1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
17 # include "DwarfDebug.h"
18 # include "DwarfException.h"
19 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
20 #include "llvm/Module.h"
21 #include "llvm/CodeGen/GCMetadataPrinter.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DebugInfo.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCContext.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCSection.h"
35 #include "llvm/MC/MCStreamer.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/Target/Mangler.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetLowering.h"
41 #include "llvm/Target/TargetLoweringObjectFile.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Assembly/Writer.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/Timer.h"
51 #include <ctype.h>
52 using namespace llvm;
53
54 static const char *DWARFGroupName = "DWARF Emission";
55 static const char *DbgTimerName = "DWARF Debug Writer";
56 static const char *EHTimerName = "DWARF Exception Writer";
57
58 STATISTIC(EmittedInsts, "Number of machine instrs printed");
59
60 char AsmPrinter::ID = 0;
61
62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
getGCMap(void * & P)63 static gcp_map_type &getGCMap(void *&P) {
64 if (P == 0)
65 P = new gcp_map_type();
66 return *(gcp_map_type*)P;
67 }
68
69
70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
71 /// value in log2 form. This rounds up to the preferred alignment if possible
72 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const TargetData & TD,unsigned InBits=0)73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
74 unsigned InBits = 0) {
75 unsigned NumBits = 0;
76 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
77 NumBits = TD.getPreferredAlignmentLog(GVar);
78
79 // If InBits is specified, round it to it.
80 if (InBits > NumBits)
81 NumBits = InBits;
82
83 // If the GV has a specified alignment, take it into account.
84 if (GV->getAlignment() == 0)
85 return NumBits;
86
87 unsigned GVAlign = Log2_32(GV->getAlignment());
88
89 // If the GVAlign is larger than NumBits, or if we are required to obey
90 // NumBits because the GV has an assigned section, obey it.
91 if (GVAlign > NumBits || GV->hasSection())
92 NumBits = GVAlign;
93 return NumBits;
94 }
95
96
97
98
AsmPrinter(TargetMachine & tm,MCStreamer & Streamer)99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
100 : MachineFunctionPass(ID),
101 TM(tm), MAI(tm.getMCAsmInfo()),
102 OutContext(Streamer.getContext()),
103 OutStreamer(Streamer),
104 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
105 DD = 0; DE = 0; MMI = 0; LI = 0;
106 CurrentFnSym = CurrentFnSymForSize = 0;
107 GCMetadataPrinters = 0;
108 VerboseAsm = Streamer.isVerboseAsm();
109 }
110
~AsmPrinter()111 AsmPrinter::~AsmPrinter() {
112 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
113
114 if (GCMetadataPrinters != 0) {
115 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
116
117 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
118 delete I->second;
119 delete &GCMap;
120 GCMetadataPrinters = 0;
121 }
122
123 delete &OutStreamer;
124 }
125
126 /// getFunctionNumber - Return a unique ID for the current function.
127 ///
getFunctionNumber() const128 unsigned AsmPrinter::getFunctionNumber() const {
129 return MF->getFunctionNumber();
130 }
131
getObjFileLowering() const132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
133 return TM.getTargetLowering()->getObjFileLowering();
134 }
135
136
137 /// getTargetData - Return information about data layout.
getTargetData() const138 const TargetData &AsmPrinter::getTargetData() const {
139 return *TM.getTargetData();
140 }
141
142 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const143 const MCSection *AsmPrinter::getCurrentSection() const {
144 return OutStreamer.getCurrentSection();
145 }
146
147
148
getAnalysisUsage(AnalysisUsage & AU) const149 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
150 AU.setPreservesAll();
151 MachineFunctionPass::getAnalysisUsage(AU);
152 AU.addRequired<MachineModuleInfo>();
153 AU.addRequired<GCModuleInfo>();
154 if (isVerbose())
155 AU.addRequired<MachineLoopInfo>();
156 }
157
doInitialization(Module & M)158 bool AsmPrinter::doInitialization(Module &M) {
159 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160 MMI->AnalyzeModule(M);
161
162 // Initialize TargetLoweringObjectFile.
163 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164 .Initialize(OutContext, TM);
165
166 Mang = new Mangler(OutContext, *TM.getTargetData());
167
168 // Allow the target to emit any magic that it wants at the start of the file.
169 EmitStartOfAsmFile(M);
170
171 // Very minimal debug info. It is ignored if we emit actual debug info. If we
172 // don't, this at least helps the user find where a global came from.
173 if (MAI->hasSingleParameterDotFile()) {
174 // .file "foo.c"
175 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
176 }
177
178 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
179 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
180 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
181 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
182 MP->beginAssembly(*this);
183
184 // Emit module-level inline asm if it exists.
185 if (!M.getModuleInlineAsm().empty()) {
186 OutStreamer.AddComment("Start of file scope inline assembly");
187 OutStreamer.AddBlankLine();
188 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
189 OutStreamer.AddComment("End of file scope inline assembly");
190 OutStreamer.AddBlankLine();
191 }
192
193 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
194 if (MAI->doesSupportDebugInformation())
195 DD = new DwarfDebug(this, &M);
196
197 switch (MAI->getExceptionHandlingType()) {
198 case ExceptionHandling::None:
199 return false;
200 case ExceptionHandling::SjLj:
201 case ExceptionHandling::DwarfCFI:
202 DE = new DwarfCFIException(this);
203 return false;
204 case ExceptionHandling::ARM:
205 DE = new ARMException(this);
206 return false;
207 case ExceptionHandling::Win64:
208 DE = new Win64Exception(this);
209 return false;
210 }
211 #else
212 return false;
213 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
214
215 llvm_unreachable("Unknown exception type.");
216 }
217
EmitLinkage(unsigned Linkage,MCSymbol * GVSym) const218 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
219 switch ((GlobalValue::LinkageTypes)Linkage) {
220 case GlobalValue::CommonLinkage:
221 case GlobalValue::LinkOnceAnyLinkage:
222 case GlobalValue::LinkOnceODRLinkage:
223 case GlobalValue::WeakAnyLinkage:
224 case GlobalValue::WeakODRLinkage:
225 case GlobalValue::LinkerPrivateWeakLinkage:
226 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
227 if (MAI->getWeakDefDirective() != 0) {
228 // .globl _foo
229 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
230
231 if ((GlobalValue::LinkageTypes)Linkage !=
232 GlobalValue::LinkerPrivateWeakDefAutoLinkage)
233 // .weak_definition _foo
234 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
235 else
236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
237 } else if (MAI->getLinkOnceDirective() != 0) {
238 // .globl _foo
239 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
240 //NOTE: linkonce is handled by the section the symbol was assigned to.
241 } else {
242 // .weak _foo
243 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
244 }
245 break;
246 case GlobalValue::DLLExportLinkage:
247 case GlobalValue::AppendingLinkage:
248 // FIXME: appending linkage variables should go into a section of
249 // their name or something. For now, just emit them as external.
250 case GlobalValue::ExternalLinkage:
251 // If external or appending, declare as a global symbol.
252 // .globl _foo
253 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
254 break;
255 case GlobalValue::PrivateLinkage:
256 case GlobalValue::InternalLinkage:
257 case GlobalValue::LinkerPrivateLinkage:
258 break;
259 default:
260 llvm_unreachable("Unknown linkage type!");
261 }
262 }
263
264
265 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)266 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
267 if (GV->hasInitializer()) {
268 // Check to see if this is a special global used by LLVM, if so, emit it.
269 if (EmitSpecialLLVMGlobal(GV))
270 return;
271
272 if (isVerbose()) {
273 WriteAsOperand(OutStreamer.GetCommentOS(), GV,
274 /*PrintType=*/false, GV->getParent());
275 OutStreamer.GetCommentOS() << '\n';
276 }
277 }
278
279 MCSymbol *GVSym = Mang->getSymbol(GV);
280 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
281
282 if (!GV->hasInitializer()) // External globals require no extra code.
283 return;
284
285 if (MAI->hasDotTypeDotSizeDirective())
286 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
287
288 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
289
290 const TargetData *TD = TM.getTargetData();
291 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
292
293 // If the alignment is specified, we *must* obey it. Overaligning a global
294 // with a specified alignment is a prompt way to break globals emitted to
295 // sections and expected to be contiguous (e.g. ObjC metadata).
296 unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
297
298 // Handle common and BSS local symbols (.lcomm).
299 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
300 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
301 unsigned Align = 1 << AlignLog;
302
303 // Handle common symbols.
304 if (GVKind.isCommon()) {
305 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
306 Align = 0;
307
308 // .comm _foo, 42, 4
309 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
310 return;
311 }
312
313 // Handle local BSS symbols.
314 if (MAI->hasMachoZeroFillDirective()) {
315 const MCSection *TheSection =
316 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
317 // .zerofill __DATA, __bss, _foo, 400, 5
318 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
319 return;
320 }
321
322 if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
323 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
324 // .lcomm _foo, 42
325 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
326 return;
327 }
328
329 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
330 Align = 0;
331
332 // .local _foo
333 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
334 // .comm _foo, 42, 4
335 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
336 return;
337 }
338
339 const MCSection *TheSection =
340 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
341
342 // Handle the zerofill directive on darwin, which is a special form of BSS
343 // emission.
344 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
345 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
346
347 // .globl _foo
348 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
349 // .zerofill __DATA, __common, _foo, 400, 5
350 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
351 return;
352 }
353
354 // Handle thread local data for mach-o which requires us to output an
355 // additional structure of data and mangle the original symbol so that we
356 // can reference it later.
357 //
358 // TODO: This should become an "emit thread local global" method on TLOF.
359 // All of this macho specific stuff should be sunk down into TLOFMachO and
360 // stuff like "TLSExtraDataSection" should no longer be part of the parent
361 // TLOF class. This will also make it more obvious that stuff like
362 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
363 // specific code.
364 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
365 // Emit the .tbss symbol
366 MCSymbol *MangSym =
367 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
368
369 if (GVKind.isThreadBSS())
370 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
371 else if (GVKind.isThreadData()) {
372 OutStreamer.SwitchSection(TheSection);
373
374 EmitAlignment(AlignLog, GV);
375 OutStreamer.EmitLabel(MangSym);
376
377 EmitGlobalConstant(GV->getInitializer());
378 }
379
380 OutStreamer.AddBlankLine();
381
382 // Emit the variable struct for the runtime.
383 const MCSection *TLVSect
384 = getObjFileLowering().getTLSExtraDataSection();
385
386 OutStreamer.SwitchSection(TLVSect);
387 // Emit the linkage here.
388 EmitLinkage(GV->getLinkage(), GVSym);
389 OutStreamer.EmitLabel(GVSym);
390
391 // Three pointers in size:
392 // - __tlv_bootstrap - used to make sure support exists
393 // - spare pointer, used when mapped by the runtime
394 // - pointer to mangled symbol above with initializer
395 unsigned PtrSize = TD->getPointerSizeInBits()/8;
396 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
397 PtrSize, 0);
398 OutStreamer.EmitIntValue(0, PtrSize, 0);
399 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
400
401 OutStreamer.AddBlankLine();
402 return;
403 }
404
405 OutStreamer.SwitchSection(TheSection);
406
407 EmitLinkage(GV->getLinkage(), GVSym);
408 EmitAlignment(AlignLog, GV);
409
410 OutStreamer.EmitLabel(GVSym);
411
412 EmitGlobalConstant(GV->getInitializer());
413
414 if (MAI->hasDotTypeDotSizeDirective())
415 // .size foo, 42
416 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
417
418 OutStreamer.AddBlankLine();
419 }
420
421 /// EmitFunctionHeader - This method emits the header for the current
422 /// function.
EmitFunctionHeader()423 void AsmPrinter::EmitFunctionHeader() {
424 // Print out constants referenced by the function
425 EmitConstantPool();
426
427 // Print the 'header' of function.
428 const Function *F = MF->getFunction();
429
430 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
431 EmitVisibility(CurrentFnSym, F->getVisibility());
432
433 EmitLinkage(F->getLinkage(), CurrentFnSym);
434 EmitAlignment(MF->getAlignment(), F);
435
436 if (MAI->hasDotTypeDotSizeDirective())
437 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
438
439 if (isVerbose()) {
440 WriteAsOperand(OutStreamer.GetCommentOS(), F,
441 /*PrintType=*/false, F->getParent());
442 OutStreamer.GetCommentOS() << '\n';
443 }
444
445 // Emit the CurrentFnSym. This is a virtual function to allow targets to
446 // do their wild and crazy things as required.
447 EmitFunctionEntryLabel();
448
449 // If the function had address-taken blocks that got deleted, then we have
450 // references to the dangling symbols. Emit them at the start of the function
451 // so that we don't get references to undefined symbols.
452 std::vector<MCSymbol*> DeadBlockSyms;
453 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
454 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
455 OutStreamer.AddComment("Address taken block that was later removed");
456 OutStreamer.EmitLabel(DeadBlockSyms[i]);
457 }
458
459 // Add some workaround for linkonce linkage on Cygwin\MinGW.
460 if (MAI->getLinkOnceDirective() != 0 &&
461 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
462 // FIXME: What is this?
463 MCSymbol *FakeStub =
464 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
465 CurrentFnSym->getName());
466 OutStreamer.EmitLabel(FakeStub);
467 }
468
469 // Emit pre-function debug and/or EH information.
470 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
471 if (DE) {
472 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473 DE->BeginFunction(MF);
474 }
475 if (DD) {
476 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477 DD->beginFunction(MF);
478 }
479 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
480 }
481
482 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()484 void AsmPrinter::EmitFunctionEntryLabel() {
485 // The function label could have already been emitted if two symbols end up
486 // conflicting due to asm renaming. Detect this and emit an error.
487 if (CurrentFnSym->isUndefined()) {
488 OutStreamer.ForceCodeRegion();
489 return OutStreamer.EmitLabel(CurrentFnSym);
490 }
491
492 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
493 "' label emitted multiple times to assembly file");
494 }
495
496
497 /// EmitComments - Pretty-print comments for instructions.
EmitComments(const MachineInstr & MI,raw_ostream & CommentOS)498 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
499 const MachineFunction *MF = MI.getParent()->getParent();
500 const TargetMachine &TM = MF->getTarget();
501
502 // Check for spills and reloads
503 int FI;
504
505 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
506
507 // We assume a single instruction only has a spill or reload, not
508 // both.
509 const MachineMemOperand *MMO;
510 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
511 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
512 MMO = *MI.memoperands_begin();
513 CommentOS << MMO->getSize() << "-byte Reload\n";
514 }
515 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
516 if (FrameInfo->isSpillSlotObjectIndex(FI))
517 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
518 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
519 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
520 MMO = *MI.memoperands_begin();
521 CommentOS << MMO->getSize() << "-byte Spill\n";
522 }
523 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
524 if (FrameInfo->isSpillSlotObjectIndex(FI))
525 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
526 }
527
528 // Check for spill-induced copies
529 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
530 CommentOS << " Reload Reuse\n";
531 }
532
533 /// EmitImplicitDef - This method emits the specified machine instruction
534 /// that is an implicit def.
EmitImplicitDef(const MachineInstr * MI,AsmPrinter & AP)535 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
536 unsigned RegNo = MI->getOperand(0).getReg();
537 AP.OutStreamer.AddComment(Twine("implicit-def: ") +
538 AP.TM.getRegisterInfo()->getName(RegNo));
539 AP.OutStreamer.AddBlankLine();
540 }
541
EmitKill(const MachineInstr * MI,AsmPrinter & AP)542 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
543 std::string Str = "kill:";
544 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
545 const MachineOperand &Op = MI->getOperand(i);
546 assert(Op.isReg() && "KILL instruction must have only register operands");
547 Str += ' ';
548 Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
549 Str += (Op.isDef() ? "<def>" : "<kill>");
550 }
551 AP.OutStreamer.AddComment(Str);
552 AP.OutStreamer.AddBlankLine();
553 }
554
555 /// EmitDebugValueComment - This method handles the target-independent form
556 /// of DBG_VALUE, returning true if it was able to do so. A false return
557 /// means the target will need to handle MI in EmitInstruction.
EmitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)558 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
559 // This code handles only the 3-operand target-independent form.
560 if (MI->getNumOperands() != 3)
561 return false;
562
563 SmallString<128> Str;
564 raw_svector_ostream OS(Str);
565 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
566
567 // cast away const; DIetc do not take const operands for some reason.
568 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
569 if (V.getContext().isSubprogram())
570 OS << DISubprogram(V.getContext()).getDisplayName() << ":";
571 OS << V.getName() << " <- ";
572
573 // Register or immediate value. Register 0 means undef.
574 if (MI->getOperand(0).isFPImm()) {
575 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
576 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
577 OS << (double)APF.convertToFloat();
578 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
579 OS << APF.convertToDouble();
580 } else {
581 // There is no good way to print long double. Convert a copy to
582 // double. Ah well, it's only a comment.
583 bool ignored;
584 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
585 &ignored);
586 OS << "(long double) " << APF.convertToDouble();
587 }
588 } else if (MI->getOperand(0).isImm()) {
589 OS << MI->getOperand(0).getImm();
590 } else if (MI->getOperand(0).isCImm()) {
591 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
592 } else {
593 assert(MI->getOperand(0).isReg() && "Unknown operand type");
594 if (MI->getOperand(0).getReg() == 0) {
595 // Suppress offset, it is not meaningful here.
596 OS << "undef";
597 // NOTE: Want this comment at start of line, don't emit with AddComment.
598 AP.OutStreamer.EmitRawText(OS.str());
599 return true;
600 }
601 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
602 }
603
604 OS << '+' << MI->getOperand(1).getImm();
605 // NOTE: Want this comment at start of line, don't emit with AddComment.
606 AP.OutStreamer.EmitRawText(OS.str());
607 return true;
608 }
609
needsCFIMoves()610 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
611 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
612 MF->getFunction()->needsUnwindTableEntry())
613 return CFI_M_EH;
614
615 if (MMI->hasDebugInfo())
616 return CFI_M_Debug;
617
618 return CFI_M_None;
619 }
620
needsSEHMoves()621 bool AsmPrinter::needsSEHMoves() {
622 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
623 MF->getFunction()->needsUnwindTableEntry();
624 }
625
needsRelocationsForDwarfStringPool() const626 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
627 return MAI->doesDwarfUseRelocationsForStringPool();
628 }
629
emitPrologLabel(const MachineInstr & MI)630 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
631 MCSymbol *Label = MI.getOperand(0).getMCSymbol();
632
633 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
634 return;
635
636 if (needsCFIMoves() == CFI_M_None)
637 return;
638
639 if (MMI->getCompactUnwindEncoding() != 0)
640 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
641
642 MachineModuleInfo &MMI = MF->getMMI();
643 std::vector<MachineMove> &Moves = MMI.getFrameMoves();
644 bool FoundOne = false;
645 (void)FoundOne;
646 for (std::vector<MachineMove>::iterator I = Moves.begin(),
647 E = Moves.end(); I != E; ++I) {
648 if (I->getLabel() == Label) {
649 EmitCFIFrameMove(*I);
650 FoundOne = true;
651 }
652 }
653 assert(FoundOne);
654 }
655
656 /// EmitFunctionBody - This method emits the body and trailer for a
657 /// function.
EmitFunctionBody()658 void AsmPrinter::EmitFunctionBody() {
659 // Emit target-specific gunk before the function body.
660 EmitFunctionBodyStart();
661
662 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
663
664 // Print out code for the function.
665 bool HasAnyRealCode = false;
666 const MachineInstr *LastMI = 0;
667 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
668 I != E; ++I) {
669 // Print a label for the basic block.
670 EmitBasicBlockStart(I);
671 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
672 II != IE; ++II) {
673 LastMI = II;
674
675 // Print the assembly for the instruction.
676 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
677 !II->isDebugValue()) {
678 HasAnyRealCode = true;
679
680 ++EmittedInsts;
681 }
682 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
683 if (ShouldPrintDebugScopes) {
684 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
685 DD->beginInstruction(II);
686 }
687 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
688
689 if (isVerbose())
690 EmitComments(*II, OutStreamer.GetCommentOS());
691
692 switch (II->getOpcode()) {
693 case TargetOpcode::PROLOG_LABEL:
694 emitPrologLabel(*II);
695 break;
696
697 case TargetOpcode::EH_LABEL:
698 case TargetOpcode::GC_LABEL:
699 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
700 break;
701 case TargetOpcode::INLINEASM:
702 EmitInlineAsm(II);
703 break;
704 case TargetOpcode::DBG_VALUE:
705 if (isVerbose()) {
706 if (!EmitDebugValueComment(II, *this))
707 EmitInstruction(II);
708 }
709 break;
710 case TargetOpcode::IMPLICIT_DEF:
711 if (isVerbose()) EmitImplicitDef(II, *this);
712 break;
713 case TargetOpcode::KILL:
714 if (isVerbose()) EmitKill(II, *this);
715 break;
716 default:
717 if (!TM.hasMCUseLoc())
718 MCLineEntry::Make(&OutStreamer, getCurrentSection());
719
720 EmitInstruction(II);
721 break;
722 }
723
724 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
725 if (ShouldPrintDebugScopes) {
726 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
727 DD->endInstruction(II);
728 }
729 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
730 }
731 }
732
733 // If the last instruction was a prolog label, then we have a situation where
734 // we emitted a prolog but no function body. This results in the ending prolog
735 // label equaling the end of function label and an invalid "row" in the
736 // FDE. We need to emit a noop in this situation so that the FDE's rows are
737 // valid.
738 bool RequiresNoop = LastMI && LastMI->isPrologLabel();
739
740 // If the function is empty and the object file uses .subsections_via_symbols,
741 // then we need to emit *something* to the function body to prevent the
742 // labels from collapsing together. Just emit a noop.
743 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
744 MCInst Noop;
745 TM.getInstrInfo()->getNoopForMachoTarget(Noop);
746 if (Noop.getOpcode()) {
747 OutStreamer.AddComment("avoids zero-length function");
748 OutStreamer.EmitInstruction(Noop);
749 } else // Target not mc-ized yet.
750 OutStreamer.EmitRawText(StringRef("\tnop\n"));
751 }
752
753 const Function *F = MF->getFunction();
754 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
755 const BasicBlock *BB = i;
756 if (!BB->hasAddressTaken())
757 continue;
758 MCSymbol *Sym = GetBlockAddressSymbol(BB);
759 if (Sym->isDefined())
760 continue;
761 OutStreamer.AddComment("Address of block that was removed by CodeGen");
762 OutStreamer.EmitLabel(Sym);
763 }
764
765 // Emit target-specific gunk after the function body.
766 EmitFunctionBodyEnd();
767
768 // If the target wants a .size directive for the size of the function, emit
769 // it.
770 if (MAI->hasDotTypeDotSizeDirective()) {
771 // Create a symbol for the end of function, so we can get the size as
772 // difference between the function label and the temp label.
773 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
774 OutStreamer.EmitLabel(FnEndLabel);
775
776 const MCExpr *SizeExp =
777 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
778 MCSymbolRefExpr::Create(CurrentFnSymForSize,
779 OutContext),
780 OutContext);
781 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
782 }
783
784 // Emit post-function debug information.
785 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
786 if (DD) {
787 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
788 DD->endFunction(MF);
789 }
790 if (DE) {
791 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
792 DE->EndFunction();
793 }
794 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
795 MMI->EndFunction();
796
797 // Print out jump tables referenced by the function.
798 EmitJumpTableInfo();
799
800 OutStreamer.AddBlankLine();
801 }
802
803 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
804 /// operands.
805 MachineLocation AsmPrinter::
getDebugValueLocation(const MachineInstr * MI) const806 getDebugValueLocation(const MachineInstr *MI) const {
807 // Target specific DBG_VALUE instructions are handled by each target.
808 return MachineLocation();
809 }
810
811 /// EmitDwarfRegOp - Emit dwarf register operation.
EmitDwarfRegOp(const MachineLocation & MLoc) const812 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
813 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
814 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
815
816 for (const uint16_t *SR = TRI->getSuperRegisters(MLoc.getReg());
817 *SR && Reg < 0; ++SR) {
818 Reg = TRI->getDwarfRegNum(*SR, false);
819 // FIXME: Get the bit range this register uses of the superregister
820 // so that we can produce a DW_OP_bit_piece
821 }
822
823 // FIXME: Handle cases like a super register being encoded as
824 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
825
826 // FIXME: We have no reasonable way of handling errors in here. The
827 // caller might be in the middle of an dwarf expression. We should
828 // probably assert that Reg >= 0 once debug info generation is more mature.
829
830 if (int Offset = MLoc.getOffset()) {
831 if (Reg < 32) {
832 OutStreamer.AddComment(
833 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
834 EmitInt8(dwarf::DW_OP_breg0 + Reg);
835 } else {
836 OutStreamer.AddComment("DW_OP_bregx");
837 EmitInt8(dwarf::DW_OP_bregx);
838 OutStreamer.AddComment(Twine(Reg));
839 EmitULEB128(Reg);
840 }
841 EmitSLEB128(Offset);
842 } else {
843 if (Reg < 32) {
844 OutStreamer.AddComment(
845 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
846 EmitInt8(dwarf::DW_OP_reg0 + Reg);
847 } else {
848 OutStreamer.AddComment("DW_OP_regx");
849 EmitInt8(dwarf::DW_OP_regx);
850 OutStreamer.AddComment(Twine(Reg));
851 EmitULEB128(Reg);
852 }
853 }
854
855 // FIXME: Produce a DW_OP_bit_piece if we used a superregister
856 }
857
doFinalization(Module & M)858 bool AsmPrinter::doFinalization(Module &M) {
859 // Emit global variables.
860 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
861 I != E; ++I)
862 EmitGlobalVariable(I);
863
864 // Emit visibility info for declarations
865 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
866 const Function &F = *I;
867 if (!F.isDeclaration())
868 continue;
869 GlobalValue::VisibilityTypes V = F.getVisibility();
870 if (V == GlobalValue::DefaultVisibility)
871 continue;
872
873 MCSymbol *Name = Mang->getSymbol(&F);
874 EmitVisibility(Name, V, false);
875 }
876
877 // Emit module flags.
878 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
879 M.getModuleFlagsMetadata(ModuleFlags);
880 if (!ModuleFlags.empty())
881 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
882
883 // Finalize debug and EH information.
884 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
885 if (DE) {
886 {
887 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
888 DE->EndModule();
889 }
890 delete DE; DE = 0;
891 }
892 if (DD) {
893 {
894 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
895 DD->endModule();
896 }
897 delete DD; DD = 0;
898 }
899 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
900
901 // If the target wants to know about weak references, print them all.
902 if (MAI->getWeakRefDirective()) {
903 // FIXME: This is not lazy, it would be nice to only print weak references
904 // to stuff that is actually used. Note that doing so would require targets
905 // to notice uses in operands (due to constant exprs etc). This should
906 // happen with the MC stuff eventually.
907
908 // Print out module-level global variables here.
909 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
910 I != E; ++I) {
911 if (!I->hasExternalWeakLinkage()) continue;
912 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
913 }
914
915 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
916 if (!I->hasExternalWeakLinkage()) continue;
917 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
918 }
919 }
920
921 if (MAI->hasSetDirective()) {
922 OutStreamer.AddBlankLine();
923 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
924 I != E; ++I) {
925 MCSymbol *Name = Mang->getSymbol(I);
926
927 const GlobalValue *GV = I->getAliasedGlobal();
928 MCSymbol *Target = Mang->getSymbol(GV);
929
930 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
931 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
932 else if (I->hasWeakLinkage())
933 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
934 else
935 assert(I->hasLocalLinkage() && "Invalid alias linkage");
936
937 EmitVisibility(Name, I->getVisibility());
938
939 // Emit the directives as assignments aka .set:
940 OutStreamer.EmitAssignment(Name,
941 MCSymbolRefExpr::Create(Target, OutContext));
942 }
943 }
944
945 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
946 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
947 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
948 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
949 MP->finishAssembly(*this);
950
951 // If we don't have any trampolines, then we don't require stack memory
952 // to be executable. Some targets have a directive to declare this.
953 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
954 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
955 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
956 OutStreamer.SwitchSection(S);
957
958 // Allow the target to emit any magic that it wants at the end of the file,
959 // after everything else has gone out.
960 EmitEndOfAsmFile(M);
961
962 delete Mang; Mang = 0;
963 MMI = 0;
964
965 OutStreamer.Finish();
966 return false;
967 }
968
SetupMachineFunction(MachineFunction & MF)969 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
970 this->MF = &MF;
971 // Get the function symbol.
972 CurrentFnSym = Mang->getSymbol(MF.getFunction());
973 CurrentFnSymForSize = CurrentFnSym;
974
975 if (isVerbose())
976 LI = &getAnalysis<MachineLoopInfo>();
977 }
978
979 namespace {
980 // SectionCPs - Keep track the alignment, constpool entries per Section.
981 struct SectionCPs {
982 const MCSection *S;
983 unsigned Alignment;
984 SmallVector<unsigned, 4> CPEs;
SectionCPs__anon103633d30111::SectionCPs985 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
986 };
987 }
988
989 /// EmitConstantPool - Print to the current output stream assembly
990 /// representations of the constants in the constant pool MCP. This is
991 /// used to print out constants which have been "spilled to memory" by
992 /// the code generator.
993 ///
EmitConstantPool()994 void AsmPrinter::EmitConstantPool() {
995 const MachineConstantPool *MCP = MF->getConstantPool();
996 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
997 if (CP.empty()) return;
998
999 // Calculate sections for constant pool entries. We collect entries to go into
1000 // the same section together to reduce amount of section switch statements.
1001 SmallVector<SectionCPs, 4> CPSections;
1002 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1003 const MachineConstantPoolEntry &CPE = CP[i];
1004 unsigned Align = CPE.getAlignment();
1005
1006 SectionKind Kind;
1007 switch (CPE.getRelocationInfo()) {
1008 default: llvm_unreachable("Unknown section kind");
1009 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1010 case 1:
1011 Kind = SectionKind::getReadOnlyWithRelLocal();
1012 break;
1013 case 0:
1014 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
1015 case 4: Kind = SectionKind::getMergeableConst4(); break;
1016 case 8: Kind = SectionKind::getMergeableConst8(); break;
1017 case 16: Kind = SectionKind::getMergeableConst16();break;
1018 default: Kind = SectionKind::getMergeableConst(); break;
1019 }
1020 }
1021
1022 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1023
1024 // The number of sections are small, just do a linear search from the
1025 // last section to the first.
1026 bool Found = false;
1027 unsigned SecIdx = CPSections.size();
1028 while (SecIdx != 0) {
1029 if (CPSections[--SecIdx].S == S) {
1030 Found = true;
1031 break;
1032 }
1033 }
1034 if (!Found) {
1035 SecIdx = CPSections.size();
1036 CPSections.push_back(SectionCPs(S, Align));
1037 }
1038
1039 if (Align > CPSections[SecIdx].Alignment)
1040 CPSections[SecIdx].Alignment = Align;
1041 CPSections[SecIdx].CPEs.push_back(i);
1042 }
1043
1044 // Now print stuff into the calculated sections.
1045 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1046 OutStreamer.SwitchSection(CPSections[i].S);
1047 EmitAlignment(Log2_32(CPSections[i].Alignment));
1048
1049 unsigned Offset = 0;
1050 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1051 unsigned CPI = CPSections[i].CPEs[j];
1052 MachineConstantPoolEntry CPE = CP[CPI];
1053
1054 // Emit inter-object padding for alignment.
1055 unsigned AlignMask = CPE.getAlignment() - 1;
1056 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1057 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1058
1059 Type *Ty = CPE.getType();
1060 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1061 OutStreamer.EmitLabel(GetCPISymbol(CPI));
1062
1063 if (CPE.isMachineConstantPoolEntry())
1064 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1065 else
1066 EmitGlobalConstant(CPE.Val.ConstVal);
1067 }
1068 }
1069 }
1070
1071 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1072 /// by the current function to the current output stream.
1073 ///
EmitJumpTableInfo()1074 void AsmPrinter::EmitJumpTableInfo() {
1075 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1076 if (MJTI == 0) return;
1077 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1078 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1079 if (JT.empty()) return;
1080
1081 // Pick the directive to use to print the jump table entries, and switch to
1082 // the appropriate section.
1083 const Function *F = MF->getFunction();
1084 bool JTInDiffSection = false;
1085 if (// In PIC mode, we need to emit the jump table to the same section as the
1086 // function body itself, otherwise the label differences won't make sense.
1087 // FIXME: Need a better predicate for this: what about custom entries?
1088 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1089 // We should also do if the section name is NULL or function is declared
1090 // in discardable section
1091 // FIXME: this isn't the right predicate, should be based on the MCSection
1092 // for the function.
1093 F->isWeakForLinker()) {
1094 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1095 } else {
1096 // Otherwise, drop it in the readonly section.
1097 const MCSection *ReadOnlySection =
1098 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1099 OutStreamer.SwitchSection(ReadOnlySection);
1100 JTInDiffSection = true;
1101 }
1102
1103 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1104
1105 // If we know the form of the jump table, go ahead and tag it as such.
1106 if (!JTInDiffSection) {
1107 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
1108 OutStreamer.EmitJumpTable32Region();
1109 } else {
1110 OutStreamer.EmitDataRegion();
1111 }
1112 }
1113
1114 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1115 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1116
1117 // If this jump table was deleted, ignore it.
1118 if (JTBBs.empty()) continue;
1119
1120 // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1121 // .set directive for each unique entry. This reduces the number of
1122 // relocations the assembler will generate for the jump table.
1123 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1124 MAI->hasSetDirective()) {
1125 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1126 const TargetLowering *TLI = TM.getTargetLowering();
1127 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1128 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1129 const MachineBasicBlock *MBB = JTBBs[ii];
1130 if (!EmittedSets.insert(MBB)) continue;
1131
1132 // .set LJTSet, LBB32-base
1133 const MCExpr *LHS =
1134 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1135 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1136 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1137 }
1138 }
1139
1140 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1141 // before each jump table. The first label is never referenced, but tells
1142 // the assembler and linker the extents of the jump table object. The
1143 // second label is actually referenced by the code.
1144 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1145 // FIXME: This doesn't have to have any specific name, just any randomly
1146 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1147 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1148
1149 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1150
1151 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1152 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1153 }
1154 }
1155
1156 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1157 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1158 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1159 const MachineBasicBlock *MBB,
1160 unsigned UID) const {
1161 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1162 const MCExpr *Value = 0;
1163 switch (MJTI->getEntryKind()) {
1164 case MachineJumpTableInfo::EK_Inline:
1165 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1166 case MachineJumpTableInfo::EK_Custom32:
1167 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1168 OutContext);
1169 break;
1170 case MachineJumpTableInfo::EK_BlockAddress:
1171 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1172 // .word LBB123
1173 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1174 break;
1175 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1176 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1177 // with a relocation as gp-relative, e.g.:
1178 // .gprel32 LBB123
1179 MCSymbol *MBBSym = MBB->getSymbol();
1180 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1181 return;
1182 }
1183
1184 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1185 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1186 // with a relocation as gp-relative, e.g.:
1187 // .gpdword LBB123
1188 MCSymbol *MBBSym = MBB->getSymbol();
1189 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1190 return;
1191 }
1192
1193 case MachineJumpTableInfo::EK_LabelDifference32: {
1194 // EK_LabelDifference32 - Each entry is the address of the block minus
1195 // the address of the jump table. This is used for PIC jump tables where
1196 // gprel32 is not supported. e.g.:
1197 // .word LBB123 - LJTI1_2
1198 // If the .set directive is supported, this is emitted as:
1199 // .set L4_5_set_123, LBB123 - LJTI1_2
1200 // .word L4_5_set_123
1201
1202 // If we have emitted set directives for the jump table entries, print
1203 // them rather than the entries themselves. If we're emitting PIC, then
1204 // emit the table entries as differences between two text section labels.
1205 if (MAI->hasSetDirective()) {
1206 // If we used .set, reference the .set's symbol.
1207 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1208 OutContext);
1209 break;
1210 }
1211 // Otherwise, use the difference as the jump table entry.
1212 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1213 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1214 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1215 break;
1216 }
1217 }
1218
1219 assert(Value && "Unknown entry kind!");
1220
1221 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1222 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1223 }
1224
1225
1226 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1227 /// special global used by LLVM. If so, emit it and return true, otherwise
1228 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1229 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1230 if (GV->getName() == "llvm.used") {
1231 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1232 EmitLLVMUsedList(GV->getInitializer());
1233 return true;
1234 }
1235
1236 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1237 if (GV->getSection() == "llvm.metadata" ||
1238 GV->hasAvailableExternallyLinkage())
1239 return true;
1240
1241 if (!GV->hasAppendingLinkage()) return false;
1242
1243 assert(GV->hasInitializer() && "Not a special LLVM global!");
1244
1245 if (GV->getName() == "llvm.global_ctors") {
1246 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1247
1248 if (TM.getRelocationModel() == Reloc::Static &&
1249 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1250 StringRef Sym(".constructors_used");
1251 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1252 MCSA_Reference);
1253 }
1254 return true;
1255 }
1256
1257 if (GV->getName() == "llvm.global_dtors") {
1258 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1259
1260 if (TM.getRelocationModel() == Reloc::Static &&
1261 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1262 StringRef Sym(".destructors_used");
1263 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1264 MCSA_Reference);
1265 }
1266 return true;
1267 }
1268
1269 return false;
1270 }
1271
1272 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1273 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1274 /// is true, as being used with this directive.
EmitLLVMUsedList(const Constant * List)1275 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1276 // Should be an array of 'i8*'.
1277 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1278 if (InitList == 0) return;
1279
1280 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1281 const GlobalValue *GV =
1282 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1283 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1284 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1285 }
1286 }
1287
1288 typedef std::pair<unsigned, Constant*> Structor;
1289
priority_order(const Structor & lhs,const Structor & rhs)1290 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1291 return lhs.first < rhs.first;
1292 }
1293
1294 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1295 /// priority.
EmitXXStructorList(const Constant * List,bool isCtor)1296 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1297 // Should be an array of '{ int, void ()* }' structs. The first value is the
1298 // init priority.
1299 if (!isa<ConstantArray>(List)) return;
1300
1301 // Sanity check the structors list.
1302 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1303 if (!InitList) return; // Not an array!
1304 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1305 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1306 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1307 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1308
1309 // Gather the structors in a form that's convenient for sorting by priority.
1310 SmallVector<Structor, 8> Structors;
1311 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1312 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1313 if (!CS) continue; // Malformed.
1314 if (CS->getOperand(1)->isNullValue())
1315 break; // Found a null terminator, skip the rest.
1316 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1317 if (!Priority) continue; // Malformed.
1318 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1319 CS->getOperand(1)));
1320 }
1321
1322 // Emit the function pointers in the target-specific order
1323 const TargetData *TD = TM.getTargetData();
1324 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1325 std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1326 for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1327 const MCSection *OutputSection =
1328 (isCtor ?
1329 getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1330 getObjFileLowering().getStaticDtorSection(Structors[i].first));
1331 OutStreamer.SwitchSection(OutputSection);
1332 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1333 EmitAlignment(Align);
1334 EmitXXStructor(Structors[i].second);
1335 }
1336 }
1337
1338 //===--------------------------------------------------------------------===//
1339 // Emission and print routines
1340 //
1341
1342 /// EmitInt8 - Emit a byte directive and value.
1343 ///
EmitInt8(int Value) const1344 void AsmPrinter::EmitInt8(int Value) const {
1345 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1346 }
1347
1348 /// EmitInt16 - Emit a short directive and value.
1349 ///
EmitInt16(int Value) const1350 void AsmPrinter::EmitInt16(int Value) const {
1351 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1352 }
1353
1354 /// EmitInt32 - Emit a long directive and value.
1355 ///
EmitInt32(int Value) const1356 void AsmPrinter::EmitInt32(int Value) const {
1357 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1358 }
1359
1360 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1361 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1362 /// labels. This implicitly uses .set if it is available.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1363 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1364 unsigned Size) const {
1365 // Get the Hi-Lo expression.
1366 const MCExpr *Diff =
1367 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1368 MCSymbolRefExpr::Create(Lo, OutContext),
1369 OutContext);
1370
1371 if (!MAI->hasSetDirective()) {
1372 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1373 return;
1374 }
1375
1376 // Otherwise, emit with .set (aka assignment).
1377 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1378 OutStreamer.EmitAssignment(SetLabel, Diff);
1379 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1380 }
1381
1382 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1383 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1384 /// specify the labels. This implicitly uses .set if it is available.
EmitLabelOffsetDifference(const MCSymbol * Hi,uint64_t Offset,const MCSymbol * Lo,unsigned Size) const1385 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1386 const MCSymbol *Lo, unsigned Size)
1387 const {
1388
1389 // Emit Hi+Offset - Lo
1390 // Get the Hi+Offset expression.
1391 const MCExpr *Plus =
1392 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1393 MCConstantExpr::Create(Offset, OutContext),
1394 OutContext);
1395
1396 // Get the Hi+Offset-Lo expression.
1397 const MCExpr *Diff =
1398 MCBinaryExpr::CreateSub(Plus,
1399 MCSymbolRefExpr::Create(Lo, OutContext),
1400 OutContext);
1401
1402 if (!MAI->hasSetDirective())
1403 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1404 else {
1405 // Otherwise, emit with .set (aka assignment).
1406 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1407 OutStreamer.EmitAssignment(SetLabel, Diff);
1408 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1409 }
1410 }
1411
1412 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1413 /// where the size in bytes of the directive is specified by Size and Label
1414 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size) const1415 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1416 unsigned Size)
1417 const {
1418
1419 // Emit Label+Offset
1420 const MCExpr *Plus =
1421 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1422 MCConstantExpr::Create(Offset, OutContext),
1423 OutContext);
1424
1425 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1426 }
1427
1428
1429 //===----------------------------------------------------------------------===//
1430
1431 // EmitAlignment - Emit an alignment directive to the specified power of
1432 // two boundary. For example, if you pass in 3 here, you will get an 8
1433 // byte alignment. If a global value is specified, and if that global has
1434 // an explicit alignment requested, it will override the alignment request
1435 // if required for correctness.
1436 //
EmitAlignment(unsigned NumBits,const GlobalValue * GV) const1437 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1438 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1439
1440 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1441
1442 if (getCurrentSection()->getKind().isText())
1443 OutStreamer.EmitCodeAlignment(1 << NumBits);
1444 else
1445 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1446 }
1447
1448 //===----------------------------------------------------------------------===//
1449 // Constant emission.
1450 //===----------------------------------------------------------------------===//
1451
1452 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1453 ///
LowerConstant(const Constant * CV,AsmPrinter & AP)1454 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1455 MCContext &Ctx = AP.OutContext;
1456
1457 if (CV->isNullValue() || isa<UndefValue>(CV))
1458 return MCConstantExpr::Create(0, Ctx);
1459
1460 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1461 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1462
1463 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1464 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1465
1466 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1467 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1468
1469 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1470 if (CE == 0) {
1471 llvm_unreachable("Unknown constant value to lower!");
1472 }
1473
1474 switch (CE->getOpcode()) {
1475 default:
1476 // If the code isn't optimized, there may be outstanding folding
1477 // opportunities. Attempt to fold the expression using TargetData as a
1478 // last resort before giving up.
1479 if (Constant *C =
1480 ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1481 if (C != CE)
1482 return LowerConstant(C, AP);
1483
1484 // Otherwise report the problem to the user.
1485 {
1486 std::string S;
1487 raw_string_ostream OS(S);
1488 OS << "Unsupported expression in static initializer: ";
1489 WriteAsOperand(OS, CE, /*PrintType=*/false,
1490 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1491 report_fatal_error(OS.str());
1492 }
1493 case Instruction::GetElementPtr: {
1494 const TargetData &TD = *AP.TM.getTargetData();
1495 // Generate a symbolic expression for the byte address
1496 const Constant *PtrVal = CE->getOperand(0);
1497 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1498 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1499
1500 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1501 if (Offset == 0)
1502 return Base;
1503
1504 // Truncate/sext the offset to the pointer size.
1505 if (TD.getPointerSizeInBits() != 64) {
1506 int SExtAmount = 64-TD.getPointerSizeInBits();
1507 Offset = (Offset << SExtAmount) >> SExtAmount;
1508 }
1509
1510 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1511 Ctx);
1512 }
1513
1514 case Instruction::Trunc:
1515 // We emit the value and depend on the assembler to truncate the generated
1516 // expression properly. This is important for differences between
1517 // blockaddress labels. Since the two labels are in the same function, it
1518 // is reasonable to treat their delta as a 32-bit value.
1519 // FALL THROUGH.
1520 case Instruction::BitCast:
1521 return LowerConstant(CE->getOperand(0), AP);
1522
1523 case Instruction::IntToPtr: {
1524 const TargetData &TD = *AP.TM.getTargetData();
1525 // Handle casts to pointers by changing them into casts to the appropriate
1526 // integer type. This promotes constant folding and simplifies this code.
1527 Constant *Op = CE->getOperand(0);
1528 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1529 false/*ZExt*/);
1530 return LowerConstant(Op, AP);
1531 }
1532
1533 case Instruction::PtrToInt: {
1534 const TargetData &TD = *AP.TM.getTargetData();
1535 // Support only foldable casts to/from pointers that can be eliminated by
1536 // changing the pointer to the appropriately sized integer type.
1537 Constant *Op = CE->getOperand(0);
1538 Type *Ty = CE->getType();
1539
1540 const MCExpr *OpExpr = LowerConstant(Op, AP);
1541
1542 // We can emit the pointer value into this slot if the slot is an
1543 // integer slot equal to the size of the pointer.
1544 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1545 return OpExpr;
1546
1547 // Otherwise the pointer is smaller than the resultant integer, mask off
1548 // the high bits so we are sure to get a proper truncation if the input is
1549 // a constant expr.
1550 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1551 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1552 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1553 }
1554
1555 // The MC library also has a right-shift operator, but it isn't consistently
1556 // signed or unsigned between different targets.
1557 case Instruction::Add:
1558 case Instruction::Sub:
1559 case Instruction::Mul:
1560 case Instruction::SDiv:
1561 case Instruction::SRem:
1562 case Instruction::Shl:
1563 case Instruction::And:
1564 case Instruction::Or:
1565 case Instruction::Xor: {
1566 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1567 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1568 switch (CE->getOpcode()) {
1569 default: llvm_unreachable("Unknown binary operator constant cast expr");
1570 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1571 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1572 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1573 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1574 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1575 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1576 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1577 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1578 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1579 }
1580 }
1581 }
1582 }
1583
1584 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1585 AsmPrinter &AP);
1586
1587 /// isRepeatedByteSequence - Determine whether the given value is
1588 /// composed of a repeated sequence of identical bytes and return the
1589 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1590 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1591 StringRef Data = V->getRawDataValues();
1592 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1593 char C = Data[0];
1594 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1595 if (Data[i] != C) return -1;
1596 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1597 }
1598
1599
1600 /// isRepeatedByteSequence - Determine whether the given value is
1601 /// composed of a repeated sequence of identical bytes and return the
1602 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1603 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1604
1605 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1606 if (CI->getBitWidth() > 64) return -1;
1607
1608 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1609 uint64_t Value = CI->getZExtValue();
1610
1611 // Make sure the constant is at least 8 bits long and has a power
1612 // of 2 bit width. This guarantees the constant bit width is
1613 // always a multiple of 8 bits, avoiding issues with padding out
1614 // to Size and other such corner cases.
1615 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1616
1617 uint8_t Byte = static_cast<uint8_t>(Value);
1618
1619 for (unsigned i = 1; i < Size; ++i) {
1620 Value >>= 8;
1621 if (static_cast<uint8_t>(Value) != Byte) return -1;
1622 }
1623 return Byte;
1624 }
1625 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1626 // Make sure all array elements are sequences of the same repeated
1627 // byte.
1628 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1629 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1630 if (Byte == -1) return -1;
1631
1632 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1633 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1634 if (ThisByte == -1) return -1;
1635 if (Byte != ThisByte) return -1;
1636 }
1637 return Byte;
1638 }
1639
1640 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1641 return isRepeatedByteSequence(CDS);
1642
1643 return -1;
1644 }
1645
EmitGlobalConstantDataSequential(const ConstantDataSequential * CDS,unsigned AddrSpace,AsmPrinter & AP)1646 static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1647 unsigned AddrSpace,AsmPrinter &AP){
1648
1649 // See if we can aggregate this into a .fill, if so, emit it as such.
1650 int Value = isRepeatedByteSequence(CDS, AP.TM);
1651 if (Value != -1) {
1652 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1653 // Don't emit a 1-byte object as a .fill.
1654 if (Bytes > 1)
1655 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1656 }
1657
1658 // If this can be emitted with .ascii/.asciz, emit it as such.
1659 if (CDS->isString())
1660 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1661
1662 // Otherwise, emit the values in successive locations.
1663 unsigned ElementByteSize = CDS->getElementByteSize();
1664 if (isa<IntegerType>(CDS->getElementType())) {
1665 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1666 if (AP.isVerbose())
1667 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1668 CDS->getElementAsInteger(i));
1669 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1670 ElementByteSize, AddrSpace);
1671 }
1672 } else if (ElementByteSize == 4) {
1673 // FP Constants are printed as integer constants to avoid losing
1674 // precision.
1675 assert(CDS->getElementType()->isFloatTy());
1676 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1677 union {
1678 float F;
1679 uint32_t I;
1680 };
1681
1682 F = CDS->getElementAsFloat(i);
1683 if (AP.isVerbose())
1684 AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1685 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1686 }
1687 } else {
1688 assert(CDS->getElementType()->isDoubleTy());
1689 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1690 union {
1691 double F;
1692 uint64_t I;
1693 };
1694
1695 F = CDS->getElementAsDouble(i);
1696 if (AP.isVerbose())
1697 AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1698 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1699 }
1700 }
1701
1702 const TargetData &TD = *AP.TM.getTargetData();
1703 unsigned Size = TD.getTypeAllocSize(CDS->getType());
1704 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1705 CDS->getNumElements();
1706 if (unsigned Padding = Size - EmittedSize)
1707 AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1708
1709 }
1710
EmitGlobalConstantArray(const ConstantArray * CA,unsigned AddrSpace,AsmPrinter & AP)1711 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1712 AsmPrinter &AP) {
1713 // See if we can aggregate some values. Make sure it can be
1714 // represented as a series of bytes of the constant value.
1715 int Value = isRepeatedByteSequence(CA, AP.TM);
1716
1717 if (Value != -1) {
1718 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1719 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1720 }
1721 else {
1722 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1723 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1724 }
1725 }
1726
EmitGlobalConstantVector(const ConstantVector * CV,unsigned AddrSpace,AsmPrinter & AP)1727 static void EmitGlobalConstantVector(const ConstantVector *CV,
1728 unsigned AddrSpace, AsmPrinter &AP) {
1729 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1730 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1731
1732 const TargetData &TD = *AP.TM.getTargetData();
1733 unsigned Size = TD.getTypeAllocSize(CV->getType());
1734 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1735 CV->getType()->getNumElements();
1736 if (unsigned Padding = Size - EmittedSize)
1737 AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1738 }
1739
EmitGlobalConstantStruct(const ConstantStruct * CS,unsigned AddrSpace,AsmPrinter & AP)1740 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1741 unsigned AddrSpace, AsmPrinter &AP) {
1742 // Print the fields in successive locations. Pad to align if needed!
1743 const TargetData *TD = AP.TM.getTargetData();
1744 unsigned Size = TD->getTypeAllocSize(CS->getType());
1745 const StructLayout *Layout = TD->getStructLayout(CS->getType());
1746 uint64_t SizeSoFar = 0;
1747 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1748 const Constant *Field = CS->getOperand(i);
1749
1750 // Check if padding is needed and insert one or more 0s.
1751 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1752 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1753 - Layout->getElementOffset(i)) - FieldSize;
1754 SizeSoFar += FieldSize + PadSize;
1755
1756 // Now print the actual field value.
1757 EmitGlobalConstantImpl(Field, AddrSpace, AP);
1758
1759 // Insert padding - this may include padding to increase the size of the
1760 // current field up to the ABI size (if the struct is not packed) as well
1761 // as padding to ensure that the next field starts at the right offset.
1762 AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1763 }
1764 assert(SizeSoFar == Layout->getSizeInBytes() &&
1765 "Layout of constant struct may be incorrect!");
1766 }
1767
EmitGlobalConstantFP(const ConstantFP * CFP,unsigned AddrSpace,AsmPrinter & AP)1768 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1769 AsmPrinter &AP) {
1770 if (CFP->getType()->isHalfTy()) {
1771 if (AP.isVerbose()) {
1772 SmallString<10> Str;
1773 CFP->getValueAPF().toString(Str);
1774 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1775 }
1776 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1777 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1778 return;
1779 }
1780
1781 if (CFP->getType()->isFloatTy()) {
1782 if (AP.isVerbose()) {
1783 float Val = CFP->getValueAPF().convertToFloat();
1784 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1785 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1786 << " (" << format("0x%x", IntVal) << ")\n";
1787 }
1788 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1789 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1790 return;
1791 }
1792
1793 // FP Constants are printed as integer constants to avoid losing
1794 // precision.
1795 if (CFP->getType()->isDoubleTy()) {
1796 if (AP.isVerbose()) {
1797 double Val = CFP->getValueAPF().convertToDouble();
1798 uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1799 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1800 << " (" << format("0x%lx", IntVal) << ")\n";
1801 }
1802
1803 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1804 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1805 return;
1806 }
1807
1808 if (CFP->getType()->isX86_FP80Ty()) {
1809 // all long double variants are printed as hex
1810 // API needed to prevent premature destruction
1811 APInt API = CFP->getValueAPF().bitcastToAPInt();
1812 const uint64_t *p = API.getRawData();
1813 if (AP.isVerbose()) {
1814 // Convert to double so we can print the approximate val as a comment.
1815 APFloat DoubleVal = CFP->getValueAPF();
1816 bool ignored;
1817 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1818 &ignored);
1819 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1820 << DoubleVal.convertToDouble() << '\n';
1821 }
1822
1823 if (AP.TM.getTargetData()->isBigEndian()) {
1824 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1825 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1826 } else {
1827 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1828 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1829 }
1830
1831 // Emit the tail padding for the long double.
1832 const TargetData &TD = *AP.TM.getTargetData();
1833 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1834 TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1835 return;
1836 }
1837
1838 assert(CFP->getType()->isPPC_FP128Ty() &&
1839 "Floating point constant type not handled");
1840 // All long double variants are printed as hex
1841 // API needed to prevent premature destruction.
1842 APInt API = CFP->getValueAPF().bitcastToAPInt();
1843 const uint64_t *p = API.getRawData();
1844 if (AP.TM.getTargetData()->isBigEndian()) {
1845 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1846 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1847 } else {
1848 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1849 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1850 }
1851 }
1852
EmitGlobalConstantLargeInt(const ConstantInt * CI,unsigned AddrSpace,AsmPrinter & AP)1853 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1854 unsigned AddrSpace, AsmPrinter &AP) {
1855 const TargetData *TD = AP.TM.getTargetData();
1856 unsigned BitWidth = CI->getBitWidth();
1857 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1858
1859 // We don't expect assemblers to support integer data directives
1860 // for more than 64 bits, so we emit the data in at most 64-bit
1861 // quantities at a time.
1862 const uint64_t *RawData = CI->getValue().getRawData();
1863 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1864 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1865 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1866 }
1867 }
1868
EmitGlobalConstantImpl(const Constant * CV,unsigned AddrSpace,AsmPrinter & AP)1869 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1870 AsmPrinter &AP) {
1871 const TargetData *TD = AP.TM.getTargetData();
1872 uint64_t Size = TD->getTypeAllocSize(CV->getType());
1873 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1874 return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1875
1876 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1877 switch (Size) {
1878 case 1:
1879 case 2:
1880 case 4:
1881 case 8:
1882 if (AP.isVerbose())
1883 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1884 CI->getZExtValue());
1885 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1886 return;
1887 default:
1888 EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1889 return;
1890 }
1891 }
1892
1893 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1894 return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1895
1896 if (isa<ConstantPointerNull>(CV)) {
1897 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1898 return;
1899 }
1900
1901 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1902 return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1903
1904 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1905 return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1906
1907 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1908 return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1909
1910 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1911 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1912 // vectors).
1913 if (CE->getOpcode() == Instruction::BitCast)
1914 return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1915
1916 if (Size > 8) {
1917 // If the constant expression's size is greater than 64-bits, then we have
1918 // to emit the value in chunks. Try to constant fold the value and emit it
1919 // that way.
1920 Constant *New = ConstantFoldConstantExpression(CE, TD);
1921 if (New && New != CE)
1922 return EmitGlobalConstantImpl(New, AddrSpace, AP);
1923 }
1924 }
1925
1926 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1927 return EmitGlobalConstantVector(V, AddrSpace, AP);
1928
1929 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
1930 // thread the streamer with EmitValue.
1931 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
1932 }
1933
1934 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV,unsigned AddrSpace)1935 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1936 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1937 if (Size)
1938 EmitGlobalConstantImpl(CV, AddrSpace, *this);
1939 else if (MAI->hasSubsectionsViaSymbols()) {
1940 // If the global has zero size, emit a single byte so that two labels don't
1941 // look like they are at the same location.
1942 OutStreamer.EmitIntValue(0, 1, AddrSpace);
1943 }
1944 }
1945
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)1946 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1947 // Target doesn't support this yet!
1948 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1949 }
1950
printOffset(int64_t Offset,raw_ostream & OS) const1951 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1952 if (Offset > 0)
1953 OS << '+' << Offset;
1954 else if (Offset < 0)
1955 OS << Offset;
1956 }
1957
1958 //===----------------------------------------------------------------------===//
1959 // Symbol Lowering Routines.
1960 //===----------------------------------------------------------------------===//
1961
1962 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1963 /// temporary label with the specified stem and unique ID.
GetTempSymbol(StringRef Name,unsigned ID) const1964 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1965 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1966 Name + Twine(ID));
1967 }
1968
1969 /// GetTempSymbol - Return an assembler temporary label with the specified
1970 /// stem.
GetTempSymbol(StringRef Name) const1971 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1972 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1973 Name);
1974 }
1975
1976
GetBlockAddressSymbol(const BlockAddress * BA) const1977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1978 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1979 }
1980
GetBlockAddressSymbol(const BasicBlock * BB) const1981 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1982 return MMI->getAddrLabelSymbol(BB);
1983 }
1984
1985 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const1986 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1987 return OutContext.GetOrCreateSymbol
1988 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1989 + "_" + Twine(CPID));
1990 }
1991
1992 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const1993 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1994 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1995 }
1996
1997 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1998 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const1999 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2000 return OutContext.GetOrCreateSymbol
2001 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2002 Twine(UID) + "_set_" + Twine(MBBID));
2003 }
2004
2005 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2006 /// global value name as its base, with the specified suffix, and where the
2007 /// symbol is forced to have private linkage if ForcePrivate is true.
GetSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix,bool ForcePrivate) const2008 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2009 StringRef Suffix,
2010 bool ForcePrivate) const {
2011 SmallString<60> NameStr;
2012 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2013 NameStr.append(Suffix.begin(), Suffix.end());
2014 return OutContext.GetOrCreateSymbol(NameStr.str());
2015 }
2016
2017 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2018 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2019 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2020 SmallString<60> NameStr;
2021 Mang->getNameWithPrefix(NameStr, Sym);
2022 return OutContext.GetOrCreateSymbol(NameStr.str());
2023 }
2024
2025
2026
2027 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2028 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2029 unsigned FunctionNumber) {
2030 if (Loop == 0) return;
2031 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2032 OS.indent(Loop->getLoopDepth()*2)
2033 << "Parent Loop BB" << FunctionNumber << "_"
2034 << Loop->getHeader()->getNumber()
2035 << " Depth=" << Loop->getLoopDepth() << '\n';
2036 }
2037
2038
2039 /// PrintChildLoopComment - Print comments about child loops within
2040 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2041 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2042 unsigned FunctionNumber) {
2043 // Add child loop information
2044 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2045 OS.indent((*CL)->getLoopDepth()*2)
2046 << "Child Loop BB" << FunctionNumber << "_"
2047 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2048 << '\n';
2049 PrintChildLoopComment(OS, *CL, FunctionNumber);
2050 }
2051 }
2052
2053 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
EmitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2054 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2055 const MachineLoopInfo *LI,
2056 const AsmPrinter &AP) {
2057 // Add loop depth information
2058 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2059 if (Loop == 0) return;
2060
2061 MachineBasicBlock *Header = Loop->getHeader();
2062 assert(Header && "No header for loop");
2063
2064 // If this block is not a loop header, just print out what is the loop header
2065 // and return.
2066 if (Header != &MBB) {
2067 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
2068 Twine(AP.getFunctionNumber())+"_" +
2069 Twine(Loop->getHeader()->getNumber())+
2070 " Depth="+Twine(Loop->getLoopDepth()));
2071 return;
2072 }
2073
2074 // Otherwise, it is a loop header. Print out information about child and
2075 // parent loops.
2076 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2077
2078 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2079
2080 OS << "=>";
2081 OS.indent(Loop->getLoopDepth()*2-2);
2082
2083 OS << "This ";
2084 if (Loop->empty())
2085 OS << "Inner ";
2086 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2087
2088 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2089 }
2090
2091
2092 /// EmitBasicBlockStart - This method prints the label for the specified
2093 /// MachineBasicBlock, an alignment (if present) and a comment describing
2094 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock * MBB) const2095 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2096 // Emit an alignment directive for this block, if needed.
2097 if (unsigned Align = MBB->getAlignment())
2098 EmitAlignment(Align);
2099
2100 // If the block has its address taken, emit any labels that were used to
2101 // reference the block. It is possible that there is more than one label
2102 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2103 // the references were generated.
2104 if (MBB->hasAddressTaken()) {
2105 const BasicBlock *BB = MBB->getBasicBlock();
2106 if (isVerbose())
2107 OutStreamer.AddComment("Block address taken");
2108
2109 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2110
2111 for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2112 OutStreamer.EmitLabel(Syms[i]);
2113 }
2114
2115 // Print some verbose block comments.
2116 if (isVerbose()) {
2117 if (const BasicBlock *BB = MBB->getBasicBlock())
2118 if (BB->hasName())
2119 OutStreamer.AddComment("%" + BB->getName());
2120 EmitBasicBlockLoopComments(*MBB, LI, *this);
2121 }
2122
2123 // Print the main label for the block.
2124 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2125 if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2126 // NOTE: Want this comment at start of line, don't emit with AddComment.
2127 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2128 Twine(MBB->getNumber()) + ":");
2129 }
2130 } else {
2131 OutStreamer.EmitLabel(MBB->getSymbol());
2132 }
2133 }
2134
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2135 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2136 bool IsDefinition) const {
2137 MCSymbolAttr Attr = MCSA_Invalid;
2138
2139 switch (Visibility) {
2140 default: break;
2141 case GlobalValue::HiddenVisibility:
2142 if (IsDefinition)
2143 Attr = MAI->getHiddenVisibilityAttr();
2144 else
2145 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2146 break;
2147 case GlobalValue::ProtectedVisibility:
2148 Attr = MAI->getProtectedVisibilityAttr();
2149 break;
2150 }
2151
2152 if (Attr != MCSA_Invalid)
2153 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2154 }
2155
2156 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2157 /// exactly one predecessor and the control transfer mechanism between
2158 /// the predecessor and this block is a fall-through.
2159 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2160 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2161 // If this is a landing pad, it isn't a fall through. If it has no preds,
2162 // then nothing falls through to it.
2163 if (MBB->isLandingPad() || MBB->pred_empty())
2164 return false;
2165
2166 // If there isn't exactly one predecessor, it can't be a fall through.
2167 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2168 ++PI2;
2169 if (PI2 != MBB->pred_end())
2170 return false;
2171
2172 // The predecessor has to be immediately before this block.
2173 MachineBasicBlock *Pred = *PI;
2174
2175 if (!Pred->isLayoutSuccessor(MBB))
2176 return false;
2177
2178 // If the block is completely empty, then it definitely does fall through.
2179 if (Pred->empty())
2180 return true;
2181
2182 // Check the terminators in the previous blocks
2183 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2184 IE = Pred->end(); II != IE; ++II) {
2185 MachineInstr &MI = *II;
2186
2187 // If it is not a simple branch, we are in a table somewhere.
2188 if (!MI.isBranch() || MI.isIndirectBranch())
2189 return false;
2190
2191 // If we are the operands of one of the branches, this is not
2192 // a fall through.
2193 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2194 OE = MI.operands_end(); OI != OE; ++OI) {
2195 const MachineOperand& OP = *OI;
2196 if (OP.isJTI())
2197 return false;
2198 if (OP.isMBB() && OP.getMBB() == MBB)
2199 return false;
2200 }
2201 }
2202
2203 return true;
2204 }
2205
2206
2207
GetOrCreateGCPrinter(GCStrategy * S)2208 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2209 if (!S->usesMetadata())
2210 return 0;
2211
2212 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2213 gcp_map_type::iterator GCPI = GCMap.find(S);
2214 if (GCPI != GCMap.end())
2215 return GCPI->second;
2216
2217 const char *Name = S->getName().c_str();
2218
2219 for (GCMetadataPrinterRegistry::iterator
2220 I = GCMetadataPrinterRegistry::begin(),
2221 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2222 if (strcmp(Name, I->getName()) == 0) {
2223 GCMetadataPrinter *GMP = I->instantiate();
2224 GMP->S = S;
2225 GCMap.insert(std::make_pair(S, GMP));
2226 return GMP;
2227 }
2228
2229 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2230 }
2231