1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #define DEBUG_TYPE "regalloc"
17 #include "RegisterCoalescer.h"
18 #include "LiveDebugVariables.h"
19 #include "RegisterClassInfo.h"
20 #include "VirtRegMap.h"
21
22 #include "llvm/Pass.h"
23 #include "llvm/Value.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/ADT/OwningPtr.h"
44 #include "llvm/ADT/SmallSet.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include <algorithm>
48 #include <cmath>
49 using namespace llvm;
50
51 STATISTIC(numJoins , "Number of interval joins performed");
52 STATISTIC(numCrossRCs , "Number of cross class joins performed");
53 STATISTIC(numCommutes , "Number of instruction commuting performed");
54 STATISTIC(numExtends , "Number of copies extended");
55 STATISTIC(NumReMats , "Number of instructions re-materialized");
56 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
57 STATISTIC(numAborts , "Number of times interval joining aborted");
58 STATISTIC(NumInflated , "Number of register classes inflated");
59
60 static cl::opt<bool>
61 EnableJoining("join-liveintervals",
62 cl::desc("Coalesce copies (default=true)"),
63 cl::init(true));
64
65 static cl::opt<bool>
66 DisableCrossClassJoin("disable-cross-class-join",
67 cl::desc("Avoid coalescing cross register class copies"),
68 cl::init(false), cl::Hidden);
69
70 static cl::opt<bool>
71 EnablePhysicalJoin("join-physregs",
72 cl::desc("Join physical register copies"),
73 cl::init(false), cl::Hidden);
74
75 static cl::opt<bool>
76 VerifyCoalescing("verify-coalescing",
77 cl::desc("Verify machine instrs before and after register coalescing"),
78 cl::Hidden);
79
80 namespace {
81 class RegisterCoalescer : public MachineFunctionPass {
82 MachineFunction* MF;
83 MachineRegisterInfo* MRI;
84 const TargetMachine* TM;
85 const TargetRegisterInfo* TRI;
86 const TargetInstrInfo* TII;
87 LiveIntervals *LIS;
88 LiveDebugVariables *LDV;
89 const MachineLoopInfo* Loops;
90 AliasAnalysis *AA;
91 RegisterClassInfo RegClassInfo;
92
93 /// JoinedCopies - Keep track of copies eliminated due to coalescing.
94 ///
95 SmallPtrSet<MachineInstr*, 32> JoinedCopies;
96
97 /// ReMatCopies - Keep track of copies eliminated due to remat.
98 ///
99 SmallPtrSet<MachineInstr*, 32> ReMatCopies;
100
101 /// ReMatDefs - Keep track of definition instructions which have
102 /// been remat'ed.
103 SmallPtrSet<MachineInstr*, 8> ReMatDefs;
104
105 /// joinIntervals - join compatible live intervals
106 void joinIntervals();
107
108 /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
109 /// copies that cannot yet be coalesced into the "TryAgain" list.
110 void CopyCoalesceInMBB(MachineBasicBlock *MBB,
111 std::vector<MachineInstr*> &TryAgain);
112
113 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
114 /// which are the src/dst of the copy instruction CopyMI. This returns
115 /// true if the copy was successfully coalesced away. If it is not
116 /// currently possible to coalesce this interval, but it may be possible if
117 /// other things get coalesced, then it returns true by reference in
118 /// 'Again'.
119 bool JoinCopy(MachineInstr *TheCopy, bool &Again);
120
121 /// JoinIntervals - Attempt to join these two intervals. On failure, this
122 /// returns false. The output "SrcInt" will not have been modified, so we
123 /// can use this information below to update aliases.
124 bool JoinIntervals(CoalescerPair &CP);
125
126 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
127 /// the source value number is defined by a copy from the destination reg
128 /// see if we can merge these two destination reg valno# into a single
129 /// value number, eliminating a copy.
130 bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
131
132 /// HasOtherReachingDefs - Return true if there are definitions of IntB
133 /// other than BValNo val# that can reach uses of AValno val# of IntA.
134 bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
135 VNInfo *AValNo, VNInfo *BValNo);
136
137 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
138 /// If the source value number is defined by a commutable instruction and
139 /// its other operand is coalesced to the copy dest register, see if we
140 /// can transform the copy into a noop by commuting the definition.
141 bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
142
143 /// ReMaterializeTrivialDef - If the source of a copy is defined by a
144 /// trivial computation, replace the copy by rematerialize the definition.
145 /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
146 bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
147 unsigned DstReg, MachineInstr *CopyMI);
148
149 /// shouldJoinPhys - Return true if a physreg copy should be joined.
150 bool shouldJoinPhys(CoalescerPair &CP);
151
152 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
153 /// two virtual registers from different register classes.
154 bool isWinToJoinCrossClass(unsigned SrcReg,
155 unsigned DstReg,
156 const TargetRegisterClass *SrcRC,
157 const TargetRegisterClass *DstRC,
158 const TargetRegisterClass *NewRC);
159
160 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
161 /// update the subregister number if it is not zero. If DstReg is a
162 /// physical register and the existing subregister number of the def / use
163 /// being updated is not zero, make sure to set it to the correct physical
164 /// subregister.
165 void UpdateRegDefsUses(const CoalescerPair &CP);
166
167 /// RemoveDeadDef - If a def of a live interval is now determined dead,
168 /// remove the val# it defines. If the live interval becomes empty, remove
169 /// it as well.
170 bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
171
172 /// markAsJoined - Remember that CopyMI has already been joined.
173 void markAsJoined(MachineInstr *CopyMI);
174
175 /// eliminateUndefCopy - Handle copies of undef values.
176 bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
177
178 public:
179 static char ID; // Class identification, replacement for typeinfo
RegisterCoalescer()180 RegisterCoalescer() : MachineFunctionPass(ID) {
181 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
182 }
183
184 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
185
186 virtual void releaseMemory();
187
188 /// runOnMachineFunction - pass entry point
189 virtual bool runOnMachineFunction(MachineFunction&);
190
191 /// print - Implement the dump method.
192 virtual void print(raw_ostream &O, const Module* = 0) const;
193 };
194 } /// end anonymous namespace
195
196 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
197
198 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
199 "Simple Register Coalescing", false, false)
200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
201 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
205 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
206 "Simple Register Coalescing", false, false)
207
208 char RegisterCoalescer::ID = 0;
209
compose(const TargetRegisterInfo & tri,unsigned a,unsigned b)210 static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
211 if (!a) return b;
212 if (!b) return a;
213 return tri.composeSubRegIndices(a, b);
214 }
215
isMoveInstr(const TargetRegisterInfo & tri,const MachineInstr * MI,unsigned & Src,unsigned & Dst,unsigned & SrcSub,unsigned & DstSub)216 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217 unsigned &Src, unsigned &Dst,
218 unsigned &SrcSub, unsigned &DstSub) {
219 if (MI->isCopy()) {
220 Dst = MI->getOperand(0).getReg();
221 DstSub = MI->getOperand(0).getSubReg();
222 Src = MI->getOperand(1).getReg();
223 SrcSub = MI->getOperand(1).getSubReg();
224 } else if (MI->isSubregToReg()) {
225 Dst = MI->getOperand(0).getReg();
226 DstSub = compose(tri, MI->getOperand(0).getSubReg(),
227 MI->getOperand(3).getImm());
228 Src = MI->getOperand(2).getReg();
229 SrcSub = MI->getOperand(2).getSubReg();
230 } else
231 return false;
232 return true;
233 }
234
setRegisters(const MachineInstr * MI)235 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
236 SrcReg = DstReg = SubIdx = 0;
237 NewRC = 0;
238 Flipped = CrossClass = false;
239
240 unsigned Src, Dst, SrcSub, DstSub;
241 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
242 return false;
243 Partial = SrcSub || DstSub;
244
245 // If one register is a physreg, it must be Dst.
246 if (TargetRegisterInfo::isPhysicalRegister(Src)) {
247 if (TargetRegisterInfo::isPhysicalRegister(Dst))
248 return false;
249 std::swap(Src, Dst);
250 std::swap(SrcSub, DstSub);
251 Flipped = true;
252 }
253
254 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
255
256 if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
257 // Eliminate DstSub on a physreg.
258 if (DstSub) {
259 Dst = TRI.getSubReg(Dst, DstSub);
260 if (!Dst) return false;
261 DstSub = 0;
262 }
263
264 // Eliminate SrcSub by picking a corresponding Dst superregister.
265 if (SrcSub) {
266 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
267 if (!Dst) return false;
268 SrcSub = 0;
269 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
270 return false;
271 }
272 } else {
273 // Both registers are virtual.
274
275 // Both registers have subreg indices.
276 if (SrcSub && DstSub) {
277 // For now we only handle the case of identical indices in commensurate
278 // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
279 // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
280 if (SrcSub != DstSub)
281 return false;
282 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
283 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
284 if (!TRI.getCommonSubClass(DstRC, SrcRC))
285 return false;
286 SrcSub = DstSub = 0;
287 }
288
289 // There can be no SrcSub.
290 if (SrcSub) {
291 std::swap(Src, Dst);
292 DstSub = SrcSub;
293 SrcSub = 0;
294 assert(!Flipped && "Unexpected flip");
295 Flipped = true;
296 }
297
298 // Find the new register class.
299 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
300 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
301 if (DstSub)
302 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
303 else
304 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
305 if (!NewRC)
306 return false;
307 CrossClass = NewRC != DstRC || NewRC != SrcRC;
308 }
309 // Check our invariants
310 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
311 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
312 "Cannot have a physical SubIdx");
313 SrcReg = Src;
314 DstReg = Dst;
315 SubIdx = DstSub;
316 return true;
317 }
318
flip()319 bool CoalescerPair::flip() {
320 if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
321 return false;
322 std::swap(SrcReg, DstReg);
323 Flipped = !Flipped;
324 return true;
325 }
326
isCoalescable(const MachineInstr * MI) const327 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
328 if (!MI)
329 return false;
330 unsigned Src, Dst, SrcSub, DstSub;
331 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
332 return false;
333
334 // Find the virtual register that is SrcReg.
335 if (Dst == SrcReg) {
336 std::swap(Src, Dst);
337 std::swap(SrcSub, DstSub);
338 } else if (Src != SrcReg) {
339 return false;
340 }
341
342 // Now check that Dst matches DstReg.
343 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
344 if (!TargetRegisterInfo::isPhysicalRegister(Dst))
345 return false;
346 assert(!SubIdx && "Inconsistent CoalescerPair state.");
347 // DstSub could be set for a physreg from INSERT_SUBREG.
348 if (DstSub)
349 Dst = TRI.getSubReg(Dst, DstSub);
350 // Full copy of Src.
351 if (!SrcSub)
352 return DstReg == Dst;
353 // This is a partial register copy. Check that the parts match.
354 return TRI.getSubReg(DstReg, SrcSub) == Dst;
355 } else {
356 // DstReg is virtual.
357 if (DstReg != Dst)
358 return false;
359 // Registers match, do the subregisters line up?
360 return compose(TRI, SubIdx, SrcSub) == DstSub;
361 }
362 }
363
getAnalysisUsage(AnalysisUsage & AU) const364 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
365 AU.setPreservesCFG();
366 AU.addRequired<AliasAnalysis>();
367 AU.addRequired<LiveIntervals>();
368 AU.addPreserved<LiveIntervals>();
369 AU.addRequired<LiveDebugVariables>();
370 AU.addPreserved<LiveDebugVariables>();
371 AU.addPreserved<SlotIndexes>();
372 AU.addRequired<MachineLoopInfo>();
373 AU.addPreserved<MachineLoopInfo>();
374 AU.addPreservedID(MachineDominatorsID);
375 MachineFunctionPass::getAnalysisUsage(AU);
376 }
377
markAsJoined(MachineInstr * CopyMI)378 void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
379 /// Joined copies are not deleted immediately, but kept in JoinedCopies.
380 JoinedCopies.insert(CopyMI);
381
382 /// Mark all register operands of CopyMI as <undef> so they won't affect dead
383 /// code elimination.
384 for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
385 E = CopyMI->operands_end(); I != E; ++I)
386 if (I->isReg())
387 I->setIsUndef(true);
388 }
389
390 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
391 /// being the source and IntB being the dest, thus this defines a value number
392 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
393 /// see if we can merge these two pieces of B into a single value number,
394 /// eliminating a copy. For example:
395 ///
396 /// A3 = B0
397 /// ...
398 /// B1 = A3 <- this copy
399 ///
400 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
401 /// value number to be replaced with B0 (which simplifies the B liveinterval).
402 ///
403 /// This returns true if an interval was modified.
404 ///
AdjustCopiesBackFrom(const CoalescerPair & CP,MachineInstr * CopyMI)405 bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
406 MachineInstr *CopyMI) {
407 // Bail if there is no dst interval - can happen when merging physical subreg
408 // operations.
409 if (!LIS->hasInterval(CP.getDstReg()))
410 return false;
411
412 LiveInterval &IntA =
413 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
414 LiveInterval &IntB =
415 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
416 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
417
418 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
419 // the example above.
420 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
421 if (BLR == IntB.end()) return false;
422 VNInfo *BValNo = BLR->valno;
423
424 // Get the location that B is defined at. Two options: either this value has
425 // an unknown definition point or it is defined at CopyIdx. If unknown, we
426 // can't process it.
427 if (BValNo->def != CopyIdx) return false;
428
429 // AValNo is the value number in A that defines the copy, A3 in the example.
430 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
431 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
432 // The live range might not exist after fun with physreg coalescing.
433 if (ALR == IntA.end()) return false;
434 VNInfo *AValNo = ALR->valno;
435
436 // If AValNo is defined as a copy from IntB, we can potentially process this.
437 // Get the instruction that defines this value number.
438 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
439 if (!CP.isCoalescable(ACopyMI))
440 return false;
441
442 // Get the LiveRange in IntB that this value number starts with.
443 LiveInterval::iterator ValLR =
444 IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
445 if (ValLR == IntB.end())
446 return false;
447
448 // Make sure that the end of the live range is inside the same block as
449 // CopyMI.
450 MachineInstr *ValLREndInst =
451 LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
452 if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
453 return false;
454
455 // Okay, we now know that ValLR ends in the same block that the CopyMI
456 // live-range starts. If there are no intervening live ranges between them in
457 // IntB, we can merge them.
458 if (ValLR+1 != BLR) return false;
459
460 // If a live interval is a physical register, conservatively check if any
461 // of its aliases is overlapping the live interval of the virtual register.
462 // If so, do not coalesce.
463 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
464 for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
465 if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
466 DEBUG({
467 dbgs() << "\t\tInterfere with alias ";
468 LIS->getInterval(*AS).print(dbgs(), TRI);
469 });
470 return false;
471 }
472 }
473
474 DEBUG({
475 dbgs() << "Extending: ";
476 IntB.print(dbgs(), TRI);
477 });
478
479 SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
480 // We are about to delete CopyMI, so need to remove it as the 'instruction
481 // that defines this value #'. Update the valnum with the new defining
482 // instruction #.
483 BValNo->def = FillerStart;
484
485 // Okay, we can merge them. We need to insert a new liverange:
486 // [ValLR.end, BLR.begin) of either value number, then we merge the
487 // two value numbers.
488 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
489
490 // If the IntB live range is assigned to a physical register, and if that
491 // physreg has sub-registers, update their live intervals as well.
492 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
493 for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
494 if (!LIS->hasInterval(*SR))
495 continue;
496 LiveInterval &SRLI = LIS->getInterval(*SR);
497 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
498 SRLI.getNextValue(FillerStart,
499 LIS->getVNInfoAllocator())));
500 }
501 }
502
503 // Okay, merge "B1" into the same value number as "B0".
504 if (BValNo != ValLR->valno) {
505 // If B1 is killed by a PHI, then the merged live range must also be killed
506 // by the same PHI, as B0 and B1 can not overlap.
507 bool HasPHIKill = BValNo->hasPHIKill();
508 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
509 if (HasPHIKill)
510 ValLR->valno->setHasPHIKill(true);
511 }
512 DEBUG({
513 dbgs() << " result = ";
514 IntB.print(dbgs(), TRI);
515 dbgs() << "\n";
516 });
517
518 // If the source instruction was killing the source register before the
519 // merge, unset the isKill marker given the live range has been extended.
520 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
521 if (UIdx != -1) {
522 ValLREndInst->getOperand(UIdx).setIsKill(false);
523 }
524
525 // Rewrite the copy. If the copy instruction was killing the destination
526 // register before the merge, find the last use and trim the live range. That
527 // will also add the isKill marker.
528 CopyMI->substituteRegister(IntA.reg, IntB.reg, CP.getSubIdx(),
529 *TRI);
530 if (ALR->end == CopyIdx)
531 LIS->shrinkToUses(&IntA);
532
533 ++numExtends;
534 return true;
535 }
536
537 /// HasOtherReachingDefs - Return true if there are definitions of IntB
538 /// other than BValNo val# that can reach uses of AValno val# of IntA.
HasOtherReachingDefs(LiveInterval & IntA,LiveInterval & IntB,VNInfo * AValNo,VNInfo * BValNo)539 bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
540 LiveInterval &IntB,
541 VNInfo *AValNo,
542 VNInfo *BValNo) {
543 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
544 AI != AE; ++AI) {
545 if (AI->valno != AValNo) continue;
546 LiveInterval::Ranges::iterator BI =
547 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
548 if (BI != IntB.ranges.begin())
549 --BI;
550 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
551 if (BI->valno == BValNo)
552 continue;
553 if (BI->start <= AI->start && BI->end > AI->start)
554 return true;
555 if (BI->start > AI->start && BI->start < AI->end)
556 return true;
557 }
558 }
559 return false;
560 }
561
562 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
563 /// IntA being the source and IntB being the dest, thus this defines a value
564 /// number in IntB. If the source value number (in IntA) is defined by a
565 /// commutable instruction and its other operand is coalesced to the copy dest
566 /// register, see if we can transform the copy into a noop by commuting the
567 /// definition. For example,
568 ///
569 /// A3 = op A2 B0<kill>
570 /// ...
571 /// B1 = A3 <- this copy
572 /// ...
573 /// = op A3 <- more uses
574 ///
575 /// ==>
576 ///
577 /// B2 = op B0 A2<kill>
578 /// ...
579 /// B1 = B2 <- now an identify copy
580 /// ...
581 /// = op B2 <- more uses
582 ///
583 /// This returns true if an interval was modified.
584 ///
RemoveCopyByCommutingDef(const CoalescerPair & CP,MachineInstr * CopyMI)585 bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
586 MachineInstr *CopyMI) {
587 // FIXME: For now, only eliminate the copy by commuting its def when the
588 // source register is a virtual register. We want to guard against cases
589 // where the copy is a back edge copy and commuting the def lengthen the
590 // live interval of the source register to the entire loop.
591 if (CP.isPhys() && CP.isFlipped())
592 return false;
593
594 // Bail if there is no dst interval.
595 if (!LIS->hasInterval(CP.getDstReg()))
596 return false;
597
598 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
599
600 LiveInterval &IntA =
601 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
602 LiveInterval &IntB =
603 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
604
605 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
606 // the example above.
607 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
608 if (!BValNo || BValNo->def != CopyIdx)
609 return false;
610
611 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
612
613 // AValNo is the value number in A that defines the copy, A3 in the example.
614 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
615 assert(AValNo && "COPY source not live");
616
617 // If other defs can reach uses of this def, then it's not safe to perform
618 // the optimization.
619 if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
620 return false;
621 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
622 if (!DefMI)
623 return false;
624 if (!DefMI->isCommutable())
625 return false;
626 // If DefMI is a two-address instruction then commuting it will change the
627 // destination register.
628 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
629 assert(DefIdx != -1);
630 unsigned UseOpIdx;
631 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
632 return false;
633 unsigned Op1, Op2, NewDstIdx;
634 if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
635 return false;
636 if (Op1 == UseOpIdx)
637 NewDstIdx = Op2;
638 else if (Op2 == UseOpIdx)
639 NewDstIdx = Op1;
640 else
641 return false;
642
643 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
644 unsigned NewReg = NewDstMO.getReg();
645 if (NewReg != IntB.reg || !NewDstMO.isKill())
646 return false;
647
648 // Make sure there are no other definitions of IntB that would reach the
649 // uses which the new definition can reach.
650 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
651 return false;
652
653 // Abort if the aliases of IntB.reg have values that are not simply the
654 // clobbers from the superreg.
655 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
656 for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
657 if (LIS->hasInterval(*AS) &&
658 HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
659 return false;
660
661 // If some of the uses of IntA.reg is already coalesced away, return false.
662 // It's not possible to determine whether it's safe to perform the coalescing.
663 for (MachineRegisterInfo::use_nodbg_iterator UI =
664 MRI->use_nodbg_begin(IntA.reg),
665 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
666 MachineInstr *UseMI = &*UI;
667 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
668 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
669 if (ULR == IntA.end())
670 continue;
671 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
672 return false;
673 }
674
675 DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
676 << *DefMI);
677
678 // At this point we have decided that it is legal to do this
679 // transformation. Start by commuting the instruction.
680 MachineBasicBlock *MBB = DefMI->getParent();
681 MachineInstr *NewMI = TII->commuteInstruction(DefMI);
682 if (!NewMI)
683 return false;
684 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
685 TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
686 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
687 return false;
688 if (NewMI != DefMI) {
689 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
690 MachineBasicBlock::iterator Pos = DefMI;
691 MBB->insert(Pos, NewMI);
692 MBB->erase(DefMI);
693 }
694 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
695 NewMI->getOperand(OpIdx).setIsKill();
696
697 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
698 // A = or A, B
699 // ...
700 // B = A
701 // ...
702 // C = A<kill>
703 // ...
704 // = B
705
706 // Update uses of IntA of the specific Val# with IntB.
707 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
708 UE = MRI->use_end(); UI != UE;) {
709 MachineOperand &UseMO = UI.getOperand();
710 MachineInstr *UseMI = &*UI;
711 ++UI;
712 if (JoinedCopies.count(UseMI))
713 continue;
714 if (UseMI->isDebugValue()) {
715 // FIXME These don't have an instruction index. Not clear we have enough
716 // info to decide whether to do this replacement or not. For now do it.
717 UseMO.setReg(NewReg);
718 continue;
719 }
720 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
721 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
722 if (ULR == IntA.end() || ULR->valno != AValNo)
723 continue;
724 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
725 UseMO.substPhysReg(NewReg, *TRI);
726 else
727 UseMO.setReg(NewReg);
728 if (UseMI == CopyMI)
729 continue;
730 if (!UseMI->isCopy())
731 continue;
732 if (UseMI->getOperand(0).getReg() != IntB.reg ||
733 UseMI->getOperand(0).getSubReg())
734 continue;
735
736 // This copy will become a noop. If it's defining a new val#, merge it into
737 // BValNo.
738 SlotIndex DefIdx = UseIdx.getRegSlot();
739 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
740 if (!DVNI)
741 continue;
742 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
743 assert(DVNI->def == DefIdx);
744 BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
745 markAsJoined(UseMI);
746 }
747
748 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
749 // is updated.
750 VNInfo *ValNo = BValNo;
751 ValNo->def = AValNo->def;
752 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
753 AI != AE; ++AI) {
754 if (AI->valno != AValNo) continue;
755 IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
756 }
757 DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
758
759 IntA.removeValNo(AValNo);
760 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
761 ++numCommutes;
762 return true;
763 }
764
765 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
766 /// computation, replace the copy by rematerialize the definition.
ReMaterializeTrivialDef(LiveInterval & SrcInt,bool preserveSrcInt,unsigned DstReg,MachineInstr * CopyMI)767 bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
768 bool preserveSrcInt,
769 unsigned DstReg,
770 MachineInstr *CopyMI) {
771 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
772 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
773 assert(SrcLR != SrcInt.end() && "Live range not found!");
774 VNInfo *ValNo = SrcLR->valno;
775 if (ValNo->isPHIDef() || ValNo->isUnused())
776 return false;
777 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
778 if (!DefMI)
779 return false;
780 assert(DefMI && "Defining instruction disappeared");
781 if (!DefMI->isAsCheapAsAMove())
782 return false;
783 if (!TII->isTriviallyReMaterializable(DefMI, AA))
784 return false;
785 bool SawStore = false;
786 if (!DefMI->isSafeToMove(TII, AA, SawStore))
787 return false;
788 const MCInstrDesc &MCID = DefMI->getDesc();
789 if (MCID.getNumDefs() != 1)
790 return false;
791 if (!DefMI->isImplicitDef()) {
792 // Make sure the copy destination register class fits the instruction
793 // definition register class. The mismatch can happen as a result of earlier
794 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
795 const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
796 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
797 if (MRI->getRegClass(DstReg) != RC)
798 return false;
799 } else if (!RC->contains(DstReg))
800 return false;
801 }
802
803 MachineBasicBlock *MBB = CopyMI->getParent();
804 MachineBasicBlock::iterator MII =
805 llvm::next(MachineBasicBlock::iterator(CopyMI));
806 TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
807 MachineInstr *NewMI = prior(MII);
808
809 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
810 // We need to remember these so we can add intervals once we insert
811 // NewMI into SlotIndexes.
812 SmallVector<unsigned, 4> NewMIImplDefs;
813 for (unsigned i = NewMI->getDesc().getNumOperands(),
814 e = NewMI->getNumOperands(); i != e; ++i) {
815 MachineOperand &MO = NewMI->getOperand(i);
816 if (MO.isReg()) {
817 assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
818 TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
819 NewMIImplDefs.push_back(MO.getReg());
820 }
821 }
822
823 // CopyMI may have implicit operands, transfer them over to the newly
824 // rematerialized instruction. And update implicit def interval valnos.
825 for (unsigned i = CopyMI->getDesc().getNumOperands(),
826 e = CopyMI->getNumOperands(); i != e; ++i) {
827 MachineOperand &MO = CopyMI->getOperand(i);
828 if (MO.isReg()) {
829 assert(MO.isImplicit() && "No explicit operands after implict operands.");
830 // Discard VReg implicit defs.
831 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
832 NewMI->addOperand(MO);
833 }
834 }
835 }
836
837 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
838
839 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
840 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
841 unsigned reg = NewMIImplDefs[i];
842 LiveInterval &li = LIS->getInterval(reg);
843 VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
844 LIS->getVNInfoAllocator());
845 LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
846 li.addRange(lr);
847 }
848
849 CopyMI->eraseFromParent();
850 ReMatCopies.insert(CopyMI);
851 ReMatDefs.insert(DefMI);
852 DEBUG(dbgs() << "Remat: " << *NewMI);
853 ++NumReMats;
854
855 // The source interval can become smaller because we removed a use.
856 if (preserveSrcInt)
857 LIS->shrinkToUses(&SrcInt);
858
859 return true;
860 }
861
862 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
863 /// values, it only removes local variables. When we have a copy like:
864 ///
865 /// %vreg1 = COPY %vreg2<undef>
866 ///
867 /// We delete the copy and remove the corresponding value number from %vreg1.
868 /// Any uses of that value number are marked as <undef>.
eliminateUndefCopy(MachineInstr * CopyMI,const CoalescerPair & CP)869 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
870 const CoalescerPair &CP) {
871 SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
872 LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
873 if (SrcInt->liveAt(Idx))
874 return false;
875 LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
876 if (DstInt->liveAt(Idx))
877 return false;
878
879 // No intervals are live-in to CopyMI - it is undef.
880 if (CP.isFlipped())
881 DstInt = SrcInt;
882 SrcInt = 0;
883
884 VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
885 assert(DeadVNI && "No value defined in DstInt");
886 DstInt->removeValNo(DeadVNI);
887
888 // Find new undef uses.
889 for (MachineRegisterInfo::reg_nodbg_iterator
890 I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
891 I != E; ++I) {
892 MachineOperand &MO = I.getOperand();
893 if (MO.isDef() || MO.isUndef())
894 continue;
895 MachineInstr *MI = MO.getParent();
896 SlotIndex Idx = LIS->getInstructionIndex(MI);
897 if (DstInt->liveAt(Idx))
898 continue;
899 MO.setIsUndef(true);
900 DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
901 }
902 return true;
903 }
904
905 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
906 /// update the subregister number if it is not zero. If DstReg is a
907 /// physical register and the existing subregister number of the def / use
908 /// being updated is not zero, make sure to set it to the correct physical
909 /// subregister.
910 void
UpdateRegDefsUses(const CoalescerPair & CP)911 RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
912 bool DstIsPhys = CP.isPhys();
913 unsigned SrcReg = CP.getSrcReg();
914 unsigned DstReg = CP.getDstReg();
915 unsigned SubIdx = CP.getSubIdx();
916
917 // Update LiveDebugVariables.
918 LDV->renameRegister(SrcReg, DstReg, SubIdx);
919
920 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
921 MachineInstr *UseMI = I.skipInstruction();) {
922 // A PhysReg copy that won't be coalesced can perhaps be rematerialized
923 // instead.
924 if (DstIsPhys) {
925 if (UseMI->isFullCopy() &&
926 UseMI->getOperand(1).getReg() == SrcReg &&
927 UseMI->getOperand(0).getReg() != SrcReg &&
928 UseMI->getOperand(0).getReg() != DstReg &&
929 !JoinedCopies.count(UseMI) &&
930 ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
931 UseMI->getOperand(0).getReg(), UseMI))
932 continue;
933 }
934
935 SmallVector<unsigned,8> Ops;
936 bool Reads, Writes;
937 tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
938
939 // Replace SrcReg with DstReg in all UseMI operands.
940 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
941 MachineOperand &MO = UseMI->getOperand(Ops[i]);
942
943 // Make sure we don't create read-modify-write defs accidentally. We
944 // assume here that a SrcReg def cannot be joined into a live DstReg. If
945 // RegisterCoalescer starts tracking partially live registers, we will
946 // need to check the actual LiveInterval to determine if DstReg is live
947 // here.
948 if (SubIdx && !Reads)
949 MO.setIsUndef();
950
951 if (DstIsPhys)
952 MO.substPhysReg(DstReg, *TRI);
953 else
954 MO.substVirtReg(DstReg, SubIdx, *TRI);
955 }
956
957 // This instruction is a copy that will be removed.
958 if (JoinedCopies.count(UseMI))
959 continue;
960
961 DEBUG({
962 dbgs() << "\t\tupdated: ";
963 if (!UseMI->isDebugValue())
964 dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
965 dbgs() << *UseMI;
966 });
967 }
968 }
969
970 /// removeIntervalIfEmpty - Check if the live interval of a physical register
971 /// is empty, if so remove it and also remove the empty intervals of its
972 /// sub-registers. Return true if live interval is removed.
removeIntervalIfEmpty(LiveInterval & li,LiveIntervals * LIS,const TargetRegisterInfo * TRI)973 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
974 const TargetRegisterInfo *TRI) {
975 if (li.empty()) {
976 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
977 for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
978 if (!LIS->hasInterval(*SR))
979 continue;
980 LiveInterval &sli = LIS->getInterval(*SR);
981 if (sli.empty())
982 LIS->removeInterval(*SR);
983 }
984 LIS->removeInterval(li.reg);
985 return true;
986 }
987 return false;
988 }
989
990 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
991 /// the val# it defines. If the live interval becomes empty, remove it as well.
RemoveDeadDef(LiveInterval & li,MachineInstr * DefMI)992 bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
993 MachineInstr *DefMI) {
994 SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
995 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
996 if (DefIdx != MLR->valno->def)
997 return false;
998 li.removeValNo(MLR->valno);
999 return removeIntervalIfEmpty(li, LIS, TRI);
1000 }
1001
1002 /// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
1003 /// We need to be careful about coalescing a source physical register with a
1004 /// virtual register. Once the coalescing is done, it cannot be broken and these
1005 /// are not spillable! If the destination interval uses are far away, think
1006 /// twice about coalescing them!
shouldJoinPhys(CoalescerPair & CP)1007 bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
1008 bool Allocatable = LIS->isAllocatable(CP.getDstReg());
1009 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1010
1011 /// Always join simple intervals that are defined by a single copy from a
1012 /// reserved register. This doesn't increase register pressure, so it is
1013 /// always beneficial.
1014 if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
1015 return true;
1016
1017 if (!EnablePhysicalJoin) {
1018 DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
1019 return false;
1020 }
1021
1022 // Only coalesce to allocatable physreg, we don't want to risk modifying
1023 // reserved registers.
1024 if (!Allocatable) {
1025 DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
1026 return false; // Not coalescable.
1027 }
1028
1029 // Don't join with physregs that have a ridiculous number of live
1030 // ranges. The data structure performance is really bad when that
1031 // happens.
1032 if (LIS->hasInterval(CP.getDstReg()) &&
1033 LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
1034 ++numAborts;
1035 DEBUG(dbgs()
1036 << "\tPhysical register live interval too complicated, abort!\n");
1037 return false;
1038 }
1039
1040 // FIXME: Why are we skipping this test for partial copies?
1041 // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
1042 if (!CP.isPartial()) {
1043 const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
1044 unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
1045 unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
1046 if (Length > Threshold) {
1047 ++numAborts;
1048 DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
1049 return false;
1050 }
1051 }
1052 return true;
1053 }
1054
1055 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1056 /// two virtual registers from different register classes.
1057 bool
isWinToJoinCrossClass(unsigned SrcReg,unsigned DstReg,const TargetRegisterClass * SrcRC,const TargetRegisterClass * DstRC,const TargetRegisterClass * NewRC)1058 RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
1059 unsigned DstReg,
1060 const TargetRegisterClass *SrcRC,
1061 const TargetRegisterClass *DstRC,
1062 const TargetRegisterClass *NewRC) {
1063 unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
1064 // This heuristics is good enough in practice, but it's obviously not *right*.
1065 // 4 is a magic number that works well enough for x86, ARM, etc. It filter
1066 // out all but the most restrictive register classes.
1067 if (NewRCCount > 4 ||
1068 // Early exit if the function is fairly small, coalesce aggressively if
1069 // that's the case. For really special register classes with 3 or
1070 // fewer registers, be a bit more careful.
1071 (LIS->getFuncInstructionCount() / NewRCCount) < 8)
1072 return true;
1073 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1074 LiveInterval &DstInt = LIS->getInterval(DstReg);
1075 unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
1076 unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
1077
1078 // Coalesce aggressively if the intervals are small compared to the number of
1079 // registers in the new class. The number 4 is fairly arbitrary, chosen to be
1080 // less aggressive than the 8 used for the whole function size.
1081 const unsigned ThresSize = 4 * NewRCCount;
1082 if (SrcSize <= ThresSize && DstSize <= ThresSize)
1083 return true;
1084
1085 // Estimate *register use density*. If it doubles or more, abort.
1086 unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
1087 MRI->use_nodbg_end());
1088 unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
1089 MRI->use_nodbg_end());
1090 unsigned NewUses = SrcUses + DstUses;
1091 unsigned NewSize = SrcSize + DstSize;
1092 if (SrcRC != NewRC && SrcSize > ThresSize) {
1093 unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
1094 if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
1095 return false;
1096 }
1097 if (DstRC != NewRC && DstSize > ThresSize) {
1098 unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
1099 if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
1100 return false;
1101 }
1102 return true;
1103 }
1104
1105
1106 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1107 /// which are the src/dst of the copy instruction CopyMI. This returns true
1108 /// if the copy was successfully coalesced away. If it is not currently
1109 /// possible to coalesce this interval, but it may be possible if other
1110 /// things get coalesced, then it returns true by reference in 'Again'.
JoinCopy(MachineInstr * CopyMI,bool & Again)1111 bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
1112
1113 Again = false;
1114 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1115 return false; // Already done.
1116
1117 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1118
1119 CoalescerPair CP(*TII, *TRI);
1120 if (!CP.setRegisters(CopyMI)) {
1121 DEBUG(dbgs() << "\tNot coalescable.\n");
1122 return false;
1123 }
1124
1125 // If they are already joined we continue.
1126 if (CP.getSrcReg() == CP.getDstReg()) {
1127 markAsJoined(CopyMI);
1128 DEBUG(dbgs() << "\tCopy already coalesced.\n");
1129 return false; // Not coalescable.
1130 }
1131
1132 // Eliminate undefs.
1133 if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1134 markAsJoined(CopyMI);
1135 DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1136 return false; // Not coalescable.
1137 }
1138
1139 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1140 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
1141 << "\n");
1142
1143 // Enforce policies.
1144 if (CP.isPhys()) {
1145 if (!shouldJoinPhys(CP)) {
1146 // Before giving up coalescing, if definition of source is defined by
1147 // trivial computation, try rematerializing it.
1148 if (!CP.isFlipped() &&
1149 ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1150 CP.getDstReg(), CopyMI))
1151 return true;
1152 return false;
1153 }
1154 } else {
1155 // Avoid constraining virtual register regclass too much.
1156 if (CP.isCrossClass()) {
1157 DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
1158 if (DisableCrossClassJoin) {
1159 DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1160 return false;
1161 }
1162 if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
1163 MRI->getRegClass(CP.getSrcReg()),
1164 MRI->getRegClass(CP.getDstReg()),
1165 CP.getNewRC())) {
1166 DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
1167 Again = true; // May be possible to coalesce later.
1168 return false;
1169 }
1170 }
1171
1172 // When possible, let DstReg be the larger interval.
1173 if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
1174 LIS->getInterval(CP.getDstReg()).ranges.size())
1175 CP.flip();
1176 }
1177
1178 // Okay, attempt to join these two intervals. On failure, this returns false.
1179 // Otherwise, if one of the intervals being joined is a physreg, this method
1180 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1181 // been modified, so we can use this information below to update aliases.
1182 if (!JoinIntervals(CP)) {
1183 // Coalescing failed.
1184
1185 // If definition of source is defined by trivial computation, try
1186 // rematerializing it.
1187 if (!CP.isFlipped() &&
1188 ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
1189 CP.getDstReg(), CopyMI))
1190 return true;
1191
1192 // If we can eliminate the copy without merging the live ranges, do so now.
1193 if (!CP.isPartial()) {
1194 if (AdjustCopiesBackFrom(CP, CopyMI) ||
1195 RemoveCopyByCommutingDef(CP, CopyMI)) {
1196 markAsJoined(CopyMI);
1197 DEBUG(dbgs() << "\tTrivial!\n");
1198 return true;
1199 }
1200 }
1201
1202 // Otherwise, we are unable to join the intervals.
1203 DEBUG(dbgs() << "\tInterference!\n");
1204 Again = true; // May be possible to coalesce later.
1205 return false;
1206 }
1207
1208 // Coalescing to a virtual register that is of a sub-register class of the
1209 // other. Make sure the resulting register is set to the right register class.
1210 if (CP.isCrossClass()) {
1211 ++numCrossRCs;
1212 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1213 }
1214
1215 // Remember to delete the copy instruction.
1216 markAsJoined(CopyMI);
1217
1218 UpdateRegDefsUses(CP);
1219
1220 // If we have extended the live range of a physical register, make sure we
1221 // update live-in lists as well.
1222 if (CP.isPhys()) {
1223 SmallVector<MachineBasicBlock*, 16> BlockSeq;
1224 // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1225 // ranges for this, and they are preserved.
1226 LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
1227 for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
1228 I != E; ++I ) {
1229 LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
1230 for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
1231 MachineBasicBlock &block = *BlockSeq[idx];
1232 if (!block.isLiveIn(CP.getDstReg()))
1233 block.addLiveIn(CP.getDstReg());
1234 }
1235 BlockSeq.clear();
1236 }
1237 }
1238
1239 // SrcReg is guaranteed to be the register whose live interval that is
1240 // being merged.
1241 LIS->removeInterval(CP.getSrcReg());
1242
1243 // Update regalloc hint.
1244 TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1245
1246 DEBUG({
1247 LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
1248 dbgs() << "\tJoined. Result = ";
1249 DstInt.print(dbgs(), TRI);
1250 dbgs() << "\n";
1251 });
1252
1253 ++numJoins;
1254 return true;
1255 }
1256
1257 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1258 /// compute what the resultant value numbers for each value in the input two
1259 /// ranges will be. This is complicated by copies between the two which can
1260 /// and will commonly cause multiple value numbers to be merged into one.
1261 ///
1262 /// VN is the value number that we're trying to resolve. InstDefiningValue
1263 /// keeps track of the new InstDefiningValue assignment for the result
1264 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1265 /// whether a value in this or other is a copy from the opposite set.
1266 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1267 /// already been assigned.
1268 ///
1269 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1270 /// contains the value number the copy is from.
1271 ///
ComputeUltimateVN(VNInfo * VNI,SmallVector<VNInfo *,16> & NewVNInfo,DenseMap<VNInfo *,VNInfo * > & ThisFromOther,DenseMap<VNInfo *,VNInfo * > & OtherFromThis,SmallVector<int,16> & ThisValNoAssignments,SmallVector<int,16> & OtherValNoAssignments)1272 static unsigned ComputeUltimateVN(VNInfo *VNI,
1273 SmallVector<VNInfo*, 16> &NewVNInfo,
1274 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1275 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1276 SmallVector<int, 16> &ThisValNoAssignments,
1277 SmallVector<int, 16> &OtherValNoAssignments) {
1278 unsigned VN = VNI->id;
1279
1280 // If the VN has already been computed, just return it.
1281 if (ThisValNoAssignments[VN] >= 0)
1282 return ThisValNoAssignments[VN];
1283 assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
1284
1285 // If this val is not a copy from the other val, then it must be a new value
1286 // number in the destination.
1287 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1288 if (I == ThisFromOther.end()) {
1289 NewVNInfo.push_back(VNI);
1290 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1291 }
1292 VNInfo *OtherValNo = I->second;
1293
1294 // Otherwise, this *is* a copy from the RHS. If the other side has already
1295 // been computed, return it.
1296 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1297 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1298
1299 // Mark this value number as currently being computed, then ask what the
1300 // ultimate value # of the other value is.
1301 ThisValNoAssignments[VN] = -2;
1302 unsigned UltimateVN =
1303 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1304 OtherValNoAssignments, ThisValNoAssignments);
1305 return ThisValNoAssignments[VN] = UltimateVN;
1306 }
1307
1308
1309 // Find out if we have something like
1310 // A = X
1311 // B = X
1312 // if so, we can pretend this is actually
1313 // A = X
1314 // B = A
1315 // which allows us to coalesce A and B.
1316 // VNI is the definition of B. LR is the life range of A that includes
1317 // the slot just before B. If we return true, we add "B = X" to DupCopies.
1318 // This implies that A dominates B.
RegistersDefinedFromSameValue(LiveIntervals & li,const TargetRegisterInfo & tri,CoalescerPair & CP,VNInfo * VNI,LiveRange * LR,SmallVector<MachineInstr *,8> & DupCopies)1319 static bool RegistersDefinedFromSameValue(LiveIntervals &li,
1320 const TargetRegisterInfo &tri,
1321 CoalescerPair &CP,
1322 VNInfo *VNI,
1323 LiveRange *LR,
1324 SmallVector<MachineInstr*, 8> &DupCopies) {
1325 // FIXME: This is very conservative. For example, we don't handle
1326 // physical registers.
1327
1328 MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
1329
1330 if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
1331 return false;
1332
1333 unsigned Dst = MI->getOperand(0).getReg();
1334 unsigned Src = MI->getOperand(1).getReg();
1335
1336 if (!TargetRegisterInfo::isVirtualRegister(Src) ||
1337 !TargetRegisterInfo::isVirtualRegister(Dst))
1338 return false;
1339
1340 unsigned A = CP.getDstReg();
1341 unsigned B = CP.getSrcReg();
1342
1343 if (B == Dst)
1344 std::swap(A, B);
1345 assert(Dst == A);
1346
1347 VNInfo *Other = LR->valno;
1348 const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def);
1349
1350 if (!OtherMI || !OtherMI->isFullCopy())
1351 return false;
1352
1353 unsigned OtherDst = OtherMI->getOperand(0).getReg();
1354 unsigned OtherSrc = OtherMI->getOperand(1).getReg();
1355
1356 if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
1357 !TargetRegisterInfo::isVirtualRegister(OtherDst))
1358 return false;
1359
1360 assert(OtherDst == B);
1361
1362 if (Src != OtherSrc)
1363 return false;
1364
1365 // If the copies use two different value numbers of X, we cannot merge
1366 // A and B.
1367 LiveInterval &SrcInt = li.getInterval(Src);
1368 // getVNInfoBefore returns NULL for undef copies. In this case, the
1369 // optimization is still safe.
1370 if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
1371 return false;
1372
1373 DupCopies.push_back(MI);
1374
1375 return true;
1376 }
1377
1378 /// JoinIntervals - Attempt to join these two intervals. On failure, this
1379 /// returns false.
JoinIntervals(CoalescerPair & CP)1380 bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
1381 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1382 DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
1383
1384 // If a live interval is a physical register, check for interference with any
1385 // aliases. The interference check implemented here is a bit more conservative
1386 // than the full interfeence check below. We allow overlapping live ranges
1387 // only when one is a copy of the other.
1388 if (CP.isPhys()) {
1389 // Optimization for reserved registers like ESP.
1390 // We can only merge with a reserved physreg if RHS has a single value that
1391 // is a copy of CP.DstReg(). The live range of the reserved register will
1392 // look like a set of dead defs - we don't properly track the live range of
1393 // reserved registers.
1394 if (RegClassInfo.isReserved(CP.getDstReg())) {
1395 assert(CP.isFlipped() && RHS.containsOneValue() &&
1396 "Invalid join with reserved register");
1397 // Deny any overlapping intervals. This depends on all the reserved
1398 // register live ranges to look like dead defs.
1399 for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
1400 if (!LIS->hasInterval(*AS)) {
1401 // Make sure at least DstReg itself exists before attempting a join.
1402 if (*AS == CP.getDstReg())
1403 LIS->getOrCreateInterval(CP.getDstReg());
1404 continue;
1405 }
1406 if (RHS.overlaps(LIS->getInterval(*AS))) {
1407 DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
1408 return false;
1409 }
1410 }
1411 // Skip any value computations, we are not adding new values to the
1412 // reserved register. Also skip merging the live ranges, the reserved
1413 // register live range doesn't need to be accurate as long as all the
1414 // defs are there.
1415 return true;
1416 }
1417
1418 // Check if a register mask clobbers DstReg.
1419 BitVector UsableRegs;
1420 if (LIS->checkRegMaskInterference(RHS, UsableRegs) &&
1421 !UsableRegs.test(CP.getDstReg())) {
1422 DEBUG(dbgs() << "\t\tRegister mask interference.\n");
1423 return false;
1424 }
1425
1426 for (const uint16_t *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
1427 if (!LIS->hasInterval(*AS))
1428 continue;
1429 const LiveInterval &LHS = LIS->getInterval(*AS);
1430 LiveInterval::const_iterator LI = LHS.begin();
1431 for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
1432 RI != RE; ++RI) {
1433 LI = std::lower_bound(LI, LHS.end(), RI->start);
1434 // Does LHS have an overlapping live range starting before RI?
1435 if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
1436 (RI->start != RI->valno->def ||
1437 !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
1438 DEBUG({
1439 dbgs() << "\t\tInterference from alias: ";
1440 LHS.print(dbgs(), TRI);
1441 dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
1442 });
1443 return false;
1444 }
1445
1446 // Check that LHS ranges beginning in this range are copies.
1447 for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
1448 if (LI->start != LI->valno->def ||
1449 !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
1450 DEBUG({
1451 dbgs() << "\t\tInterference from alias: ";
1452 LHS.print(dbgs(), TRI);
1453 dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
1454 });
1455 return false;
1456 }
1457 }
1458 }
1459 }
1460 }
1461
1462 // Compute the final value assignment, assuming that the live ranges can be
1463 // coalesced.
1464 SmallVector<int, 16> LHSValNoAssignments;
1465 SmallVector<int, 16> RHSValNoAssignments;
1466 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1467 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1468 SmallVector<VNInfo*, 16> NewVNInfo;
1469
1470 SmallVector<MachineInstr*, 8> DupCopies;
1471
1472 LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
1473 DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
1474
1475 // Loop over the value numbers of the LHS, seeing if any are defined from
1476 // the RHS.
1477 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1478 i != e; ++i) {
1479 VNInfo *VNI = *i;
1480 if (VNI->isUnused() || VNI->isPHIDef())
1481 continue;
1482 MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1483 assert(MI && "Missing def");
1484 if (!MI->isCopyLike()) // Src not defined by a copy?
1485 continue;
1486
1487 // Figure out the value # from the RHS.
1488 LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1489 // The copy could be to an aliased physreg.
1490 if (!lr) continue;
1491
1492 // DstReg is known to be a register in the LHS interval. If the src is
1493 // from the RHS interval, we can use its value #.
1494 if (!CP.isCoalescable(MI) &&
1495 !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1496 continue;
1497
1498 LHSValsDefinedFromRHS[VNI] = lr->valno;
1499 }
1500
1501 // Loop over the value numbers of the RHS, seeing if any are defined from
1502 // the LHS.
1503 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1504 i != e; ++i) {
1505 VNInfo *VNI = *i;
1506 if (VNI->isUnused() || VNI->isPHIDef())
1507 continue;
1508 MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
1509 assert(MI && "Missing def");
1510 if (!MI->isCopyLike()) // Src not defined by a copy?
1511 continue;
1512
1513 // Figure out the value # from the LHS.
1514 LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
1515 // The copy could be to an aliased physreg.
1516 if (!lr) continue;
1517
1518 // DstReg is known to be a register in the RHS interval. If the src is
1519 // from the LHS interval, we can use its value #.
1520 if (!CP.isCoalescable(MI) &&
1521 !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
1522 continue;
1523
1524 RHSValsDefinedFromLHS[VNI] = lr->valno;
1525 }
1526
1527 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1528 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1529 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1530
1531 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1532 i != e; ++i) {
1533 VNInfo *VNI = *i;
1534 unsigned VN = VNI->id;
1535 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1536 continue;
1537 ComputeUltimateVN(VNI, NewVNInfo,
1538 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1539 LHSValNoAssignments, RHSValNoAssignments);
1540 }
1541 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
1542 i != e; ++i) {
1543 VNInfo *VNI = *i;
1544 unsigned VN = VNI->id;
1545 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
1546 continue;
1547 // If this value number isn't a copy from the LHS, it's a new number.
1548 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
1549 NewVNInfo.push_back(VNI);
1550 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
1551 continue;
1552 }
1553
1554 ComputeUltimateVN(VNI, NewVNInfo,
1555 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1556 RHSValNoAssignments, LHSValNoAssignments);
1557 }
1558
1559 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1560 // interval lists to see if these intervals are coalescable.
1561 LiveInterval::const_iterator I = LHS.begin();
1562 LiveInterval::const_iterator IE = LHS.end();
1563 LiveInterval::const_iterator J = RHS.begin();
1564 LiveInterval::const_iterator JE = RHS.end();
1565
1566 // Skip ahead until the first place of potential sharing.
1567 if (I != IE && J != JE) {
1568 if (I->start < J->start) {
1569 I = std::upper_bound(I, IE, J->start);
1570 if (I != LHS.begin()) --I;
1571 } else if (J->start < I->start) {
1572 J = std::upper_bound(J, JE, I->start);
1573 if (J != RHS.begin()) --J;
1574 }
1575 }
1576
1577 while (I != IE && J != JE) {
1578 // Determine if these two live ranges overlap.
1579 bool Overlaps;
1580 if (I->start < J->start) {
1581 Overlaps = I->end > J->start;
1582 } else {
1583 Overlaps = J->end > I->start;
1584 }
1585
1586 // If so, check value # info to determine if they are really different.
1587 if (Overlaps) {
1588 // If the live range overlap will map to the same value number in the
1589 // result liverange, we can still coalesce them. If not, we can't.
1590 if (LHSValNoAssignments[I->valno->id] !=
1591 RHSValNoAssignments[J->valno->id])
1592 return false;
1593 }
1594
1595 if (I->end < J->end)
1596 ++I;
1597 else
1598 ++J;
1599 }
1600
1601 // Update kill info. Some live ranges are extended due to copy coalescing.
1602 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
1603 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
1604 VNInfo *VNI = I->first;
1605 unsigned LHSValID = LHSValNoAssignments[VNI->id];
1606 if (VNI->hasPHIKill())
1607 NewVNInfo[LHSValID]->setHasPHIKill(true);
1608 }
1609
1610 // Update kill info. Some live ranges are extended due to copy coalescing.
1611 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
1612 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
1613 VNInfo *VNI = I->first;
1614 unsigned RHSValID = RHSValNoAssignments[VNI->id];
1615 if (VNI->hasPHIKill())
1616 NewVNInfo[RHSValID]->setHasPHIKill(true);
1617 }
1618
1619 if (LHSValNoAssignments.empty())
1620 LHSValNoAssignments.push_back(-1);
1621 if (RHSValNoAssignments.empty())
1622 RHSValNoAssignments.push_back(-1);
1623
1624 SmallVector<unsigned, 8> SourceRegisters;
1625 for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
1626 E = DupCopies.end(); I != E; ++I) {
1627 MachineInstr *MI = *I;
1628
1629 // We have pretended that the assignment to B in
1630 // A = X
1631 // B = X
1632 // was actually a copy from A. Now that we decided to coalesce A and B,
1633 // transform the code into
1634 // A = X
1635 // X = X
1636 // and mark the X as coalesced to keep the illusion.
1637 unsigned Src = MI->getOperand(1).getReg();
1638 SourceRegisters.push_back(Src);
1639 MI->getOperand(0).substVirtReg(Src, 0, *TRI);
1640
1641 markAsJoined(MI);
1642 }
1643
1644 // If B = X was the last use of X in a liverange, we have to shrink it now
1645 // that B = X is gone.
1646 for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
1647 E = SourceRegisters.end(); I != E; ++I) {
1648 LIS->shrinkToUses(&LIS->getInterval(*I));
1649 }
1650
1651 // If we get here, we know that we can coalesce the live ranges. Ask the
1652 // intervals to coalesce themselves now.
1653 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
1654 MRI);
1655 return true;
1656 }
1657
1658 namespace {
1659 // DepthMBBCompare - Comparison predicate that sort first based on the loop
1660 // depth of the basic block (the unsigned), and then on the MBB number.
1661 struct DepthMBBCompare {
1662 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
operator ()__anon33c9ccb00211::DepthMBBCompare1663 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1664 // Deeper loops first
1665 if (LHS.first != RHS.first)
1666 return LHS.first > RHS.first;
1667
1668 // Prefer blocks that are more connected in the CFG. This takes care of
1669 // the most difficult copies first while intervals are short.
1670 unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
1671 unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
1672 if (cl != cr)
1673 return cl > cr;
1674
1675 // As a last resort, sort by block number.
1676 return LHS.second->getNumber() < RHS.second->getNumber();
1677 }
1678 };
1679 }
1680
CopyCoalesceInMBB(MachineBasicBlock * MBB,std::vector<MachineInstr * > & TryAgain)1681 void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
1682 std::vector<MachineInstr*> &TryAgain) {
1683 DEBUG(dbgs() << MBB->getName() << ":\n");
1684
1685 SmallVector<MachineInstr*, 8> VirtCopies;
1686 SmallVector<MachineInstr*, 8> PhysCopies;
1687 SmallVector<MachineInstr*, 8> ImpDefCopies;
1688 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1689 MII != E;) {
1690 MachineInstr *Inst = MII++;
1691
1692 // If this isn't a copy nor a extract_subreg, we can't join intervals.
1693 unsigned SrcReg, DstReg;
1694 if (Inst->isCopy()) {
1695 DstReg = Inst->getOperand(0).getReg();
1696 SrcReg = Inst->getOperand(1).getReg();
1697 } else if (Inst->isSubregToReg()) {
1698 DstReg = Inst->getOperand(0).getReg();
1699 SrcReg = Inst->getOperand(2).getReg();
1700 } else
1701 continue;
1702
1703 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1704 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1705 if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
1706 ImpDefCopies.push_back(Inst);
1707 else if (SrcIsPhys || DstIsPhys)
1708 PhysCopies.push_back(Inst);
1709 else
1710 VirtCopies.push_back(Inst);
1711 }
1712
1713 // Try coalescing implicit copies and insert_subreg <undef> first,
1714 // followed by copies to / from physical registers, then finally copies
1715 // from virtual registers to virtual registers.
1716 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
1717 MachineInstr *TheCopy = ImpDefCopies[i];
1718 bool Again = false;
1719 if (!JoinCopy(TheCopy, Again))
1720 if (Again)
1721 TryAgain.push_back(TheCopy);
1722 }
1723 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
1724 MachineInstr *TheCopy = PhysCopies[i];
1725 bool Again = false;
1726 if (!JoinCopy(TheCopy, Again))
1727 if (Again)
1728 TryAgain.push_back(TheCopy);
1729 }
1730 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
1731 MachineInstr *TheCopy = VirtCopies[i];
1732 bool Again = false;
1733 if (!JoinCopy(TheCopy, Again))
1734 if (Again)
1735 TryAgain.push_back(TheCopy);
1736 }
1737 }
1738
joinIntervals()1739 void RegisterCoalescer::joinIntervals() {
1740 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1741
1742 std::vector<MachineInstr*> TryAgainList;
1743 if (Loops->empty()) {
1744 // If there are no loops in the function, join intervals in function order.
1745 for (MachineFunction::iterator I = MF->begin(), E = MF->end();
1746 I != E; ++I)
1747 CopyCoalesceInMBB(I, TryAgainList);
1748 } else {
1749 // Otherwise, join intervals in inner loops before other intervals.
1750 // Unfortunately we can't just iterate over loop hierarchy here because
1751 // there may be more MBB's than BB's. Collect MBB's for sorting.
1752
1753 // Join intervals in the function prolog first. We want to join physical
1754 // registers with virtual registers before the intervals got too long.
1755 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1756 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
1757 MachineBasicBlock *MBB = I;
1758 MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
1759 }
1760
1761 // Sort by loop depth.
1762 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1763
1764 // Finally, join intervals in loop nest order.
1765 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1766 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
1767 }
1768
1769 // Joining intervals can allow other intervals to be joined. Iteratively join
1770 // until we make no progress.
1771 bool ProgressMade = true;
1772 while (ProgressMade) {
1773 ProgressMade = false;
1774
1775 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1776 MachineInstr *&TheCopy = TryAgainList[i];
1777 if (!TheCopy)
1778 continue;
1779
1780 bool Again = false;
1781 bool Success = JoinCopy(TheCopy, Again);
1782 if (Success || !Again) {
1783 TheCopy= 0; // Mark this one as done.
1784 ProgressMade = true;
1785 }
1786 }
1787 }
1788 }
1789
releaseMemory()1790 void RegisterCoalescer::releaseMemory() {
1791 JoinedCopies.clear();
1792 ReMatCopies.clear();
1793 ReMatDefs.clear();
1794 }
1795
runOnMachineFunction(MachineFunction & fn)1796 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
1797 MF = &fn;
1798 MRI = &fn.getRegInfo();
1799 TM = &fn.getTarget();
1800 TRI = TM->getRegisterInfo();
1801 TII = TM->getInstrInfo();
1802 LIS = &getAnalysis<LiveIntervals>();
1803 LDV = &getAnalysis<LiveDebugVariables>();
1804 AA = &getAnalysis<AliasAnalysis>();
1805 Loops = &getAnalysis<MachineLoopInfo>();
1806
1807 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1808 << "********** Function: "
1809 << ((Value*)MF->getFunction())->getName() << '\n');
1810
1811 if (VerifyCoalescing)
1812 MF->verify(this, "Before register coalescing");
1813
1814 RegClassInfo.runOnMachineFunction(fn);
1815
1816 // Join (coalesce) intervals if requested.
1817 if (EnableJoining) {
1818 joinIntervals();
1819 DEBUG({
1820 dbgs() << "********** INTERVALS POST JOINING **********\n";
1821 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
1822 I != E; ++I){
1823 I->second->print(dbgs(), TRI);
1824 dbgs() << "\n";
1825 }
1826 });
1827 }
1828
1829 // Perform a final pass over the instructions and compute spill weights
1830 // and remove identity moves.
1831 SmallVector<unsigned, 4> DeadDefs, InflateRegs;
1832 for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
1833 mbbi != mbbe; ++mbbi) {
1834 MachineBasicBlock* mbb = mbbi;
1835 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
1836 mii != mie; ) {
1837 MachineInstr *MI = mii;
1838 if (JoinedCopies.count(MI)) {
1839 // Delete all coalesced copies.
1840 bool DoDelete = true;
1841 assert(MI->isCopyLike() && "Unrecognized copy instruction");
1842 unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
1843 unsigned DstReg = MI->getOperand(0).getReg();
1844
1845 // Collect candidates for register class inflation.
1846 if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1847 RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
1848 InflateRegs.push_back(SrcReg);
1849 if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
1850 RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
1851 InflateRegs.push_back(DstReg);
1852
1853 if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
1854 MI->getNumOperands() > 2)
1855 // Do not delete extract_subreg, insert_subreg of physical
1856 // registers unless the definition is dead. e.g.
1857 // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1858 // or else the scavenger may complain. LowerSubregs will
1859 // delete them later.
1860 DoDelete = false;
1861
1862 if (MI->allDefsAreDead()) {
1863 if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1864 LIS->hasInterval(SrcReg))
1865 LIS->shrinkToUses(&LIS->getInterval(SrcReg));
1866 DoDelete = true;
1867 }
1868 if (!DoDelete) {
1869 // We need the instruction to adjust liveness, so make it a KILL.
1870 if (MI->isSubregToReg()) {
1871 MI->RemoveOperand(3);
1872 MI->RemoveOperand(1);
1873 }
1874 MI->setDesc(TII->get(TargetOpcode::KILL));
1875 mii = llvm::next(mii);
1876 } else {
1877 LIS->RemoveMachineInstrFromMaps(MI);
1878 mii = mbbi->erase(mii);
1879 ++numPeep;
1880 }
1881 continue;
1882 }
1883
1884 // Now check if this is a remat'ed def instruction which is now dead.
1885 if (ReMatDefs.count(MI)) {
1886 bool isDead = true;
1887 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1888 const MachineOperand &MO = MI->getOperand(i);
1889 if (!MO.isReg())
1890 continue;
1891 unsigned Reg = MO.getReg();
1892 if (!Reg)
1893 continue;
1894 DeadDefs.push_back(Reg);
1895 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1896 // Remat may also enable register class inflation.
1897 if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
1898 InflateRegs.push_back(Reg);
1899 }
1900 if (MO.isDead())
1901 continue;
1902 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
1903 !MRI->use_nodbg_empty(Reg)) {
1904 isDead = false;
1905 break;
1906 }
1907 }
1908 if (isDead) {
1909 while (!DeadDefs.empty()) {
1910 unsigned DeadDef = DeadDefs.back();
1911 DeadDefs.pop_back();
1912 RemoveDeadDef(LIS->getInterval(DeadDef), MI);
1913 }
1914 LIS->RemoveMachineInstrFromMaps(mii);
1915 mii = mbbi->erase(mii);
1916 continue;
1917 } else
1918 DeadDefs.clear();
1919 }
1920
1921 ++mii;
1922
1923 // Check for now unnecessary kill flags.
1924 if (LIS->isNotInMIMap(MI)) continue;
1925 SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
1926 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1927 MachineOperand &MO = MI->getOperand(i);
1928 if (!MO.isReg() || !MO.isKill()) continue;
1929 unsigned reg = MO.getReg();
1930 if (!reg || !LIS->hasInterval(reg)) continue;
1931 if (!LIS->getInterval(reg).killedAt(DefIdx)) {
1932 MO.setIsKill(false);
1933 continue;
1934 }
1935 // When leaving a kill flag on a physreg, check if any subregs should
1936 // remain alive.
1937 if (!TargetRegisterInfo::isPhysicalRegister(reg))
1938 continue;
1939 for (const uint16_t *SR = TRI->getSubRegisters(reg);
1940 unsigned S = *SR; ++SR)
1941 if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
1942 MI->addRegisterDefined(S, TRI);
1943 }
1944 }
1945 }
1946
1947 // After deleting a lot of copies, register classes may be less constrained.
1948 // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
1949 // DPR inflation.
1950 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
1951 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
1952 InflateRegs.end());
1953 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
1954 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
1955 unsigned Reg = InflateRegs[i];
1956 if (MRI->reg_nodbg_empty(Reg))
1957 continue;
1958 if (MRI->recomputeRegClass(Reg, *TM)) {
1959 DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
1960 << MRI->getRegClass(Reg)->getName() << '\n');
1961 ++NumInflated;
1962 }
1963 }
1964
1965 DEBUG(dump());
1966 DEBUG(LDV->dump());
1967 if (VerifyCoalescing)
1968 MF->verify(this, "After register coalescing");
1969 return true;
1970 }
1971
1972 /// print - Implement the dump method.
print(raw_ostream & O,const Module * m) const1973 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
1974 LIS->print(O, m);
1975 }
1976