1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "RegAllocBase.h"
17 #include "LiveDebugVariables.h"
18 #include "RenderMachineFunction.h"
19 #include "Spiller.h"
20 #include "VirtRegMap.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Function.h"
23 #include "llvm/PassAnalysisSupport.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/LiveStackAnalysis.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/RegAllocRegistry.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39
40 #include <cstdlib>
41 #include <queue>
42
43 using namespace llvm;
44
45 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
46 createBasicRegisterAllocator);
47
48 namespace {
49 struct CompSpillWeight {
operator ()__anonc6772d450111::CompSpillWeight50 bool operator()(LiveInterval *A, LiveInterval *B) const {
51 return A->weight < B->weight;
52 }
53 };
54 }
55
56 namespace {
57 /// RABasic provides a minimal implementation of the basic register allocation
58 /// algorithm. It prioritizes live virtual registers by spill weight and spills
59 /// whenever a register is unavailable. This is not practical in production but
60 /// provides a useful baseline both for measuring other allocators and comparing
61 /// the speed of the basic algorithm against other styles of allocators.
62 class RABasic : public MachineFunctionPass, public RegAllocBase
63 {
64 // context
65 MachineFunction *MF;
66
67 // analyses
68 LiveStacks *LS;
69 RenderMachineFunction *RMF;
70
71 // state
72 std::auto_ptr<Spiller> SpillerInstance;
73 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
74 CompSpillWeight> Queue;
75
76 // Scratch space. Allocated here to avoid repeated malloc calls in
77 // selectOrSplit().
78 BitVector UsableRegs;
79
80 public:
81 RABasic();
82
83 /// Return the pass name.
getPassName() const84 virtual const char* getPassName() const {
85 return "Basic Register Allocator";
86 }
87
88 /// RABasic analysis usage.
89 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
90
91 virtual void releaseMemory();
92
spiller()93 virtual Spiller &spiller() { return *SpillerInstance; }
94
getPriority(LiveInterval * LI)95 virtual float getPriority(LiveInterval *LI) { return LI->weight; }
96
enqueue(LiveInterval * LI)97 virtual void enqueue(LiveInterval *LI) {
98 Queue.push(LI);
99 }
100
dequeue()101 virtual LiveInterval *dequeue() {
102 if (Queue.empty())
103 return 0;
104 LiveInterval *LI = Queue.top();
105 Queue.pop();
106 return LI;
107 }
108
109 virtual unsigned selectOrSplit(LiveInterval &VirtReg,
110 SmallVectorImpl<LiveInterval*> &SplitVRegs);
111
112 /// Perform register allocation.
113 virtual bool runOnMachineFunction(MachineFunction &mf);
114
115 // Helper for spilling all live virtual registers currently unified under preg
116 // that interfere with the most recently queried lvr. Return true if spilling
117 // was successful, and append any new spilled/split intervals to splitLVRs.
118 bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
119 SmallVectorImpl<LiveInterval*> &SplitVRegs);
120
121 void spillReg(LiveInterval &VirtReg, unsigned PhysReg,
122 SmallVectorImpl<LiveInterval*> &SplitVRegs);
123
124 static char ID;
125 };
126
127 char RABasic::ID = 0;
128
129 } // end anonymous namespace
130
RABasic()131 RABasic::RABasic(): MachineFunctionPass(ID) {
132 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
133 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
134 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
135 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
136 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
137 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
138 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
139 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
140 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
141 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
142 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
143 }
144
getAnalysisUsage(AnalysisUsage & AU) const145 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.setPreservesCFG();
147 AU.addRequired<AliasAnalysis>();
148 AU.addPreserved<AliasAnalysis>();
149 AU.addRequired<LiveIntervals>();
150 AU.addPreserved<SlotIndexes>();
151 AU.addRequired<LiveDebugVariables>();
152 AU.addPreserved<LiveDebugVariables>();
153 AU.addRequired<CalculateSpillWeights>();
154 AU.addRequired<LiveStacks>();
155 AU.addPreserved<LiveStacks>();
156 AU.addRequiredID(MachineDominatorsID);
157 AU.addPreservedID(MachineDominatorsID);
158 AU.addRequired<MachineLoopInfo>();
159 AU.addPreserved<MachineLoopInfo>();
160 AU.addRequired<VirtRegMap>();
161 AU.addPreserved<VirtRegMap>();
162 DEBUG(AU.addRequired<RenderMachineFunction>());
163 MachineFunctionPass::getAnalysisUsage(AU);
164 }
165
releaseMemory()166 void RABasic::releaseMemory() {
167 SpillerInstance.reset(0);
168 RegAllocBase::releaseMemory();
169 }
170
171 // Helper for spillInterferences() that spills all interfering vregs currently
172 // assigned to this physical register.
spillReg(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)173 void RABasic::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
174 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
175 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
176 assert(Q.seenAllInterferences() && "need collectInterferences()");
177 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
178
179 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
180 E = PendingSpills.end(); I != E; ++I) {
181 LiveInterval &SpilledVReg = **I;
182 DEBUG(dbgs() << "extracting from " <<
183 TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
184
185 // Deallocate the interfering vreg by removing it from the union.
186 // A LiveInterval instance may not be in a union during modification!
187 unassign(SpilledVReg, PhysReg);
188
189 // Spill the extracted interval.
190 LiveRangeEdit LRE(SpilledVReg, SplitVRegs, *MF, *LIS, VRM);
191 spiller().spill(LRE);
192 }
193 // After extracting segments, the query's results are invalid. But keep the
194 // contents valid until we're done accessing pendingSpills.
195 Q.clear();
196 }
197
198 // Spill or split all live virtual registers currently unified under PhysReg
199 // that interfere with VirtReg. The newly spilled or split live intervals are
200 // returned by appending them to SplitVRegs.
spillInterferences(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)201 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
202 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
203 // Record each interference and determine if all are spillable before mutating
204 // either the union or live intervals.
205 unsigned NumInterferences = 0;
206 // Collect interferences assigned to any alias of the physical register.
207 for (const uint16_t *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
208 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
209 NumInterferences += QAlias.collectInterferingVRegs();
210 if (QAlias.seenUnspillableVReg()) {
211 return false;
212 }
213 }
214 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
215 " interferences with " << VirtReg << "\n");
216 assert(NumInterferences > 0 && "expect interference");
217
218 // Spill each interfering vreg allocated to PhysReg or an alias.
219 for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
220 spillReg(VirtReg, *AliasI, SplitVRegs);
221 return true;
222 }
223
224 // Driver for the register assignment and splitting heuristics.
225 // Manages iteration over the LiveIntervalUnions.
226 //
227 // This is a minimal implementation of register assignment and splitting that
228 // spills whenever we run out of registers.
229 //
230 // selectOrSplit can only be called once per live virtual register. We then do a
231 // single interference test for each register the correct class until we find an
232 // available register. So, the number of interference tests in the worst case is
233 // |vregs| * |machineregs|. And since the number of interference tests is
234 // minimal, there is no value in caching them outside the scope of
235 // selectOrSplit().
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<LiveInterval * > & SplitVRegs)236 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
237 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
238 // Check for register mask interference. When live ranges cross calls, the
239 // set of usable registers is reduced to the callee-saved ones.
240 bool CrossRegMasks = LIS->checkRegMaskInterference(VirtReg, UsableRegs);
241
242 // Populate a list of physical register spill candidates.
243 SmallVector<unsigned, 8> PhysRegSpillCands;
244
245 // Check for an available register in this class.
246 ArrayRef<unsigned> Order =
247 RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
248 for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
249 ++I) {
250 unsigned PhysReg = *I;
251
252 // If PhysReg is clobbered by a register mask, it isn't useful for
253 // allocation or spilling.
254 if (CrossRegMasks && !UsableRegs.test(PhysReg))
255 continue;
256
257 // Check interference and as a side effect, intialize queries for this
258 // VirtReg and its aliases.
259 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
260 if (interfReg == 0) {
261 // Found an available register.
262 return PhysReg;
263 }
264 LiveIntervalUnion::Query &IntfQ = query(VirtReg, interfReg);
265 IntfQ.collectInterferingVRegs(1);
266 LiveInterval *interferingVirtReg = IntfQ.interferingVRegs().front();
267
268 // The current VirtReg must either be spillable, or one of its interferences
269 // must have less spill weight.
270 if (interferingVirtReg->weight < VirtReg.weight ) {
271 PhysRegSpillCands.push_back(PhysReg);
272 }
273 }
274 // Try to spill another interfering reg with less spill weight.
275 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
276 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
277
278 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
279
280 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
281 "Interference after spill.");
282 // Tell the caller to allocate to this newly freed physical register.
283 return *PhysRegI;
284 }
285
286 // No other spill candidates were found, so spill the current VirtReg.
287 DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
288 if (!VirtReg.isSpillable())
289 return ~0u;
290 LiveRangeEdit LRE(VirtReg, SplitVRegs, *MF, *LIS, VRM);
291 spiller().spill(LRE);
292
293 // The live virtual register requesting allocation was spilled, so tell
294 // the caller not to allocate anything during this round.
295 return 0;
296 }
297
runOnMachineFunction(MachineFunction & mf)298 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
299 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
300 << "********** Function: "
301 << ((Value*)mf.getFunction())->getName() << '\n');
302
303 MF = &mf;
304 DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
305
306 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
307 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
308
309 allocatePhysRegs();
310
311 addMBBLiveIns(MF);
312
313 // Diagnostic output before rewriting
314 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
315
316 // optional HTML output
317 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
318
319 // FIXME: Verification currently must run before VirtRegRewriter. We should
320 // make the rewriter a separate pass and override verifyAnalysis instead. When
321 // that happens, verification naturally falls under VerifyMachineCode.
322 #ifndef NDEBUG
323 if (VerifyEnabled) {
324 // Verify accuracy of LiveIntervals. The standard machine code verifier
325 // ensures that each LiveIntervals covers all uses of the virtual reg.
326
327 // FIXME: MachineVerifier is badly broken when using the standard
328 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
329 // inline spiller, some tests fail to verify because the coalescer does not
330 // always generate verifiable code.
331 MF->verify(this, "In RABasic::verify");
332
333 // Verify that LiveIntervals are partitioned into unions and disjoint within
334 // the unions.
335 verify();
336 }
337 #endif // !NDEBUG
338
339 // Run rewriter
340 VRM->rewrite(LIS->getSlotIndexes());
341
342 // Write out new DBG_VALUE instructions.
343 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
344
345 // All machine operands and other references to virtual registers have been
346 // replaced. Remove the virtual registers and release all the transient data.
347 VRM->clearAllVirt();
348 MRI->clearVirtRegs();
349 releaseMemory();
350
351 return true;
352 }
353
createBasicRegisterAllocator()354 FunctionPass* llvm::createBasicRegisterAllocator()
355 {
356 return new RABasic();
357 }
358