1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "lazy-value-info"
16 #include "llvm/Analysis/LazyValueInfo.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Target/TargetLibraryInfo.h"
24 #include "llvm/Support/CFG.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/PatternMatch.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include <map>
33 #include <stack>
34 using namespace llvm;
35 using namespace PatternMatch;
36
37 char LazyValueInfo::ID = 0;
38 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
39 "Lazy Value Information Analysis", false, true)
40 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
41 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
42 "Lazy Value Information Analysis", false, true)
43
44 namespace llvm {
createLazyValueInfoPass()45 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
46 }
47
48
49 //===----------------------------------------------------------------------===//
50 // LVILatticeVal
51 //===----------------------------------------------------------------------===//
52
53 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
54 /// value.
55 ///
56 /// FIXME: This is basically just for bringup, this can be made a lot more rich
57 /// in the future.
58 ///
59 namespace {
60 class LVILatticeVal {
61 enum LatticeValueTy {
62 /// undefined - This Value has no known value yet.
63 undefined,
64
65 /// constant - This Value has a specific constant value.
66 constant,
67 /// notconstant - This Value is known to not have the specified value.
68 notconstant,
69
70 /// constantrange - The Value falls within this range.
71 constantrange,
72
73 /// overdefined - This value is not known to be constant, and we know that
74 /// it has a value.
75 overdefined
76 };
77
78 /// Val: This stores the current lattice value along with the Constant* for
79 /// the constant if this is a 'constant' or 'notconstant' value.
80 LatticeValueTy Tag;
81 Constant *Val;
82 ConstantRange Range;
83
84 public:
LVILatticeVal()85 LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
86
get(Constant * C)87 static LVILatticeVal get(Constant *C) {
88 LVILatticeVal Res;
89 if (!isa<UndefValue>(C))
90 Res.markConstant(C);
91 return Res;
92 }
getNot(Constant * C)93 static LVILatticeVal getNot(Constant *C) {
94 LVILatticeVal Res;
95 if (!isa<UndefValue>(C))
96 Res.markNotConstant(C);
97 return Res;
98 }
getRange(ConstantRange CR)99 static LVILatticeVal getRange(ConstantRange CR) {
100 LVILatticeVal Res;
101 Res.markConstantRange(CR);
102 return Res;
103 }
104
isUndefined() const105 bool isUndefined() const { return Tag == undefined; }
isConstant() const106 bool isConstant() const { return Tag == constant; }
isNotConstant() const107 bool isNotConstant() const { return Tag == notconstant; }
isConstantRange() const108 bool isConstantRange() const { return Tag == constantrange; }
isOverdefined() const109 bool isOverdefined() const { return Tag == overdefined; }
110
getConstant() const111 Constant *getConstant() const {
112 assert(isConstant() && "Cannot get the constant of a non-constant!");
113 return Val;
114 }
115
getNotConstant() const116 Constant *getNotConstant() const {
117 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
118 return Val;
119 }
120
getConstantRange() const121 ConstantRange getConstantRange() const {
122 assert(isConstantRange() &&
123 "Cannot get the constant-range of a non-constant-range!");
124 return Range;
125 }
126
127 /// markOverdefined - Return true if this is a change in status.
markOverdefined()128 bool markOverdefined() {
129 if (isOverdefined())
130 return false;
131 Tag = overdefined;
132 return true;
133 }
134
135 /// markConstant - Return true if this is a change in status.
markConstant(Constant * V)136 bool markConstant(Constant *V) {
137 assert(V && "Marking constant with NULL");
138 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
139 return markConstantRange(ConstantRange(CI->getValue()));
140 if (isa<UndefValue>(V))
141 return false;
142
143 assert((!isConstant() || getConstant() == V) &&
144 "Marking constant with different value");
145 assert(isUndefined());
146 Tag = constant;
147 Val = V;
148 return true;
149 }
150
151 /// markNotConstant - Return true if this is a change in status.
markNotConstant(Constant * V)152 bool markNotConstant(Constant *V) {
153 assert(V && "Marking constant with NULL");
154 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
155 return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
156 if (isa<UndefValue>(V))
157 return false;
158
159 assert((!isConstant() || getConstant() != V) &&
160 "Marking constant !constant with same value");
161 assert((!isNotConstant() || getNotConstant() == V) &&
162 "Marking !constant with different value");
163 assert(isUndefined() || isConstant());
164 Tag = notconstant;
165 Val = V;
166 return true;
167 }
168
169 /// markConstantRange - Return true if this is a change in status.
markConstantRange(const ConstantRange NewR)170 bool markConstantRange(const ConstantRange NewR) {
171 if (isConstantRange()) {
172 if (NewR.isEmptySet())
173 return markOverdefined();
174
175 bool changed = Range == NewR;
176 Range = NewR;
177 return changed;
178 }
179
180 assert(isUndefined());
181 if (NewR.isEmptySet())
182 return markOverdefined();
183
184 Tag = constantrange;
185 Range = NewR;
186 return true;
187 }
188
189 /// mergeIn - Merge the specified lattice value into this one, updating this
190 /// one and returning true if anything changed.
mergeIn(const LVILatticeVal & RHS)191 bool mergeIn(const LVILatticeVal &RHS) {
192 if (RHS.isUndefined() || isOverdefined()) return false;
193 if (RHS.isOverdefined()) return markOverdefined();
194
195 if (isUndefined()) {
196 Tag = RHS.Tag;
197 Val = RHS.Val;
198 Range = RHS.Range;
199 return true;
200 }
201
202 if (isConstant()) {
203 if (RHS.isConstant()) {
204 if (Val == RHS.Val)
205 return false;
206 return markOverdefined();
207 }
208
209 if (RHS.isNotConstant()) {
210 if (Val == RHS.Val)
211 return markOverdefined();
212
213 // Unless we can prove that the two Constants are different, we must
214 // move to overdefined.
215 // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding.
216 if (ConstantInt *Res = dyn_cast<ConstantInt>(
217 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
218 getConstant(),
219 RHS.getNotConstant())))
220 if (Res->isOne())
221 return markNotConstant(RHS.getNotConstant());
222
223 return markOverdefined();
224 }
225
226 // RHS is a ConstantRange, LHS is a non-integer Constant.
227
228 // FIXME: consider the case where RHS is a range [1, 0) and LHS is
229 // a function. The correct result is to pick up RHS.
230
231 return markOverdefined();
232 }
233
234 if (isNotConstant()) {
235 if (RHS.isConstant()) {
236 if (Val == RHS.Val)
237 return markOverdefined();
238
239 // Unless we can prove that the two Constants are different, we must
240 // move to overdefined.
241 // FIXME: use TargetData/TargetLibraryInfo for smarter constant folding.
242 if (ConstantInt *Res = dyn_cast<ConstantInt>(
243 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
244 getNotConstant(),
245 RHS.getConstant())))
246 if (Res->isOne())
247 return false;
248
249 return markOverdefined();
250 }
251
252 if (RHS.isNotConstant()) {
253 if (Val == RHS.Val)
254 return false;
255 return markOverdefined();
256 }
257
258 return markOverdefined();
259 }
260
261 assert(isConstantRange() && "New LVILattice type?");
262 if (!RHS.isConstantRange())
263 return markOverdefined();
264
265 ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
266 if (NewR.isFullSet())
267 return markOverdefined();
268 return markConstantRange(NewR);
269 }
270 };
271
272 } // end anonymous namespace.
273
274 namespace llvm {
275 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
276 LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & OS,const LVILatticeVal & Val)277 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
278 if (Val.isUndefined())
279 return OS << "undefined";
280 if (Val.isOverdefined())
281 return OS << "overdefined";
282
283 if (Val.isNotConstant())
284 return OS << "notconstant<" << *Val.getNotConstant() << '>';
285 else if (Val.isConstantRange())
286 return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
287 << Val.getConstantRange().getUpper() << '>';
288 return OS << "constant<" << *Val.getConstant() << '>';
289 }
290 }
291
292 //===----------------------------------------------------------------------===//
293 // LazyValueInfoCache Decl
294 //===----------------------------------------------------------------------===//
295
296 namespace {
297 /// LVIValueHandle - A callback value handle update the cache when
298 /// values are erased.
299 class LazyValueInfoCache;
300 struct LVIValueHandle : public CallbackVH {
301 LazyValueInfoCache *Parent;
302
LVIValueHandle__anon335923720211::LVIValueHandle303 LVIValueHandle(Value *V, LazyValueInfoCache *P)
304 : CallbackVH(V), Parent(P) { }
305
306 void deleted();
allUsesReplacedWith__anon335923720211::LVIValueHandle307 void allUsesReplacedWith(Value *V) {
308 deleted();
309 }
310 };
311 }
312
313 namespace {
314 /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
315 /// maintains information about queries across the clients' queries.
316 class LazyValueInfoCache {
317 /// ValueCacheEntryTy - This is all of the cached block information for
318 /// exactly one Value*. The entries are sorted by the BasicBlock* of the
319 /// entries, allowing us to do a lookup with a binary search.
320 typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
321
322 /// ValueCache - This is all of the cached information for all values,
323 /// mapped from Value* to key information.
324 std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
325
326 /// OverDefinedCache - This tracks, on a per-block basis, the set of
327 /// values that are over-defined at the end of that block. This is required
328 /// for cache updating.
329 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
330 DenseSet<OverDefinedPairTy> OverDefinedCache;
331
332 /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
333 /// don't spend time removing unused blocks from our caches.
334 DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
335
336 /// BlockValueStack - This stack holds the state of the value solver
337 /// during a query. It basically emulates the callstack of the naive
338 /// recursive value lookup process.
339 std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
340
341 friend struct LVIValueHandle;
342
343 /// OverDefinedCacheUpdater - A helper object that ensures that the
344 /// OverDefinedCache is updated whenever solveBlockValue returns.
345 struct OverDefinedCacheUpdater {
346 LazyValueInfoCache *Parent;
347 Value *Val;
348 BasicBlock *BB;
349 LVILatticeVal &BBLV;
350
OverDefinedCacheUpdater__anon335923720311::LazyValueInfoCache::OverDefinedCacheUpdater351 OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
352 LazyValueInfoCache *P)
353 : Parent(P), Val(V), BB(B), BBLV(LV) { }
354
markResult__anon335923720311::LazyValueInfoCache::OverDefinedCacheUpdater355 bool markResult(bool changed) {
356 if (changed && BBLV.isOverdefined())
357 Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
358 return changed;
359 }
360 };
361
362
363
364 LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
365 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
366 LVILatticeVal &Result);
367 bool hasBlockValue(Value *Val, BasicBlock *BB);
368
369 // These methods process one work item and may add more. A false value
370 // returned means that the work item was not completely processed and must
371 // be revisited after going through the new items.
372 bool solveBlockValue(Value *Val, BasicBlock *BB);
373 bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
374 Value *Val, BasicBlock *BB);
375 bool solveBlockValuePHINode(LVILatticeVal &BBLV,
376 PHINode *PN, BasicBlock *BB);
377 bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
378 Instruction *BBI, BasicBlock *BB);
379
380 void solve();
381
lookup(Value * V)382 ValueCacheEntryTy &lookup(Value *V) {
383 return ValueCache[LVIValueHandle(V, this)];
384 }
385
386 public:
387 /// getValueInBlock - This is the query interface to determine the lattice
388 /// value for the specified Value* at the end of the specified block.
389 LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
390
391 /// getValueOnEdge - This is the query interface to determine the lattice
392 /// value for the specified Value* that is true on the specified edge.
393 LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
394
395 /// threadEdge - This is the update interface to inform the cache that an
396 /// edge from PredBB to OldSucc has been threaded to be from PredBB to
397 /// NewSucc.
398 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
399
400 /// eraseBlock - This is part of the update interface to inform the cache
401 /// that a block has been deleted.
402 void eraseBlock(BasicBlock *BB);
403
404 /// clear - Empty the cache.
clear()405 void clear() {
406 SeenBlocks.clear();
407 ValueCache.clear();
408 OverDefinedCache.clear();
409 }
410 };
411 } // end anonymous namespace
412
deleted()413 void LVIValueHandle::deleted() {
414 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
415
416 SmallVector<OverDefinedPairTy, 4> ToErase;
417 for (DenseSet<OverDefinedPairTy>::iterator
418 I = Parent->OverDefinedCache.begin(),
419 E = Parent->OverDefinedCache.end();
420 I != E; ++I) {
421 if (I->second == getValPtr())
422 ToErase.push_back(*I);
423 }
424
425 for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
426 E = ToErase.end(); I != E; ++I)
427 Parent->OverDefinedCache.erase(*I);
428
429 // This erasure deallocates *this, so it MUST happen after we're done
430 // using any and all members of *this.
431 Parent->ValueCache.erase(*this);
432 }
433
eraseBlock(BasicBlock * BB)434 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
435 // Shortcut if we have never seen this block.
436 DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
437 if (I == SeenBlocks.end())
438 return;
439 SeenBlocks.erase(I);
440
441 SmallVector<OverDefinedPairTy, 4> ToErase;
442 for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
443 E = OverDefinedCache.end(); I != E; ++I) {
444 if (I->first == BB)
445 ToErase.push_back(*I);
446 }
447
448 for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
449 E = ToErase.end(); I != E; ++I)
450 OverDefinedCache.erase(*I);
451
452 for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
453 I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
454 I->second.erase(BB);
455 }
456
solve()457 void LazyValueInfoCache::solve() {
458 while (!BlockValueStack.empty()) {
459 std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
460 if (solveBlockValue(e.second, e.first))
461 BlockValueStack.pop();
462 }
463 }
464
hasBlockValue(Value * Val,BasicBlock * BB)465 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
466 // If already a constant, there is nothing to compute.
467 if (isa<Constant>(Val))
468 return true;
469
470 LVIValueHandle ValHandle(Val, this);
471 if (!ValueCache.count(ValHandle)) return false;
472 return ValueCache[ValHandle].count(BB);
473 }
474
getBlockValue(Value * Val,BasicBlock * BB)475 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
476 // If already a constant, there is nothing to compute.
477 if (Constant *VC = dyn_cast<Constant>(Val))
478 return LVILatticeVal::get(VC);
479
480 SeenBlocks.insert(BB);
481 return lookup(Val)[BB];
482 }
483
solveBlockValue(Value * Val,BasicBlock * BB)484 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
485 if (isa<Constant>(Val))
486 return true;
487
488 ValueCacheEntryTy &Cache = lookup(Val);
489 SeenBlocks.insert(BB);
490 LVILatticeVal &BBLV = Cache[BB];
491
492 // OverDefinedCacheUpdater is a helper object that will update
493 // the OverDefinedCache for us when this method exits. Make sure to
494 // call markResult on it as we exist, passing a bool to indicate if the
495 // cache needs updating, i.e. if we have solve a new value or not.
496 OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
497
498 // If we've already computed this block's value, return it.
499 if (!BBLV.isUndefined()) {
500 DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
501
502 // Since we're reusing a cached value here, we don't need to update the
503 // OverDefinedCahce. The cache will have been properly updated
504 // whenever the cached value was inserted.
505 ODCacheUpdater.markResult(false);
506 return true;
507 }
508
509 // Otherwise, this is the first time we're seeing this block. Reset the
510 // lattice value to overdefined, so that cycles will terminate and be
511 // conservatively correct.
512 BBLV.markOverdefined();
513
514 Instruction *BBI = dyn_cast<Instruction>(Val);
515 if (BBI == 0 || BBI->getParent() != BB) {
516 return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
517 }
518
519 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
520 return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
521 }
522
523 if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
524 BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
525 return ODCacheUpdater.markResult(true);
526 }
527
528 // We can only analyze the definitions of certain classes of instructions
529 // (integral binops and casts at the moment), so bail if this isn't one.
530 LVILatticeVal Result;
531 if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
532 !BBI->getType()->isIntegerTy()) {
533 DEBUG(dbgs() << " compute BB '" << BB->getName()
534 << "' - overdefined because inst def found.\n");
535 BBLV.markOverdefined();
536 return ODCacheUpdater.markResult(true);
537 }
538
539 // FIXME: We're currently limited to binops with a constant RHS. This should
540 // be improved.
541 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
542 if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
543 DEBUG(dbgs() << " compute BB '" << BB->getName()
544 << "' - overdefined because inst def found.\n");
545
546 BBLV.markOverdefined();
547 return ODCacheUpdater.markResult(true);
548 }
549
550 return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
551 }
552
InstructionDereferencesPointer(Instruction * I,Value * Ptr)553 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
554 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
555 return L->getPointerAddressSpace() == 0 &&
556 GetUnderlyingObject(L->getPointerOperand()) ==
557 GetUnderlyingObject(Ptr);
558 }
559 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
560 return S->getPointerAddressSpace() == 0 &&
561 GetUnderlyingObject(S->getPointerOperand()) ==
562 GetUnderlyingObject(Ptr);
563 }
564 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
565 if (MI->isVolatile()) return false;
566
567 // FIXME: check whether it has a valuerange that excludes zero?
568 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
569 if (!Len || Len->isZero()) return false;
570
571 if (MI->getDestAddressSpace() == 0)
572 if (MI->getRawDest() == Ptr || MI->getDest() == Ptr)
573 return true;
574 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
575 if (MTI->getSourceAddressSpace() == 0)
576 if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr)
577 return true;
578 }
579 return false;
580 }
581
solveBlockValueNonLocal(LVILatticeVal & BBLV,Value * Val,BasicBlock * BB)582 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
583 Value *Val, BasicBlock *BB) {
584 LVILatticeVal Result; // Start Undefined.
585
586 // If this is a pointer, and there's a load from that pointer in this BB,
587 // then we know that the pointer can't be NULL.
588 bool NotNull = false;
589 if (Val->getType()->isPointerTy()) {
590 if (isa<AllocaInst>(Val)) {
591 NotNull = true;
592 } else {
593 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
594 if (InstructionDereferencesPointer(BI, Val)) {
595 NotNull = true;
596 break;
597 }
598 }
599 }
600 }
601
602 // If this is the entry block, we must be asking about an argument. The
603 // value is overdefined.
604 if (BB == &BB->getParent()->getEntryBlock()) {
605 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
606 if (NotNull) {
607 PointerType *PTy = cast<PointerType>(Val->getType());
608 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
609 } else {
610 Result.markOverdefined();
611 }
612 BBLV = Result;
613 return true;
614 }
615
616 // Loop over all of our predecessors, merging what we know from them into
617 // result.
618 bool EdgesMissing = false;
619 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
620 LVILatticeVal EdgeResult;
621 EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
622 if (EdgesMissing)
623 continue;
624
625 Result.mergeIn(EdgeResult);
626
627 // If we hit overdefined, exit early. The BlockVals entry is already set
628 // to overdefined.
629 if (Result.isOverdefined()) {
630 DEBUG(dbgs() << " compute BB '" << BB->getName()
631 << "' - overdefined because of pred.\n");
632 // If we previously determined that this is a pointer that can't be null
633 // then return that rather than giving up entirely.
634 if (NotNull) {
635 PointerType *PTy = cast<PointerType>(Val->getType());
636 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
637 }
638
639 BBLV = Result;
640 return true;
641 }
642 }
643 if (EdgesMissing)
644 return false;
645
646 // Return the merged value, which is more precise than 'overdefined'.
647 assert(!Result.isOverdefined());
648 BBLV = Result;
649 return true;
650 }
651
solveBlockValuePHINode(LVILatticeVal & BBLV,PHINode * PN,BasicBlock * BB)652 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
653 PHINode *PN, BasicBlock *BB) {
654 LVILatticeVal Result; // Start Undefined.
655
656 // Loop over all of our predecessors, merging what we know from them into
657 // result.
658 bool EdgesMissing = false;
659 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
660 BasicBlock *PhiBB = PN->getIncomingBlock(i);
661 Value *PhiVal = PN->getIncomingValue(i);
662 LVILatticeVal EdgeResult;
663 EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
664 if (EdgesMissing)
665 continue;
666
667 Result.mergeIn(EdgeResult);
668
669 // If we hit overdefined, exit early. The BlockVals entry is already set
670 // to overdefined.
671 if (Result.isOverdefined()) {
672 DEBUG(dbgs() << " compute BB '" << BB->getName()
673 << "' - overdefined because of pred.\n");
674
675 BBLV = Result;
676 return true;
677 }
678 }
679 if (EdgesMissing)
680 return false;
681
682 // Return the merged value, which is more precise than 'overdefined'.
683 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
684 BBLV = Result;
685 return true;
686 }
687
solveBlockValueConstantRange(LVILatticeVal & BBLV,Instruction * BBI,BasicBlock * BB)688 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
689 Instruction *BBI,
690 BasicBlock *BB) {
691 // Figure out the range of the LHS. If that fails, bail.
692 if (!hasBlockValue(BBI->getOperand(0), BB)) {
693 BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
694 return false;
695 }
696
697 LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
698 if (!LHSVal.isConstantRange()) {
699 BBLV.markOverdefined();
700 return true;
701 }
702
703 ConstantRange LHSRange = LHSVal.getConstantRange();
704 ConstantRange RHSRange(1);
705 IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
706 if (isa<BinaryOperator>(BBI)) {
707 if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
708 RHSRange = ConstantRange(RHS->getValue());
709 } else {
710 BBLV.markOverdefined();
711 return true;
712 }
713 }
714
715 // NOTE: We're currently limited by the set of operations that ConstantRange
716 // can evaluate symbolically. Enhancing that set will allows us to analyze
717 // more definitions.
718 LVILatticeVal Result;
719 switch (BBI->getOpcode()) {
720 case Instruction::Add:
721 Result.markConstantRange(LHSRange.add(RHSRange));
722 break;
723 case Instruction::Sub:
724 Result.markConstantRange(LHSRange.sub(RHSRange));
725 break;
726 case Instruction::Mul:
727 Result.markConstantRange(LHSRange.multiply(RHSRange));
728 break;
729 case Instruction::UDiv:
730 Result.markConstantRange(LHSRange.udiv(RHSRange));
731 break;
732 case Instruction::Shl:
733 Result.markConstantRange(LHSRange.shl(RHSRange));
734 break;
735 case Instruction::LShr:
736 Result.markConstantRange(LHSRange.lshr(RHSRange));
737 break;
738 case Instruction::Trunc:
739 Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
740 break;
741 case Instruction::SExt:
742 Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
743 break;
744 case Instruction::ZExt:
745 Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
746 break;
747 case Instruction::BitCast:
748 Result.markConstantRange(LHSRange);
749 break;
750 case Instruction::And:
751 Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
752 break;
753 case Instruction::Or:
754 Result.markConstantRange(LHSRange.binaryOr(RHSRange));
755 break;
756
757 // Unhandled instructions are overdefined.
758 default:
759 DEBUG(dbgs() << " compute BB '" << BB->getName()
760 << "' - overdefined because inst def found.\n");
761 Result.markOverdefined();
762 break;
763 }
764
765 BBLV = Result;
766 return true;
767 }
768
769 /// getEdgeValue - This method attempts to infer more complex
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result)770 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
771 BasicBlock *BBTo, LVILatticeVal &Result) {
772 // If already a constant, there is nothing to compute.
773 if (Constant *VC = dyn_cast<Constant>(Val)) {
774 Result = LVILatticeVal::get(VC);
775 return true;
776 }
777
778 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
779 // know that v != 0.
780 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
781 // If this is a conditional branch and only one successor goes to BBTo, then
782 // we maybe able to infer something from the condition.
783 if (BI->isConditional() &&
784 BI->getSuccessor(0) != BI->getSuccessor(1)) {
785 bool isTrueDest = BI->getSuccessor(0) == BBTo;
786 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
787 "BBTo isn't a successor of BBFrom");
788
789 // If V is the condition of the branch itself, then we know exactly what
790 // it is.
791 if (BI->getCondition() == Val) {
792 Result = LVILatticeVal::get(ConstantInt::get(
793 Type::getInt1Ty(Val->getContext()), isTrueDest));
794 return true;
795 }
796
797 // If the condition of the branch is an equality comparison, we may be
798 // able to infer the value.
799 ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
800 if (ICI && isa<Constant>(ICI->getOperand(1))) {
801 if (ICI->isEquality() && ICI->getOperand(0) == Val) {
802 // We know that V has the RHS constant if this is a true SETEQ or
803 // false SETNE.
804 if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
805 Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
806 else
807 Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
808 return true;
809 }
810
811 // Recognize the range checking idiom that InstCombine produces.
812 // (X-C1) u< C2 --> [C1, C1+C2)
813 ConstantInt *NegOffset = 0;
814 if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
815 match(ICI->getOperand(0), m_Add(m_Specific(Val),
816 m_ConstantInt(NegOffset)));
817
818 ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
819 if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
820 // Calculate the range of values that would satisfy the comparison.
821 ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
822 ConstantRange TrueValues =
823 ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
824
825 if (NegOffset) // Apply the offset from above.
826 TrueValues = TrueValues.subtract(NegOffset->getValue());
827
828 // If we're interested in the false dest, invert the condition.
829 if (!isTrueDest) TrueValues = TrueValues.inverse();
830
831 // Figure out the possible values of the query BEFORE this branch.
832 if (!hasBlockValue(Val, BBFrom)) {
833 BlockValueStack.push(std::make_pair(BBFrom, Val));
834 return false;
835 }
836
837 LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
838 if (!InBlock.isConstantRange()) {
839 Result = LVILatticeVal::getRange(TrueValues);
840 return true;
841 }
842
843 // Find all potential values that satisfy both the input and output
844 // conditions.
845 ConstantRange PossibleValues =
846 TrueValues.intersectWith(InBlock.getConstantRange());
847
848 Result = LVILatticeVal::getRange(PossibleValues);
849 return true;
850 }
851 }
852 }
853 }
854
855 // If the edge was formed by a switch on the value, then we may know exactly
856 // what it is.
857 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
858 if (SI->getCondition() == Val) {
859 // We don't know anything in the default case.
860 if (SI->getDefaultDest() == BBTo) {
861 Result.markOverdefined();
862 return true;
863 }
864
865 // We only know something if there is exactly one value that goes from
866 // BBFrom to BBTo.
867 unsigned NumEdges = 0;
868 ConstantInt *EdgeVal = 0;
869 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
870 i != e; ++i) {
871 if (i.getCaseSuccessor() != BBTo) continue;
872 if (NumEdges++) break;
873 EdgeVal = i.getCaseValue();
874 }
875 assert(EdgeVal && "Missing successor?");
876 if (NumEdges == 1) {
877 Result = LVILatticeVal::get(EdgeVal);
878 return true;
879 }
880 }
881 }
882
883 // Otherwise see if the value is known in the block.
884 if (hasBlockValue(Val, BBFrom)) {
885 Result = getBlockValue(Val, BBFrom);
886 return true;
887 }
888 BlockValueStack.push(std::make_pair(BBFrom, Val));
889 return false;
890 }
891
getValueInBlock(Value * V,BasicBlock * BB)892 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
893 DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
894 << BB->getName() << "'\n");
895
896 BlockValueStack.push(std::make_pair(BB, V));
897 solve();
898 LVILatticeVal Result = getBlockValue(V, BB);
899
900 DEBUG(dbgs() << " Result = " << Result << "\n");
901 return Result;
902 }
903
904 LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB)905 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
906 DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
907 << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
908
909 LVILatticeVal Result;
910 if (!getEdgeValue(V, FromBB, ToBB, Result)) {
911 solve();
912 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
913 (void)WasFastQuery;
914 assert(WasFastQuery && "More work to do after problem solved?");
915 }
916
917 DEBUG(dbgs() << " Result = " << Result << "\n");
918 return Result;
919 }
920
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)921 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
922 BasicBlock *NewSucc) {
923 // When an edge in the graph has been threaded, values that we could not
924 // determine a value for before (i.e. were marked overdefined) may be possible
925 // to solve now. We do NOT try to proactively update these values. Instead,
926 // we clear their entries from the cache, and allow lazy updating to recompute
927 // them when needed.
928
929 // The updating process is fairly simple: we need to dropped cached info
930 // for all values that were marked overdefined in OldSucc, and for those same
931 // values in any successor of OldSucc (except NewSucc) in which they were
932 // also marked overdefined.
933 std::vector<BasicBlock*> worklist;
934 worklist.push_back(OldSucc);
935
936 DenseSet<Value*> ClearSet;
937 for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
938 E = OverDefinedCache.end(); I != E; ++I) {
939 if (I->first == OldSucc)
940 ClearSet.insert(I->second);
941 }
942
943 // Use a worklist to perform a depth-first search of OldSucc's successors.
944 // NOTE: We do not need a visited list since any blocks we have already
945 // visited will have had their overdefined markers cleared already, and we
946 // thus won't loop to their successors.
947 while (!worklist.empty()) {
948 BasicBlock *ToUpdate = worklist.back();
949 worklist.pop_back();
950
951 // Skip blocks only accessible through NewSucc.
952 if (ToUpdate == NewSucc) continue;
953
954 bool changed = false;
955 for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
956 I != E; ++I) {
957 // If a value was marked overdefined in OldSucc, and is here too...
958 DenseSet<OverDefinedPairTy>::iterator OI =
959 OverDefinedCache.find(std::make_pair(ToUpdate, *I));
960 if (OI == OverDefinedCache.end()) continue;
961
962 // Remove it from the caches.
963 ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
964 ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
965
966 assert(CI != Entry.end() && "Couldn't find entry to update?");
967 Entry.erase(CI);
968 OverDefinedCache.erase(OI);
969
970 // If we removed anything, then we potentially need to update
971 // blocks successors too.
972 changed = true;
973 }
974
975 if (!changed) continue;
976
977 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
978 }
979 }
980
981 //===----------------------------------------------------------------------===//
982 // LazyValueInfo Impl
983 //===----------------------------------------------------------------------===//
984
985 /// getCache - This lazily constructs the LazyValueInfoCache.
getCache(void * & PImpl)986 static LazyValueInfoCache &getCache(void *&PImpl) {
987 if (!PImpl)
988 PImpl = new LazyValueInfoCache();
989 return *static_cast<LazyValueInfoCache*>(PImpl);
990 }
991
runOnFunction(Function & F)992 bool LazyValueInfo::runOnFunction(Function &F) {
993 if (PImpl)
994 getCache(PImpl).clear();
995
996 TD = getAnalysisIfAvailable<TargetData>();
997 TLI = &getAnalysis<TargetLibraryInfo>();
998
999 // Fully lazy.
1000 return false;
1001 }
1002
getAnalysisUsage(AnalysisUsage & AU) const1003 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
1004 AU.setPreservesAll();
1005 AU.addRequired<TargetLibraryInfo>();
1006 }
1007
releaseMemory()1008 void LazyValueInfo::releaseMemory() {
1009 // If the cache was allocated, free it.
1010 if (PImpl) {
1011 delete &getCache(PImpl);
1012 PImpl = 0;
1013 }
1014 }
1015
getConstant(Value * V,BasicBlock * BB)1016 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
1017 LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
1018
1019 if (Result.isConstant())
1020 return Result.getConstant();
1021 if (Result.isConstantRange()) {
1022 ConstantRange CR = Result.getConstantRange();
1023 if (const APInt *SingleVal = CR.getSingleElement())
1024 return ConstantInt::get(V->getContext(), *SingleVal);
1025 }
1026 return 0;
1027 }
1028
1029 /// getConstantOnEdge - Determine whether the specified value is known to be a
1030 /// constant on the specified edge. Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB)1031 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1032 BasicBlock *ToBB) {
1033 LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
1034
1035 if (Result.isConstant())
1036 return Result.getConstant();
1037 if (Result.isConstantRange()) {
1038 ConstantRange CR = Result.getConstantRange();
1039 if (const APInt *SingleVal = CR.getSingleElement())
1040 return ConstantInt::get(V->getContext(), *SingleVal);
1041 }
1042 return 0;
1043 }
1044
1045 /// getPredicateOnEdge - Determine whether the specified value comparison
1046 /// with a constant is known to be true or false on the specified CFG edge.
1047 /// Pred is a CmpInst predicate.
1048 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB)1049 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1050 BasicBlock *FromBB, BasicBlock *ToBB) {
1051 LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
1052
1053 // If we know the value is a constant, evaluate the conditional.
1054 Constant *Res = 0;
1055 if (Result.isConstant()) {
1056 Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD,
1057 TLI);
1058 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1059 return ResCI->isZero() ? False : True;
1060 return Unknown;
1061 }
1062
1063 if (Result.isConstantRange()) {
1064 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1065 if (!CI) return Unknown;
1066
1067 ConstantRange CR = Result.getConstantRange();
1068 if (Pred == ICmpInst::ICMP_EQ) {
1069 if (!CR.contains(CI->getValue()))
1070 return False;
1071
1072 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1073 return True;
1074 } else if (Pred == ICmpInst::ICMP_NE) {
1075 if (!CR.contains(CI->getValue()))
1076 return True;
1077
1078 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1079 return False;
1080 }
1081
1082 // Handle more complex predicates.
1083 ConstantRange TrueValues =
1084 ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
1085 if (TrueValues.contains(CR))
1086 return True;
1087 if (TrueValues.inverse().contains(CR))
1088 return False;
1089 return Unknown;
1090 }
1091
1092 if (Result.isNotConstant()) {
1093 // If this is an equality comparison, we can try to fold it knowing that
1094 // "V != C1".
1095 if (Pred == ICmpInst::ICMP_EQ) {
1096 // !C1 == C -> false iff C1 == C.
1097 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1098 Result.getNotConstant(), C, TD,
1099 TLI);
1100 if (Res->isNullValue())
1101 return False;
1102 } else if (Pred == ICmpInst::ICMP_NE) {
1103 // !C1 != C -> true iff C1 == C.
1104 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1105 Result.getNotConstant(), C, TD,
1106 TLI);
1107 if (Res->isNullValue())
1108 return True;
1109 }
1110 return Unknown;
1111 }
1112
1113 return Unknown;
1114 }
1115
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1116 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1117 BasicBlock *NewSucc) {
1118 if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
1119 }
1120
eraseBlock(BasicBlock * BB)1121 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1122 if (PImpl) getCache(PImpl).eraseBlock(BB);
1123 }
1124