1 //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfoImpl class, it just provides default
11 // implementations of various methods.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Target/TargetInstrInfo.h"
16 #include "llvm/Target/TargetLowering.h"
17 #include "llvm/Target/TargetMachine.h"
18 #include "llvm/Target/TargetRegisterInfo.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 using namespace llvm;
33
34 static cl::opt<bool> DisableHazardRecognizer(
35 "disable-sched-hazard", cl::Hidden, cl::init(false),
36 cl::desc("Disable hazard detection during preRA scheduling"));
37
38 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
39 /// after it, replacing it with an unconditional branch to NewDest.
40 void
ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,MachineBasicBlock * NewDest) const41 TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
42 MachineBasicBlock *NewDest) const {
43 MachineBasicBlock *MBB = Tail->getParent();
44
45 // Remove all the old successors of MBB from the CFG.
46 while (!MBB->succ_empty())
47 MBB->removeSuccessor(MBB->succ_begin());
48
49 // Remove all the dead instructions from the end of MBB.
50 MBB->erase(Tail, MBB->end());
51
52 // If MBB isn't immediately before MBB, insert a branch to it.
53 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
54 InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
55 Tail->getDebugLoc());
56 MBB->addSuccessor(NewDest);
57 }
58
59 // commuteInstruction - The default implementation of this method just exchanges
60 // the two operands returned by findCommutedOpIndices.
commuteInstruction(MachineInstr * MI,bool NewMI) const61 MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
62 bool NewMI) const {
63 const MCInstrDesc &MCID = MI->getDesc();
64 bool HasDef = MCID.getNumDefs();
65 if (HasDef && !MI->getOperand(0).isReg())
66 // No idea how to commute this instruction. Target should implement its own.
67 return 0;
68 unsigned Idx1, Idx2;
69 if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
70 std::string msg;
71 raw_string_ostream Msg(msg);
72 Msg << "Don't know how to commute: " << *MI;
73 report_fatal_error(Msg.str());
74 }
75
76 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
77 "This only knows how to commute register operands so far");
78 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
79 unsigned Reg1 = MI->getOperand(Idx1).getReg();
80 unsigned Reg2 = MI->getOperand(Idx2).getReg();
81 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
82 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
83 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
84 bool Reg1IsKill = MI->getOperand(Idx1).isKill();
85 bool Reg2IsKill = MI->getOperand(Idx2).isKill();
86 // If destination is tied to either of the commuted source register, then
87 // it must be updated.
88 if (HasDef && Reg0 == Reg1 &&
89 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
90 Reg2IsKill = false;
91 Reg0 = Reg2;
92 SubReg0 = SubReg2;
93 } else if (HasDef && Reg0 == Reg2 &&
94 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
95 Reg1IsKill = false;
96 Reg0 = Reg1;
97 SubReg0 = SubReg1;
98 }
99
100 if (NewMI) {
101 // Create a new instruction.
102 bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
103 MachineFunction &MF = *MI->getParent()->getParent();
104 if (HasDef)
105 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
106 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead), SubReg0)
107 .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
108 .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
109 else
110 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
111 .addReg(Reg2, getKillRegState(Reg2IsKill), SubReg2)
112 .addReg(Reg1, getKillRegState(Reg1IsKill), SubReg1);
113 }
114
115 if (HasDef) {
116 MI->getOperand(0).setReg(Reg0);
117 MI->getOperand(0).setSubReg(SubReg0);
118 }
119 MI->getOperand(Idx2).setReg(Reg1);
120 MI->getOperand(Idx1).setReg(Reg2);
121 MI->getOperand(Idx2).setSubReg(SubReg1);
122 MI->getOperand(Idx1).setSubReg(SubReg2);
123 MI->getOperand(Idx2).setIsKill(Reg1IsKill);
124 MI->getOperand(Idx1).setIsKill(Reg2IsKill);
125 return MI;
126 }
127
128 /// findCommutedOpIndices - If specified MI is commutable, return the two
129 /// operand indices that would swap value. Return true if the instruction
130 /// is not in a form which this routine understands.
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const131 bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
132 unsigned &SrcOpIdx1,
133 unsigned &SrcOpIdx2) const {
134 assert(!MI->isBundle() &&
135 "TargetInstrInfoImpl::findCommutedOpIndices() can't handle bundles");
136
137 const MCInstrDesc &MCID = MI->getDesc();
138 if (!MCID.isCommutable())
139 return false;
140 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
141 // is not true, then the target must implement this.
142 SrcOpIdx1 = MCID.getNumDefs();
143 SrcOpIdx2 = SrcOpIdx1 + 1;
144 if (!MI->getOperand(SrcOpIdx1).isReg() ||
145 !MI->getOperand(SrcOpIdx2).isReg())
146 // No idea.
147 return false;
148 return true;
149 }
150
151
152 bool
isUnpredicatedTerminator(const MachineInstr * MI) const153 TargetInstrInfoImpl::isUnpredicatedTerminator(const MachineInstr *MI) const {
154 if (!MI->isTerminator()) return false;
155
156 // Conditional branch is a special case.
157 if (MI->isBranch() && !MI->isBarrier())
158 return true;
159 if (!MI->isPredicable())
160 return true;
161 return !isPredicated(MI);
162 }
163
164
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const165 bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
166 const SmallVectorImpl<MachineOperand> &Pred) const {
167 bool MadeChange = false;
168
169 assert(!MI->isBundle() &&
170 "TargetInstrInfoImpl::PredicateInstruction() can't handle bundles");
171
172 const MCInstrDesc &MCID = MI->getDesc();
173 if (!MI->isPredicable())
174 return false;
175
176 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
177 if (MCID.OpInfo[i].isPredicate()) {
178 MachineOperand &MO = MI->getOperand(i);
179 if (MO.isReg()) {
180 MO.setReg(Pred[j].getReg());
181 MadeChange = true;
182 } else if (MO.isImm()) {
183 MO.setImm(Pred[j].getImm());
184 MadeChange = true;
185 } else if (MO.isMBB()) {
186 MO.setMBB(Pred[j].getMBB());
187 MadeChange = true;
188 }
189 ++j;
190 }
191 }
192 return MadeChange;
193 }
194
hasLoadFromStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const195 bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI,
196 const MachineMemOperand *&MMO,
197 int &FrameIndex) const {
198 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
199 oe = MI->memoperands_end();
200 o != oe;
201 ++o) {
202 if ((*o)->isLoad() && (*o)->getValue())
203 if (const FixedStackPseudoSourceValue *Value =
204 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
205 FrameIndex = Value->getFrameIndex();
206 MMO = *o;
207 return true;
208 }
209 }
210 return false;
211 }
212
hasStoreToStackSlot(const MachineInstr * MI,const MachineMemOperand * & MMO,int & FrameIndex) const213 bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI,
214 const MachineMemOperand *&MMO,
215 int &FrameIndex) const {
216 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
217 oe = MI->memoperands_end();
218 o != oe;
219 ++o) {
220 if ((*o)->isStore() && (*o)->getValue())
221 if (const FixedStackPseudoSourceValue *Value =
222 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
223 FrameIndex = Value->getFrameIndex();
224 MMO = *o;
225 return true;
226 }
227 }
228 return false;
229 }
230
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const231 void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
232 MachineBasicBlock::iterator I,
233 unsigned DestReg,
234 unsigned SubIdx,
235 const MachineInstr *Orig,
236 const TargetRegisterInfo &TRI) const {
237 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
238 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
239 MBB.insert(I, MI);
240 }
241
242 bool
produceSameValue(const MachineInstr * MI0,const MachineInstr * MI1,const MachineRegisterInfo * MRI) const243 TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
244 const MachineInstr *MI1,
245 const MachineRegisterInfo *MRI) const {
246 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
247 }
248
duplicate(MachineInstr * Orig,MachineFunction & MF) const249 MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
250 MachineFunction &MF) const {
251 assert(!Orig->isNotDuplicable() &&
252 "Instruction cannot be duplicated");
253 return MF.CloneMachineInstr(Orig);
254 }
255
256 // If the COPY instruction in MI can be folded to a stack operation, return
257 // the register class to use.
canFoldCopy(const MachineInstr * MI,unsigned FoldIdx)258 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
259 unsigned FoldIdx) {
260 assert(MI->isCopy() && "MI must be a COPY instruction");
261 if (MI->getNumOperands() != 2)
262 return 0;
263 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
264
265 const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
266 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
267
268 if (FoldOp.getSubReg() || LiveOp.getSubReg())
269 return 0;
270
271 unsigned FoldReg = FoldOp.getReg();
272 unsigned LiveReg = LiveOp.getReg();
273
274 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
275 "Cannot fold physregs");
276
277 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
278 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
279
280 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
281 return RC->contains(LiveOp.getReg()) ? RC : 0;
282
283 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
284 return RC;
285
286 // FIXME: Allow folding when register classes are memory compatible.
287 return 0;
288 }
289
290 bool TargetInstrInfoImpl::
canFoldMemoryOperand(const MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops) const291 canFoldMemoryOperand(const MachineInstr *MI,
292 const SmallVectorImpl<unsigned> &Ops) const {
293 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
294 }
295
296 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
297 /// slot into the specified machine instruction for the specified operand(s).
298 /// If this is possible, a new instruction is returned with the specified
299 /// operand folded, otherwise NULL is returned. The client is responsible for
300 /// removing the old instruction and adding the new one in the instruction
301 /// stream.
302 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,int FI) const303 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
304 const SmallVectorImpl<unsigned> &Ops,
305 int FI) const {
306 unsigned Flags = 0;
307 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
308 if (MI->getOperand(Ops[i]).isDef())
309 Flags |= MachineMemOperand::MOStore;
310 else
311 Flags |= MachineMemOperand::MOLoad;
312
313 MachineBasicBlock *MBB = MI->getParent();
314 assert(MBB && "foldMemoryOperand needs an inserted instruction");
315 MachineFunction &MF = *MBB->getParent();
316
317 // Ask the target to do the actual folding.
318 if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
319 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
320 assert((!(Flags & MachineMemOperand::MOStore) ||
321 NewMI->mayStore()) &&
322 "Folded a def to a non-store!");
323 assert((!(Flags & MachineMemOperand::MOLoad) ||
324 NewMI->mayLoad()) &&
325 "Folded a use to a non-load!");
326 const MachineFrameInfo &MFI = *MF.getFrameInfo();
327 assert(MFI.getObjectOffset(FI) != -1);
328 MachineMemOperand *MMO =
329 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
330 Flags, MFI.getObjectSize(FI),
331 MFI.getObjectAlignment(FI));
332 NewMI->addMemOperand(MF, MMO);
333
334 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
335 return MBB->insert(MI, NewMI);
336 }
337
338 // Straight COPY may fold as load/store.
339 if (!MI->isCopy() || Ops.size() != 1)
340 return 0;
341
342 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
343 if (!RC)
344 return 0;
345
346 const MachineOperand &MO = MI->getOperand(1-Ops[0]);
347 MachineBasicBlock::iterator Pos = MI;
348 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
349
350 if (Flags == MachineMemOperand::MOStore)
351 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
352 else
353 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
354 return --Pos;
355 }
356
357 /// foldMemoryOperand - Same as the previous version except it allows folding
358 /// of any load and store from / to any address, not just from a specific
359 /// stack slot.
360 MachineInstr*
foldMemoryOperand(MachineBasicBlock::iterator MI,const SmallVectorImpl<unsigned> & Ops,MachineInstr * LoadMI) const361 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
362 const SmallVectorImpl<unsigned> &Ops,
363 MachineInstr* LoadMI) const {
364 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
365 #ifndef NDEBUG
366 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
367 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
368 #endif
369 MachineBasicBlock &MBB = *MI->getParent();
370 MachineFunction &MF = *MBB.getParent();
371
372 // Ask the target to do the actual folding.
373 MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
374 if (!NewMI) return 0;
375
376 NewMI = MBB.insert(MI, NewMI);
377
378 // Copy the memoperands from the load to the folded instruction.
379 NewMI->setMemRefs(LoadMI->memoperands_begin(),
380 LoadMI->memoperands_end());
381
382 return NewMI;
383 }
384
385 bool TargetInstrInfo::
isReallyTriviallyReMaterializableGeneric(const MachineInstr * MI,AliasAnalysis * AA) const386 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
387 AliasAnalysis *AA) const {
388 const MachineFunction &MF = *MI->getParent()->getParent();
389 const MachineRegisterInfo &MRI = MF.getRegInfo();
390 const TargetMachine &TM = MF.getTarget();
391 const TargetInstrInfo &TII = *TM.getInstrInfo();
392
393 // Remat clients assume operand 0 is the defined register.
394 if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
395 return false;
396 unsigned DefReg = MI->getOperand(0).getReg();
397
398 // A sub-register definition can only be rematerialized if the instruction
399 // doesn't read the other parts of the register. Otherwise it is really a
400 // read-modify-write operation on the full virtual register which cannot be
401 // moved safely.
402 if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
403 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
404 return false;
405
406 // A load from a fixed stack slot can be rematerialized. This may be
407 // redundant with subsequent checks, but it's target-independent,
408 // simple, and a common case.
409 int FrameIdx = 0;
410 if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
411 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
412 return true;
413
414 // Avoid instructions obviously unsafe for remat.
415 if (MI->isNotDuplicable() || MI->mayStore() ||
416 MI->hasUnmodeledSideEffects())
417 return false;
418
419 // Don't remat inline asm. We have no idea how expensive it is
420 // even if it's side effect free.
421 if (MI->isInlineAsm())
422 return false;
423
424 // Avoid instructions which load from potentially varying memory.
425 if (MI->mayLoad() && !MI->isInvariantLoad(AA))
426 return false;
427
428 // If any of the registers accessed are non-constant, conservatively assume
429 // the instruction is not rematerializable.
430 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
431 const MachineOperand &MO = MI->getOperand(i);
432 if (!MO.isReg()) continue;
433 unsigned Reg = MO.getReg();
434 if (Reg == 0)
435 continue;
436
437 // Check for a well-behaved physical register.
438 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
439 if (MO.isUse()) {
440 // If the physreg has no defs anywhere, it's just an ambient register
441 // and we can freely move its uses. Alternatively, if it's allocatable,
442 // it could get allocated to something with a def during allocation.
443 if (!MRI.isConstantPhysReg(Reg, MF))
444 return false;
445 } else {
446 // A physreg def. We can't remat it.
447 return false;
448 }
449 continue;
450 }
451
452 // Only allow one virtual-register def. There may be multiple defs of the
453 // same virtual register, though.
454 if (MO.isDef() && Reg != DefReg)
455 return false;
456
457 // Don't allow any virtual-register uses. Rematting an instruction with
458 // virtual register uses would length the live ranges of the uses, which
459 // is not necessarily a good idea, certainly not "trivial".
460 if (MO.isUse())
461 return false;
462 }
463
464 // Everything checked out.
465 return true;
466 }
467
468 /// isSchedulingBoundary - Test if the given instruction should be
469 /// considered a scheduling boundary. This primarily includes labels
470 /// and terminators.
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const471 bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI,
472 const MachineBasicBlock *MBB,
473 const MachineFunction &MF) const{
474 // Terminators and labels can't be scheduled around.
475 if (MI->isTerminator() || MI->isLabel())
476 return true;
477
478 // Don't attempt to schedule around any instruction that defines
479 // a stack-oriented pointer, as it's unlikely to be profitable. This
480 // saves compile time, because it doesn't require every single
481 // stack slot reference to depend on the instruction that does the
482 // modification.
483 const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
484 if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore()))
485 return true;
486
487 return false;
488 }
489
490 // Provide a global flag for disabling the PreRA hazard recognizer that targets
491 // may choose to honor.
usePreRAHazardRecognizer() const492 bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const {
493 return !DisableHazardRecognizer;
494 }
495
496 // Default implementation of CreateTargetRAHazardRecognizer.
497 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetHazardRecognizer(const TargetMachine * TM,const ScheduleDAG * DAG) const498 CreateTargetHazardRecognizer(const TargetMachine *TM,
499 const ScheduleDAG *DAG) const {
500 // Dummy hazard recognizer allows all instructions to issue.
501 return new ScheduleHazardRecognizer();
502 }
503
504 // Default implementation of CreateTargetPostRAHazardRecognizer.
505 ScheduleHazardRecognizer *TargetInstrInfoImpl::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const506 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
507 const ScheduleDAG *DAG) const {
508 return (ScheduleHazardRecognizer *)
509 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
510 }
511
512 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const513 TargetInstrInfoImpl::getOperandLatency(const InstrItineraryData *ItinData,
514 SDNode *DefNode, unsigned DefIdx,
515 SDNode *UseNode, unsigned UseIdx) const {
516 if (!ItinData || ItinData->isEmpty())
517 return -1;
518
519 if (!DefNode->isMachineOpcode())
520 return -1;
521
522 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
523 if (!UseNode->isMachineOpcode())
524 return ItinData->getOperandCycle(DefClass, DefIdx);
525 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
526 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
527 }
528
getInstrLatency(const InstrItineraryData * ItinData,SDNode * N) const529 int TargetInstrInfoImpl::getInstrLatency(const InstrItineraryData *ItinData,
530 SDNode *N) const {
531 if (!ItinData || ItinData->isEmpty())
532 return 1;
533
534 if (!N->isMachineOpcode())
535 return 1;
536
537 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
538 }
539
540