 INITIALIZE_PASS_END(IVUsers, "iv-users",
39 "Induction Variable Users", false, true)
40
41 Pass *llvm::createIVUsersPass() {
42 return new IVUsers();
43 }
44
45 /// isInteresting - Test whether the given expression is "interesting" when
46 /// used by the given expression, within the context of analyzing the
47 /// given loop.
isInteresting(const SCEV * S,const Instruction * I,const Loop * L,ScalarEvolution * SE,LoopInfo * LI)48 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
49 ScalarEvolution *SE, LoopInfo *LI) {
50 // An addrec is interesting if it's affine or if it has an interesting start.
51 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
52 // Keep things simple. Don't touch loop-variant strides unless they're
53 // only used outside the loop and we can simplify them.
54 if (AR->getLoop() == L)
55 return AR->isAffine() ||
56 (!L->contains(I) &&
57 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
58 // Otherwise recurse to see if the start value is interesting, and that
59 // the step value is not interesting, since we don't yet know how to
60 // do effective SCEV expansions for addrecs with interesting steps.
61 return isInteresting(AR->getStart(), I, L, SE, LI) &&
62 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
63 }
64
65 // An add is interesting if exactly one of its operands is interesting.
66 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
67 bool AnyInterestingYet = false;
68 for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
69 OI != OE; ++OI)
70 if (isInteresting(*OI, I, L, SE, LI)) {
71 if (AnyInterestingYet)
72 return false;
73 AnyInterestingYet = true;
74 }
75 return AnyInterestingYet;
76 }
77
78 // Nothing else is interesting here.
79 return false;
80 }
81
82 /// Return true if all loop headers that dominate this block are in simplified
83 /// form.
isSimplifiedLoopNest(BasicBlock * BB,const DominatorTree * DT,const LoopInfo * LI,SmallPtrSet<Loop *,16> & SimpleLoopNests)84 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
85 const LoopInfo *LI,
86 SmallPtrSet<Loop*,16> &SimpleLoopNests) {
87 Loop *NearestLoop = 0;
88 for (DomTreeNode *Rung = DT->getNode(BB);
89 Rung; Rung = Rung->getIDom()) {
90 BasicBlock *DomBB = Rung->getBlock();
91 Loop *DomLoop = LI->getLoopFor(DomBB);
92 if (DomLoop && DomLoop->getHeader() == DomBB) {
93 // If the domtree walk reaches a loop with no preheader, return false.
94 if (!DomLoop->isLoopSimplifyForm())
95 return false;
96 // If we have already checked this loop nest, stop checking.
97 if (SimpleLoopNests.count(DomLoop))
98 break;
99 // If we have not already checked this loop nest, remember the loop
100 // header nearest to BB. The nearest loop may not contain BB.
101 if (!NearestLoop)
102 NearestLoop = DomLoop;
103 }
104 }
105 if (NearestLoop)
106 SimpleLoopNests.insert(NearestLoop);
107 return true;
108 }
109
110 /// AddUsersImpl - Inspect the specified instruction. If it is a
111 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
112 /// return true. Otherwise, return false.
AddUsersImpl(Instruction * I,SmallPtrSet<Loop *,16> & SimpleLoopNests)113 bool IVUsers::AddUsersImpl(Instruction *I,
114 SmallPtrSet<Loop*,16> &SimpleLoopNests) {
115 // Add this IV user to the Processed set before returning false to ensure that
116 // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
117 if (!Processed.insert(I))
118 return true; // Instruction already handled.
119
120 if (!SE->isSCEVable(I->getType()))
121 return false; // Void and FP expressions cannot be reduced.
122
123 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
124 // Also avoid creating IVs of non-native types. For example, we don't want a
125 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
126 uint64_t Width = SE->getTypeSizeInBits(I->getType());
127 if (Width > 64 || (TD && !TD->isLegalInteger(Width)))
128 return false;
129
130 // Get the symbolic expression for this instruction.
131 const SCEV *ISE = SE->getSCEV(I);
132
133 // If we've come to an uninteresting expression, stop the traversal and
134 // call this a user.
135 if (!isInteresting(ISE, I, L, SE, LI))
136 return false;
137
138 SmallPtrSet<Instruction *, 4> UniqueUsers;
139 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
140 UI != E; ++UI) {
141 Instruction *User = cast<Instruction>(*UI);
142 if (!UniqueUsers.insert(User))
143 continue;
144
145 // Do not infinitely recurse on PHI nodes.
146 if (isa<PHINode>(User) && Processed.count(User))
147 continue;
148
149 // Only consider IVUsers that are dominated by simplified loop
150 // headers. Otherwise, SCEVExpander will crash.
151 BasicBlock *UseBB = User->getParent();
152 // A phi's use is live out of its predecessor block.
153 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
154 unsigned OperandNo = UI.getOperandNo();
155 unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
156 UseBB = PHI->getIncomingBlock(ValNo);
157 }
158 if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
159 return false;
160
161 // Descend recursively, but not into PHI nodes outside the current loop.
162 // It's important to see the entire expression outside the loop to get
163 // choices that depend on addressing mode use right, although we won't
164 // consider references outside the loop in all cases.
165 // If User is already in Processed, we don't want to recurse into it again,
166 // but do want to record a second reference in the same instruction.
167 bool AddUserToIVUsers = false;
168 if (LI->getLoopFor(User->getParent()) != L) {
169 if (isa<PHINode>(User) || Processed.count(User) ||
170 !AddUsersImpl(User, SimpleLoopNests)) {
171 DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
172 << " OF SCEV: " << *ISE << '\n');
173 AddUserToIVUsers = true;
174 }
175 } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
176 DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
177 << " OF SCEV: " << *ISE << '\n');
178 AddUserToIVUsers = true;
179 }
180
181 if (AddUserToIVUsers) {
182 // Okay, we found a user that we cannot reduce.
183 IVUses.push_back(new IVStrideUse(this, User, I));
184 IVStrideUse &NewUse = IVUses.back();
185 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
186 // The regular return value here is discarded; instead of recording
187 // it, we just recompute it when we need it.
188 ISE = TransformForPostIncUse(NormalizeAutodetect,
189 ISE, User, I,
190 NewUse.PostIncLoops,
191 *SE, *DT);
192 DEBUG(if (SE->getSCEV(I) != ISE)
193 dbgs() << " NORMALIZED TO: " << *ISE << '\n');
194 }
195 }
196 return true;
197 }
198
AddUsersIfInteresting(Instruction * I)199 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
200 // SCEVExpander can only handle users that are dominated by simplified loop
201 // entries. Keep track of all loops that are only dominated by other simple
202 // loops so we don't traverse the domtree for each user.
203 SmallPtrSet<Loop*,16> SimpleLoopNests;
204
205 return AddUsersImpl(I, SimpleLoopNests);
206 }
207
AddUser(Instruction * User,Value * Operand)208 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
209 IVUses.push_back(new IVStrideUse(this, User, Operand));
210 return IVUses.back();
211 }
212
IVUsers()213 IVUsers::IVUsers()
214 : LoopPass(ID) {
215 initializeIVUsersPass(*PassRegistry::getPassRegistry());
216 }
217
getAnalysisUsage(AnalysisUsage & AU) const218 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
219 AU.addRequired<LoopInfo>();
220 AU.addRequired<DominatorTree>();
221 AU.addRequired<ScalarEvolution>();
222 AU.setPreservesAll();
223 }
224
runOnLoop(Loop * l,LPPassManager & LPM)225 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
226
227 L = l;
228 LI = &getAnalysis<LoopInfo>();
229 DT = &getAnalysis<DominatorTree>();
230 SE = &getAnalysis<ScalarEvolution>();
231 TD = getAnalysisIfAvailable<TargetData>();
232
233 // Find all uses of induction variables in this loop, and categorize
234 // them by stride. Start by finding all of the PHI nodes in the header for
235 // this loop. If they are induction variables, inspect their uses.
236 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
237 (void)AddUsersIfInteresting(I);
238
239 return false;
240 }
241
print(raw_ostream & OS,const Module * M) const242 void IVUsers::print(raw_ostream &OS, const Module *M) const {
243 OS << "IV Users for loop ";
244 WriteAsOperand(OS, L->getHeader(), false);
245 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
246 OS << " with backedge-taken count "
247 << *SE->getBackedgeTakenCount(L);
248 }
249 OS << ":\n";
250
251 for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
252 E = IVUses.end(); UI != E; ++UI) {
253 OS << " ";
254 WriteAsOperand(OS, UI->getOperandValToReplace(), false);
255 OS << " = " << *getReplacementExpr(*UI);
256 for (PostIncLoopSet::const_iterator
257 I = UI->PostIncLoops.begin(),
258 E = UI->PostIncLoops.end(); I != E; ++I) {
259 OS << " (post-inc with loop ";
260 WriteAsOperand(OS, (*I)->getHeader(), false);
261 OS << ")";
262 }
263 OS << " in ";
264 UI->getUser()->print(OS);
265 OS << '\n';
266 }
267 }
268
dump() const269 void IVUsers::dump() const {
270 print(dbgs());
271 }
272
releaseMemory()273 void IVUsers::releaseMemory() {
274 Processed.clear();
275 IVUses.clear();
276 }
277
278 /// getReplacementExpr - Return a SCEV expression which computes the
279 /// value of the OperandValToReplace.
getReplacementExpr(const IVStrideUse & IU) const280 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
281 return SE->getSCEV(IU.getOperandValToReplace());
282 }
283
284 /// getExpr - Return the expression for the use.
getExpr(const IVStrideUse & IU) const285 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
286 return
287 TransformForPostIncUse(Normalize, getReplacementExpr(IU),
288 IU.getUser(), IU.getOperandValToReplace(),
289 const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
290 *SE, *DT);
291 }
292
findAddRecForLoop(const SCEV * S,const Loop * L)293 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
294 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
295 if (AR->getLoop() == L)
296 return AR;
297 return findAddRecForLoop(AR->getStart(), L);
298 }
299
300 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
301 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
302 I != E; ++I)
303 if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
304 return AR;
305 return 0;
306 }
307
308 return 0;
309 }
310
getStride(const IVStrideUse & IU,const Loop * L) const311 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
312 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
313 return AR->getStepRecurrence(*SE);
314 return 0;
315 }
316
transformToPostInc(const Loop * L)317 void IVStrideUse::transformToPostInc(const Loop *L) {
318 PostIncLoops.insert(L);
319 }
320
deleted()321 void IVStrideUse::deleted() {
322 // Remove this user from the list.
323 Parent->Processed.erase(this->getUser());
324 Parent->IVUses.erase(this);
325 // this now dangles!
326 }
327