1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/GlobalAlias.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Metadata.h"
24 #include "llvm/Operator.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Support/ConstantRange.h"
27 #include "llvm/Support/GetElementPtrTypeIterator.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/PatternMatch.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include <cstring>
32 using namespace llvm;
33 using namespace llvm::PatternMatch;
34
35 const unsigned MaxDepth = 6;
36
37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
38 /// unknown returns 0). For vector types, returns the element type's bitwidth.
getBitWidth(Type * Ty,const TargetData * TD)39 static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
40 if (unsigned BitWidth = Ty->getScalarSizeInBits())
41 return BitWidth;
42 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
43 return TD ? TD->getPointerSizeInBits() : 0;
44 }
45
ComputeMaskedBitsAddSub(bool Add,Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const TargetData * TD,unsigned Depth)46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
47 APInt &KnownZero, APInt &KnownOne,
48 APInt &KnownZero2, APInt &KnownOne2,
49 const TargetData *TD, unsigned Depth) {
50 if (!Add) {
51 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
52 // We know that the top bits of C-X are clear if X contains less bits
53 // than C (i.e. no wrap-around can happen). For example, 20-X is
54 // positive if we can prove that X is >= 0 and < 16.
55 if (!CLHS->getValue().isNegative()) {
56 unsigned BitWidth = KnownZero.getBitWidth();
57 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
58 // NLZ can't be BitWidth with no sign bit
59 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
60 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
61
62 // If all of the MaskV bits are known to be zero, then we know the
63 // output top bits are zero, because we now know that the output is
64 // from [0-C].
65 if ((KnownZero2 & MaskV) == MaskV) {
66 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
67 // Top bits known zero.
68 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
69 }
70 }
71 }
72 }
73
74 unsigned BitWidth = KnownZero.getBitWidth();
75
76 // If one of the operands has trailing zeros, then the bits that the
77 // other operand has in those bit positions will be preserved in the
78 // result. For an add, this works with either operand. For a subtract,
79 // this only works if the known zeros are in the right operand.
80 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
81 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
82 assert((LHSKnownZero & LHSKnownOne) == 0 &&
83 "Bits known to be one AND zero?");
84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
86 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
87 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
88 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
89
90 // Determine which operand has more trailing zeros, and use that
91 // many bits from the other operand.
92 if (LHSKnownZeroOut > RHSKnownZeroOut) {
93 if (Add) {
94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
95 KnownZero |= KnownZero2 & Mask;
96 KnownOne |= KnownOne2 & Mask;
97 } else {
98 // If the known zeros are in the left operand for a subtract,
99 // fall back to the minimum known zeros in both operands.
100 KnownZero |= APInt::getLowBitsSet(BitWidth,
101 std::min(LHSKnownZeroOut,
102 RHSKnownZeroOut));
103 }
104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
106 KnownZero |= LHSKnownZero & Mask;
107 KnownOne |= LHSKnownOne & Mask;
108 }
109
110 // Are we still trying to solve for the sign bit?
111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
112 if (NSW) {
113 if (Add) {
114 // Adding two positive numbers can't wrap into negative
115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
116 KnownZero |= APInt::getSignBit(BitWidth);
117 // and adding two negative numbers can't wrap into positive.
118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
119 KnownOne |= APInt::getSignBit(BitWidth);
120 } else {
121 // Subtracting a negative number from a positive one can't wrap
122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
123 KnownZero |= APInt::getSignBit(BitWidth);
124 // neither can subtracting a positive number from a negative one.
125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
126 KnownOne |= APInt::getSignBit(BitWidth);
127 }
128 }
129 }
130 }
131
ComputeMaskedBitsMul(Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const TargetData * TD,unsigned Depth)132 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
133 APInt &KnownZero, APInt &KnownOne,
134 APInt &KnownZero2, APInt &KnownOne2,
135 const TargetData *TD, unsigned Depth) {
136 unsigned BitWidth = KnownZero.getBitWidth();
137 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
138 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141
142 bool isKnownNegative = false;
143 bool isKnownNonNegative = false;
144 // If the multiplication is known not to overflow, compute the sign bit.
145 if (NSW) {
146 if (Op0 == Op1) {
147 // The product of a number with itself is non-negative.
148 isKnownNonNegative = true;
149 } else {
150 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
151 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
152 bool isKnownNegativeOp1 = KnownOne.isNegative();
153 bool isKnownNegativeOp0 = KnownOne2.isNegative();
154 // The product of two numbers with the same sign is non-negative.
155 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
156 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
157 // The product of a negative number and a non-negative number is either
158 // negative or zero.
159 if (!isKnownNonNegative)
160 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
161 isKnownNonZero(Op0, TD, Depth)) ||
162 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
163 isKnownNonZero(Op1, TD, Depth));
164 }
165 }
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clearAllBits();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
182
183 // Only make use of no-wrap flags if we failed to compute the sign bit
184 // directly. This matters if the multiplication always overflows, in
185 // which case we prefer to follow the result of the direct computation,
186 // though as the program is invoking undefined behaviour we can choose
187 // whatever we like here.
188 if (isKnownNonNegative && !KnownOne.isNegative())
189 KnownZero.setBit(BitWidth - 1);
190 else if (isKnownNegative && !KnownZero.isNegative())
191 KnownOne.setBit(BitWidth - 1);
192 }
193
computeMaskedBitsLoad(const MDNode & Ranges,APInt & KnownZero)194 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
195 unsigned BitWidth = KnownZero.getBitWidth();
196 unsigned NumRanges = Ranges.getNumOperands() / 2;
197 assert(NumRanges >= 1);
198
199 // Use the high end of the ranges to find leading zeros.
200 unsigned MinLeadingZeros = BitWidth;
201 for (unsigned i = 0; i < NumRanges; ++i) {
202 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
203 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
204 ConstantRange Range(Lower->getValue(), Upper->getValue());
205 if (Range.isWrappedSet())
206 MinLeadingZeros = 0; // -1 has no zeros
207 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
208 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
209 }
210
211 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
212 }
213 /// ComputeMaskedBits - Determine which of the bits are known to be either zero
214 /// or one and return them in the KnownZero/KnownOne bit sets.
215 ///
216 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
217 /// we cannot optimize based on the assumption that it is zero without changing
218 /// it to be an explicit zero. If we don't change it to zero, other code could
219 /// optimized based on the contradictory assumption that it is non-zero.
220 /// Because instcombine aggressively folds operations with undef args anyway,
221 /// this won't lose us code quality.
222 ///
223 /// This function is defined on values with integer type, values with pointer
224 /// type (but only if TD is non-null), and vectors of integers. In the case
225 /// where V is a vector, known zero, and known one values are the
226 /// same width as the vector element, and the bit is set only if it is true
227 /// for all of the elements in the vector.
ComputeMaskedBits(Value * V,APInt & KnownZero,APInt & KnownOne,const TargetData * TD,unsigned Depth)228 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
229 const TargetData *TD, unsigned Depth) {
230 assert(V && "No Value?");
231 assert(Depth <= MaxDepth && "Limit Search Depth");
232 unsigned BitWidth = KnownZero.getBitWidth();
233
234 assert((V->getType()->isIntOrIntVectorTy() ||
235 V->getType()->getScalarType()->isPointerTy()) &&
236 "Not integer or pointer type!");
237 assert((!TD ||
238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
239 (!V->getType()->isIntOrIntVectorTy() ||
240 V->getType()->getScalarSizeInBits() == BitWidth) &&
241 KnownZero.getBitWidth() == BitWidth &&
242 KnownOne.getBitWidth() == BitWidth &&
243 "V, Mask, KnownOne and KnownZero should have same BitWidth");
244
245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246 // We know all of the bits for a constant!
247 KnownOne = CI->getValue();
248 KnownZero = ~KnownOne;
249 return;
250 }
251 // Null and aggregate-zero are all-zeros.
252 if (isa<ConstantPointerNull>(V) ||
253 isa<ConstantAggregateZero>(V)) {
254 KnownOne.clearAllBits();
255 KnownZero = APInt::getAllOnesValue(BitWidth);
256 return;
257 }
258 // Handle a constant vector by taking the intersection of the known bits of
259 // each element. There is no real need to handle ConstantVector here, because
260 // we don't handle undef in any particularly useful way.
261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
262 // We know that CDS must be a vector of integers. Take the intersection of
263 // each element.
264 KnownZero.setAllBits(); KnownOne.setAllBits();
265 APInt Elt(KnownZero.getBitWidth(), 0);
266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
267 Elt = CDS->getElementAsInteger(i);
268 KnownZero &= ~Elt;
269 KnownOne &= Elt;
270 }
271 return;
272 }
273
274 // The address of an aligned GlobalValue has trailing zeros.
275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
276 unsigned Align = GV->getAlignment();
277 if (Align == 0 && TD) {
278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
279 Type *ObjectType = GVar->getType()->getElementType();
280 if (ObjectType->isSized()) {
281 // If the object is defined in the current Module, we'll be giving
282 // it the preferred alignment. Otherwise, we have to assume that it
283 // may only have the minimum ABI alignment.
284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
285 Align = TD->getPreferredAlignment(GVar);
286 else
287 Align = TD->getABITypeAlignment(ObjectType);
288 }
289 }
290 }
291 if (Align > 0)
292 KnownZero = APInt::getLowBitsSet(BitWidth,
293 CountTrailingZeros_32(Align));
294 else
295 KnownZero.clearAllBits();
296 KnownOne.clearAllBits();
297 return;
298 }
299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
300 // the bits of its aliasee.
301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
302 if (GA->mayBeOverridden()) {
303 KnownZero.clearAllBits(); KnownOne.clearAllBits();
304 } else {
305 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
306 }
307 return;
308 }
309
310 if (Argument *A = dyn_cast<Argument>(V)) {
311 // Get alignment information off byval arguments if specified in the IR.
312 if (A->hasByValAttr())
313 if (unsigned Align = A->getParamAlignment())
314 KnownZero = APInt::getLowBitsSet(BitWidth,
315 CountTrailingZeros_32(Align));
316 return;
317 }
318
319 // Start out not knowing anything.
320 KnownZero.clearAllBits(); KnownOne.clearAllBits();
321
322 if (Depth == MaxDepth)
323 return; // Limit search depth.
324
325 Operator *I = dyn_cast<Operator>(V);
326 if (!I) return;
327
328 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
329 switch (I->getOpcode()) {
330 default: break;
331 case Instruction::Load:
332 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
333 computeMaskedBitsLoad(*MD, KnownZero);
334 return;
335 case Instruction::And: {
336 // If either the LHS or the RHS are Zero, the result is zero.
337 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
338 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
339 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
340 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
341
342 // Output known-1 bits are only known if set in both the LHS & RHS.
343 KnownOne &= KnownOne2;
344 // Output known-0 are known to be clear if zero in either the LHS | RHS.
345 KnownZero |= KnownZero2;
346 return;
347 }
348 case Instruction::Or: {
349 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
350 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
351 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
352 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
353
354 // Output known-0 bits are only known if clear in both the LHS & RHS.
355 KnownZero &= KnownZero2;
356 // Output known-1 are known to be set if set in either the LHS | RHS.
357 KnownOne |= KnownOne2;
358 return;
359 }
360 case Instruction::Xor: {
361 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
362 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
363 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
364 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
365
366 // Output known-0 bits are known if clear or set in both the LHS & RHS.
367 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
368 // Output known-1 are known to be set if set in only one of the LHS, RHS.
369 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
370 KnownZero = KnownZeroOut;
371 return;
372 }
373 case Instruction::Mul: {
374 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
375 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
376 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
377 break;
378 }
379 case Instruction::UDiv: {
380 // For the purposes of computing leading zeros we can conservatively
381 // treat a udiv as a logical right shift by the power of 2 known to
382 // be less than the denominator.
383 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
384 unsigned LeadZ = KnownZero2.countLeadingOnes();
385
386 KnownOne2.clearAllBits();
387 KnownZero2.clearAllBits();
388 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
389 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
390 if (RHSUnknownLeadingOnes != BitWidth)
391 LeadZ = std::min(BitWidth,
392 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
393
394 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
395 return;
396 }
397 case Instruction::Select:
398 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
399 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
400 Depth+1);
401 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
402 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
403
404 // Only known if known in both the LHS and RHS.
405 KnownOne &= KnownOne2;
406 KnownZero &= KnownZero2;
407 return;
408 case Instruction::FPTrunc:
409 case Instruction::FPExt:
410 case Instruction::FPToUI:
411 case Instruction::FPToSI:
412 case Instruction::SIToFP:
413 case Instruction::UIToFP:
414 return; // Can't work with floating point.
415 case Instruction::PtrToInt:
416 case Instruction::IntToPtr:
417 // We can't handle these if we don't know the pointer size.
418 if (!TD) return;
419 // FALL THROUGH and handle them the same as zext/trunc.
420 case Instruction::ZExt:
421 case Instruction::Trunc: {
422 Type *SrcTy = I->getOperand(0)->getType();
423
424 unsigned SrcBitWidth;
425 // Note that we handle pointer operands here because of inttoptr/ptrtoint
426 // which fall through here.
427 if (SrcTy->isPointerTy())
428 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
429 else
430 SrcBitWidth = SrcTy->getScalarSizeInBits();
431
432 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
433 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
434 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
435 KnownZero = KnownZero.zextOrTrunc(BitWidth);
436 KnownOne = KnownOne.zextOrTrunc(BitWidth);
437 // Any top bits are known to be zero.
438 if (BitWidth > SrcBitWidth)
439 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
440 return;
441 }
442 case Instruction::BitCast: {
443 Type *SrcTy = I->getOperand(0)->getType();
444 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
445 // TODO: For now, not handling conversions like:
446 // (bitcast i64 %x to <2 x i32>)
447 !I->getType()->isVectorTy()) {
448 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
449 return;
450 }
451 break;
452 }
453 case Instruction::SExt: {
454 // Compute the bits in the result that are not present in the input.
455 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
456
457 KnownZero = KnownZero.trunc(SrcBitWidth);
458 KnownOne = KnownOne.trunc(SrcBitWidth);
459 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461 KnownZero = KnownZero.zext(BitWidth);
462 KnownOne = KnownOne.zext(BitWidth);
463
464 // If the sign bit of the input is known set or clear, then we know the
465 // top bits of the result.
466 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
467 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
468 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
469 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
470 return;
471 }
472 case Instruction::Shl:
473 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
474 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
475 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
476 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
477 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
478 KnownZero <<= ShiftAmt;
479 KnownOne <<= ShiftAmt;
480 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
481 return;
482 }
483 break;
484 case Instruction::LShr:
485 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 // Compute the new bits that are at the top now.
488 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
489
490 // Unsigned shift right.
491 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
492 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
493 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
494 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
495 // high bits known zero.
496 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
497 return;
498 }
499 break;
500 case Instruction::AShr:
501 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
502 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
503 // Compute the new bits that are at the top now.
504 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
505
506 // Signed shift right.
507 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
508 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
509 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
510 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
511
512 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
513 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
514 KnownZero |= HighBits;
515 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
516 KnownOne |= HighBits;
517 return;
518 }
519 break;
520 case Instruction::Sub: {
521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
522 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
523 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
524 Depth);
525 break;
526 }
527 case Instruction::Add: {
528 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
529 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
530 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
531 Depth);
532 break;
533 }
534 case Instruction::SRem:
535 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
536 APInt RA = Rem->getValue().abs();
537 if (RA.isPowerOf2()) {
538 APInt LowBits = RA - 1;
539 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
540
541 // The low bits of the first operand are unchanged by the srem.
542 KnownZero = KnownZero2 & LowBits;
543 KnownOne = KnownOne2 & LowBits;
544
545 // If the first operand is non-negative or has all low bits zero, then
546 // the upper bits are all zero.
547 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
548 KnownZero |= ~LowBits;
549
550 // If the first operand is negative and not all low bits are zero, then
551 // the upper bits are all one.
552 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
553 KnownOne |= ~LowBits;
554
555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
556 }
557 }
558
559 // The sign bit is the LHS's sign bit, except when the result of the
560 // remainder is zero.
561 if (KnownZero.isNonNegative()) {
562 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
563 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
564 Depth+1);
565 // If it's known zero, our sign bit is also zero.
566 if (LHSKnownZero.isNegative())
567 KnownZero |= LHSKnownZero;
568 }
569
570 break;
571 case Instruction::URem: {
572 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
573 APInt RA = Rem->getValue();
574 if (RA.isPowerOf2()) {
575 APInt LowBits = (RA - 1);
576 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
577 Depth+1);
578 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
579 KnownZero |= ~LowBits;
580 KnownOne &= LowBits;
581 break;
582 }
583 }
584
585 // Since the result is less than or equal to either operand, any leading
586 // zero bits in either operand must also exist in the result.
587 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
588 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
589
590 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
591 KnownZero2.countLeadingOnes());
592 KnownOne.clearAllBits();
593 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
594 break;
595 }
596
597 case Instruction::Alloca: {
598 AllocaInst *AI = cast<AllocaInst>(V);
599 unsigned Align = AI->getAlignment();
600 if (Align == 0 && TD)
601 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
602
603 if (Align > 0)
604 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
605 break;
606 }
607 case Instruction::GetElementPtr: {
608 // Analyze all of the subscripts of this getelementptr instruction
609 // to determine if we can prove known low zero bits.
610 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
611 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
612 Depth+1);
613 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
614
615 gep_type_iterator GTI = gep_type_begin(I);
616 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
617 Value *Index = I->getOperand(i);
618 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
619 // Handle struct member offset arithmetic.
620 if (!TD) return;
621 const StructLayout *SL = TD->getStructLayout(STy);
622 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
623 uint64_t Offset = SL->getElementOffset(Idx);
624 TrailZ = std::min(TrailZ,
625 CountTrailingZeros_64(Offset));
626 } else {
627 // Handle array index arithmetic.
628 Type *IndexedTy = GTI.getIndexedType();
629 if (!IndexedTy->isSized()) return;
630 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
631 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
632 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
633 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
634 TrailZ = std::min(TrailZ,
635 unsigned(CountTrailingZeros_64(TypeSize) +
636 LocalKnownZero.countTrailingOnes()));
637 }
638 }
639
640 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
641 break;
642 }
643 case Instruction::PHI: {
644 PHINode *P = cast<PHINode>(I);
645 // Handle the case of a simple two-predecessor recurrence PHI.
646 // There's a lot more that could theoretically be done here, but
647 // this is sufficient to catch some interesting cases.
648 if (P->getNumIncomingValues() == 2) {
649 for (unsigned i = 0; i != 2; ++i) {
650 Value *L = P->getIncomingValue(i);
651 Value *R = P->getIncomingValue(!i);
652 Operator *LU = dyn_cast<Operator>(L);
653 if (!LU)
654 continue;
655 unsigned Opcode = LU->getOpcode();
656 // Check for operations that have the property that if
657 // both their operands have low zero bits, the result
658 // will have low zero bits.
659 if (Opcode == Instruction::Add ||
660 Opcode == Instruction::Sub ||
661 Opcode == Instruction::And ||
662 Opcode == Instruction::Or ||
663 Opcode == Instruction::Mul) {
664 Value *LL = LU->getOperand(0);
665 Value *LR = LU->getOperand(1);
666 // Find a recurrence.
667 if (LL == I)
668 L = LR;
669 else if (LR == I)
670 L = LL;
671 else
672 break;
673 // Ok, we have a PHI of the form L op= R. Check for low
674 // zero bits.
675 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
676
677 // We need to take the minimum number of known bits
678 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
679 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
680
681 KnownZero = APInt::getLowBitsSet(BitWidth,
682 std::min(KnownZero2.countTrailingOnes(),
683 KnownZero3.countTrailingOnes()));
684 break;
685 }
686 }
687 }
688
689 // Unreachable blocks may have zero-operand PHI nodes.
690 if (P->getNumIncomingValues() == 0)
691 return;
692
693 // Otherwise take the unions of the known bit sets of the operands,
694 // taking conservative care to avoid excessive recursion.
695 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
696 // Skip if every incoming value references to ourself.
697 if (P->hasConstantValue() == P)
698 break;
699
700 KnownZero = APInt::getAllOnesValue(BitWidth);
701 KnownOne = APInt::getAllOnesValue(BitWidth);
702 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
703 // Skip direct self references.
704 if (P->getIncomingValue(i) == P) continue;
705
706 KnownZero2 = APInt(BitWidth, 0);
707 KnownOne2 = APInt(BitWidth, 0);
708 // Recurse, but cap the recursion to one level, because we don't
709 // want to waste time spinning around in loops.
710 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
711 MaxDepth-1);
712 KnownZero &= KnownZero2;
713 KnownOne &= KnownOne2;
714 // If all bits have been ruled out, there's no need to check
715 // more operands.
716 if (!KnownZero && !KnownOne)
717 break;
718 }
719 }
720 break;
721 }
722 case Instruction::Call:
723 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
724 switch (II->getIntrinsicID()) {
725 default: break;
726 case Intrinsic::ctlz:
727 case Intrinsic::cttz: {
728 unsigned LowBits = Log2_32(BitWidth)+1;
729 // If this call is undefined for 0, the result will be less than 2^n.
730 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
731 LowBits -= 1;
732 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
733 break;
734 }
735 case Intrinsic::ctpop: {
736 unsigned LowBits = Log2_32(BitWidth)+1;
737 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
738 break;
739 }
740 case Intrinsic::x86_sse42_crc32_64_8:
741 case Intrinsic::x86_sse42_crc32_64_64:
742 KnownZero = APInt::getHighBitsSet(64, 32);
743 break;
744 }
745 }
746 break;
747 case Instruction::ExtractValue:
748 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
749 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
750 if (EVI->getNumIndices() != 1) break;
751 if (EVI->getIndices()[0] == 0) {
752 switch (II->getIntrinsicID()) {
753 default: break;
754 case Intrinsic::uadd_with_overflow:
755 case Intrinsic::sadd_with_overflow:
756 ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
757 II->getArgOperand(1), false, KnownZero,
758 KnownOne, KnownZero2, KnownOne2, TD, Depth);
759 break;
760 case Intrinsic::usub_with_overflow:
761 case Intrinsic::ssub_with_overflow:
762 ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
763 II->getArgOperand(1), false, KnownZero,
764 KnownOne, KnownZero2, KnownOne2, TD, Depth);
765 break;
766 case Intrinsic::umul_with_overflow:
767 case Intrinsic::smul_with_overflow:
768 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
769 false, KnownZero, KnownOne,
770 KnownZero2, KnownOne2, TD, Depth);
771 break;
772 }
773 }
774 }
775 }
776 }
777
778 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
779 /// one. Convenience wrapper around ComputeMaskedBits.
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const TargetData * TD,unsigned Depth)780 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
781 const TargetData *TD, unsigned Depth) {
782 unsigned BitWidth = getBitWidth(V->getType(), TD);
783 if (!BitWidth) {
784 KnownZero = false;
785 KnownOne = false;
786 return;
787 }
788 APInt ZeroBits(BitWidth, 0);
789 APInt OneBits(BitWidth, 0);
790 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
791 KnownOne = OneBits[BitWidth - 1];
792 KnownZero = ZeroBits[BitWidth - 1];
793 }
794
795 /// isPowerOfTwo - Return true if the given value is known to have exactly one
796 /// bit set when defined. For vectors return true if every element is known to
797 /// be a power of two when defined. Supports values with integer or pointer
798 /// types and vectors of integers.
isPowerOfTwo(Value * V,const TargetData * TD,bool OrZero,unsigned Depth)799 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
800 unsigned Depth) {
801 if (Constant *C = dyn_cast<Constant>(V)) {
802 if (C->isNullValue())
803 return OrZero;
804 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
805 return CI->getValue().isPowerOf2();
806 // TODO: Handle vector constants.
807 }
808
809 // 1 << X is clearly a power of two if the one is not shifted off the end. If
810 // it is shifted off the end then the result is undefined.
811 if (match(V, m_Shl(m_One(), m_Value())))
812 return true;
813
814 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
815 // bottom. If it is shifted off the bottom then the result is undefined.
816 if (match(V, m_LShr(m_SignBit(), m_Value())))
817 return true;
818
819 // The remaining tests are all recursive, so bail out if we hit the limit.
820 if (Depth++ == MaxDepth)
821 return false;
822
823 Value *X = 0, *Y = 0;
824 // A shift of a power of two is a power of two or zero.
825 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
826 match(V, m_Shr(m_Value(X), m_Value()))))
827 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
828
829 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
830 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
831
832 if (SelectInst *SI = dyn_cast<SelectInst>(V))
833 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
834 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
835
836 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
837 // A power of two and'd with anything is a power of two or zero.
838 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
839 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
840 return true;
841 // X & (-X) is always a power of two or zero.
842 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
843 return true;
844 return false;
845 }
846
847 // An exact divide or right shift can only shift off zero bits, so the result
848 // is a power of two only if the first operand is a power of two and not
849 // copying a sign bit (sdiv int_min, 2).
850 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
851 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
852 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
853 }
854
855 return false;
856 }
857
858 /// isKnownNonZero - Return true if the given value is known to be non-zero
859 /// when defined. For vectors return true if every element is known to be
860 /// non-zero when defined. Supports values with integer or pointer type and
861 /// vectors of integers.
isKnownNonZero(Value * V,const TargetData * TD,unsigned Depth)862 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
863 if (Constant *C = dyn_cast<Constant>(V)) {
864 if (C->isNullValue())
865 return false;
866 if (isa<ConstantInt>(C))
867 // Must be non-zero due to null test above.
868 return true;
869 // TODO: Handle vectors
870 return false;
871 }
872
873 // The remaining tests are all recursive, so bail out if we hit the limit.
874 if (Depth++ >= MaxDepth)
875 return false;
876
877 unsigned BitWidth = getBitWidth(V->getType(), TD);
878
879 // X | Y != 0 if X != 0 or Y != 0.
880 Value *X = 0, *Y = 0;
881 if (match(V, m_Or(m_Value(X), m_Value(Y))))
882 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
883
884 // ext X != 0 if X != 0.
885 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
886 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
887
888 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
889 // if the lowest bit is shifted off the end.
890 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
891 // shl nuw can't remove any non-zero bits.
892 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
893 if (BO->hasNoUnsignedWrap())
894 return isKnownNonZero(X, TD, Depth);
895
896 APInt KnownZero(BitWidth, 0);
897 APInt KnownOne(BitWidth, 0);
898 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
899 if (KnownOne[0])
900 return true;
901 }
902 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
903 // defined if the sign bit is shifted off the end.
904 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
905 // shr exact can only shift out zero bits.
906 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
907 if (BO->isExact())
908 return isKnownNonZero(X, TD, Depth);
909
910 bool XKnownNonNegative, XKnownNegative;
911 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
912 if (XKnownNegative)
913 return true;
914 }
915 // div exact can only produce a zero if the dividend is zero.
916 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
917 return isKnownNonZero(X, TD, Depth);
918 }
919 // X + Y.
920 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
921 bool XKnownNonNegative, XKnownNegative;
922 bool YKnownNonNegative, YKnownNegative;
923 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
924 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
925
926 // If X and Y are both non-negative (as signed values) then their sum is not
927 // zero unless both X and Y are zero.
928 if (XKnownNonNegative && YKnownNonNegative)
929 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
930 return true;
931
932 // If X and Y are both negative (as signed values) then their sum is not
933 // zero unless both X and Y equal INT_MIN.
934 if (BitWidth && XKnownNegative && YKnownNegative) {
935 APInt KnownZero(BitWidth, 0);
936 APInt KnownOne(BitWidth, 0);
937 APInt Mask = APInt::getSignedMaxValue(BitWidth);
938 // The sign bit of X is set. If some other bit is set then X is not equal
939 // to INT_MIN.
940 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
941 if ((KnownOne & Mask) != 0)
942 return true;
943 // The sign bit of Y is set. If some other bit is set then Y is not equal
944 // to INT_MIN.
945 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
946 if ((KnownOne & Mask) != 0)
947 return true;
948 }
949
950 // The sum of a non-negative number and a power of two is not zero.
951 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
952 return true;
953 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
954 return true;
955 }
956 // X * Y.
957 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
958 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
959 // If X and Y are non-zero then so is X * Y as long as the multiplication
960 // does not overflow.
961 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
962 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
963 return true;
964 }
965 // (C ? X : Y) != 0 if X != 0 and Y != 0.
966 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
967 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
968 isKnownNonZero(SI->getFalseValue(), TD, Depth))
969 return true;
970 }
971
972 if (!BitWidth) return false;
973 APInt KnownZero(BitWidth, 0);
974 APInt KnownOne(BitWidth, 0);
975 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
976 return KnownOne != 0;
977 }
978
979 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
980 /// this predicate to simplify operations downstream. Mask is known to be zero
981 /// for bits that V cannot have.
982 ///
983 /// This function is defined on values with integer type, values with pointer
984 /// type (but only if TD is non-null), and vectors of integers. In the case
985 /// where V is a vector, the mask, known zero, and known one values are the
986 /// same width as the vector element, and the bit is set only if it is true
987 /// for all of the elements in the vector.
MaskedValueIsZero(Value * V,const APInt & Mask,const TargetData * TD,unsigned Depth)988 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
989 const TargetData *TD, unsigned Depth) {
990 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
991 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
992 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
993 return (KnownZero & Mask) == Mask;
994 }
995
996
997
998 /// ComputeNumSignBits - Return the number of times the sign bit of the
999 /// register is replicated into the other bits. We know that at least 1 bit
1000 /// is always equal to the sign bit (itself), but other cases can give us
1001 /// information. For example, immediately after an "ashr X, 2", we know that
1002 /// the top 3 bits are all equal to each other, so we return 3.
1003 ///
1004 /// 'Op' must have a scalar integer type.
1005 ///
ComputeNumSignBits(Value * V,const TargetData * TD,unsigned Depth)1006 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
1007 unsigned Depth) {
1008 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
1009 "ComputeNumSignBits requires a TargetData object to operate "
1010 "on non-integer values!");
1011 Type *Ty = V->getType();
1012 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1013 Ty->getScalarSizeInBits();
1014 unsigned Tmp, Tmp2;
1015 unsigned FirstAnswer = 1;
1016
1017 // Note that ConstantInt is handled by the general ComputeMaskedBits case
1018 // below.
1019
1020 if (Depth == 6)
1021 return 1; // Limit search depth.
1022
1023 Operator *U = dyn_cast<Operator>(V);
1024 switch (Operator::getOpcode(V)) {
1025 default: break;
1026 case Instruction::SExt:
1027 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1028 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
1029
1030 case Instruction::AShr: {
1031 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1032 // ashr X, C -> adds C sign bits. Vectors too.
1033 const APInt *ShAmt;
1034 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1035 Tmp += ShAmt->getZExtValue();
1036 if (Tmp > TyBits) Tmp = TyBits;
1037 }
1038 return Tmp;
1039 }
1040 case Instruction::Shl: {
1041 const APInt *ShAmt;
1042 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1043 // shl destroys sign bits.
1044 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1045 Tmp2 = ShAmt->getZExtValue();
1046 if (Tmp2 >= TyBits || // Bad shift.
1047 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1048 return Tmp - Tmp2;
1049 }
1050 break;
1051 }
1052 case Instruction::And:
1053 case Instruction::Or:
1054 case Instruction::Xor: // NOT is handled here.
1055 // Logical binary ops preserve the number of sign bits at the worst.
1056 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1057 if (Tmp != 1) {
1058 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1059 FirstAnswer = std::min(Tmp, Tmp2);
1060 // We computed what we know about the sign bits as our first
1061 // answer. Now proceed to the generic code that uses
1062 // ComputeMaskedBits, and pick whichever answer is better.
1063 }
1064 break;
1065
1066 case Instruction::Select:
1067 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1068 if (Tmp == 1) return 1; // Early out.
1069 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1070 return std::min(Tmp, Tmp2);
1071
1072 case Instruction::Add:
1073 // Add can have at most one carry bit. Thus we know that the output
1074 // is, at worst, one more bit than the inputs.
1075 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1076 if (Tmp == 1) return 1; // Early out.
1077
1078 // Special case decrementing a value (ADD X, -1):
1079 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1080 if (CRHS->isAllOnesValue()) {
1081 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1082 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
1083
1084 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1085 // sign bits set.
1086 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1087 return TyBits;
1088
1089 // If we are subtracting one from a positive number, there is no carry
1090 // out of the result.
1091 if (KnownZero.isNegative())
1092 return Tmp;
1093 }
1094
1095 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1096 if (Tmp2 == 1) return 1;
1097 return std::min(Tmp, Tmp2)-1;
1098
1099 case Instruction::Sub:
1100 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1101 if (Tmp2 == 1) return 1;
1102
1103 // Handle NEG.
1104 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1105 if (CLHS->isNullValue()) {
1106 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1107 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
1108 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1109 // sign bits set.
1110 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
1111 return TyBits;
1112
1113 // If the input is known to be positive (the sign bit is known clear),
1114 // the output of the NEG has the same number of sign bits as the input.
1115 if (KnownZero.isNegative())
1116 return Tmp2;
1117
1118 // Otherwise, we treat this like a SUB.
1119 }
1120
1121 // Sub can have at most one carry bit. Thus we know that the output
1122 // is, at worst, one more bit than the inputs.
1123 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1124 if (Tmp == 1) return 1; // Early out.
1125 return std::min(Tmp, Tmp2)-1;
1126
1127 case Instruction::PHI: {
1128 PHINode *PN = cast<PHINode>(U);
1129 // Don't analyze large in-degree PHIs.
1130 if (PN->getNumIncomingValues() > 4) break;
1131
1132 // Take the minimum of all incoming values. This can't infinitely loop
1133 // because of our depth threshold.
1134 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1135 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1136 if (Tmp == 1) return Tmp;
1137 Tmp = std::min(Tmp,
1138 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1139 }
1140 return Tmp;
1141 }
1142
1143 case Instruction::Trunc:
1144 // FIXME: it's tricky to do anything useful for this, but it is an important
1145 // case for targets like X86.
1146 break;
1147 }
1148
1149 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1150 // use this information.
1151 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1152 APInt Mask;
1153 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
1154
1155 if (KnownZero.isNegative()) { // sign bit is 0
1156 Mask = KnownZero;
1157 } else if (KnownOne.isNegative()) { // sign bit is 1;
1158 Mask = KnownOne;
1159 } else {
1160 // Nothing known.
1161 return FirstAnswer;
1162 }
1163
1164 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1165 // the number of identical bits in the top of the input value.
1166 Mask = ~Mask;
1167 Mask <<= Mask.getBitWidth()-TyBits;
1168 // Return # leading zeros. We use 'min' here in case Val was zero before
1169 // shifting. We don't want to return '64' as for an i32 "0".
1170 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1171 }
1172
1173 /// ComputeMultiple - This function computes the integer multiple of Base that
1174 /// equals V. If successful, it returns true and returns the multiple in
1175 /// Multiple. If unsuccessful, it returns false. It looks
1176 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)1177 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1178 bool LookThroughSExt, unsigned Depth) {
1179 const unsigned MaxDepth = 6;
1180
1181 assert(V && "No Value?");
1182 assert(Depth <= MaxDepth && "Limit Search Depth");
1183 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1184
1185 Type *T = V->getType();
1186
1187 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1188
1189 if (Base == 0)
1190 return false;
1191
1192 if (Base == 1) {
1193 Multiple = V;
1194 return true;
1195 }
1196
1197 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1198 Constant *BaseVal = ConstantInt::get(T, Base);
1199 if (CO && CO == BaseVal) {
1200 // Multiple is 1.
1201 Multiple = ConstantInt::get(T, 1);
1202 return true;
1203 }
1204
1205 if (CI && CI->getZExtValue() % Base == 0) {
1206 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1207 return true;
1208 }
1209
1210 if (Depth == MaxDepth) return false; // Limit search depth.
1211
1212 Operator *I = dyn_cast<Operator>(V);
1213 if (!I) return false;
1214
1215 switch (I->getOpcode()) {
1216 default: break;
1217 case Instruction::SExt:
1218 if (!LookThroughSExt) return false;
1219 // otherwise fall through to ZExt
1220 case Instruction::ZExt:
1221 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1222 LookThroughSExt, Depth+1);
1223 case Instruction::Shl:
1224 case Instruction::Mul: {
1225 Value *Op0 = I->getOperand(0);
1226 Value *Op1 = I->getOperand(1);
1227
1228 if (I->getOpcode() == Instruction::Shl) {
1229 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1230 if (!Op1CI) return false;
1231 // Turn Op0 << Op1 into Op0 * 2^Op1
1232 APInt Op1Int = Op1CI->getValue();
1233 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1234 APInt API(Op1Int.getBitWidth(), 0);
1235 API.setBit(BitToSet);
1236 Op1 = ConstantInt::get(V->getContext(), API);
1237 }
1238
1239 Value *Mul0 = NULL;
1240 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1241 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1242 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1243 if (Op1C->getType()->getPrimitiveSizeInBits() <
1244 MulC->getType()->getPrimitiveSizeInBits())
1245 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1246 if (Op1C->getType()->getPrimitiveSizeInBits() >
1247 MulC->getType()->getPrimitiveSizeInBits())
1248 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1249
1250 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1251 Multiple = ConstantExpr::getMul(MulC, Op1C);
1252 return true;
1253 }
1254
1255 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1256 if (Mul0CI->getValue() == 1) {
1257 // V == Base * Op1, so return Op1
1258 Multiple = Op1;
1259 return true;
1260 }
1261 }
1262
1263 Value *Mul1 = NULL;
1264 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1265 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1266 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1267 if (Op0C->getType()->getPrimitiveSizeInBits() <
1268 MulC->getType()->getPrimitiveSizeInBits())
1269 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1270 if (Op0C->getType()->getPrimitiveSizeInBits() >
1271 MulC->getType()->getPrimitiveSizeInBits())
1272 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1273
1274 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1275 Multiple = ConstantExpr::getMul(MulC, Op0C);
1276 return true;
1277 }
1278
1279 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1280 if (Mul1CI->getValue() == 1) {
1281 // V == Base * Op0, so return Op0
1282 Multiple = Op0;
1283 return true;
1284 }
1285 }
1286 }
1287 }
1288
1289 // We could not determine if V is a multiple of Base.
1290 return false;
1291 }
1292
1293 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1294 /// value is never equal to -0.0.
1295 ///
1296 /// NOTE: this function will need to be revisited when we support non-default
1297 /// rounding modes!
1298 ///
CannotBeNegativeZero(const Value * V,unsigned Depth)1299 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1300 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1301 return !CFP->getValueAPF().isNegZero();
1302
1303 if (Depth == 6)
1304 return 1; // Limit search depth.
1305
1306 const Operator *I = dyn_cast<Operator>(V);
1307 if (I == 0) return false;
1308
1309 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1310 if (I->getOpcode() == Instruction::FAdd &&
1311 isa<ConstantFP>(I->getOperand(1)) &&
1312 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1313 return true;
1314
1315 // sitofp and uitofp turn into +0.0 for zero.
1316 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1317 return true;
1318
1319 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1320 // sqrt(-0.0) = -0.0, no other negative results are possible.
1321 if (II->getIntrinsicID() == Intrinsic::sqrt)
1322 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1323
1324 if (const CallInst *CI = dyn_cast<CallInst>(I))
1325 if (const Function *F = CI->getCalledFunction()) {
1326 if (F->isDeclaration()) {
1327 // abs(x) != -0.0
1328 if (F->getName() == "abs") return true;
1329 // fabs[lf](x) != -0.0
1330 if (F->getName() == "fabs") return true;
1331 if (F->getName() == "fabsf") return true;
1332 if (F->getName() == "fabsl") return true;
1333 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1334 F->getName() == "sqrtl")
1335 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1336 }
1337 }
1338
1339 return false;
1340 }
1341
1342 /// isBytewiseValue - If the specified value can be set by repeating the same
1343 /// byte in memory, return the i8 value that it is represented with. This is
1344 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1345 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1346 /// byte store (e.g. i16 0x1234), return null.
isBytewiseValue(Value * V)1347 Value *llvm::isBytewiseValue(Value *V) {
1348 // All byte-wide stores are splatable, even of arbitrary variables.
1349 if (V->getType()->isIntegerTy(8)) return V;
1350
1351 // Handle 'null' ConstantArrayZero etc.
1352 if (Constant *C = dyn_cast<Constant>(V))
1353 if (C->isNullValue())
1354 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1355
1356 // Constant float and double values can be handled as integer values if the
1357 // corresponding integer value is "byteable". An important case is 0.0.
1358 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1359 if (CFP->getType()->isFloatTy())
1360 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1361 if (CFP->getType()->isDoubleTy())
1362 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1363 // Don't handle long double formats, which have strange constraints.
1364 }
1365
1366 // We can handle constant integers that are power of two in size and a
1367 // multiple of 8 bits.
1368 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1369 unsigned Width = CI->getBitWidth();
1370 if (isPowerOf2_32(Width) && Width > 8) {
1371 // We can handle this value if the recursive binary decomposition is the
1372 // same at all levels.
1373 APInt Val = CI->getValue();
1374 APInt Val2;
1375 while (Val.getBitWidth() != 8) {
1376 unsigned NextWidth = Val.getBitWidth()/2;
1377 Val2 = Val.lshr(NextWidth);
1378 Val2 = Val2.trunc(Val.getBitWidth()/2);
1379 Val = Val.trunc(Val.getBitWidth()/2);
1380
1381 // If the top/bottom halves aren't the same, reject it.
1382 if (Val != Val2)
1383 return 0;
1384 }
1385 return ConstantInt::get(V->getContext(), Val);
1386 }
1387 }
1388
1389 // A ConstantDataArray/Vector is splatable if all its members are equal and
1390 // also splatable.
1391 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1392 Value *Elt = CA->getElementAsConstant(0);
1393 Value *Val = isBytewiseValue(Elt);
1394 if (!Val)
1395 return 0;
1396
1397 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1398 if (CA->getElementAsConstant(I) != Elt)
1399 return 0;
1400
1401 return Val;
1402 }
1403
1404 // Conceptually, we could handle things like:
1405 // %a = zext i8 %X to i16
1406 // %b = shl i16 %a, 8
1407 // %c = or i16 %a, %b
1408 // but until there is an example that actually needs this, it doesn't seem
1409 // worth worrying about.
1410 return 0;
1411 }
1412
1413
1414 // This is the recursive version of BuildSubAggregate. It takes a few different
1415 // arguments. Idxs is the index within the nested struct From that we are
1416 // looking at now (which is of type IndexedType). IdxSkip is the number of
1417 // indices from Idxs that should be left out when inserting into the resulting
1418 // struct. To is the result struct built so far, new insertvalue instructions
1419 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVector<unsigned,10> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)1420 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
1421 SmallVector<unsigned, 10> &Idxs,
1422 unsigned IdxSkip,
1423 Instruction *InsertBefore) {
1424 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1425 if (STy) {
1426 // Save the original To argument so we can modify it
1427 Value *OrigTo = To;
1428 // General case, the type indexed by Idxs is a struct
1429 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1430 // Process each struct element recursively
1431 Idxs.push_back(i);
1432 Value *PrevTo = To;
1433 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1434 InsertBefore);
1435 Idxs.pop_back();
1436 if (!To) {
1437 // Couldn't find any inserted value for this index? Cleanup
1438 while (PrevTo != OrigTo) {
1439 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1440 PrevTo = Del->getAggregateOperand();
1441 Del->eraseFromParent();
1442 }
1443 // Stop processing elements
1444 break;
1445 }
1446 }
1447 // If we successfully found a value for each of our subaggregates
1448 if (To)
1449 return To;
1450 }
1451 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1452 // the struct's elements had a value that was inserted directly. In the latter
1453 // case, perhaps we can't determine each of the subelements individually, but
1454 // we might be able to find the complete struct somewhere.
1455
1456 // Find the value that is at that particular spot
1457 Value *V = FindInsertedValue(From, Idxs);
1458
1459 if (!V)
1460 return NULL;
1461
1462 // Insert the value in the new (sub) aggregrate
1463 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1464 "tmp", InsertBefore);
1465 }
1466
1467 // This helper takes a nested struct and extracts a part of it (which is again a
1468 // struct) into a new value. For example, given the struct:
1469 // { a, { b, { c, d }, e } }
1470 // and the indices "1, 1" this returns
1471 // { c, d }.
1472 //
1473 // It does this by inserting an insertvalue for each element in the resulting
1474 // struct, as opposed to just inserting a single struct. This will only work if
1475 // each of the elements of the substruct are known (ie, inserted into From by an
1476 // insertvalue instruction somewhere).
1477 //
1478 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1479 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
1480 Instruction *InsertBefore) {
1481 assert(InsertBefore && "Must have someplace to insert!");
1482 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1483 idx_range);
1484 Value *To = UndefValue::get(IndexedType);
1485 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1486 unsigned IdxSkip = Idxs.size();
1487
1488 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1489 }
1490
1491 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1492 /// the scalar value indexed is already around as a register, for example if it
1493 /// were inserted directly into the aggregrate.
1494 ///
1495 /// If InsertBefore is not null, this function will duplicate (modified)
1496 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)1497 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1498 Instruction *InsertBefore) {
1499 // Nothing to index? Just return V then (this is useful at the end of our
1500 // recursion).
1501 if (idx_range.empty())
1502 return V;
1503 // We have indices, so V should have an indexable type.
1504 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1505 "Not looking at a struct or array?");
1506 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1507 "Invalid indices for type?");
1508
1509 if (Constant *C = dyn_cast<Constant>(V)) {
1510 C = C->getAggregateElement(idx_range[0]);
1511 if (C == 0) return 0;
1512 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1513 }
1514
1515 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1516 // Loop the indices for the insertvalue instruction in parallel with the
1517 // requested indices
1518 const unsigned *req_idx = idx_range.begin();
1519 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1520 i != e; ++i, ++req_idx) {
1521 if (req_idx == idx_range.end()) {
1522 // We can't handle this without inserting insertvalues
1523 if (!InsertBefore)
1524 return 0;
1525
1526 // The requested index identifies a part of a nested aggregate. Handle
1527 // this specially. For example,
1528 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1529 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1530 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1531 // This can be changed into
1532 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1533 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1534 // which allows the unused 0,0 element from the nested struct to be
1535 // removed.
1536 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1537 InsertBefore);
1538 }
1539
1540 // This insert value inserts something else than what we are looking for.
1541 // See if the (aggregrate) value inserted into has the value we are
1542 // looking for, then.
1543 if (*req_idx != *i)
1544 return FindInsertedValue(I->getAggregateOperand(), idx_range,
1545 InsertBefore);
1546 }
1547 // If we end up here, the indices of the insertvalue match with those
1548 // requested (though possibly only partially). Now we recursively look at
1549 // the inserted value, passing any remaining indices.
1550 return FindInsertedValue(I->getInsertedValueOperand(),
1551 makeArrayRef(req_idx, idx_range.end()),
1552 InsertBefore);
1553 }
1554
1555 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1556 // If we're extracting a value from an aggregrate that was extracted from
1557 // something else, we can extract from that something else directly instead.
1558 // However, we will need to chain I's indices with the requested indices.
1559
1560 // Calculate the number of indices required
1561 unsigned size = I->getNumIndices() + idx_range.size();
1562 // Allocate some space to put the new indices in
1563 SmallVector<unsigned, 5> Idxs;
1564 Idxs.reserve(size);
1565 // Add indices from the extract value instruction
1566 Idxs.append(I->idx_begin(), I->idx_end());
1567
1568 // Add requested indices
1569 Idxs.append(idx_range.begin(), idx_range.end());
1570
1571 assert(Idxs.size() == size
1572 && "Number of indices added not correct?");
1573
1574 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1575 }
1576 // Otherwise, we don't know (such as, extracting from a function return value
1577 // or load instruction)
1578 return 0;
1579 }
1580
1581 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1582 /// it can be expressed as a base pointer plus a constant offset. Return the
1583 /// base and offset to the caller.
GetPointerBaseWithConstantOffset(Value * Ptr,int64_t & Offset,const TargetData & TD)1584 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1585 const TargetData &TD) {
1586 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1587 if (PtrOp == 0 || Ptr->getType()->isVectorTy())
1588 return Ptr;
1589
1590 // Just look through bitcasts.
1591 if (PtrOp->getOpcode() == Instruction::BitCast)
1592 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1593
1594 // If this is a GEP with constant indices, we can look through it.
1595 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1596 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1597
1598 gep_type_iterator GTI = gep_type_begin(GEP);
1599 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1600 ++I, ++GTI) {
1601 ConstantInt *OpC = cast<ConstantInt>(*I);
1602 if (OpC->isZero()) continue;
1603
1604 // Handle a struct and array indices which add their offset to the pointer.
1605 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1606 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1607 } else {
1608 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1609 Offset += OpC->getSExtValue()*Size;
1610 }
1611 }
1612
1613 // Re-sign extend from the pointer size if needed to get overflow edge cases
1614 // right.
1615 unsigned PtrSize = TD.getPointerSizeInBits();
1616 if (PtrSize < 64)
1617 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1618
1619 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1620 }
1621
1622
1623 /// getConstantStringInfo - This function computes the length of a
1624 /// null-terminated C string pointed to by V. If successful, it returns true
1625 /// and returns the string in Str. If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)1626 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1627 uint64_t Offset, bool TrimAtNul) {
1628 assert(V);
1629
1630 // Look through bitcast instructions and geps.
1631 V = V->stripPointerCasts();
1632
1633 // If the value is a GEP instructionor constant expression, treat it as an
1634 // offset.
1635 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1636 // Make sure the GEP has exactly three arguments.
1637 if (GEP->getNumOperands() != 3)
1638 return false;
1639
1640 // Make sure the index-ee is a pointer to array of i8.
1641 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1642 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1643 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1644 return false;
1645
1646 // Check to make sure that the first operand of the GEP is an integer and
1647 // has value 0 so that we are sure we're indexing into the initializer.
1648 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1649 if (FirstIdx == 0 || !FirstIdx->isZero())
1650 return false;
1651
1652 // If the second index isn't a ConstantInt, then this is a variable index
1653 // into the array. If this occurs, we can't say anything meaningful about
1654 // the string.
1655 uint64_t StartIdx = 0;
1656 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1657 StartIdx = CI->getZExtValue();
1658 else
1659 return false;
1660 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
1661 }
1662
1663 // The GEP instruction, constant or instruction, must reference a global
1664 // variable that is a constant and is initialized. The referenced constant
1665 // initializer is the array that we'll use for optimization.
1666 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
1667 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1668 return false;
1669
1670 // Handle the all-zeros case
1671 if (GV->getInitializer()->isNullValue()) {
1672 // This is a degenerate case. The initializer is constant zero so the
1673 // length of the string must be zero.
1674 Str = "";
1675 return true;
1676 }
1677
1678 // Must be a Constant Array
1679 const ConstantDataArray *Array =
1680 dyn_cast<ConstantDataArray>(GV->getInitializer());
1681 if (Array == 0 || !Array->isString())
1682 return false;
1683
1684 // Get the number of elements in the array
1685 uint64_t NumElts = Array->getType()->getArrayNumElements();
1686
1687 // Start out with the entire array in the StringRef.
1688 Str = Array->getAsString();
1689
1690 if (Offset > NumElts)
1691 return false;
1692
1693 // Skip over 'offset' bytes.
1694 Str = Str.substr(Offset);
1695
1696 if (TrimAtNul) {
1697 // Trim off the \0 and anything after it. If the array is not nul
1698 // terminated, we just return the whole end of string. The client may know
1699 // some other way that the string is length-bound.
1700 Str = Str.substr(0, Str.find('\0'));
1701 }
1702 return true;
1703 }
1704
1705 // These next two are very similar to the above, but also look through PHI
1706 // nodes.
1707 // TODO: See if we can integrate these two together.
1708
1709 /// GetStringLengthH - If we can compute the length of the string pointed to by
1710 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLengthH(Value * V,SmallPtrSet<PHINode *,32> & PHIs)1711 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1712 // Look through noop bitcast instructions.
1713 V = V->stripPointerCasts();
1714
1715 // If this is a PHI node, there are two cases: either we have already seen it
1716 // or we haven't.
1717 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1718 if (!PHIs.insert(PN))
1719 return ~0ULL; // already in the set.
1720
1721 // If it was new, see if all the input strings are the same length.
1722 uint64_t LenSoFar = ~0ULL;
1723 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1724 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1725 if (Len == 0) return 0; // Unknown length -> unknown.
1726
1727 if (Len == ~0ULL) continue;
1728
1729 if (Len != LenSoFar && LenSoFar != ~0ULL)
1730 return 0; // Disagree -> unknown.
1731 LenSoFar = Len;
1732 }
1733
1734 // Success, all agree.
1735 return LenSoFar;
1736 }
1737
1738 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1739 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1740 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1741 if (Len1 == 0) return 0;
1742 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1743 if (Len2 == 0) return 0;
1744 if (Len1 == ~0ULL) return Len2;
1745 if (Len2 == ~0ULL) return Len1;
1746 if (Len1 != Len2) return 0;
1747 return Len1;
1748 }
1749
1750 // Otherwise, see if we can read the string.
1751 StringRef StrData;
1752 if (!getConstantStringInfo(V, StrData))
1753 return 0;
1754
1755 return StrData.size()+1;
1756 }
1757
1758 /// GetStringLength - If we can compute the length of the string pointed to by
1759 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLength(Value * V)1760 uint64_t llvm::GetStringLength(Value *V) {
1761 if (!V->getType()->isPointerTy()) return 0;
1762
1763 SmallPtrSet<PHINode*, 32> PHIs;
1764 uint64_t Len = GetStringLengthH(V, PHIs);
1765 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1766 // an empty string as a length.
1767 return Len == ~0ULL ? 1 : Len;
1768 }
1769
1770 Value *
GetUnderlyingObject(Value * V,const TargetData * TD,unsigned MaxLookup)1771 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
1772 if (!V->getType()->isPointerTy())
1773 return V;
1774 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1775 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1776 V = GEP->getPointerOperand();
1777 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1778 V = cast<Operator>(V)->getOperand(0);
1779 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1780 if (GA->mayBeOverridden())
1781 return V;
1782 V = GA->getAliasee();
1783 } else {
1784 // See if InstructionSimplify knows any relevant tricks.
1785 if (Instruction *I = dyn_cast<Instruction>(V))
1786 // TODO: Acquire a DominatorTree and use it.
1787 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1788 V = Simplified;
1789 continue;
1790 }
1791
1792 return V;
1793 }
1794 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1795 }
1796 return V;
1797 }
1798
1799 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1800 /// are lifetime markers.
1801 ///
onlyUsedByLifetimeMarkers(const Value * V)1802 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1803 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1804 UI != UE; ++UI) {
1805 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1806 if (!II) return false;
1807
1808 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1809 II->getIntrinsicID() != Intrinsic::lifetime_end)
1810 return false;
1811 }
1812 return true;
1813 }
1814
isSafeToSpeculativelyExecute(const Value * V,const TargetData * TD)1815 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
1816 const TargetData *TD) {
1817 const Operator *Inst = dyn_cast<Operator>(V);
1818 if (!Inst)
1819 return false;
1820
1821 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1822 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1823 if (C->canTrap())
1824 return false;
1825
1826 switch (Inst->getOpcode()) {
1827 default:
1828 return true;
1829 case Instruction::UDiv:
1830 case Instruction::URem:
1831 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1832 return isKnownNonZero(Inst->getOperand(1), TD);
1833 case Instruction::SDiv:
1834 case Instruction::SRem: {
1835 Value *Op = Inst->getOperand(1);
1836 // x / y is undefined if y == 0
1837 if (!isKnownNonZero(Op, TD))
1838 return false;
1839 // x / y might be undefined if y == -1
1840 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1841 if (BitWidth == 0)
1842 return false;
1843 APInt KnownZero(BitWidth, 0);
1844 APInt KnownOne(BitWidth, 0);
1845 ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
1846 return !!KnownZero;
1847 }
1848 case Instruction::Load: {
1849 const LoadInst *LI = cast<LoadInst>(Inst);
1850 if (!LI->isUnordered())
1851 return false;
1852 return LI->getPointerOperand()->isDereferenceablePointer();
1853 }
1854 case Instruction::Call: {
1855 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1856 switch (II->getIntrinsicID()) {
1857 // These synthetic intrinsics have no side-effects, and just mark
1858 // information about their operands.
1859 // FIXME: There are other no-op synthetic instructions that potentially
1860 // should be considered at least *safe* to speculate...
1861 case Intrinsic::dbg_declare:
1862 case Intrinsic::dbg_value:
1863 return true;
1864
1865 case Intrinsic::bswap:
1866 case Intrinsic::ctlz:
1867 case Intrinsic::ctpop:
1868 case Intrinsic::cttz:
1869 case Intrinsic::objectsize:
1870 case Intrinsic::sadd_with_overflow:
1871 case Intrinsic::smul_with_overflow:
1872 case Intrinsic::ssub_with_overflow:
1873 case Intrinsic::uadd_with_overflow:
1874 case Intrinsic::umul_with_overflow:
1875 case Intrinsic::usub_with_overflow:
1876 return true;
1877 // TODO: some fp intrinsics are marked as having the same error handling
1878 // as libm. They're safe to speculate when they won't error.
1879 // TODO: are convert_{from,to}_fp16 safe?
1880 // TODO: can we list target-specific intrinsics here?
1881 default: break;
1882 }
1883 }
1884 return false; // The called function could have undefined behavior or
1885 // side-effects, even if marked readnone nounwind.
1886 }
1887 case Instruction::VAArg:
1888 case Instruction::Alloca:
1889 case Instruction::Invoke:
1890 case Instruction::PHI:
1891 case Instruction::Store:
1892 case Instruction::Ret:
1893 case Instruction::Br:
1894 case Instruction::IndirectBr:
1895 case Instruction::Switch:
1896 case Instruction::Unreachable:
1897 case Instruction::Fence:
1898 case Instruction::LandingPad:
1899 case Instruction::AtomicRMW:
1900 case Instruction::AtomicCmpXchg:
1901 case Instruction::Resume:
1902 return false; // Misc instructions which have effects
1903 }
1904 }
1905