1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
16 //
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 // Optimization of comparison instructions. For instance, in this code:
25 //
26 // sub r1, 1
27 // cmp r1, 0
28 // bz L1
29 //
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
33 //
34 // - Optimize Bitcast pairs:
35 //
36 // v1 = bitcast v0
37 // v2 = bitcast v1
38 // = v2
39 // =>
40 // v1 = bitcast v0
41 // = v0
42 //
43 //===----------------------------------------------------------------------===//
44
45 #define DEBUG_TYPE "peephole-opt"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/MachineDominators.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/Target/TargetInstrInfo.h"
51 #include "llvm/Target/TargetRegisterInfo.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/ADT/DenseMap.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/Statistic.h"
57 using namespace llvm;
58
59 // Optimize Extensions
60 static cl::opt<bool>
61 Aggressive("aggressive-ext-opt", cl::Hidden,
62 cl::desc("Aggressive extension optimization"));
63
64 static cl::opt<bool>
65 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
66 cl::desc("Disable the peephole optimizer"));
67
68 STATISTIC(NumReuse, "Number of extension results reused");
69 STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
70 STATISTIC(NumCmps, "Number of compares eliminated");
71 STATISTIC(NumImmFold, "Number of move immediate folded");
72
73 namespace {
74 class PeepholeOptimizer : public MachineFunctionPass {
75 const TargetMachine *TM;
76 const TargetInstrInfo *TII;
77 MachineRegisterInfo *MRI;
78 MachineDominatorTree *DT; // Machine dominator tree
79
80 public:
81 static char ID; // Pass identification
PeepholeOptimizer()82 PeepholeOptimizer() : MachineFunctionPass(ID) {
83 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
84 }
85
86 virtual bool runOnMachineFunction(MachineFunction &MF);
87
getAnalysisUsage(AnalysisUsage & AU) const88 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
89 AU.setPreservesCFG();
90 MachineFunctionPass::getAnalysisUsage(AU);
91 if (Aggressive) {
92 AU.addRequired<MachineDominatorTree>();
93 AU.addPreserved<MachineDominatorTree>();
94 }
95 }
96
97 private:
98 bool OptimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
99 bool OptimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
100 bool OptimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
101 SmallPtrSet<MachineInstr*, 8> &LocalMIs);
102 bool isMoveImmediate(MachineInstr *MI,
103 SmallSet<unsigned, 4> &ImmDefRegs,
104 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
105 bool FoldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
106 SmallSet<unsigned, 4> &ImmDefRegs,
107 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
108 };
109 }
110
111 char PeepholeOptimizer::ID = 0;
112 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
113 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
114 "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)115 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
116 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
117 "Peephole Optimizations", false, false)
118
119 /// OptimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
120 /// a single register and writes a single register and it does not modify the
121 /// source, and if the source value is preserved as a sub-register of the
122 /// result, then replace all reachable uses of the source with the subreg of the
123 /// result.
124 ///
125 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
126 /// the code. Since this code does not currently share EXTRACTs, just ignore all
127 /// debug uses.
128 bool PeepholeOptimizer::
129 OptimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
130 SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
131 unsigned SrcReg, DstReg, SubIdx;
132 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
133 return false;
134
135 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
136 TargetRegisterInfo::isPhysicalRegister(SrcReg))
137 return false;
138
139 MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(SrcReg);
140 if (++UI == MRI->use_nodbg_end())
141 // No other uses.
142 return false;
143
144 // The source has other uses. See if we can replace the other uses with use of
145 // the result of the extension.
146 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
147 UI = MRI->use_nodbg_begin(DstReg);
148 for (MachineRegisterInfo::use_nodbg_iterator UE = MRI->use_nodbg_end();
149 UI != UE; ++UI)
150 ReachedBBs.insert(UI->getParent());
151
152 // Uses that are in the same BB of uses of the result of the instruction.
153 SmallVector<MachineOperand*, 8> Uses;
154
155 // Uses that the result of the instruction can reach.
156 SmallVector<MachineOperand*, 8> ExtendedUses;
157
158 bool ExtendLife = true;
159 UI = MRI->use_nodbg_begin(SrcReg);
160 for (MachineRegisterInfo::use_nodbg_iterator UE = MRI->use_nodbg_end();
161 UI != UE; ++UI) {
162 MachineOperand &UseMO = UI.getOperand();
163 MachineInstr *UseMI = &*UI;
164 if (UseMI == MI)
165 continue;
166
167 if (UseMI->isPHI()) {
168 ExtendLife = false;
169 continue;
170 }
171
172 // It's an error to translate this:
173 //
174 // %reg1025 = <sext> %reg1024
175 // ...
176 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
177 //
178 // into this:
179 //
180 // %reg1025 = <sext> %reg1024
181 // ...
182 // %reg1027 = COPY %reg1025:4
183 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
184 //
185 // The problem here is that SUBREG_TO_REG is there to assert that an
186 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
187 // the COPY here, it will give us the value after the <sext>, not the
188 // original value of %reg1024 before <sext>.
189 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
190 continue;
191
192 MachineBasicBlock *UseMBB = UseMI->getParent();
193 if (UseMBB == MBB) {
194 // Local uses that come after the extension.
195 if (!LocalMIs.count(UseMI))
196 Uses.push_back(&UseMO);
197 } else if (ReachedBBs.count(UseMBB)) {
198 // Non-local uses where the result of the extension is used. Always
199 // replace these unless it's a PHI.
200 Uses.push_back(&UseMO);
201 } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
202 // We may want to extend the live range of the extension result in order
203 // to replace these uses.
204 ExtendedUses.push_back(&UseMO);
205 } else {
206 // Both will be live out of the def MBB anyway. Don't extend live range of
207 // the extension result.
208 ExtendLife = false;
209 break;
210 }
211 }
212
213 if (ExtendLife && !ExtendedUses.empty())
214 // Extend the liveness of the extension result.
215 std::copy(ExtendedUses.begin(), ExtendedUses.end(),
216 std::back_inserter(Uses));
217
218 // Now replace all uses.
219 bool Changed = false;
220 if (!Uses.empty()) {
221 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
222
223 // Look for PHI uses of the extended result, we don't want to extend the
224 // liveness of a PHI input. It breaks all kinds of assumptions down
225 // stream. A PHI use is expected to be the kill of its source values.
226 UI = MRI->use_nodbg_begin(DstReg);
227 for (MachineRegisterInfo::use_nodbg_iterator
228 UE = MRI->use_nodbg_end(); UI != UE; ++UI)
229 if (UI->isPHI())
230 PHIBBs.insert(UI->getParent());
231
232 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
233 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
234 MachineOperand *UseMO = Uses[i];
235 MachineInstr *UseMI = UseMO->getParent();
236 MachineBasicBlock *UseMBB = UseMI->getParent();
237 if (PHIBBs.count(UseMBB))
238 continue;
239
240 // About to add uses of DstReg, clear DstReg's kill flags.
241 if (!Changed)
242 MRI->clearKillFlags(DstReg);
243
244 unsigned NewVR = MRI->createVirtualRegister(RC);
245 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
246 TII->get(TargetOpcode::COPY), NewVR)
247 .addReg(DstReg, 0, SubIdx);
248
249 UseMO->setReg(NewVR);
250 ++NumReuse;
251 Changed = true;
252 }
253 }
254
255 return Changed;
256 }
257
258 /// OptimizeBitcastInstr - If the instruction is a bitcast instruction A that
259 /// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
260 /// a value cross register classes), and the source is defined by another
261 /// bitcast instruction B. And if the register class of source of B matches
262 /// the register class of instruction A, then it is legal to replace all uses
263 /// of the def of A with source of B. e.g.
264 /// %vreg0<def> = VMOVSR %vreg1
265 /// %vreg3<def> = VMOVRS %vreg0
266 /// Replace all uses of vreg3 with vreg1.
267
OptimizeBitcastInstr(MachineInstr * MI,MachineBasicBlock * MBB)268 bool PeepholeOptimizer::OptimizeBitcastInstr(MachineInstr *MI,
269 MachineBasicBlock *MBB) {
270 unsigned NumDefs = MI->getDesc().getNumDefs();
271 unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
272 if (NumDefs != 1)
273 return false;
274
275 unsigned Def = 0;
276 unsigned Src = 0;
277 for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
278 const MachineOperand &MO = MI->getOperand(i);
279 if (!MO.isReg())
280 continue;
281 unsigned Reg = MO.getReg();
282 if (!Reg)
283 continue;
284 if (MO.isDef())
285 Def = Reg;
286 else if (Src)
287 // Multiple sources?
288 return false;
289 else
290 Src = Reg;
291 }
292
293 assert(Def && Src && "Malformed bitcast instruction!");
294
295 MachineInstr *DefMI = MRI->getVRegDef(Src);
296 if (!DefMI || !DefMI->isBitcast())
297 return false;
298
299 unsigned SrcSrc = 0;
300 NumDefs = DefMI->getDesc().getNumDefs();
301 NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
302 if (NumDefs != 1)
303 return false;
304 for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
305 const MachineOperand &MO = DefMI->getOperand(i);
306 if (!MO.isReg() || MO.isDef())
307 continue;
308 unsigned Reg = MO.getReg();
309 if (!Reg)
310 continue;
311 if (!MO.isDef()) {
312 if (SrcSrc)
313 // Multiple sources?
314 return false;
315 else
316 SrcSrc = Reg;
317 }
318 }
319
320 if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
321 return false;
322
323 MRI->replaceRegWith(Def, SrcSrc);
324 MRI->clearKillFlags(SrcSrc);
325 MI->eraseFromParent();
326 ++NumBitcasts;
327 return true;
328 }
329
330 /// OptimizeCmpInstr - If the instruction is a compare and the previous
331 /// instruction it's comparing against all ready sets (or could be modified to
332 /// set) the same flag as the compare, then we can remove the comparison and use
333 /// the flag from the previous instruction.
OptimizeCmpInstr(MachineInstr * MI,MachineBasicBlock * MBB)334 bool PeepholeOptimizer::OptimizeCmpInstr(MachineInstr *MI,
335 MachineBasicBlock *MBB) {
336 // If this instruction is a comparison against zero and isn't comparing a
337 // physical register, we can try to optimize it.
338 unsigned SrcReg;
339 int CmpMask, CmpValue;
340 if (!TII->AnalyzeCompare(MI, SrcReg, CmpMask, CmpValue) ||
341 TargetRegisterInfo::isPhysicalRegister(SrcReg))
342 return false;
343
344 // Attempt to optimize the comparison instruction.
345 if (TII->OptimizeCompareInstr(MI, SrcReg, CmpMask, CmpValue, MRI)) {
346 ++NumCmps;
347 return true;
348 }
349
350 return false;
351 }
352
isMoveImmediate(MachineInstr * MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)353 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
354 SmallSet<unsigned, 4> &ImmDefRegs,
355 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
356 const MCInstrDesc &MCID = MI->getDesc();
357 if (!MI->isMoveImmediate())
358 return false;
359 if (MCID.getNumDefs() != 1)
360 return false;
361 unsigned Reg = MI->getOperand(0).getReg();
362 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
363 ImmDefMIs.insert(std::make_pair(Reg, MI));
364 ImmDefRegs.insert(Reg);
365 return true;
366 }
367
368 return false;
369 }
370
371 /// FoldImmediate - Try folding register operands that are defined by move
372 /// immediate instructions, i.e. a trivial constant folding optimization, if
373 /// and only if the def and use are in the same BB.
FoldImmediate(MachineInstr * MI,MachineBasicBlock * MBB,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)374 bool PeepholeOptimizer::FoldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
375 SmallSet<unsigned, 4> &ImmDefRegs,
376 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
377 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
378 MachineOperand &MO = MI->getOperand(i);
379 if (!MO.isReg() || MO.isDef())
380 continue;
381 unsigned Reg = MO.getReg();
382 if (!TargetRegisterInfo::isVirtualRegister(Reg))
383 continue;
384 if (ImmDefRegs.count(Reg) == 0)
385 continue;
386 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
387 assert(II != ImmDefMIs.end());
388 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
389 ++NumImmFold;
390 return true;
391 }
392 }
393 return false;
394 }
395
runOnMachineFunction(MachineFunction & MF)396 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
397 if (DisablePeephole)
398 return false;
399
400 TM = &MF.getTarget();
401 TII = TM->getInstrInfo();
402 MRI = &MF.getRegInfo();
403 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
404
405 bool Changed = false;
406
407 SmallPtrSet<MachineInstr*, 8> LocalMIs;
408 SmallSet<unsigned, 4> ImmDefRegs;
409 DenseMap<unsigned, MachineInstr*> ImmDefMIs;
410 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
411 MachineBasicBlock *MBB = &*I;
412
413 bool SeenMoveImm = false;
414 LocalMIs.clear();
415 ImmDefRegs.clear();
416 ImmDefMIs.clear();
417
418 bool First = true;
419 MachineBasicBlock::iterator PMII;
420 for (MachineBasicBlock::iterator
421 MII = I->begin(), MIE = I->end(); MII != MIE; ) {
422 MachineInstr *MI = &*MII;
423 LocalMIs.insert(MI);
424
425 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
426 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
427 MI->hasUnmodeledSideEffects()) {
428 ++MII;
429 continue;
430 }
431
432 if (MI->isBitcast()) {
433 if (OptimizeBitcastInstr(MI, MBB)) {
434 // MI is deleted.
435 LocalMIs.erase(MI);
436 Changed = true;
437 MII = First ? I->begin() : llvm::next(PMII);
438 continue;
439 }
440 } else if (MI->isCompare()) {
441 if (OptimizeCmpInstr(MI, MBB)) {
442 // MI is deleted.
443 LocalMIs.erase(MI);
444 Changed = true;
445 MII = First ? I->begin() : llvm::next(PMII);
446 continue;
447 }
448 }
449
450 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
451 SeenMoveImm = true;
452 } else {
453 Changed |= OptimizeExtInstr(MI, MBB, LocalMIs);
454 if (SeenMoveImm)
455 Changed |= FoldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
456 }
457
458 First = false;
459 PMII = MII;
460 ++MII;
461 }
462 }
463
464 return Changed;
465 }
466