• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
17 #   include "DwarfDebug.h"
18 #   include "DwarfException.h"
19 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
20 #include "llvm/Module.h"
21 #include "llvm/CodeGen/GCMetadataPrinter.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DebugInfo.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCContext.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCSection.h"
35 #include "llvm/MC/MCStreamer.h"
36 #include "llvm/MC/MCSymbol.h"
37 #include "llvm/Target/Mangler.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetLowering.h"
41 #include "llvm/Target/TargetLoweringObjectFile.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Assembly/Writer.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/Timer.h"
51 #include <ctype.h>
52 using namespace llvm;
53 
54 static const char *DWARFGroupName = "DWARF Emission";
55 static const char *DbgTimerName = "DWARF Debug Writer";
56 static const char *EHTimerName = "DWARF Exception Writer";
57 
58 STATISTIC(EmittedInsts, "Number of machine instrs printed");
59 
60 char AsmPrinter::ID = 0;
61 
62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
getGCMap(void * & P)63 static gcp_map_type &getGCMap(void *&P) {
64   if (P == 0)
65     P = new gcp_map_type();
66   return *(gcp_map_type*)P;
67 }
68 
69 
70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
71 /// value in log2 form.  This rounds up to the preferred alignment if possible
72 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const TargetData & TD,unsigned InBits=0)73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
74                                    unsigned InBits = 0) {
75   unsigned NumBits = 0;
76   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
77     NumBits = TD.getPreferredAlignmentLog(GVar);
78 
79   // If InBits is specified, round it to it.
80   if (InBits > NumBits)
81     NumBits = InBits;
82 
83   // If the GV has a specified alignment, take it into account.
84   if (GV->getAlignment() == 0)
85     return NumBits;
86 
87   unsigned GVAlign = Log2_32(GV->getAlignment());
88 
89   // If the GVAlign is larger than NumBits, or if we are required to obey
90   // NumBits because the GV has an assigned section, obey it.
91   if (GVAlign > NumBits || GV->hasSection())
92     NumBits = GVAlign;
93   return NumBits;
94 }
95 
96 
97 
98 
AsmPrinter(TargetMachine & tm,MCStreamer & Streamer)99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
100   : MachineFunctionPass(ID),
101     TM(tm), MAI(tm.getMCAsmInfo()),
102     OutContext(Streamer.getContext()),
103     OutStreamer(Streamer),
104     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
105   DD = 0; DE = 0; MMI = 0; LI = 0;
106   CurrentFnSym = CurrentFnSymForSize = 0;
107   GCMetadataPrinters = 0;
108   VerboseAsm = Streamer.isVerboseAsm();
109 }
110 
~AsmPrinter()111 AsmPrinter::~AsmPrinter() {
112   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
113 
114   if (GCMetadataPrinters != 0) {
115     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
116 
117     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
118       delete I->second;
119     delete &GCMap;
120     GCMetadataPrinters = 0;
121   }
122 
123   delete &OutStreamer;
124 }
125 
126 /// getFunctionNumber - Return a unique ID for the current function.
127 ///
getFunctionNumber() const128 unsigned AsmPrinter::getFunctionNumber() const {
129   return MF->getFunctionNumber();
130 }
131 
getObjFileLowering() const132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
133   return TM.getTargetLowering()->getObjFileLowering();
134 }
135 
136 
137 /// getTargetData - Return information about data layout.
getTargetData() const138 const TargetData &AsmPrinter::getTargetData() const {
139   return *TM.getTargetData();
140 }
141 
142 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const143 const MCSection *AsmPrinter::getCurrentSection() const {
144   return OutStreamer.getCurrentSection();
145 }
146 
147 
148 
getAnalysisUsage(AnalysisUsage & AU) const149 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
150   AU.setPreservesAll();
151   MachineFunctionPass::getAnalysisUsage(AU);
152   AU.addRequired<MachineModuleInfo>();
153   AU.addRequired<GCModuleInfo>();
154   if (isVerbose())
155     AU.addRequired<MachineLoopInfo>();
156 }
157 
doInitialization(Module & M)158 bool AsmPrinter::doInitialization(Module &M) {
159   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160   MMI->AnalyzeModule(M);
161 
162   // Initialize TargetLoweringObjectFile.
163   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164     .Initialize(OutContext, TM);
165 
166   Mang = new Mangler(OutContext, *TM.getTargetData());
167 
168   // Allow the target to emit any magic that it wants at the start of the file.
169   EmitStartOfAsmFile(M);
170 
171   // Very minimal debug info. It is ignored if we emit actual debug info. If we
172   // don't, this at least helps the user find where a global came from.
173   if (MAI->hasSingleParameterDotFile()) {
174     // .file "foo.c"
175     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
176   }
177 
178   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
179   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
180   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
181     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
182       MP->beginAssembly(*this);
183 
184   // Emit module-level inline asm if it exists.
185   if (!M.getModuleInlineAsm().empty()) {
186     OutStreamer.AddComment("Start of file scope inline assembly");
187     OutStreamer.AddBlankLine();
188     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
189     OutStreamer.AddComment("End of file scope inline assembly");
190     OutStreamer.AddBlankLine();
191   }
192 
193 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
194   if (MAI->doesSupportDebugInformation())
195     DD = new DwarfDebug(this, &M);
196 
197   switch (MAI->getExceptionHandlingType()) {
198   case ExceptionHandling::None:
199     return false;
200   case ExceptionHandling::SjLj:
201   case ExceptionHandling::DwarfCFI:
202     DE = new DwarfCFIException(this);
203     return false;
204   case ExceptionHandling::ARM:
205     DE = new ARMException(this);
206     return false;
207   case ExceptionHandling::Win64:
208     DE = new Win64Exception(this);
209     return false;
210   }
211 #else
212   return false;
213 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
214 
215   llvm_unreachable("Unknown exception type.");
216 }
217 
EmitLinkage(unsigned Linkage,MCSymbol * GVSym) const218 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
219   switch ((GlobalValue::LinkageTypes)Linkage) {
220   case GlobalValue::CommonLinkage:
221   case GlobalValue::LinkOnceAnyLinkage:
222   case GlobalValue::LinkOnceODRLinkage:
223   case GlobalValue::WeakAnyLinkage:
224   case GlobalValue::WeakODRLinkage:
225   case GlobalValue::LinkerPrivateWeakLinkage:
226   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
227     if (MAI->getWeakDefDirective() != 0) {
228       // .globl _foo
229       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
230 
231       if ((GlobalValue::LinkageTypes)Linkage !=
232           GlobalValue::LinkerPrivateWeakDefAutoLinkage)
233         // .weak_definition _foo
234         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
235       else
236         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
237     } else if (MAI->getLinkOnceDirective() != 0) {
238       // .globl _foo
239       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
240       //NOTE: linkonce is handled by the section the symbol was assigned to.
241     } else {
242       // .weak _foo
243       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
244     }
245     break;
246   case GlobalValue::DLLExportLinkage:
247   case GlobalValue::AppendingLinkage:
248     // FIXME: appending linkage variables should go into a section of
249     // their name or something.  For now, just emit them as external.
250   case GlobalValue::ExternalLinkage:
251     // If external or appending, declare as a global symbol.
252     // .globl _foo
253     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
254     break;
255   case GlobalValue::PrivateLinkage:
256   case GlobalValue::InternalLinkage:
257   case GlobalValue::LinkerPrivateLinkage:
258     break;
259   default:
260     llvm_unreachable("Unknown linkage type!");
261   }
262 }
263 
264 
265 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)266 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
267   if (GV->hasInitializer()) {
268     // Check to see if this is a special global used by LLVM, if so, emit it.
269     if (EmitSpecialLLVMGlobal(GV))
270       return;
271 
272     if (isVerbose()) {
273       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
274                      /*PrintType=*/false, GV->getParent());
275       OutStreamer.GetCommentOS() << '\n';
276     }
277   }
278 
279   MCSymbol *GVSym = Mang->getSymbol(GV);
280   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
281 
282   if (!GV->hasInitializer())   // External globals require no extra code.
283     return;
284 
285   if (MAI->hasDotTypeDotSizeDirective())
286     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
287 
288   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
289 
290   const TargetData *TD = TM.getTargetData();
291   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
292 
293   // If the alignment is specified, we *must* obey it.  Overaligning a global
294   // with a specified alignment is a prompt way to break globals emitted to
295   // sections and expected to be contiguous (e.g. ObjC metadata).
296   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
297 
298   // Handle common and BSS local symbols (.lcomm).
299   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
300     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
301     unsigned Align = 1 << AlignLog;
302 
303     // Handle common symbols.
304     if (GVKind.isCommon()) {
305       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
306         Align = 0;
307 
308       // .comm _foo, 42, 4
309       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
310       return;
311     }
312 
313     // Handle local BSS symbols.
314     if (MAI->hasMachoZeroFillDirective()) {
315       const MCSection *TheSection =
316         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
317       // .zerofill __DATA, __bss, _foo, 400, 5
318       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
319       return;
320     }
321 
322     if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
323         (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
324       // .lcomm _foo, 42
325       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
326       return;
327     }
328 
329     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
330       Align = 0;
331 
332     // .local _foo
333     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
334     // .comm _foo, 42, 4
335     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
336     return;
337   }
338 
339   const MCSection *TheSection =
340     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
341 
342   // Handle the zerofill directive on darwin, which is a special form of BSS
343   // emission.
344   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
345     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
346 
347     // .globl _foo
348     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
349     // .zerofill __DATA, __common, _foo, 400, 5
350     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
351     return;
352   }
353 
354   // Handle thread local data for mach-o which requires us to output an
355   // additional structure of data and mangle the original symbol so that we
356   // can reference it later.
357   //
358   // TODO: This should become an "emit thread local global" method on TLOF.
359   // All of this macho specific stuff should be sunk down into TLOFMachO and
360   // stuff like "TLSExtraDataSection" should no longer be part of the parent
361   // TLOF class.  This will also make it more obvious that stuff like
362   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
363   // specific code.
364   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
365     // Emit the .tbss symbol
366     MCSymbol *MangSym =
367       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
368 
369     if (GVKind.isThreadBSS())
370       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
371     else if (GVKind.isThreadData()) {
372       OutStreamer.SwitchSection(TheSection);
373 
374       EmitAlignment(AlignLog, GV);
375       OutStreamer.EmitLabel(MangSym);
376 
377       EmitGlobalConstant(GV->getInitializer());
378     }
379 
380     OutStreamer.AddBlankLine();
381 
382     // Emit the variable struct for the runtime.
383     const MCSection *TLVSect
384       = getObjFileLowering().getTLSExtraDataSection();
385 
386     OutStreamer.SwitchSection(TLVSect);
387     // Emit the linkage here.
388     EmitLinkage(GV->getLinkage(), GVSym);
389     OutStreamer.EmitLabel(GVSym);
390 
391     // Three pointers in size:
392     //   - __tlv_bootstrap - used to make sure support exists
393     //   - spare pointer, used when mapped by the runtime
394     //   - pointer to mangled symbol above with initializer
395     unsigned PtrSize = TD->getPointerSizeInBits()/8;
396     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
397                           PtrSize, 0);
398     OutStreamer.EmitIntValue(0, PtrSize, 0);
399     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
400 
401     OutStreamer.AddBlankLine();
402     return;
403   }
404 
405   OutStreamer.SwitchSection(TheSection);
406 
407   EmitLinkage(GV->getLinkage(), GVSym);
408   EmitAlignment(AlignLog, GV);
409 
410   OutStreamer.EmitLabel(GVSym);
411 
412   EmitGlobalConstant(GV->getInitializer());
413 
414   if (MAI->hasDotTypeDotSizeDirective())
415     // .size foo, 42
416     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
417 
418   OutStreamer.AddBlankLine();
419 }
420 
421 /// EmitFunctionHeader - This method emits the header for the current
422 /// function.
EmitFunctionHeader()423 void AsmPrinter::EmitFunctionHeader() {
424   // Print out constants referenced by the function
425   EmitConstantPool();
426 
427   // Print the 'header' of function.
428   const Function *F = MF->getFunction();
429 
430   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
431   EmitVisibility(CurrentFnSym, F->getVisibility());
432 
433   EmitLinkage(F->getLinkage(), CurrentFnSym);
434   EmitAlignment(MF->getAlignment(), F);
435 
436   if (MAI->hasDotTypeDotSizeDirective())
437     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
438 
439   if (isVerbose()) {
440     WriteAsOperand(OutStreamer.GetCommentOS(), F,
441                    /*PrintType=*/false, F->getParent());
442     OutStreamer.GetCommentOS() << '\n';
443   }
444 
445   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
446   // do their wild and crazy things as required.
447   EmitFunctionEntryLabel();
448 
449   // If the function had address-taken blocks that got deleted, then we have
450   // references to the dangling symbols.  Emit them at the start of the function
451   // so that we don't get references to undefined symbols.
452   std::vector<MCSymbol*> DeadBlockSyms;
453   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
454   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
455     OutStreamer.AddComment("Address taken block that was later removed");
456     OutStreamer.EmitLabel(DeadBlockSyms[i]);
457   }
458 
459   // Add some workaround for linkonce linkage on Cygwin\MinGW.
460   if (MAI->getLinkOnceDirective() != 0 &&
461       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
462     // FIXME: What is this?
463     MCSymbol *FakeStub =
464       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
465                                    CurrentFnSym->getName());
466     OutStreamer.EmitLabel(FakeStub);
467   }
468 
469   // Emit pre-function debug and/or EH information.
470 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
471   if (DE) {
472     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
473     DE->BeginFunction(MF);
474   }
475   if (DD) {
476     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
477     DD->beginFunction(MF);
478   }
479 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
480 }
481 
482 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
483 /// function.  This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()484 void AsmPrinter::EmitFunctionEntryLabel() {
485   // The function label could have already been emitted if two symbols end up
486   // conflicting due to asm renaming.  Detect this and emit an error.
487   if (CurrentFnSym->isUndefined()) {
488     OutStreamer.ForceCodeRegion();
489     return OutStreamer.EmitLabel(CurrentFnSym);
490   }
491 
492   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
493                      "' label emitted multiple times to assembly file");
494 }
495 
496 
497 /// EmitComments - Pretty-print comments for instructions.
EmitComments(const MachineInstr & MI,raw_ostream & CommentOS)498 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
499   const MachineFunction *MF = MI.getParent()->getParent();
500   const TargetMachine &TM = MF->getTarget();
501 
502   // Check for spills and reloads
503   int FI;
504 
505   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
506 
507   // We assume a single instruction only has a spill or reload, not
508   // both.
509   const MachineMemOperand *MMO;
510   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
511     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
512       MMO = *MI.memoperands_begin();
513       CommentOS << MMO->getSize() << "-byte Reload\n";
514     }
515   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
516     if (FrameInfo->isSpillSlotObjectIndex(FI))
517       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
518   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
519     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
520       MMO = *MI.memoperands_begin();
521       CommentOS << MMO->getSize() << "-byte Spill\n";
522     }
523   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
524     if (FrameInfo->isSpillSlotObjectIndex(FI))
525       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
526   }
527 
528   // Check for spill-induced copies
529   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
530     CommentOS << " Reload Reuse\n";
531 }
532 
533 /// EmitImplicitDef - This method emits the specified machine instruction
534 /// that is an implicit def.
EmitImplicitDef(const MachineInstr * MI,AsmPrinter & AP)535 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
536   unsigned RegNo = MI->getOperand(0).getReg();
537   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
538                             AP.TM.getRegisterInfo()->getName(RegNo));
539   AP.OutStreamer.AddBlankLine();
540 }
541 
EmitKill(const MachineInstr * MI,AsmPrinter & AP)542 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
543   std::string Str = "kill:";
544   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
545     const MachineOperand &Op = MI->getOperand(i);
546     assert(Op.isReg() && "KILL instruction must have only register operands");
547     Str += ' ';
548     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
549     Str += (Op.isDef() ? "<def>" : "<kill>");
550   }
551   AP.OutStreamer.AddComment(Str);
552   AP.OutStreamer.AddBlankLine();
553 }
554 
555 /// EmitDebugValueComment - This method handles the target-independent form
556 /// of DBG_VALUE, returning true if it was able to do so.  A false return
557 /// means the target will need to handle MI in EmitInstruction.
EmitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)558 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
559   // This code handles only the 3-operand target-independent form.
560   if (MI->getNumOperands() != 3)
561     return false;
562 
563   SmallString<128> Str;
564   raw_svector_ostream OS(Str);
565   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
566 
567   // cast away const; DIetc do not take const operands for some reason.
568   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
569   if (V.getContext().isSubprogram())
570     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
571   OS << V.getName() << " <- ";
572 
573   // Register or immediate value. Register 0 means undef.
574   if (MI->getOperand(0).isFPImm()) {
575     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
576     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
577       OS << (double)APF.convertToFloat();
578     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
579       OS << APF.convertToDouble();
580     } else {
581       // There is no good way to print long double.  Convert a copy to
582       // double.  Ah well, it's only a comment.
583       bool ignored;
584       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
585                   &ignored);
586       OS << "(long double) " << APF.convertToDouble();
587     }
588   } else if (MI->getOperand(0).isImm()) {
589     OS << MI->getOperand(0).getImm();
590   } else if (MI->getOperand(0).isCImm()) {
591     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
592   } else {
593     assert(MI->getOperand(0).isReg() && "Unknown operand type");
594     if (MI->getOperand(0).getReg() == 0) {
595       // Suppress offset, it is not meaningful here.
596       OS << "undef";
597       // NOTE: Want this comment at start of line, don't emit with AddComment.
598       AP.OutStreamer.EmitRawText(OS.str());
599       return true;
600     }
601     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
602   }
603 
604   OS << '+' << MI->getOperand(1).getImm();
605   // NOTE: Want this comment at start of line, don't emit with AddComment.
606   AP.OutStreamer.EmitRawText(OS.str());
607   return true;
608 }
609 
needsCFIMoves()610 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
611   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
612       MF->getFunction()->needsUnwindTableEntry())
613     return CFI_M_EH;
614 
615   if (MMI->hasDebugInfo())
616     return CFI_M_Debug;
617 
618   return CFI_M_None;
619 }
620 
needsSEHMoves()621 bool AsmPrinter::needsSEHMoves() {
622   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
623     MF->getFunction()->needsUnwindTableEntry();
624 }
625 
needsRelocationsForDwarfStringPool() const626 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
627   return MAI->doesDwarfUseRelocationsForStringPool();
628 }
629 
emitPrologLabel(const MachineInstr & MI)630 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
631   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
632 
633   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
634     return;
635 
636   if (needsCFIMoves() == CFI_M_None)
637     return;
638 
639   if (MMI->getCompactUnwindEncoding() != 0)
640     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
641 
642   MachineModuleInfo &MMI = MF->getMMI();
643   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
644   bool FoundOne = false;
645   (void)FoundOne;
646   for (std::vector<MachineMove>::iterator I = Moves.begin(),
647          E = Moves.end(); I != E; ++I) {
648     if (I->getLabel() == Label) {
649       EmitCFIFrameMove(*I);
650       FoundOne = true;
651     }
652   }
653   assert(FoundOne);
654 }
655 
656 /// EmitFunctionBody - This method emits the body and trailer for a
657 /// function.
EmitFunctionBody()658 void AsmPrinter::EmitFunctionBody() {
659   // Emit target-specific gunk before the function body.
660   EmitFunctionBodyStart();
661 
662   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
663 
664   // Print out code for the function.
665   bool HasAnyRealCode = false;
666   const MachineInstr *LastMI = 0;
667   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
668        I != E; ++I) {
669     // Print a label for the basic block.
670     EmitBasicBlockStart(I);
671     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
672          II != IE; ++II) {
673       LastMI = II;
674 
675       // Print the assembly for the instruction.
676       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
677           !II->isDebugValue()) {
678         HasAnyRealCode = true;
679 
680         ++EmittedInsts;
681       }
682 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
683       if (ShouldPrintDebugScopes) {
684         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
685         DD->beginInstruction(II);
686       }
687 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
688 
689       if (isVerbose())
690         EmitComments(*II, OutStreamer.GetCommentOS());
691 
692       switch (II->getOpcode()) {
693       case TargetOpcode::PROLOG_LABEL:
694         emitPrologLabel(*II);
695         break;
696 
697       case TargetOpcode::EH_LABEL:
698       case TargetOpcode::GC_LABEL:
699         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
700         break;
701       case TargetOpcode::INLINEASM:
702         EmitInlineAsm(II);
703         break;
704       case TargetOpcode::DBG_VALUE:
705         if (isVerbose()) {
706           if (!EmitDebugValueComment(II, *this))
707             EmitInstruction(II);
708         }
709         break;
710       case TargetOpcode::IMPLICIT_DEF:
711         if (isVerbose()) EmitImplicitDef(II, *this);
712         break;
713       case TargetOpcode::KILL:
714         if (isVerbose()) EmitKill(II, *this);
715         break;
716       default:
717         if (!TM.hasMCUseLoc())
718           MCLineEntry::Make(&OutStreamer, getCurrentSection());
719 
720         EmitInstruction(II);
721         break;
722       }
723 
724 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
725       if (ShouldPrintDebugScopes) {
726         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
727         DD->endInstruction(II);
728       }
729 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
730     }
731   }
732 
733   // If the last instruction was a prolog label, then we have a situation where
734   // we emitted a prolog but no function body. This results in the ending prolog
735   // label equaling the end of function label and an invalid "row" in the
736   // FDE. We need to emit a noop in this situation so that the FDE's rows are
737   // valid.
738   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
739 
740   // If the function is empty and the object file uses .subsections_via_symbols,
741   // then we need to emit *something* to the function body to prevent the
742   // labels from collapsing together.  Just emit a noop.
743   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
744     MCInst Noop;
745     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
746     if (Noop.getOpcode()) {
747       OutStreamer.AddComment("avoids zero-length function");
748       OutStreamer.EmitInstruction(Noop);
749     } else  // Target not mc-ized yet.
750       OutStreamer.EmitRawText(StringRef("\tnop\n"));
751   }
752 
753   const Function *F = MF->getFunction();
754   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
755     const BasicBlock *BB = i;
756     if (!BB->hasAddressTaken())
757       continue;
758     MCSymbol *Sym = GetBlockAddressSymbol(BB);
759     if (Sym->isDefined())
760       continue;
761     OutStreamer.AddComment("Address of block that was removed by CodeGen");
762     OutStreamer.EmitLabel(Sym);
763   }
764 
765   // Emit target-specific gunk after the function body.
766   EmitFunctionBodyEnd();
767 
768   // If the target wants a .size directive for the size of the function, emit
769   // it.
770   if (MAI->hasDotTypeDotSizeDirective()) {
771     // Create a symbol for the end of function, so we can get the size as
772     // difference between the function label and the temp label.
773     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
774     OutStreamer.EmitLabel(FnEndLabel);
775 
776     const MCExpr *SizeExp =
777       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
778                               MCSymbolRefExpr::Create(CurrentFnSymForSize,
779                                                       OutContext),
780                               OutContext);
781     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
782   }
783 
784   // Emit post-function debug information.
785 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
786   if (DD) {
787     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
788     DD->endFunction(MF);
789   }
790   if (DE) {
791     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
792     DE->EndFunction();
793   }
794 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
795   MMI->EndFunction();
796 
797   // Print out jump tables referenced by the function.
798   EmitJumpTableInfo();
799 
800   OutStreamer.AddBlankLine();
801 }
802 
803 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
804 /// operands.
805 MachineLocation AsmPrinter::
getDebugValueLocation(const MachineInstr * MI) const806 getDebugValueLocation(const MachineInstr *MI) const {
807   // Target specific DBG_VALUE instructions are handled by each target.
808   return MachineLocation();
809 }
810 
811 /// EmitDwarfRegOp - Emit dwarf register operation.
EmitDwarfRegOp(const MachineLocation & MLoc) const812 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
813   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
814   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
815 
816   for (const uint16_t *SR = TRI->getSuperRegisters(MLoc.getReg());
817        *SR && Reg < 0; ++SR) {
818     Reg = TRI->getDwarfRegNum(*SR, false);
819     // FIXME: Get the bit range this register uses of the superregister
820     // so that we can produce a DW_OP_bit_piece
821   }
822 
823   // FIXME: Handle cases like a super register being encoded as
824   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
825 
826   // FIXME: We have no reasonable way of handling errors in here. The
827   // caller might be in the middle of an dwarf expression. We should
828   // probably assert that Reg >= 0 once debug info generation is more mature.
829 
830   if (int Offset =  MLoc.getOffset()) {
831     if (Reg < 32) {
832       OutStreamer.AddComment(
833         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
834       EmitInt8(dwarf::DW_OP_breg0 + Reg);
835     } else {
836       OutStreamer.AddComment("DW_OP_bregx");
837       EmitInt8(dwarf::DW_OP_bregx);
838       OutStreamer.AddComment(Twine(Reg));
839       EmitULEB128(Reg);
840     }
841     EmitSLEB128(Offset);
842   } else {
843     if (Reg < 32) {
844       OutStreamer.AddComment(
845         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
846       EmitInt8(dwarf::DW_OP_reg0 + Reg);
847     } else {
848       OutStreamer.AddComment("DW_OP_regx");
849       EmitInt8(dwarf::DW_OP_regx);
850       OutStreamer.AddComment(Twine(Reg));
851       EmitULEB128(Reg);
852     }
853   }
854 
855   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
856 }
857 
doFinalization(Module & M)858 bool AsmPrinter::doFinalization(Module &M) {
859   // Emit global variables.
860   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
861        I != E; ++I)
862     EmitGlobalVariable(I);
863 
864   // Emit visibility info for declarations
865   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
866     const Function &F = *I;
867     if (!F.isDeclaration())
868       continue;
869     GlobalValue::VisibilityTypes V = F.getVisibility();
870     if (V == GlobalValue::DefaultVisibility)
871       continue;
872 
873     MCSymbol *Name = Mang->getSymbol(&F);
874     EmitVisibility(Name, V, false);
875   }
876 
877   // Emit module flags.
878   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
879   M.getModuleFlagsMetadata(ModuleFlags);
880   if (!ModuleFlags.empty())
881     getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
882 
883   // Finalize debug and EH information.
884 #if !defined(ANDROID_TARGET_BUILD) || defined(ANDROID_ENGINEERING_BUILD)
885   if (DE) {
886     {
887       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
888       DE->EndModule();
889     }
890     delete DE; DE = 0;
891   }
892   if (DD) {
893     {
894       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
895       DD->endModule();
896     }
897     delete DD; DD = 0;
898   }
899 #endif // !ANDROID_TARGET_BUILD || ANDROID_ENGINEERING_BUILD
900 
901   // If the target wants to know about weak references, print them all.
902   if (MAI->getWeakRefDirective()) {
903     // FIXME: This is not lazy, it would be nice to only print weak references
904     // to stuff that is actually used.  Note that doing so would require targets
905     // to notice uses in operands (due to constant exprs etc).  This should
906     // happen with the MC stuff eventually.
907 
908     // Print out module-level global variables here.
909     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
910          I != E; ++I) {
911       if (!I->hasExternalWeakLinkage()) continue;
912       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
913     }
914 
915     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
916       if (!I->hasExternalWeakLinkage()) continue;
917       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
918     }
919   }
920 
921   if (MAI->hasSetDirective()) {
922     OutStreamer.AddBlankLine();
923     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
924          I != E; ++I) {
925       MCSymbol *Name = Mang->getSymbol(I);
926 
927       const GlobalValue *GV = I->getAliasedGlobal();
928       MCSymbol *Target = Mang->getSymbol(GV);
929 
930       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
931         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
932       else if (I->hasWeakLinkage())
933         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
934       else
935         assert(I->hasLocalLinkage() && "Invalid alias linkage");
936 
937       EmitVisibility(Name, I->getVisibility());
938 
939       // Emit the directives as assignments aka .set:
940       OutStreamer.EmitAssignment(Name,
941                                  MCSymbolRefExpr::Create(Target, OutContext));
942     }
943   }
944 
945   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
946   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
947   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
948     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
949       MP->finishAssembly(*this);
950 
951   // If we don't have any trampolines, then we don't require stack memory
952   // to be executable. Some targets have a directive to declare this.
953   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
954   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
955     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
956       OutStreamer.SwitchSection(S);
957 
958   // Allow the target to emit any magic that it wants at the end of the file,
959   // after everything else has gone out.
960   EmitEndOfAsmFile(M);
961 
962   delete Mang; Mang = 0;
963   MMI = 0;
964 
965   OutStreamer.Finish();
966   return false;
967 }
968 
SetupMachineFunction(MachineFunction & MF)969 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
970   this->MF = &MF;
971   // Get the function symbol.
972   CurrentFnSym = Mang->getSymbol(MF.getFunction());
973   CurrentFnSymForSize = CurrentFnSym;
974 
975   if (isVerbose())
976     LI = &getAnalysis<MachineLoopInfo>();
977 }
978 
979 namespace {
980   // SectionCPs - Keep track the alignment, constpool entries per Section.
981   struct SectionCPs {
982     const MCSection *S;
983     unsigned Alignment;
984     SmallVector<unsigned, 4> CPEs;
SectionCPs__anon103633d30111::SectionCPs985     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
986   };
987 }
988 
989 /// EmitConstantPool - Print to the current output stream assembly
990 /// representations of the constants in the constant pool MCP. This is
991 /// used to print out constants which have been "spilled to memory" by
992 /// the code generator.
993 ///
EmitConstantPool()994 void AsmPrinter::EmitConstantPool() {
995   const MachineConstantPool *MCP = MF->getConstantPool();
996   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
997   if (CP.empty()) return;
998 
999   // Calculate sections for constant pool entries. We collect entries to go into
1000   // the same section together to reduce amount of section switch statements.
1001   SmallVector<SectionCPs, 4> CPSections;
1002   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1003     const MachineConstantPoolEntry &CPE = CP[i];
1004     unsigned Align = CPE.getAlignment();
1005 
1006     SectionKind Kind;
1007     switch (CPE.getRelocationInfo()) {
1008     default: llvm_unreachable("Unknown section kind");
1009     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1010     case 1:
1011       Kind = SectionKind::getReadOnlyWithRelLocal();
1012       break;
1013     case 0:
1014     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
1015     case 4:  Kind = SectionKind::getMergeableConst4(); break;
1016     case 8:  Kind = SectionKind::getMergeableConst8(); break;
1017     case 16: Kind = SectionKind::getMergeableConst16();break;
1018     default: Kind = SectionKind::getMergeableConst(); break;
1019     }
1020     }
1021 
1022     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1023 
1024     // The number of sections are small, just do a linear search from the
1025     // last section to the first.
1026     bool Found = false;
1027     unsigned SecIdx = CPSections.size();
1028     while (SecIdx != 0) {
1029       if (CPSections[--SecIdx].S == S) {
1030         Found = true;
1031         break;
1032       }
1033     }
1034     if (!Found) {
1035       SecIdx = CPSections.size();
1036       CPSections.push_back(SectionCPs(S, Align));
1037     }
1038 
1039     if (Align > CPSections[SecIdx].Alignment)
1040       CPSections[SecIdx].Alignment = Align;
1041     CPSections[SecIdx].CPEs.push_back(i);
1042   }
1043 
1044   // Now print stuff into the calculated sections.
1045   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1046     OutStreamer.SwitchSection(CPSections[i].S);
1047     EmitAlignment(Log2_32(CPSections[i].Alignment));
1048 
1049     unsigned Offset = 0;
1050     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1051       unsigned CPI = CPSections[i].CPEs[j];
1052       MachineConstantPoolEntry CPE = CP[CPI];
1053 
1054       // Emit inter-object padding for alignment.
1055       unsigned AlignMask = CPE.getAlignment() - 1;
1056       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1057       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1058 
1059       Type *Ty = CPE.getType();
1060       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1061       OutStreamer.EmitLabel(GetCPISymbol(CPI));
1062 
1063       if (CPE.isMachineConstantPoolEntry())
1064         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1065       else
1066         EmitGlobalConstant(CPE.Val.ConstVal);
1067     }
1068   }
1069 }
1070 
1071 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1072 /// by the current function to the current output stream.
1073 ///
EmitJumpTableInfo()1074 void AsmPrinter::EmitJumpTableInfo() {
1075   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1076   if (MJTI == 0) return;
1077   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1078   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1079   if (JT.empty()) return;
1080 
1081   // Pick the directive to use to print the jump table entries, and switch to
1082   // the appropriate section.
1083   const Function *F = MF->getFunction();
1084   bool JTInDiffSection = false;
1085   if (// In PIC mode, we need to emit the jump table to the same section as the
1086       // function body itself, otherwise the label differences won't make sense.
1087       // FIXME: Need a better predicate for this: what about custom entries?
1088       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1089       // We should also do if the section name is NULL or function is declared
1090       // in discardable section
1091       // FIXME: this isn't the right predicate, should be based on the MCSection
1092       // for the function.
1093       F->isWeakForLinker()) {
1094     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1095   } else {
1096     // Otherwise, drop it in the readonly section.
1097     const MCSection *ReadOnlySection =
1098       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1099     OutStreamer.SwitchSection(ReadOnlySection);
1100     JTInDiffSection = true;
1101   }
1102 
1103   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1104 
1105   // If we know the form of the jump table, go ahead and tag it as such.
1106   if (!JTInDiffSection) {
1107     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
1108       OutStreamer.EmitJumpTable32Region();
1109     } else {
1110       OutStreamer.EmitDataRegion();
1111     }
1112   }
1113 
1114   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1115     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1116 
1117     // If this jump table was deleted, ignore it.
1118     if (JTBBs.empty()) continue;
1119 
1120     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1121     // .set directive for each unique entry.  This reduces the number of
1122     // relocations the assembler will generate for the jump table.
1123     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1124         MAI->hasSetDirective()) {
1125       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1126       const TargetLowering *TLI = TM.getTargetLowering();
1127       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1128       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1129         const MachineBasicBlock *MBB = JTBBs[ii];
1130         if (!EmittedSets.insert(MBB)) continue;
1131 
1132         // .set LJTSet, LBB32-base
1133         const MCExpr *LHS =
1134           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1135         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1136                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1137       }
1138     }
1139 
1140     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1141     // before each jump table.  The first label is never referenced, but tells
1142     // the assembler and linker the extents of the jump table object.  The
1143     // second label is actually referenced by the code.
1144     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1145       // FIXME: This doesn't have to have any specific name, just any randomly
1146       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1147       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1148 
1149     OutStreamer.EmitLabel(GetJTISymbol(JTI));
1150 
1151     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1152       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1153   }
1154 }
1155 
1156 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1157 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1158 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1159                                     const MachineBasicBlock *MBB,
1160                                     unsigned UID) const {
1161   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1162   const MCExpr *Value = 0;
1163   switch (MJTI->getEntryKind()) {
1164   case MachineJumpTableInfo::EK_Inline:
1165     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1166   case MachineJumpTableInfo::EK_Custom32:
1167     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1168                                                               OutContext);
1169     break;
1170   case MachineJumpTableInfo::EK_BlockAddress:
1171     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1172     //     .word LBB123
1173     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1174     break;
1175   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1176     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1177     // with a relocation as gp-relative, e.g.:
1178     //     .gprel32 LBB123
1179     MCSymbol *MBBSym = MBB->getSymbol();
1180     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1181     return;
1182   }
1183 
1184   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1185     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1186     // with a relocation as gp-relative, e.g.:
1187     //     .gpdword LBB123
1188     MCSymbol *MBBSym = MBB->getSymbol();
1189     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1190     return;
1191   }
1192 
1193   case MachineJumpTableInfo::EK_LabelDifference32: {
1194     // EK_LabelDifference32 - Each entry is the address of the block minus
1195     // the address of the jump table.  This is used for PIC jump tables where
1196     // gprel32 is not supported.  e.g.:
1197     //      .word LBB123 - LJTI1_2
1198     // If the .set directive is supported, this is emitted as:
1199     //      .set L4_5_set_123, LBB123 - LJTI1_2
1200     //      .word L4_5_set_123
1201 
1202     // If we have emitted set directives for the jump table entries, print
1203     // them rather than the entries themselves.  If we're emitting PIC, then
1204     // emit the table entries as differences between two text section labels.
1205     if (MAI->hasSetDirective()) {
1206       // If we used .set, reference the .set's symbol.
1207       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1208                                       OutContext);
1209       break;
1210     }
1211     // Otherwise, use the difference as the jump table entry.
1212     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1213     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1214     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1215     break;
1216   }
1217   }
1218 
1219   assert(Value && "Unknown entry kind!");
1220 
1221   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1222   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1223 }
1224 
1225 
1226 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1227 /// special global used by LLVM.  If so, emit it and return true, otherwise
1228 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1229 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1230   if (GV->getName() == "llvm.used") {
1231     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1232       EmitLLVMUsedList(GV->getInitializer());
1233     return true;
1234   }
1235 
1236   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1237   if (GV->getSection() == "llvm.metadata" ||
1238       GV->hasAvailableExternallyLinkage())
1239     return true;
1240 
1241   if (!GV->hasAppendingLinkage()) return false;
1242 
1243   assert(GV->hasInitializer() && "Not a special LLVM global!");
1244 
1245   if (GV->getName() == "llvm.global_ctors") {
1246     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1247 
1248     if (TM.getRelocationModel() == Reloc::Static &&
1249         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1250       StringRef Sym(".constructors_used");
1251       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1252                                       MCSA_Reference);
1253     }
1254     return true;
1255   }
1256 
1257   if (GV->getName() == "llvm.global_dtors") {
1258     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1259 
1260     if (TM.getRelocationModel() == Reloc::Static &&
1261         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1262       StringRef Sym(".destructors_used");
1263       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1264                                       MCSA_Reference);
1265     }
1266     return true;
1267   }
1268 
1269   return false;
1270 }
1271 
1272 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1273 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1274 /// is true, as being used with this directive.
EmitLLVMUsedList(const Constant * List)1275 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1276   // Should be an array of 'i8*'.
1277   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1278   if (InitList == 0) return;
1279 
1280   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1281     const GlobalValue *GV =
1282       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1283     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1284       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1285   }
1286 }
1287 
1288 typedef std::pair<unsigned, Constant*> Structor;
1289 
priority_order(const Structor & lhs,const Structor & rhs)1290 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1291   return lhs.first < rhs.first;
1292 }
1293 
1294 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1295 /// priority.
EmitXXStructorList(const Constant * List,bool isCtor)1296 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1297   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1298   // init priority.
1299   if (!isa<ConstantArray>(List)) return;
1300 
1301   // Sanity check the structors list.
1302   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1303   if (!InitList) return; // Not an array!
1304   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1305   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1306   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1307       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1308 
1309   // Gather the structors in a form that's convenient for sorting by priority.
1310   SmallVector<Structor, 8> Structors;
1311   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1312     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1313     if (!CS) continue; // Malformed.
1314     if (CS->getOperand(1)->isNullValue())
1315       break;  // Found a null terminator, skip the rest.
1316     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1317     if (!Priority) continue; // Malformed.
1318     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1319                                        CS->getOperand(1)));
1320   }
1321 
1322   // Emit the function pointers in the target-specific order
1323   const TargetData *TD = TM.getTargetData();
1324   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1325   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1326   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1327     const MCSection *OutputSection =
1328       (isCtor ?
1329        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1330        getObjFileLowering().getStaticDtorSection(Structors[i].first));
1331     OutStreamer.SwitchSection(OutputSection);
1332     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1333       EmitAlignment(Align);
1334     EmitXXStructor(Structors[i].second);
1335   }
1336 }
1337 
1338 //===--------------------------------------------------------------------===//
1339 // Emission and print routines
1340 //
1341 
1342 /// EmitInt8 - Emit a byte directive and value.
1343 ///
EmitInt8(int Value) const1344 void AsmPrinter::EmitInt8(int Value) const {
1345   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1346 }
1347 
1348 /// EmitInt16 - Emit a short directive and value.
1349 ///
EmitInt16(int Value) const1350 void AsmPrinter::EmitInt16(int Value) const {
1351   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1352 }
1353 
1354 /// EmitInt32 - Emit a long directive and value.
1355 ///
EmitInt32(int Value) const1356 void AsmPrinter::EmitInt32(int Value) const {
1357   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1358 }
1359 
1360 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1361 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1362 /// labels.  This implicitly uses .set if it is available.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1363 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1364                                      unsigned Size) const {
1365   // Get the Hi-Lo expression.
1366   const MCExpr *Diff =
1367     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1368                             MCSymbolRefExpr::Create(Lo, OutContext),
1369                             OutContext);
1370 
1371   if (!MAI->hasSetDirective()) {
1372     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1373     return;
1374   }
1375 
1376   // Otherwise, emit with .set (aka assignment).
1377   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1378   OutStreamer.EmitAssignment(SetLabel, Diff);
1379   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1380 }
1381 
1382 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1383 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1384 /// specify the labels.  This implicitly uses .set if it is available.
EmitLabelOffsetDifference(const MCSymbol * Hi,uint64_t Offset,const MCSymbol * Lo,unsigned Size) const1385 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1386                                            const MCSymbol *Lo, unsigned Size)
1387   const {
1388 
1389   // Emit Hi+Offset - Lo
1390   // Get the Hi+Offset expression.
1391   const MCExpr *Plus =
1392     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1393                             MCConstantExpr::Create(Offset, OutContext),
1394                             OutContext);
1395 
1396   // Get the Hi+Offset-Lo expression.
1397   const MCExpr *Diff =
1398     MCBinaryExpr::CreateSub(Plus,
1399                             MCSymbolRefExpr::Create(Lo, OutContext),
1400                             OutContext);
1401 
1402   if (!MAI->hasSetDirective())
1403     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1404   else {
1405     // Otherwise, emit with .set (aka assignment).
1406     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1407     OutStreamer.EmitAssignment(SetLabel, Diff);
1408     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1409   }
1410 }
1411 
1412 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1413 /// where the size in bytes of the directive is specified by Size and Label
1414 /// specifies the label.  This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size) const1415 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1416                                       unsigned Size)
1417   const {
1418 
1419   // Emit Label+Offset
1420   const MCExpr *Plus =
1421     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1422                             MCConstantExpr::Create(Offset, OutContext),
1423                             OutContext);
1424 
1425   OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1426 }
1427 
1428 
1429 //===----------------------------------------------------------------------===//
1430 
1431 // EmitAlignment - Emit an alignment directive to the specified power of
1432 // two boundary.  For example, if you pass in 3 here, you will get an 8
1433 // byte alignment.  If a global value is specified, and if that global has
1434 // an explicit alignment requested, it will override the alignment request
1435 // if required for correctness.
1436 //
EmitAlignment(unsigned NumBits,const GlobalValue * GV) const1437 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1438   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1439 
1440   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1441 
1442   if (getCurrentSection()->getKind().isText())
1443     OutStreamer.EmitCodeAlignment(1 << NumBits);
1444   else
1445     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1446 }
1447 
1448 //===----------------------------------------------------------------------===//
1449 // Constant emission.
1450 //===----------------------------------------------------------------------===//
1451 
1452 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1453 ///
LowerConstant(const Constant * CV,AsmPrinter & AP)1454 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1455   MCContext &Ctx = AP.OutContext;
1456 
1457   if (CV->isNullValue() || isa<UndefValue>(CV))
1458     return MCConstantExpr::Create(0, Ctx);
1459 
1460   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1461     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1462 
1463   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1464     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1465 
1466   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1467     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1468 
1469   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1470   if (CE == 0) {
1471     llvm_unreachable("Unknown constant value to lower!");
1472   }
1473 
1474   switch (CE->getOpcode()) {
1475   default:
1476     // If the code isn't optimized, there may be outstanding folding
1477     // opportunities. Attempt to fold the expression using TargetData as a
1478     // last resort before giving up.
1479     if (Constant *C =
1480           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1481       if (C != CE)
1482         return LowerConstant(C, AP);
1483 
1484     // Otherwise report the problem to the user.
1485     {
1486       std::string S;
1487       raw_string_ostream OS(S);
1488       OS << "Unsupported expression in static initializer: ";
1489       WriteAsOperand(OS, CE, /*PrintType=*/false,
1490                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1491       report_fatal_error(OS.str());
1492     }
1493   case Instruction::GetElementPtr: {
1494     const TargetData &TD = *AP.TM.getTargetData();
1495     // Generate a symbolic expression for the byte address
1496     const Constant *PtrVal = CE->getOperand(0);
1497     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1498     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1499 
1500     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1501     if (Offset == 0)
1502       return Base;
1503 
1504     // Truncate/sext the offset to the pointer size.
1505     if (TD.getPointerSizeInBits() != 64) {
1506       int SExtAmount = 64-TD.getPointerSizeInBits();
1507       Offset = (Offset << SExtAmount) >> SExtAmount;
1508     }
1509 
1510     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1511                                    Ctx);
1512   }
1513 
1514   case Instruction::Trunc:
1515     // We emit the value and depend on the assembler to truncate the generated
1516     // expression properly.  This is important for differences between
1517     // blockaddress labels.  Since the two labels are in the same function, it
1518     // is reasonable to treat their delta as a 32-bit value.
1519     // FALL THROUGH.
1520   case Instruction::BitCast:
1521     return LowerConstant(CE->getOperand(0), AP);
1522 
1523   case Instruction::IntToPtr: {
1524     const TargetData &TD = *AP.TM.getTargetData();
1525     // Handle casts to pointers by changing them into casts to the appropriate
1526     // integer type.  This promotes constant folding and simplifies this code.
1527     Constant *Op = CE->getOperand(0);
1528     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1529                                       false/*ZExt*/);
1530     return LowerConstant(Op, AP);
1531   }
1532 
1533   case Instruction::PtrToInt: {
1534     const TargetData &TD = *AP.TM.getTargetData();
1535     // Support only foldable casts to/from pointers that can be eliminated by
1536     // changing the pointer to the appropriately sized integer type.
1537     Constant *Op = CE->getOperand(0);
1538     Type *Ty = CE->getType();
1539 
1540     const MCExpr *OpExpr = LowerConstant(Op, AP);
1541 
1542     // We can emit the pointer value into this slot if the slot is an
1543     // integer slot equal to the size of the pointer.
1544     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1545       return OpExpr;
1546 
1547     // Otherwise the pointer is smaller than the resultant integer, mask off
1548     // the high bits so we are sure to get a proper truncation if the input is
1549     // a constant expr.
1550     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1551     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1552     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1553   }
1554 
1555   // The MC library also has a right-shift operator, but it isn't consistently
1556   // signed or unsigned between different targets.
1557   case Instruction::Add:
1558   case Instruction::Sub:
1559   case Instruction::Mul:
1560   case Instruction::SDiv:
1561   case Instruction::SRem:
1562   case Instruction::Shl:
1563   case Instruction::And:
1564   case Instruction::Or:
1565   case Instruction::Xor: {
1566     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1567     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1568     switch (CE->getOpcode()) {
1569     default: llvm_unreachable("Unknown binary operator constant cast expr");
1570     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1571     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1572     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1573     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1574     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1575     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1576     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1577     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1578     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1579     }
1580   }
1581   }
1582 }
1583 
1584 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1585                                    AsmPrinter &AP);
1586 
1587 /// isRepeatedByteSequence - Determine whether the given value is
1588 /// composed of a repeated sequence of identical bytes and return the
1589 /// byte value.  If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1590 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1591   StringRef Data = V->getRawDataValues();
1592   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1593   char C = Data[0];
1594   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1595     if (Data[i] != C) return -1;
1596   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1597 }
1598 
1599 
1600 /// isRepeatedByteSequence - Determine whether the given value is
1601 /// composed of a repeated sequence of identical bytes and return the
1602 /// byte value.  If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1603 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1604 
1605   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1606     if (CI->getBitWidth() > 64) return -1;
1607 
1608     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1609     uint64_t Value = CI->getZExtValue();
1610 
1611     // Make sure the constant is at least 8 bits long and has a power
1612     // of 2 bit width.  This guarantees the constant bit width is
1613     // always a multiple of 8 bits, avoiding issues with padding out
1614     // to Size and other such corner cases.
1615     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1616 
1617     uint8_t Byte = static_cast<uint8_t>(Value);
1618 
1619     for (unsigned i = 1; i < Size; ++i) {
1620       Value >>= 8;
1621       if (static_cast<uint8_t>(Value) != Byte) return -1;
1622     }
1623     return Byte;
1624   }
1625   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1626     // Make sure all array elements are sequences of the same repeated
1627     // byte.
1628     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1629     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1630     if (Byte == -1) return -1;
1631 
1632     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1633       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1634       if (ThisByte == -1) return -1;
1635       if (Byte != ThisByte) return -1;
1636     }
1637     return Byte;
1638   }
1639 
1640   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1641     return isRepeatedByteSequence(CDS);
1642 
1643   return -1;
1644 }
1645 
EmitGlobalConstantDataSequential(const ConstantDataSequential * CDS,unsigned AddrSpace,AsmPrinter & AP)1646 static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1647                                              unsigned AddrSpace,AsmPrinter &AP){
1648 
1649   // See if we can aggregate this into a .fill, if so, emit it as such.
1650   int Value = isRepeatedByteSequence(CDS, AP.TM);
1651   if (Value != -1) {
1652     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1653     // Don't emit a 1-byte object as a .fill.
1654     if (Bytes > 1)
1655       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1656   }
1657 
1658   // If this can be emitted with .ascii/.asciz, emit it as such.
1659   if (CDS->isString())
1660     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1661 
1662   // Otherwise, emit the values in successive locations.
1663   unsigned ElementByteSize = CDS->getElementByteSize();
1664   if (isa<IntegerType>(CDS->getElementType())) {
1665     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1666       if (AP.isVerbose())
1667         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1668                                                 CDS->getElementAsInteger(i));
1669       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1670                                   ElementByteSize, AddrSpace);
1671     }
1672   } else if (ElementByteSize == 4) {
1673     // FP Constants are printed as integer constants to avoid losing
1674     // precision.
1675     assert(CDS->getElementType()->isFloatTy());
1676     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1677       union {
1678         float F;
1679         uint32_t I;
1680       };
1681 
1682       F = CDS->getElementAsFloat(i);
1683       if (AP.isVerbose())
1684         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1685       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1686     }
1687   } else {
1688     assert(CDS->getElementType()->isDoubleTy());
1689     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1690       union {
1691         double F;
1692         uint64_t I;
1693       };
1694 
1695       F = CDS->getElementAsDouble(i);
1696       if (AP.isVerbose())
1697         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1698       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1699     }
1700   }
1701 
1702   const TargetData &TD = *AP.TM.getTargetData();
1703   unsigned Size = TD.getTypeAllocSize(CDS->getType());
1704   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1705                         CDS->getNumElements();
1706   if (unsigned Padding = Size - EmittedSize)
1707     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1708 
1709 }
1710 
EmitGlobalConstantArray(const ConstantArray * CA,unsigned AddrSpace,AsmPrinter & AP)1711 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1712                                     AsmPrinter &AP) {
1713   // See if we can aggregate some values.  Make sure it can be
1714   // represented as a series of bytes of the constant value.
1715   int Value = isRepeatedByteSequence(CA, AP.TM);
1716 
1717   if (Value != -1) {
1718     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1719     AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1720   }
1721   else {
1722     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1723       EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1724   }
1725 }
1726 
EmitGlobalConstantVector(const ConstantVector * CV,unsigned AddrSpace,AsmPrinter & AP)1727 static void EmitGlobalConstantVector(const ConstantVector *CV,
1728                                      unsigned AddrSpace, AsmPrinter &AP) {
1729   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1730     EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1731 
1732   const TargetData &TD = *AP.TM.getTargetData();
1733   unsigned Size = TD.getTypeAllocSize(CV->getType());
1734   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1735                          CV->getType()->getNumElements();
1736   if (unsigned Padding = Size - EmittedSize)
1737     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1738 }
1739 
EmitGlobalConstantStruct(const ConstantStruct * CS,unsigned AddrSpace,AsmPrinter & AP)1740 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1741                                      unsigned AddrSpace, AsmPrinter &AP) {
1742   // Print the fields in successive locations. Pad to align if needed!
1743   const TargetData *TD = AP.TM.getTargetData();
1744   unsigned Size = TD->getTypeAllocSize(CS->getType());
1745   const StructLayout *Layout = TD->getStructLayout(CS->getType());
1746   uint64_t SizeSoFar = 0;
1747   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1748     const Constant *Field = CS->getOperand(i);
1749 
1750     // Check if padding is needed and insert one or more 0s.
1751     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1752     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1753                         - Layout->getElementOffset(i)) - FieldSize;
1754     SizeSoFar += FieldSize + PadSize;
1755 
1756     // Now print the actual field value.
1757     EmitGlobalConstantImpl(Field, AddrSpace, AP);
1758 
1759     // Insert padding - this may include padding to increase the size of the
1760     // current field up to the ABI size (if the struct is not packed) as well
1761     // as padding to ensure that the next field starts at the right offset.
1762     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1763   }
1764   assert(SizeSoFar == Layout->getSizeInBytes() &&
1765          "Layout of constant struct may be incorrect!");
1766 }
1767 
EmitGlobalConstantFP(const ConstantFP * CFP,unsigned AddrSpace,AsmPrinter & AP)1768 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1769                                  AsmPrinter &AP) {
1770   if (CFP->getType()->isHalfTy()) {
1771     if (AP.isVerbose()) {
1772       SmallString<10> Str;
1773       CFP->getValueAPF().toString(Str);
1774       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1775     }
1776     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1777     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1778     return;
1779   }
1780 
1781   if (CFP->getType()->isFloatTy()) {
1782     if (AP.isVerbose()) {
1783       float Val = CFP->getValueAPF().convertToFloat();
1784       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1785       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'
1786                                     << " (" << format("0x%x", IntVal) << ")\n";
1787     }
1788     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1789     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1790     return;
1791   }
1792 
1793   // FP Constants are printed as integer constants to avoid losing
1794   // precision.
1795   if (CFP->getType()->isDoubleTy()) {
1796     if (AP.isVerbose()) {
1797       double Val = CFP->getValueAPF().convertToDouble();
1798       uint64_t IntVal = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1799       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'
1800                                     << " (" << format("0x%lx", IntVal) << ")\n";
1801     }
1802 
1803     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1804     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1805     return;
1806   }
1807 
1808   if (CFP->getType()->isX86_FP80Ty()) {
1809     // all long double variants are printed as hex
1810     // API needed to prevent premature destruction
1811     APInt API = CFP->getValueAPF().bitcastToAPInt();
1812     const uint64_t *p = API.getRawData();
1813     if (AP.isVerbose()) {
1814       // Convert to double so we can print the approximate val as a comment.
1815       APFloat DoubleVal = CFP->getValueAPF();
1816       bool ignored;
1817       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1818                         &ignored);
1819       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1820         << DoubleVal.convertToDouble() << '\n';
1821     }
1822 
1823     if (AP.TM.getTargetData()->isBigEndian()) {
1824       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1825       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1826     } else {
1827       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1828       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1829     }
1830 
1831     // Emit the tail padding for the long double.
1832     const TargetData &TD = *AP.TM.getTargetData();
1833     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1834                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1835     return;
1836   }
1837 
1838   assert(CFP->getType()->isPPC_FP128Ty() &&
1839          "Floating point constant type not handled");
1840   // All long double variants are printed as hex
1841   // API needed to prevent premature destruction.
1842   APInt API = CFP->getValueAPF().bitcastToAPInt();
1843   const uint64_t *p = API.getRawData();
1844   if (AP.TM.getTargetData()->isBigEndian()) {
1845     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1846     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1847   } else {
1848     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1849     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1850   }
1851 }
1852 
EmitGlobalConstantLargeInt(const ConstantInt * CI,unsigned AddrSpace,AsmPrinter & AP)1853 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1854                                        unsigned AddrSpace, AsmPrinter &AP) {
1855   const TargetData *TD = AP.TM.getTargetData();
1856   unsigned BitWidth = CI->getBitWidth();
1857   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1858 
1859   // We don't expect assemblers to support integer data directives
1860   // for more than 64 bits, so we emit the data in at most 64-bit
1861   // quantities at a time.
1862   const uint64_t *RawData = CI->getValue().getRawData();
1863   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1864     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1865     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1866   }
1867 }
1868 
EmitGlobalConstantImpl(const Constant * CV,unsigned AddrSpace,AsmPrinter & AP)1869 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1870                                    AsmPrinter &AP) {
1871   const TargetData *TD = AP.TM.getTargetData();
1872   uint64_t Size = TD->getTypeAllocSize(CV->getType());
1873   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1874     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1875 
1876   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1877     switch (Size) {
1878     case 1:
1879     case 2:
1880     case 4:
1881     case 8:
1882       if (AP.isVerbose())
1883         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1884                                                 CI->getZExtValue());
1885       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1886       return;
1887     default:
1888       EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1889       return;
1890     }
1891   }
1892 
1893   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1894     return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1895 
1896   if (isa<ConstantPointerNull>(CV)) {
1897     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1898     return;
1899   }
1900 
1901   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1902     return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1903 
1904   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1905     return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1906 
1907   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1908     return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1909 
1910   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1911     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1912     // vectors).
1913     if (CE->getOpcode() == Instruction::BitCast)
1914       return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1915 
1916     if (Size > 8) {
1917       // If the constant expression's size is greater than 64-bits, then we have
1918       // to emit the value in chunks. Try to constant fold the value and emit it
1919       // that way.
1920       Constant *New = ConstantFoldConstantExpression(CE, TD);
1921       if (New && New != CE)
1922         return EmitGlobalConstantImpl(New, AddrSpace, AP);
1923     }
1924   }
1925 
1926   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1927     return EmitGlobalConstantVector(V, AddrSpace, AP);
1928 
1929   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1930   // thread the streamer with EmitValue.
1931   AP.OutStreamer.EmitValue(LowerConstant(CV, AP), Size, AddrSpace);
1932 }
1933 
1934 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV,unsigned AddrSpace)1935 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1936   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1937   if (Size)
1938     EmitGlobalConstantImpl(CV, AddrSpace, *this);
1939   else if (MAI->hasSubsectionsViaSymbols()) {
1940     // If the global has zero size, emit a single byte so that two labels don't
1941     // look like they are at the same location.
1942     OutStreamer.EmitIntValue(0, 1, AddrSpace);
1943   }
1944 }
1945 
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)1946 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1947   // Target doesn't support this yet!
1948   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1949 }
1950 
printOffset(int64_t Offset,raw_ostream & OS) const1951 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1952   if (Offset > 0)
1953     OS << '+' << Offset;
1954   else if (Offset < 0)
1955     OS << Offset;
1956 }
1957 
1958 //===----------------------------------------------------------------------===//
1959 // Symbol Lowering Routines.
1960 //===----------------------------------------------------------------------===//
1961 
1962 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1963 /// temporary label with the specified stem and unique ID.
GetTempSymbol(StringRef Name,unsigned ID) const1964 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1965   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1966                                       Name + Twine(ID));
1967 }
1968 
1969 /// GetTempSymbol - Return an assembler temporary label with the specified
1970 /// stem.
GetTempSymbol(StringRef Name) const1971 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1972   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1973                                       Name);
1974 }
1975 
1976 
GetBlockAddressSymbol(const BlockAddress * BA) const1977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1978   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1979 }
1980 
GetBlockAddressSymbol(const BasicBlock * BB) const1981 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1982   return MMI->getAddrLabelSymbol(BB);
1983 }
1984 
1985 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const1986 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1987   return OutContext.GetOrCreateSymbol
1988     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1989      + "_" + Twine(CPID));
1990 }
1991 
1992 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const1993 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1994   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1995 }
1996 
1997 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1998 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const1999 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2000   return OutContext.GetOrCreateSymbol
2001   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2002    Twine(UID) + "_set_" + Twine(MBBID));
2003 }
2004 
2005 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2006 /// global value name as its base, with the specified suffix, and where the
2007 /// symbol is forced to have private linkage if ForcePrivate is true.
GetSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix,bool ForcePrivate) const2008 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2009                                                    StringRef Suffix,
2010                                                    bool ForcePrivate) const {
2011   SmallString<60> NameStr;
2012   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2013   NameStr.append(Suffix.begin(), Suffix.end());
2014   return OutContext.GetOrCreateSymbol(NameStr.str());
2015 }
2016 
2017 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2018 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2019 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2020   SmallString<60> NameStr;
2021   Mang->getNameWithPrefix(NameStr, Sym);
2022   return OutContext.GetOrCreateSymbol(NameStr.str());
2023 }
2024 
2025 
2026 
2027 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2028 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2029                                    unsigned FunctionNumber) {
2030   if (Loop == 0) return;
2031   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2032   OS.indent(Loop->getLoopDepth()*2)
2033     << "Parent Loop BB" << FunctionNumber << "_"
2034     << Loop->getHeader()->getNumber()
2035     << " Depth=" << Loop->getLoopDepth() << '\n';
2036 }
2037 
2038 
2039 /// PrintChildLoopComment - Print comments about child loops within
2040 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2041 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2042                                   unsigned FunctionNumber) {
2043   // Add child loop information
2044   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2045     OS.indent((*CL)->getLoopDepth()*2)
2046       << "Child Loop BB" << FunctionNumber << "_"
2047       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2048       << '\n';
2049     PrintChildLoopComment(OS, *CL, FunctionNumber);
2050   }
2051 }
2052 
2053 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
EmitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2054 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2055                                        const MachineLoopInfo *LI,
2056                                        const AsmPrinter &AP) {
2057   // Add loop depth information
2058   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2059   if (Loop == 0) return;
2060 
2061   MachineBasicBlock *Header = Loop->getHeader();
2062   assert(Header && "No header for loop");
2063 
2064   // If this block is not a loop header, just print out what is the loop header
2065   // and return.
2066   if (Header != &MBB) {
2067     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2068                               Twine(AP.getFunctionNumber())+"_" +
2069                               Twine(Loop->getHeader()->getNumber())+
2070                               " Depth="+Twine(Loop->getLoopDepth()));
2071     return;
2072   }
2073 
2074   // Otherwise, it is a loop header.  Print out information about child and
2075   // parent loops.
2076   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2077 
2078   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2079 
2080   OS << "=>";
2081   OS.indent(Loop->getLoopDepth()*2-2);
2082 
2083   OS << "This ";
2084   if (Loop->empty())
2085     OS << "Inner ";
2086   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2087 
2088   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2089 }
2090 
2091 
2092 /// EmitBasicBlockStart - This method prints the label for the specified
2093 /// MachineBasicBlock, an alignment (if present) and a comment describing
2094 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock * MBB) const2095 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2096   // Emit an alignment directive for this block, if needed.
2097   if (unsigned Align = MBB->getAlignment())
2098     EmitAlignment(Align);
2099 
2100   // If the block has its address taken, emit any labels that were used to
2101   // reference the block.  It is possible that there is more than one label
2102   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2103   // the references were generated.
2104   if (MBB->hasAddressTaken()) {
2105     const BasicBlock *BB = MBB->getBasicBlock();
2106     if (isVerbose())
2107       OutStreamer.AddComment("Block address taken");
2108 
2109     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2110 
2111     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2112       OutStreamer.EmitLabel(Syms[i]);
2113   }
2114 
2115   // Print some verbose block comments.
2116   if (isVerbose()) {
2117     if (const BasicBlock *BB = MBB->getBasicBlock())
2118       if (BB->hasName())
2119         OutStreamer.AddComment("%" + BB->getName());
2120     EmitBasicBlockLoopComments(*MBB, LI, *this);
2121   }
2122 
2123   // Print the main label for the block.
2124   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2125     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2126       // NOTE: Want this comment at start of line, don't emit with AddComment.
2127       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2128                               Twine(MBB->getNumber()) + ":");
2129     }
2130   } else {
2131     OutStreamer.EmitLabel(MBB->getSymbol());
2132   }
2133 }
2134 
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2135 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2136                                 bool IsDefinition) const {
2137   MCSymbolAttr Attr = MCSA_Invalid;
2138 
2139   switch (Visibility) {
2140   default: break;
2141   case GlobalValue::HiddenVisibility:
2142     if (IsDefinition)
2143       Attr = MAI->getHiddenVisibilityAttr();
2144     else
2145       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2146     break;
2147   case GlobalValue::ProtectedVisibility:
2148     Attr = MAI->getProtectedVisibilityAttr();
2149     break;
2150   }
2151 
2152   if (Attr != MCSA_Invalid)
2153     OutStreamer.EmitSymbolAttribute(Sym, Attr);
2154 }
2155 
2156 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2157 /// exactly one predecessor and the control transfer mechanism between
2158 /// the predecessor and this block is a fall-through.
2159 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2160 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2161   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2162   // then nothing falls through to it.
2163   if (MBB->isLandingPad() || MBB->pred_empty())
2164     return false;
2165 
2166   // If there isn't exactly one predecessor, it can't be a fall through.
2167   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2168   ++PI2;
2169   if (PI2 != MBB->pred_end())
2170     return false;
2171 
2172   // The predecessor has to be immediately before this block.
2173   MachineBasicBlock *Pred = *PI;
2174 
2175   if (!Pred->isLayoutSuccessor(MBB))
2176     return false;
2177 
2178   // If the block is completely empty, then it definitely does fall through.
2179   if (Pred->empty())
2180     return true;
2181 
2182   // Check the terminators in the previous blocks
2183   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2184          IE = Pred->end(); II != IE; ++II) {
2185     MachineInstr &MI = *II;
2186 
2187     // If it is not a simple branch, we are in a table somewhere.
2188     if (!MI.isBranch() || MI.isIndirectBranch())
2189       return false;
2190 
2191     // If we are the operands of one of the branches, this is not
2192     // a fall through.
2193     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2194            OE = MI.operands_end(); OI != OE; ++OI) {
2195       const MachineOperand& OP = *OI;
2196       if (OP.isJTI())
2197         return false;
2198       if (OP.isMBB() && OP.getMBB() == MBB)
2199         return false;
2200     }
2201   }
2202 
2203   return true;
2204 }
2205 
2206 
2207 
GetOrCreateGCPrinter(GCStrategy * S)2208 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2209   if (!S->usesMetadata())
2210     return 0;
2211 
2212   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2213   gcp_map_type::iterator GCPI = GCMap.find(S);
2214   if (GCPI != GCMap.end())
2215     return GCPI->second;
2216 
2217   const char *Name = S->getName().c_str();
2218 
2219   for (GCMetadataPrinterRegistry::iterator
2220          I = GCMetadataPrinterRegistry::begin(),
2221          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2222     if (strcmp(Name, I->getName()) == 0) {
2223       GCMetadataPrinter *GMP = I->instantiate();
2224       GMP->S = S;
2225       GCMap.insert(std::make_pair(S, GMP));
2226       return GMP;
2227     }
2228 
2229   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2230 }
2231