1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "RegisterClassInfo.h"
17 #include "llvm/BasicBlock.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/RegAllocRegistry.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 STATISTIC(NumStores, "Number of stores added");
42 STATISTIC(NumLoads , "Number of loads added");
43 STATISTIC(NumCopies, "Number of copies coalesced");
44
45 static RegisterRegAlloc
46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
47
48 namespace {
49 class RAFast : public MachineFunctionPass {
50 public:
51 static char ID;
RAFast()52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
53 isBulkSpilling(false) {}
54 private:
55 const TargetMachine *TM;
56 MachineFunction *MF;
57 MachineRegisterInfo *MRI;
58 const TargetRegisterInfo *TRI;
59 const TargetInstrInfo *TII;
60 RegisterClassInfo RegClassInfo;
61
62 // Basic block currently being allocated.
63 MachineBasicBlock *MBB;
64
65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66 // values are spilled.
67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69 // Everything we know about a live virtual register.
70 struct LiveReg {
71 MachineInstr *LastUse; // Last instr to use reg.
72 unsigned VirtReg; // Virtual register number.
73 unsigned PhysReg; // Currently held here.
74 unsigned short LastOpNum; // OpNum on LastUse.
75 bool Dirty; // Register needs spill.
76
LiveReg__anon52dc9a510111::RAFast::LiveReg77 explicit LiveReg(unsigned v)
78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
79
getSparseSetKey__anon52dc9a510111::RAFast::LiveReg80 unsigned getSparseSetKey() const {
81 return TargetRegisterInfo::virtReg2Index(VirtReg);
82 }
83 };
84
85 typedef SparseSet<LiveReg> LiveRegMap;
86
87 // LiveVirtRegs - This map contains entries for each virtual register
88 // that is currently available in a physical register.
89 LiveRegMap LiveVirtRegs;
90
91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93 // RegState - Track the state of a physical register.
94 enum RegState {
95 // A disabled register is not available for allocation, but an alias may
96 // be in use. A register can only be moved out of the disabled state if
97 // all aliases are disabled.
98 regDisabled,
99
100 // A free register is not currently in use and can be allocated
101 // immediately without checking aliases.
102 regFree,
103
104 // A reserved register has been assigned explicitly (e.g., setting up a
105 // call parameter), and it remains reserved until it is used.
106 regReserved
107
108 // A register state may also be a virtual register number, indication that
109 // the physical register is currently allocated to a virtual register. In
110 // that case, LiveVirtRegs contains the inverse mapping.
111 };
112
113 // PhysRegState - One of the RegState enums, or a virtreg.
114 std::vector<unsigned> PhysRegState;
115
116 // UsedInInstr - BitVector of physregs that are used in the current
117 // instruction, and so cannot be allocated.
118 BitVector UsedInInstr;
119
120 // SkippedInstrs - Descriptors of instructions whose clobber list was
121 // ignored because all registers were spilled. It is still necessary to
122 // mark all the clobbered registers as used by the function.
123 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
124
125 // isBulkSpilling - This flag is set when LiveRegMap will be cleared
126 // completely after spilling all live registers. LiveRegMap entries should
127 // not be erased.
128 bool isBulkSpilling;
129
130 enum {
131 spillClean = 1,
132 spillDirty = 100,
133 spillImpossible = ~0u
134 };
135 public:
getPassName() const136 virtual const char *getPassName() const {
137 return "Fast Register Allocator";
138 }
139
getAnalysisUsage(AnalysisUsage & AU) const140 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
141 AU.setPreservesCFG();
142 MachineFunctionPass::getAnalysisUsage(AU);
143 }
144
145 private:
146 bool runOnMachineFunction(MachineFunction &Fn);
147 void AllocateBasicBlock();
148 void handleThroughOperands(MachineInstr *MI,
149 SmallVectorImpl<unsigned> &VirtDead);
150 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
151 bool isLastUseOfLocalReg(MachineOperand&);
152
153 void addKillFlag(const LiveReg&);
154 void killVirtReg(LiveRegMap::iterator);
155 void killVirtReg(unsigned VirtReg);
156 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
157 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
158
159 void usePhysReg(MachineOperand&);
160 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
161 unsigned calcSpillCost(unsigned PhysReg) const;
162 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
findLiveVirtReg(unsigned VirtReg)163 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
164 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
165 }
findLiveVirtReg(unsigned VirtReg) const166 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
167 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
168 }
169 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
170 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
171 unsigned Hint);
172 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
173 unsigned VirtReg, unsigned Hint);
174 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
175 unsigned VirtReg, unsigned Hint);
176 void spillAll(MachineInstr *MI);
177 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
178 void addRetOperands(MachineBasicBlock *MBB);
179 };
180 char RAFast::ID = 0;
181 }
182
183 /// getStackSpaceFor - This allocates space for the specified virtual register
184 /// to be held on the stack.
getStackSpaceFor(unsigned VirtReg,const TargetRegisterClass * RC)185 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
186 // Find the location Reg would belong...
187 int SS = StackSlotForVirtReg[VirtReg];
188 if (SS != -1)
189 return SS; // Already has space allocated?
190
191 // Allocate a new stack object for this spill location...
192 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
193 RC->getAlignment());
194
195 // Assign the slot.
196 StackSlotForVirtReg[VirtReg] = FrameIdx;
197 return FrameIdx;
198 }
199
200 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
201 /// its virtual register, and it is guaranteed to be a block-local register.
202 ///
isLastUseOfLocalReg(MachineOperand & MO)203 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
204 // Check for non-debug uses or defs following MO.
205 // This is the most likely way to fail - fast path it.
206 MachineOperand *Next = &MO;
207 while ((Next = Next->getNextOperandForReg()))
208 if (!Next->isDebug())
209 return false;
210
211 // If the register has ever been spilled or reloaded, we conservatively assume
212 // it is a global register used in multiple blocks.
213 if (StackSlotForVirtReg[MO.getReg()] != -1)
214 return false;
215
216 // Check that the use/def chain has exactly one operand - MO.
217 return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO;
218 }
219
220 /// addKillFlag - Set kill flags on last use of a virtual register.
addKillFlag(const LiveReg & LR)221 void RAFast::addKillFlag(const LiveReg &LR) {
222 if (!LR.LastUse) return;
223 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
224 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
225 if (MO.getReg() == LR.PhysReg)
226 MO.setIsKill();
227 else
228 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
229 }
230 }
231
232 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(LiveRegMap::iterator LRI)233 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
234 addKillFlag(*LRI);
235 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
236 "Broken RegState mapping");
237 PhysRegState[LRI->PhysReg] = regFree;
238 // Erase from LiveVirtRegs unless we're spilling in bulk.
239 if (!isBulkSpilling)
240 LiveVirtRegs.erase(LRI);
241 }
242
243 /// killVirtReg - Mark virtreg as no longer available.
killVirtReg(unsigned VirtReg)244 void RAFast::killVirtReg(unsigned VirtReg) {
245 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
246 "killVirtReg needs a virtual register");
247 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
248 if (LRI != LiveVirtRegs.end())
249 killVirtReg(LRI);
250 }
251
252 /// spillVirtReg - This method spills the value specified by VirtReg into the
253 /// corresponding stack slot if needed.
spillVirtReg(MachineBasicBlock::iterator MI,unsigned VirtReg)254 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
255 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
256 "Spilling a physical register is illegal!");
257 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
258 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
259 spillVirtReg(MI, LRI);
260 }
261
262 /// spillVirtReg - Do the actual work of spilling.
spillVirtReg(MachineBasicBlock::iterator MI,LiveRegMap::iterator LRI)263 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
264 LiveRegMap::iterator LRI) {
265 LiveReg &LR = *LRI;
266 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
267
268 if (LR.Dirty) {
269 // If this physreg is used by the instruction, we want to kill it on the
270 // instruction, not on the spill.
271 bool SpillKill = LR.LastUse != MI;
272 LR.Dirty = false;
273 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
274 << " in " << PrintReg(LR.PhysReg, TRI));
275 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
276 int FI = getStackSpaceFor(LRI->VirtReg, RC);
277 DEBUG(dbgs() << " to stack slot #" << FI << "\n");
278 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
279 ++NumStores; // Update statistics
280
281 // If this register is used by DBG_VALUE then insert new DBG_VALUE to
282 // identify spilled location as the place to find corresponding variable's
283 // value.
284 SmallVector<MachineInstr *, 4> &LRIDbgValues =
285 LiveDbgValueMap[LRI->VirtReg];
286 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
287 MachineInstr *DBG = LRIDbgValues[li];
288 const MDNode *MDPtr =
289 DBG->getOperand(DBG->getNumOperands()-1).getMetadata();
290 int64_t Offset = 0;
291 if (DBG->getOperand(1).isImm())
292 Offset = DBG->getOperand(1).getImm();
293 DebugLoc DL;
294 if (MI == MBB->end()) {
295 // If MI is at basic block end then use last instruction's location.
296 MachineBasicBlock::iterator EI = MI;
297 DL = (--EI)->getDebugLoc();
298 }
299 else
300 DL = MI->getDebugLoc();
301 if (MachineInstr *NewDV =
302 TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) {
303 MachineBasicBlock *MBB = DBG->getParent();
304 MBB->insert(MI, NewDV);
305 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
306 }
307 }
308 // Now this register is spilled there is should not be any DBG_VALUE
309 // pointing to this register because they are all pointing to spilled value
310 // now.
311 LRIDbgValues.clear();
312 if (SpillKill)
313 LR.LastUse = 0; // Don't kill register again
314 }
315 killVirtReg(LRI);
316 }
317
318 /// spillAll - Spill all dirty virtregs without killing them.
spillAll(MachineInstr * MI)319 void RAFast::spillAll(MachineInstr *MI) {
320 if (LiveVirtRegs.empty()) return;
321 isBulkSpilling = true;
322 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
323 // of spilling here is deterministic, if arbitrary.
324 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
325 i != e; ++i)
326 spillVirtReg(MI, i);
327 LiveVirtRegs.clear();
328 isBulkSpilling = false;
329 }
330
331 /// usePhysReg - Handle the direct use of a physical register.
332 /// Check that the register is not used by a virtreg.
333 /// Kill the physreg, marking it free.
334 /// This may add implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineOperand & MO)335 void RAFast::usePhysReg(MachineOperand &MO) {
336 unsigned PhysReg = MO.getReg();
337 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
338 "Bad usePhysReg operand");
339
340 switch (PhysRegState[PhysReg]) {
341 case regDisabled:
342 break;
343 case regReserved:
344 PhysRegState[PhysReg] = regFree;
345 // Fall through
346 case regFree:
347 UsedInInstr.set(PhysReg);
348 MO.setIsKill();
349 return;
350 default:
351 // The physreg was allocated to a virtual register. That means the value we
352 // wanted has been clobbered.
353 llvm_unreachable("Instruction uses an allocated register");
354 }
355
356 // Maybe a superregister is reserved?
357 for (const uint16_t *AS = TRI->getAliasSet(PhysReg);
358 unsigned Alias = *AS; ++AS) {
359 switch (PhysRegState[Alias]) {
360 case regDisabled:
361 break;
362 case regReserved:
363 assert(TRI->isSuperRegister(PhysReg, Alias) &&
364 "Instruction is not using a subregister of a reserved register");
365 // Leave the superregister in the working set.
366 PhysRegState[Alias] = regFree;
367 UsedInInstr.set(Alias);
368 MO.getParent()->addRegisterKilled(Alias, TRI, true);
369 return;
370 case regFree:
371 if (TRI->isSuperRegister(PhysReg, Alias)) {
372 // Leave the superregister in the working set.
373 UsedInInstr.set(Alias);
374 MO.getParent()->addRegisterKilled(Alias, TRI, true);
375 return;
376 }
377 // Some other alias was in the working set - clear it.
378 PhysRegState[Alias] = regDisabled;
379 break;
380 default:
381 llvm_unreachable("Instruction uses an alias of an allocated register");
382 }
383 }
384
385 // All aliases are disabled, bring register into working set.
386 PhysRegState[PhysReg] = regFree;
387 UsedInInstr.set(PhysReg);
388 MO.setIsKill();
389 }
390
391 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
392 /// virtregs. This is very similar to defineVirtReg except the physreg is
393 /// reserved instead of allocated.
definePhysReg(MachineInstr * MI,unsigned PhysReg,RegState NewState)394 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
395 RegState NewState) {
396 UsedInInstr.set(PhysReg);
397 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
398 case regDisabled:
399 break;
400 default:
401 spillVirtReg(MI, VirtReg);
402 // Fall through.
403 case regFree:
404 case regReserved:
405 PhysRegState[PhysReg] = NewState;
406 return;
407 }
408
409 // This is a disabled register, disable all aliases.
410 PhysRegState[PhysReg] = NewState;
411 for (const uint16_t *AS = TRI->getAliasSet(PhysReg);
412 unsigned Alias = *AS; ++AS) {
413 switch (unsigned VirtReg = PhysRegState[Alias]) {
414 case regDisabled:
415 break;
416 default:
417 spillVirtReg(MI, VirtReg);
418 // Fall through.
419 case regFree:
420 case regReserved:
421 PhysRegState[Alias] = regDisabled;
422 if (TRI->isSuperRegister(PhysReg, Alias))
423 return;
424 break;
425 }
426 }
427 }
428
429
430 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
431 // aliases so it is free for allocation.
432 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
433 // can be allocated directly.
434 // Returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(unsigned PhysReg) const435 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
436 if (UsedInInstr.test(PhysReg)) {
437 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
438 return spillImpossible;
439 }
440 switch (unsigned VirtReg = PhysRegState[PhysReg]) {
441 case regDisabled:
442 break;
443 case regFree:
444 return 0;
445 case regReserved:
446 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
447 << PrintReg(PhysReg, TRI) << " is reserved already.\n");
448 return spillImpossible;
449 default: {
450 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
451 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
452 return I->Dirty ? spillDirty : spillClean;
453 }
454 }
455
456 // This is a disabled register, add up cost of aliases.
457 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
458 unsigned Cost = 0;
459 for (const uint16_t *AS = TRI->getAliasSet(PhysReg);
460 unsigned Alias = *AS; ++AS) {
461 if (UsedInInstr.test(Alias))
462 return spillImpossible;
463 switch (unsigned VirtReg = PhysRegState[Alias]) {
464 case regDisabled:
465 break;
466 case regFree:
467 ++Cost;
468 break;
469 case regReserved:
470 return spillImpossible;
471 default: {
472 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
473 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
474 Cost += I->Dirty ? spillDirty : spillClean;
475 break;
476 }
477 }
478 }
479 return Cost;
480 }
481
482
483 /// assignVirtToPhysReg - This method updates local state so that we know
484 /// that PhysReg is the proper container for VirtReg now. The physical
485 /// register must not be used for anything else when this is called.
486 ///
assignVirtToPhysReg(LiveReg & LR,unsigned PhysReg)487 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
488 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
489 << PrintReg(PhysReg, TRI) << "\n");
490 PhysRegState[PhysReg] = LR.VirtReg;
491 assert(!LR.PhysReg && "Already assigned a physreg");
492 LR.PhysReg = PhysReg;
493 }
494
495 RAFast::LiveRegMap::iterator
assignVirtToPhysReg(unsigned VirtReg,unsigned PhysReg)496 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
497 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
498 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
499 assignVirtToPhysReg(*LRI, PhysReg);
500 return LRI;
501 }
502
503 /// allocVirtReg - Allocate a physical register for VirtReg.
allocVirtReg(MachineInstr * MI,LiveRegMap::iterator LRI,unsigned Hint)504 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
505 LiveRegMap::iterator LRI,
506 unsigned Hint) {
507 const unsigned VirtReg = LRI->VirtReg;
508
509 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
510 "Can only allocate virtual registers");
511
512 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
513
514 // Ignore invalid hints.
515 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
516 !RC->contains(Hint) || !RegClassInfo.isAllocatable(Hint)))
517 Hint = 0;
518
519 // Take hint when possible.
520 if (Hint) {
521 // Ignore the hint if we would have to spill a dirty register.
522 unsigned Cost = calcSpillCost(Hint);
523 if (Cost < spillDirty) {
524 if (Cost)
525 definePhysReg(MI, Hint, regFree);
526 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
527 // That invalidates LRI, so run a new lookup for VirtReg.
528 return assignVirtToPhysReg(VirtReg, Hint);
529 }
530 }
531
532 ArrayRef<unsigned> AO = RegClassInfo.getOrder(RC);
533
534 // First try to find a completely free register.
535 for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
536 unsigned PhysReg = *I;
537 if (PhysRegState[PhysReg] == regFree && !UsedInInstr.test(PhysReg)) {
538 assignVirtToPhysReg(*LRI, PhysReg);
539 return LRI;
540 }
541 }
542
543 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
544 << RC->getName() << "\n");
545
546 unsigned BestReg = 0, BestCost = spillImpossible;
547 for (ArrayRef<unsigned>::iterator I = AO.begin(), E = AO.end(); I != E; ++I) {
548 unsigned Cost = calcSpillCost(*I);
549 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
550 DEBUG(dbgs() << "\tCost: " << Cost << "\n");
551 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
552 // Cost is 0 when all aliases are already disabled.
553 if (Cost == 0) {
554 assignVirtToPhysReg(*LRI, *I);
555 return LRI;
556 }
557 if (Cost < BestCost)
558 BestReg = *I, BestCost = Cost;
559 }
560
561 if (BestReg) {
562 definePhysReg(MI, BestReg, regFree);
563 // definePhysReg may kill virtual registers and modify LiveVirtRegs.
564 // That invalidates LRI, so run a new lookup for VirtReg.
565 return assignVirtToPhysReg(VirtReg, BestReg);
566 }
567
568 // Nothing we can do. Report an error and keep going with a bad allocation.
569 MI->emitError("ran out of registers during register allocation");
570 definePhysReg(MI, *AO.begin(), regFree);
571 return assignVirtToPhysReg(VirtReg, *AO.begin());
572 }
573
574 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
575 RAFast::LiveRegMap::iterator
defineVirtReg(MachineInstr * MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)576 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
577 unsigned VirtReg, unsigned Hint) {
578 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
579 "Not a virtual register");
580 LiveRegMap::iterator LRI;
581 bool New;
582 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
583 if (New) {
584 // If there is no hint, peek at the only use of this register.
585 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
586 MRI->hasOneNonDBGUse(VirtReg)) {
587 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
588 // It's a copy, use the destination register as a hint.
589 if (UseMI.isCopyLike())
590 Hint = UseMI.getOperand(0).getReg();
591 }
592 LRI = allocVirtReg(MI, LRI, Hint);
593 } else if (LRI->LastUse) {
594 // Redefining a live register - kill at the last use, unless it is this
595 // instruction defining VirtReg multiple times.
596 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
597 addKillFlag(*LRI);
598 }
599 assert(LRI->PhysReg && "Register not assigned");
600 LRI->LastUse = MI;
601 LRI->LastOpNum = OpNum;
602 LRI->Dirty = true;
603 UsedInInstr.set(LRI->PhysReg);
604 return LRI;
605 }
606
607 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
608 RAFast::LiveRegMap::iterator
reloadVirtReg(MachineInstr * MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)609 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
610 unsigned VirtReg, unsigned Hint) {
611 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
612 "Not a virtual register");
613 LiveRegMap::iterator LRI;
614 bool New;
615 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
616 MachineOperand &MO = MI->getOperand(OpNum);
617 if (New) {
618 LRI = allocVirtReg(MI, LRI, Hint);
619 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
620 int FrameIndex = getStackSpaceFor(VirtReg, RC);
621 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
622 << PrintReg(LRI->PhysReg, TRI) << "\n");
623 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
624 ++NumLoads;
625 } else if (LRI->Dirty) {
626 if (isLastUseOfLocalReg(MO)) {
627 DEBUG(dbgs() << "Killing last use: " << MO << "\n");
628 if (MO.isUse())
629 MO.setIsKill();
630 else
631 MO.setIsDead();
632 } else if (MO.isKill()) {
633 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
634 MO.setIsKill(false);
635 } else if (MO.isDead()) {
636 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
637 MO.setIsDead(false);
638 }
639 } else if (MO.isKill()) {
640 // We must remove kill flags from uses of reloaded registers because the
641 // register would be killed immediately, and there might be a second use:
642 // %foo = OR %x<kill>, %x
643 // This would cause a second reload of %x into a different register.
644 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
645 MO.setIsKill(false);
646 } else if (MO.isDead()) {
647 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
648 MO.setIsDead(false);
649 }
650 assert(LRI->PhysReg && "Register not assigned");
651 LRI->LastUse = MI;
652 LRI->LastOpNum = OpNum;
653 UsedInInstr.set(LRI->PhysReg);
654 return LRI;
655 }
656
657 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
658 // subregs. This may invalidate any operand pointers.
659 // Return true if the operand kills its register.
setPhysReg(MachineInstr * MI,unsigned OpNum,unsigned PhysReg)660 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
661 MachineOperand &MO = MI->getOperand(OpNum);
662 if (!MO.getSubReg()) {
663 MO.setReg(PhysReg);
664 return MO.isKill() || MO.isDead();
665 }
666
667 // Handle subregister index.
668 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
669 MO.setSubReg(0);
670
671 // A kill flag implies killing the full register. Add corresponding super
672 // register kill.
673 if (MO.isKill()) {
674 MI->addRegisterKilled(PhysReg, TRI, true);
675 return true;
676 }
677 return MO.isDead();
678 }
679
680 // Handle special instruction operand like early clobbers and tied ops when
681 // there are additional physreg defines.
handleThroughOperands(MachineInstr * MI,SmallVectorImpl<unsigned> & VirtDead)682 void RAFast::handleThroughOperands(MachineInstr *MI,
683 SmallVectorImpl<unsigned> &VirtDead) {
684 DEBUG(dbgs() << "Scanning for through registers:");
685 SmallSet<unsigned, 8> ThroughRegs;
686 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
687 MachineOperand &MO = MI->getOperand(i);
688 if (!MO.isReg()) continue;
689 unsigned Reg = MO.getReg();
690 if (!TargetRegisterInfo::isVirtualRegister(Reg))
691 continue;
692 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
693 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
694 if (ThroughRegs.insert(Reg))
695 DEBUG(dbgs() << ' ' << PrintReg(Reg));
696 }
697 }
698
699 // If any physreg defines collide with preallocated through registers,
700 // we must spill and reallocate.
701 DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
702 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
703 MachineOperand &MO = MI->getOperand(i);
704 if (!MO.isReg() || !MO.isDef()) continue;
705 unsigned Reg = MO.getReg();
706 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
707 UsedInInstr.set(Reg);
708 if (ThroughRegs.count(PhysRegState[Reg]))
709 definePhysReg(MI, Reg, regFree);
710 for (const uint16_t *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
711 UsedInInstr.set(*AS);
712 if (ThroughRegs.count(PhysRegState[*AS]))
713 definePhysReg(MI, *AS, regFree);
714 }
715 }
716
717 SmallVector<unsigned, 8> PartialDefs;
718 DEBUG(dbgs() << "Allocating tied uses.\n");
719 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
720 MachineOperand &MO = MI->getOperand(i);
721 if (!MO.isReg()) continue;
722 unsigned Reg = MO.getReg();
723 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
724 if (MO.isUse()) {
725 unsigned DefIdx = 0;
726 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
727 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
728 << DefIdx << ".\n");
729 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
730 unsigned PhysReg = LRI->PhysReg;
731 setPhysReg(MI, i, PhysReg);
732 // Note: we don't update the def operand yet. That would cause the normal
733 // def-scan to attempt spilling.
734 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
735 DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
736 // Reload the register, but don't assign to the operand just yet.
737 // That would confuse the later phys-def processing pass.
738 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
739 PartialDefs.push_back(LRI->PhysReg);
740 }
741 }
742
743 DEBUG(dbgs() << "Allocating early clobbers.\n");
744 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
745 MachineOperand &MO = MI->getOperand(i);
746 if (!MO.isReg()) continue;
747 unsigned Reg = MO.getReg();
748 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
749 if (!MO.isEarlyClobber())
750 continue;
751 // Note: defineVirtReg may invalidate MO.
752 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
753 unsigned PhysReg = LRI->PhysReg;
754 if (setPhysReg(MI, i, PhysReg))
755 VirtDead.push_back(Reg);
756 }
757
758 // Restore UsedInInstr to a state usable for allocating normal virtual uses.
759 UsedInInstr.reset();
760 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
761 MachineOperand &MO = MI->getOperand(i);
762 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
763 unsigned Reg = MO.getReg();
764 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
765 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
766 << " as used in instr\n");
767 UsedInInstr.set(Reg);
768 }
769
770 // Also mark PartialDefs as used to avoid reallocation.
771 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
772 UsedInInstr.set(PartialDefs[i]);
773 }
774
775 /// addRetOperand - ensure that a return instruction has an operand for each
776 /// value live out of the function.
777 ///
778 /// Things marked both call and return are tail calls; do not do this for them.
779 /// The tail callee need not take the same registers as input that it produces
780 /// as output, and there are dependencies for its input registers elsewhere.
781 ///
782 /// FIXME: This should be done as part of instruction selection, and this helper
783 /// should be deleted. Until then, we use custom logic here to create the proper
784 /// operand under all circumstances. We can't use addRegisterKilled because that
785 /// doesn't make sense for undefined values. We can't simply avoid calling it
786 /// for undefined values, because we must ensure that the operand always exists.
addRetOperands(MachineBasicBlock * MBB)787 void RAFast::addRetOperands(MachineBasicBlock *MBB) {
788 if (MBB->empty() || !MBB->back().isReturn() || MBB->back().isCall())
789 return;
790
791 MachineInstr *MI = &MBB->back();
792
793 for (MachineRegisterInfo::liveout_iterator
794 I = MBB->getParent()->getRegInfo().liveout_begin(),
795 E = MBB->getParent()->getRegInfo().liveout_end(); I != E; ++I) {
796 unsigned Reg = *I;
797 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
798 "Cannot have a live-out virtual register.");
799
800 bool hasDef = PhysRegState[Reg] == regReserved;
801
802 // Check if this register already has an operand.
803 bool Found = false;
804 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
805 MachineOperand &MO = MI->getOperand(i);
806 if (!MO.isReg() || !MO.isUse())
807 continue;
808
809 unsigned OperReg = MO.getReg();
810 if (!TargetRegisterInfo::isPhysicalRegister(OperReg))
811 continue;
812
813 if (OperReg == Reg || TRI->isSuperRegister(OperReg, Reg)) {
814 // If the ret already has an operand for this physreg or a superset,
815 // don't duplicate it. Set the kill flag if the value is defined.
816 if (hasDef && !MO.isKill())
817 MO.setIsKill();
818 Found = true;
819 break;
820 }
821 }
822 if (!Found)
823 MI->addOperand(MachineOperand::CreateReg(Reg,
824 false /*IsDef*/,
825 true /*IsImp*/,
826 hasDef/*IsKill*/));
827 }
828 }
829
AllocateBasicBlock()830 void RAFast::AllocateBasicBlock() {
831 DEBUG(dbgs() << "\nAllocating " << *MBB);
832
833 PhysRegState.assign(TRI->getNumRegs(), regDisabled);
834 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
835
836 MachineBasicBlock::iterator MII = MBB->begin();
837
838 // Add live-in registers as live.
839 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
840 E = MBB->livein_end(); I != E; ++I)
841 if (RegClassInfo.isAllocatable(*I))
842 definePhysReg(MII, *I, regReserved);
843
844 SmallVector<unsigned, 8> VirtDead;
845 SmallVector<MachineInstr*, 32> Coalesced;
846
847 // Otherwise, sequentially allocate each instruction in the MBB.
848 while (MII != MBB->end()) {
849 MachineInstr *MI = MII++;
850 const MCInstrDesc &MCID = MI->getDesc();
851 DEBUG({
852 dbgs() << "\n>> " << *MI << "Regs:";
853 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
854 if (PhysRegState[Reg] == regDisabled) continue;
855 dbgs() << " " << TRI->getName(Reg);
856 switch(PhysRegState[Reg]) {
857 case regFree:
858 break;
859 case regReserved:
860 dbgs() << "*";
861 break;
862 default: {
863 dbgs() << '=' << PrintReg(PhysRegState[Reg]);
864 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
865 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
866 if (I->Dirty)
867 dbgs() << "*";
868 assert(I->PhysReg == Reg && "Bad inverse map");
869 break;
870 }
871 }
872 }
873 dbgs() << '\n';
874 // Check that LiveVirtRegs is the inverse.
875 for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
876 e = LiveVirtRegs.end(); i != e; ++i) {
877 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
878 "Bad map key");
879 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
880 "Bad map value");
881 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
882 }
883 });
884
885 // Debug values are not allowed to change codegen in any way.
886 if (MI->isDebugValue()) {
887 bool ScanDbgValue = true;
888 while (ScanDbgValue) {
889 ScanDbgValue = false;
890 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
891 MachineOperand &MO = MI->getOperand(i);
892 if (!MO.isReg()) continue;
893 unsigned Reg = MO.getReg();
894 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
895 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
896 if (LRI != LiveVirtRegs.end())
897 setPhysReg(MI, i, LRI->PhysReg);
898 else {
899 int SS = StackSlotForVirtReg[Reg];
900 if (SS == -1) {
901 // We can't allocate a physreg for a DebugValue, sorry!
902 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
903 MO.setReg(0);
904 }
905 else {
906 // Modify DBG_VALUE now that the value is in a spill slot.
907 int64_t Offset = MI->getOperand(1).getImm();
908 const MDNode *MDPtr =
909 MI->getOperand(MI->getNumOperands()-1).getMetadata();
910 DebugLoc DL = MI->getDebugLoc();
911 if (MachineInstr *NewDV =
912 TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) {
913 DEBUG(dbgs() << "Modifying debug info due to spill:" <<
914 "\t" << *MI);
915 MachineBasicBlock *MBB = MI->getParent();
916 MBB->insert(MBB->erase(MI), NewDV);
917 // Scan NewDV operands from the beginning.
918 MI = NewDV;
919 ScanDbgValue = true;
920 break;
921 } else {
922 // We can't allocate a physreg for a DebugValue; sorry!
923 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
924 MO.setReg(0);
925 }
926 }
927 }
928 LiveDbgValueMap[Reg].push_back(MI);
929 }
930 }
931 // Next instruction.
932 continue;
933 }
934
935 // If this is a copy, we may be able to coalesce.
936 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
937 if (MI->isCopy()) {
938 CopyDst = MI->getOperand(0).getReg();
939 CopySrc = MI->getOperand(1).getReg();
940 CopyDstSub = MI->getOperand(0).getSubReg();
941 CopySrcSub = MI->getOperand(1).getSubReg();
942 }
943
944 // Track registers used by instruction.
945 UsedInInstr.reset();
946
947 // First scan.
948 // Mark physreg uses and early clobbers as used.
949 // Find the end of the virtreg operands
950 unsigned VirtOpEnd = 0;
951 bool hasTiedOps = false;
952 bool hasEarlyClobbers = false;
953 bool hasPartialRedefs = false;
954 bool hasPhysDefs = false;
955 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
956 MachineOperand &MO = MI->getOperand(i);
957 if (!MO.isReg()) continue;
958 unsigned Reg = MO.getReg();
959 if (!Reg) continue;
960 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
961 VirtOpEnd = i+1;
962 if (MO.isUse()) {
963 hasTiedOps = hasTiedOps ||
964 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
965 } else {
966 if (MO.isEarlyClobber())
967 hasEarlyClobbers = true;
968 if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
969 hasPartialRedefs = true;
970 }
971 continue;
972 }
973 if (!RegClassInfo.isAllocatable(Reg)) continue;
974 if (MO.isUse()) {
975 usePhysReg(MO);
976 } else if (MO.isEarlyClobber()) {
977 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
978 regFree : regReserved);
979 hasEarlyClobbers = true;
980 } else
981 hasPhysDefs = true;
982 }
983
984 // The instruction may have virtual register operands that must be allocated
985 // the same register at use-time and def-time: early clobbers and tied
986 // operands. If there are also physical defs, these registers must avoid
987 // both physical defs and uses, making them more constrained than normal
988 // operands.
989 // Similarly, if there are multiple defs and tied operands, we must make
990 // sure the same register is allocated to uses and defs.
991 // We didn't detect inline asm tied operands above, so just make this extra
992 // pass for all inline asm.
993 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
994 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
995 handleThroughOperands(MI, VirtDead);
996 // Don't attempt coalescing when we have funny stuff going on.
997 CopyDst = 0;
998 // Pretend we have early clobbers so the use operands get marked below.
999 // This is not necessary for the common case of a single tied use.
1000 hasEarlyClobbers = true;
1001 }
1002
1003 // Second scan.
1004 // Allocate virtreg uses.
1005 for (unsigned i = 0; i != VirtOpEnd; ++i) {
1006 MachineOperand &MO = MI->getOperand(i);
1007 if (!MO.isReg()) continue;
1008 unsigned Reg = MO.getReg();
1009 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
1010 if (MO.isUse()) {
1011 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
1012 unsigned PhysReg = LRI->PhysReg;
1013 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
1014 if (setPhysReg(MI, i, PhysReg))
1015 killVirtReg(LRI);
1016 }
1017 }
1018
1019 MRI->addPhysRegsUsed(UsedInInstr);
1020
1021 // Track registers defined by instruction - early clobbers and tied uses at
1022 // this point.
1023 UsedInInstr.reset();
1024 if (hasEarlyClobbers) {
1025 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1026 MachineOperand &MO = MI->getOperand(i);
1027 if (!MO.isReg()) continue;
1028 unsigned Reg = MO.getReg();
1029 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1030 // Look for physreg defs and tied uses.
1031 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
1032 UsedInInstr.set(Reg);
1033 for (const uint16_t *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1034 UsedInInstr.set(*AS);
1035 }
1036 }
1037
1038 unsigned DefOpEnd = MI->getNumOperands();
1039 if (MI->isCall()) {
1040 // Spill all virtregs before a call. This serves two purposes: 1. If an
1041 // exception is thrown, the landing pad is going to expect to find
1042 // registers in their spill slots, and 2. we don't have to wade through
1043 // all the <imp-def> operands on the call instruction.
1044 DefOpEnd = VirtOpEnd;
1045 DEBUG(dbgs() << " Spilling remaining registers before call.\n");
1046 spillAll(MI);
1047
1048 // The imp-defs are skipped below, but we still need to mark those
1049 // registers as used by the function.
1050 SkippedInstrs.insert(&MCID);
1051 }
1052
1053 // Third scan.
1054 // Allocate defs and collect dead defs.
1055 for (unsigned i = 0; i != DefOpEnd; ++i) {
1056 MachineOperand &MO = MI->getOperand(i);
1057 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1058 continue;
1059 unsigned Reg = MO.getReg();
1060
1061 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1062 if (!RegClassInfo.isAllocatable(Reg)) continue;
1063 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
1064 regFree : regReserved);
1065 continue;
1066 }
1067 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1068 unsigned PhysReg = LRI->PhysReg;
1069 if (setPhysReg(MI, i, PhysReg)) {
1070 VirtDead.push_back(Reg);
1071 CopyDst = 0; // cancel coalescing;
1072 } else
1073 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1074 }
1075
1076 // Kill dead defs after the scan to ensure that multiple defs of the same
1077 // register are allocated identically. We didn't need to do this for uses
1078 // because we are crerating our own kill flags, and they are always at the
1079 // last use.
1080 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1081 killVirtReg(VirtDead[i]);
1082 VirtDead.clear();
1083
1084 MRI->addPhysRegsUsed(UsedInInstr);
1085
1086 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1087 DEBUG(dbgs() << "-- coalescing: " << *MI);
1088 Coalesced.push_back(MI);
1089 } else {
1090 DEBUG(dbgs() << "<< " << *MI);
1091 }
1092 }
1093
1094 // Spill all physical registers holding virtual registers now.
1095 DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1096 spillAll(MBB->getFirstTerminator());
1097
1098 // Erase all the coalesced copies. We are delaying it until now because
1099 // LiveVirtRegs might refer to the instrs.
1100 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1101 MBB->erase(Coalesced[i]);
1102 NumCopies += Coalesced.size();
1103
1104 // addRetOperands must run after we've seen all defs in this block.
1105 addRetOperands(MBB);
1106
1107 DEBUG(MBB->dump());
1108 }
1109
1110 /// runOnMachineFunction - Register allocate the whole function
1111 ///
runOnMachineFunction(MachineFunction & Fn)1112 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1113 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1114 << "********** Function: "
1115 << ((Value*)Fn.getFunction())->getName() << '\n');
1116 MF = &Fn;
1117 MRI = &MF->getRegInfo();
1118 TM = &Fn.getTarget();
1119 TRI = TM->getRegisterInfo();
1120 TII = TM->getInstrInfo();
1121 MRI->freezeReservedRegs(Fn);
1122 RegClassInfo.runOnMachineFunction(Fn);
1123 UsedInInstr.resize(TRI->getNumRegs());
1124
1125 assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1126
1127 // initialize the virtual->physical register map to have a 'null'
1128 // mapping for all virtual registers
1129 StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1130 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1131
1132 // Loop over all of the basic blocks, eliminating virtual register references
1133 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1134 MBBi != MBBe; ++MBBi) {
1135 MBB = &*MBBi;
1136 AllocateBasicBlock();
1137 }
1138
1139 // Add the clobber lists for all the instructions we skipped earlier.
1140 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
1141 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
1142 if (const uint16_t *Defs = (*I)->getImplicitDefs())
1143 while (*Defs)
1144 MRI->setPhysRegUsed(*Defs++);
1145
1146 // All machine operands and other references to virtual registers have been
1147 // replaced. Remove the virtual registers.
1148 MRI->clearVirtRegs();
1149
1150 SkippedInstrs.clear();
1151 StackSlotForVirtReg.clear();
1152 LiveDbgValueMap.clear();
1153 return true;
1154 }
1155
createFastRegisterAllocator()1156 FunctionPass *llvm::createFastRegisterAllocator() {
1157 return new RAFast();
1158 }
1159