1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
13 //
14 // A = B op C
15 //
16 // to:
17 //
18 // A = B
19 // A op= C
20 //
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
24 //
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/MC/MCInstrItineraries.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetOptions.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/ADT/BitVector.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/SmallSet.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/STLExtras.h"
51 using namespace llvm;
52
53 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
54 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
55 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
56 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
57 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
58 STATISTIC(NumReMats, "Number of instructions re-materialized");
59 STATISTIC(NumDeletes, "Number of dead instructions deleted");
60 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
61 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
62
63 namespace {
64 class TwoAddressInstructionPass : public MachineFunctionPass {
65 const TargetInstrInfo *TII;
66 const TargetRegisterInfo *TRI;
67 const InstrItineraryData *InstrItins;
68 MachineRegisterInfo *MRI;
69 LiveVariables *LV;
70 AliasAnalysis *AA;
71 CodeGenOpt::Level OptLevel;
72
73 // DistanceMap - Keep track the distance of a MI from the start of the
74 // current basic block.
75 DenseMap<MachineInstr*, unsigned> DistanceMap;
76
77 // SrcRegMap - A map from virtual registers to physical registers which
78 // are likely targets to be coalesced to due to copies from physical
79 // registers to virtual registers. e.g. v1024 = move r0.
80 DenseMap<unsigned, unsigned> SrcRegMap;
81
82 // DstRegMap - A map from virtual registers to physical registers which
83 // are likely targets to be coalesced to due to copies to physical
84 // registers from virtual registers. e.g. r1 = move v1024.
85 DenseMap<unsigned, unsigned> DstRegMap;
86
87 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
88 /// during the initial walk of the machine function.
89 SmallVector<MachineInstr*, 16> RegSequences;
90
91 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
92 unsigned Reg,
93 MachineBasicBlock::iterator OldPos);
94
95 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
96 MachineInstr *MI, MachineInstr *DefMI,
97 MachineBasicBlock *MBB, unsigned Loc);
98
99 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
100 unsigned &LastDef);
101
102 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
103 unsigned Dist);
104
105 bool isProfitableToCommute(unsigned regB, unsigned regC,
106 MachineInstr *MI, MachineBasicBlock *MBB,
107 unsigned Dist);
108
109 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
110 MachineFunction::iterator &mbbi,
111 unsigned RegB, unsigned RegC, unsigned Dist);
112
113 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
114
115 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
116 MachineBasicBlock::iterator &nmi,
117 MachineFunction::iterator &mbbi,
118 unsigned RegA, unsigned RegB, unsigned Dist);
119
120 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
121 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
122 SmallVector<NewKill, 4> &NewKills,
123 MachineBasicBlock *MBB, unsigned Dist);
124 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
125 MachineBasicBlock::iterator &nmi,
126 MachineFunction::iterator &mbbi, unsigned Dist);
127
128 bool isDefTooClose(unsigned Reg, unsigned Dist,
129 MachineInstr *MI, MachineBasicBlock *MBB);
130
131 bool RescheduleMIBelowKill(MachineBasicBlock *MBB,
132 MachineBasicBlock::iterator &mi,
133 MachineBasicBlock::iterator &nmi,
134 unsigned Reg);
135 bool RescheduleKillAboveMI(MachineBasicBlock *MBB,
136 MachineBasicBlock::iterator &mi,
137 MachineBasicBlock::iterator &nmi,
138 unsigned Reg);
139
140 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
141 MachineBasicBlock::iterator &nmi,
142 MachineFunction::iterator &mbbi,
143 unsigned SrcIdx, unsigned DstIdx,
144 unsigned Dist,
145 SmallPtrSet<MachineInstr*, 8> &Processed);
146
147 void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
148 SmallPtrSet<MachineInstr*, 8> &Processed);
149
150 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
151 SmallPtrSet<MachineInstr*, 8> &Processed);
152
153 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
154
155 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
156 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
157 /// sub-register references of the register defined by REG_SEQUENCE.
158 bool EliminateRegSequences();
159
160 public:
161 static char ID; // Pass identification, replacement for typeid
TwoAddressInstructionPass()162 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
163 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
164 }
165
getAnalysisUsage(AnalysisUsage & AU) const166 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167 AU.setPreservesCFG();
168 AU.addRequired<AliasAnalysis>();
169 AU.addPreserved<LiveVariables>();
170 AU.addPreservedID(MachineLoopInfoID);
171 AU.addPreservedID(MachineDominatorsID);
172 MachineFunctionPass::getAnalysisUsage(AU);
173 }
174
175 /// runOnMachineFunction - Pass entry point.
176 bool runOnMachineFunction(MachineFunction&);
177 };
178 }
179
180 char TwoAddressInstructionPass::ID = 0;
181 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
182 "Two-Address instruction pass", false, false)
183 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
184 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
185 "Two-Address instruction pass", false, false)
186
187 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
188
189 /// Sink3AddrInstruction - A two-address instruction has been converted to a
190 /// three-address instruction to avoid clobbering a register. Try to sink it
191 /// past the instruction that would kill the above mentioned register to reduce
192 /// register pressure.
Sink3AddrInstruction(MachineBasicBlock * MBB,MachineInstr * MI,unsigned SavedReg,MachineBasicBlock::iterator OldPos)193 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
194 MachineInstr *MI, unsigned SavedReg,
195 MachineBasicBlock::iterator OldPos) {
196 // FIXME: Shouldn't we be trying to do this before we three-addressify the
197 // instruction? After this transformation is done, we no longer need
198 // the instruction to be in three-address form.
199
200 // Check if it's safe to move this instruction.
201 bool SeenStore = true; // Be conservative.
202 if (!MI->isSafeToMove(TII, AA, SeenStore))
203 return false;
204
205 unsigned DefReg = 0;
206 SmallSet<unsigned, 4> UseRegs;
207
208 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
209 const MachineOperand &MO = MI->getOperand(i);
210 if (!MO.isReg())
211 continue;
212 unsigned MOReg = MO.getReg();
213 if (!MOReg)
214 continue;
215 if (MO.isUse() && MOReg != SavedReg)
216 UseRegs.insert(MO.getReg());
217 if (!MO.isDef())
218 continue;
219 if (MO.isImplicit())
220 // Don't try to move it if it implicitly defines a register.
221 return false;
222 if (DefReg)
223 // For now, don't move any instructions that define multiple registers.
224 return false;
225 DefReg = MO.getReg();
226 }
227
228 // Find the instruction that kills SavedReg.
229 MachineInstr *KillMI = NULL;
230 for (MachineRegisterInfo::use_nodbg_iterator
231 UI = MRI->use_nodbg_begin(SavedReg),
232 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
233 MachineOperand &UseMO = UI.getOperand();
234 if (!UseMO.isKill())
235 continue;
236 KillMI = UseMO.getParent();
237 break;
238 }
239
240 // If we find the instruction that kills SavedReg, and it is in an
241 // appropriate location, we can try to sink the current instruction
242 // past it.
243 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
244 KillMI->isTerminator())
245 return false;
246
247 // If any of the definitions are used by another instruction between the
248 // position and the kill use, then it's not safe to sink it.
249 //
250 // FIXME: This can be sped up if there is an easy way to query whether an
251 // instruction is before or after another instruction. Then we can use
252 // MachineRegisterInfo def / use instead.
253 MachineOperand *KillMO = NULL;
254 MachineBasicBlock::iterator KillPos = KillMI;
255 ++KillPos;
256
257 unsigned NumVisited = 0;
258 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
259 MachineInstr *OtherMI = I;
260 // DBG_VALUE cannot be counted against the limit.
261 if (OtherMI->isDebugValue())
262 continue;
263 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
264 return false;
265 ++NumVisited;
266 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
267 MachineOperand &MO = OtherMI->getOperand(i);
268 if (!MO.isReg())
269 continue;
270 unsigned MOReg = MO.getReg();
271 if (!MOReg)
272 continue;
273 if (DefReg == MOReg)
274 return false;
275
276 if (MO.isKill()) {
277 if (OtherMI == KillMI && MOReg == SavedReg)
278 // Save the operand that kills the register. We want to unset the kill
279 // marker if we can sink MI past it.
280 KillMO = &MO;
281 else if (UseRegs.count(MOReg))
282 // One of the uses is killed before the destination.
283 return false;
284 }
285 }
286 }
287
288 // Update kill and LV information.
289 KillMO->setIsKill(false);
290 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
291 KillMO->setIsKill(true);
292
293 if (LV)
294 LV->replaceKillInstruction(SavedReg, KillMI, MI);
295
296 // Move instruction to its destination.
297 MBB->remove(MI);
298 MBB->insert(KillPos, MI);
299
300 ++Num3AddrSunk;
301 return true;
302 }
303
304 /// isTwoAddrUse - Return true if the specified MI is using the specified
305 /// register as a two-address operand.
isTwoAddrUse(MachineInstr * UseMI,unsigned Reg)306 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
307 const MCInstrDesc &MCID = UseMI->getDesc();
308 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
309 MachineOperand &MO = UseMI->getOperand(i);
310 if (MO.isReg() && MO.getReg() == Reg &&
311 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
312 // Earlier use is a two-address one.
313 return true;
314 }
315 return false;
316 }
317
318 /// isProfitableToReMat - Return true if the heuristics determines it is likely
319 /// to be profitable to re-materialize the definition of Reg rather than copy
320 /// the register.
321 bool
isProfitableToReMat(unsigned Reg,const TargetRegisterClass * RC,MachineInstr * MI,MachineInstr * DefMI,MachineBasicBlock * MBB,unsigned Loc)322 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
323 const TargetRegisterClass *RC,
324 MachineInstr *MI, MachineInstr *DefMI,
325 MachineBasicBlock *MBB, unsigned Loc) {
326 bool OtherUse = false;
327 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
328 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
329 MachineOperand &UseMO = UI.getOperand();
330 MachineInstr *UseMI = UseMO.getParent();
331 MachineBasicBlock *UseMBB = UseMI->getParent();
332 if (UseMBB == MBB) {
333 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
334 if (DI != DistanceMap.end() && DI->second == Loc)
335 continue; // Current use.
336 OtherUse = true;
337 // There is at least one other use in the MBB that will clobber the
338 // register.
339 if (isTwoAddrUse(UseMI, Reg))
340 return true;
341 }
342 }
343
344 // If other uses in MBB are not two-address uses, then don't remat.
345 if (OtherUse)
346 return false;
347
348 // No other uses in the same block, remat if it's defined in the same
349 // block so it does not unnecessarily extend the live range.
350 return MBB == DefMI->getParent();
351 }
352
353 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
354 /// last instruction in the MBB that defines the specified register and the
355 /// two-address instruction which is being processed. It also returns the last
356 /// def location by reference
NoUseAfterLastDef(unsigned Reg,MachineBasicBlock * MBB,unsigned Dist,unsigned & LastDef)357 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
358 MachineBasicBlock *MBB, unsigned Dist,
359 unsigned &LastDef) {
360 LastDef = 0;
361 unsigned LastUse = Dist;
362 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
363 E = MRI->reg_end(); I != E; ++I) {
364 MachineOperand &MO = I.getOperand();
365 MachineInstr *MI = MO.getParent();
366 if (MI->getParent() != MBB || MI->isDebugValue())
367 continue;
368 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
369 if (DI == DistanceMap.end())
370 continue;
371 if (MO.isUse() && DI->second < LastUse)
372 LastUse = DI->second;
373 if (MO.isDef() && DI->second > LastDef)
374 LastDef = DI->second;
375 }
376
377 return !(LastUse > LastDef && LastUse < Dist);
378 }
379
FindLastUseInMBB(unsigned Reg,MachineBasicBlock * MBB,unsigned Dist)380 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
381 MachineBasicBlock *MBB,
382 unsigned Dist) {
383 unsigned LastUseDist = 0;
384 MachineInstr *LastUse = 0;
385 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
386 E = MRI->reg_end(); I != E; ++I) {
387 MachineOperand &MO = I.getOperand();
388 MachineInstr *MI = MO.getParent();
389 if (MI->getParent() != MBB || MI->isDebugValue())
390 continue;
391 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
392 if (DI == DistanceMap.end())
393 continue;
394 if (DI->second >= Dist)
395 continue;
396
397 if (MO.isUse() && DI->second > LastUseDist) {
398 LastUse = DI->first;
399 LastUseDist = DI->second;
400 }
401 }
402 return LastUse;
403 }
404
405 /// isCopyToReg - Return true if the specified MI is a copy instruction or
406 /// a extract_subreg instruction. It also returns the source and destination
407 /// registers and whether they are physical registers by reference.
isCopyToReg(MachineInstr & MI,const TargetInstrInfo * TII,unsigned & SrcReg,unsigned & DstReg,bool & IsSrcPhys,bool & IsDstPhys)408 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
409 unsigned &SrcReg, unsigned &DstReg,
410 bool &IsSrcPhys, bool &IsDstPhys) {
411 SrcReg = 0;
412 DstReg = 0;
413 if (MI.isCopy()) {
414 DstReg = MI.getOperand(0).getReg();
415 SrcReg = MI.getOperand(1).getReg();
416 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
417 DstReg = MI.getOperand(0).getReg();
418 SrcReg = MI.getOperand(2).getReg();
419 } else
420 return false;
421
422 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
423 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
424 return true;
425 }
426
427 /// isKilled - Test if the given register value, which is used by the given
428 /// instruction, is killed by the given instruction. This looks through
429 /// coalescable copies to see if the original value is potentially not killed.
430 ///
431 /// For example, in this code:
432 ///
433 /// %reg1034 = copy %reg1024
434 /// %reg1035 = copy %reg1025<kill>
435 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
436 ///
437 /// %reg1034 is not considered to be killed, since it is copied from a
438 /// register which is not killed. Treating it as not killed lets the
439 /// normal heuristics commute the (two-address) add, which lets
440 /// coalescing eliminate the extra copy.
441 ///
isKilled(MachineInstr & MI,unsigned Reg,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)442 static bool isKilled(MachineInstr &MI, unsigned Reg,
443 const MachineRegisterInfo *MRI,
444 const TargetInstrInfo *TII) {
445 MachineInstr *DefMI = &MI;
446 for (;;) {
447 if (!DefMI->killsRegister(Reg))
448 return false;
449 if (TargetRegisterInfo::isPhysicalRegister(Reg))
450 return true;
451 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
452 // If there are multiple defs, we can't do a simple analysis, so just
453 // go with what the kill flag says.
454 if (llvm::next(Begin) != MRI->def_end())
455 return true;
456 DefMI = &*Begin;
457 bool IsSrcPhys, IsDstPhys;
458 unsigned SrcReg, DstReg;
459 // If the def is something other than a copy, then it isn't going to
460 // be coalesced, so follow the kill flag.
461 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
462 return true;
463 Reg = SrcReg;
464 }
465 }
466
467 /// isTwoAddrUse - Return true if the specified MI uses the specified register
468 /// as a two-address use. If so, return the destination register by reference.
isTwoAddrUse(MachineInstr & MI,unsigned Reg,unsigned & DstReg)469 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
470 const MCInstrDesc &MCID = MI.getDesc();
471 unsigned NumOps = MI.isInlineAsm()
472 ? MI.getNumOperands() : MCID.getNumOperands();
473 for (unsigned i = 0; i != NumOps; ++i) {
474 const MachineOperand &MO = MI.getOperand(i);
475 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
476 continue;
477 unsigned ti;
478 if (MI.isRegTiedToDefOperand(i, &ti)) {
479 DstReg = MI.getOperand(ti).getReg();
480 return true;
481 }
482 }
483 return false;
484 }
485
486 /// findLocalKill - Look for an instruction below MI in the MBB that kills the
487 /// specified register. Returns null if there are any other Reg use between the
488 /// instructions.
489 static
findLocalKill(unsigned Reg,MachineBasicBlock * MBB,MachineInstr * MI,MachineRegisterInfo * MRI,DenseMap<MachineInstr *,unsigned> & DistanceMap)490 MachineInstr *findLocalKill(unsigned Reg, MachineBasicBlock *MBB,
491 MachineInstr *MI, MachineRegisterInfo *MRI,
492 DenseMap<MachineInstr*, unsigned> &DistanceMap) {
493 MachineInstr *KillMI = 0;
494 for (MachineRegisterInfo::use_nodbg_iterator
495 UI = MRI->use_nodbg_begin(Reg),
496 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
497 MachineInstr *UseMI = &*UI;
498 if (UseMI == MI || UseMI->getParent() != MBB)
499 continue;
500 if (DistanceMap.count(UseMI))
501 continue;
502 if (!UI.getOperand().isKill())
503 return 0;
504 if (KillMI)
505 return 0; // -O0 kill markers cannot be trusted?
506 KillMI = UseMI;
507 }
508
509 return KillMI;
510 }
511
512 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
513 /// use, return the use instruction if it's a copy or a two-address use.
514 static
findOnlyInterestingUse(unsigned Reg,MachineBasicBlock * MBB,MachineRegisterInfo * MRI,const TargetInstrInfo * TII,bool & IsCopy,unsigned & DstReg,bool & IsDstPhys)515 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
516 MachineRegisterInfo *MRI,
517 const TargetInstrInfo *TII,
518 bool &IsCopy,
519 unsigned &DstReg, bool &IsDstPhys) {
520 if (!MRI->hasOneNonDBGUse(Reg))
521 // None or more than one use.
522 return 0;
523 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
524 if (UseMI.getParent() != MBB)
525 return 0;
526 unsigned SrcReg;
527 bool IsSrcPhys;
528 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
529 IsCopy = true;
530 return &UseMI;
531 }
532 IsDstPhys = false;
533 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
534 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
535 return &UseMI;
536 }
537 return 0;
538 }
539
540 /// getMappedReg - Return the physical register the specified virtual register
541 /// might be mapped to.
542 static unsigned
getMappedReg(unsigned Reg,DenseMap<unsigned,unsigned> & RegMap)543 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
544 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
545 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
546 if (SI == RegMap.end())
547 return 0;
548 Reg = SI->second;
549 }
550 if (TargetRegisterInfo::isPhysicalRegister(Reg))
551 return Reg;
552 return 0;
553 }
554
555 /// regsAreCompatible - Return true if the two registers are equal or aliased.
556 ///
557 static bool
regsAreCompatible(unsigned RegA,unsigned RegB,const TargetRegisterInfo * TRI)558 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
559 if (RegA == RegB)
560 return true;
561 if (!RegA || !RegB)
562 return false;
563 return TRI->regsOverlap(RegA, RegB);
564 }
565
566
567 /// isProfitableToReMat - Return true if it's potentially profitable to commute
568 /// the two-address instruction that's being processed.
569 bool
isProfitableToCommute(unsigned regB,unsigned regC,MachineInstr * MI,MachineBasicBlock * MBB,unsigned Dist)570 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
571 MachineInstr *MI, MachineBasicBlock *MBB,
572 unsigned Dist) {
573 if (OptLevel == CodeGenOpt::None)
574 return false;
575
576 // Determine if it's profitable to commute this two address instruction. In
577 // general, we want no uses between this instruction and the definition of
578 // the two-address register.
579 // e.g.
580 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
581 // %reg1029<def> = MOV8rr %reg1028
582 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
583 // insert => %reg1030<def> = MOV8rr %reg1028
584 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
585 // In this case, it might not be possible to coalesce the second MOV8rr
586 // instruction if the first one is coalesced. So it would be profitable to
587 // commute it:
588 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
589 // %reg1029<def> = MOV8rr %reg1028
590 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
591 // insert => %reg1030<def> = MOV8rr %reg1029
592 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
593
594 if (!MI->killsRegister(regC))
595 return false;
596
597 // Ok, we have something like:
598 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
599 // let's see if it's worth commuting it.
600
601 // Look for situations like this:
602 // %reg1024<def> = MOV r1
603 // %reg1025<def> = MOV r0
604 // %reg1026<def> = ADD %reg1024, %reg1025
605 // r0 = MOV %reg1026
606 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
607 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
608 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
609 unsigned ToRegB = getMappedReg(regB, DstRegMap);
610 unsigned ToRegC = getMappedReg(regC, DstRegMap);
611 if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
612 ((!FromRegC && !ToRegC) ||
613 regsAreCompatible(FromRegB, ToRegC, TRI) ||
614 regsAreCompatible(FromRegC, ToRegB, TRI)))
615 return true;
616
617 // If there is a use of regC between its last def (could be livein) and this
618 // instruction, then bail.
619 unsigned LastDefC = 0;
620 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
621 return false;
622
623 // If there is a use of regB between its last def (could be livein) and this
624 // instruction, then go ahead and make this transformation.
625 unsigned LastDefB = 0;
626 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
627 return true;
628
629 // Since there are no intervening uses for both registers, then commute
630 // if the def of regC is closer. Its live interval is shorter.
631 return LastDefB && LastDefC && LastDefC > LastDefB;
632 }
633
634 /// CommuteInstruction - Commute a two-address instruction and update the basic
635 /// block, distance map, and live variables if needed. Return true if it is
636 /// successful.
637 bool
CommuteInstruction(MachineBasicBlock::iterator & mi,MachineFunction::iterator & mbbi,unsigned RegB,unsigned RegC,unsigned Dist)638 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
639 MachineFunction::iterator &mbbi,
640 unsigned RegB, unsigned RegC, unsigned Dist) {
641 MachineInstr *MI = mi;
642 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
643 MachineInstr *NewMI = TII->commuteInstruction(MI);
644
645 if (NewMI == 0) {
646 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
647 return false;
648 }
649
650 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
651 // If the instruction changed to commute it, update livevar.
652 if (NewMI != MI) {
653 if (LV)
654 // Update live variables
655 LV->replaceKillInstruction(RegC, MI, NewMI);
656
657 mbbi->insert(mi, NewMI); // Insert the new inst
658 mbbi->erase(mi); // Nuke the old inst.
659 mi = NewMI;
660 DistanceMap.insert(std::make_pair(NewMI, Dist));
661 }
662
663 // Update source register map.
664 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
665 if (FromRegC) {
666 unsigned RegA = MI->getOperand(0).getReg();
667 SrcRegMap[RegA] = FromRegC;
668 }
669
670 return true;
671 }
672
673 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
674 /// given 2-address instruction to a 3-address one.
675 bool
isProfitableToConv3Addr(unsigned RegA,unsigned RegB)676 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
677 // Look for situations like this:
678 // %reg1024<def> = MOV r1
679 // %reg1025<def> = MOV r0
680 // %reg1026<def> = ADD %reg1024, %reg1025
681 // r2 = MOV %reg1026
682 // Turn ADD into a 3-address instruction to avoid a copy.
683 unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
684 if (!FromRegB)
685 return false;
686 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
687 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
688 }
689
690 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
691 /// three address one. Return true if this transformation was successful.
692 bool
ConvertInstTo3Addr(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,MachineFunction::iterator & mbbi,unsigned RegA,unsigned RegB,unsigned Dist)693 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
694 MachineBasicBlock::iterator &nmi,
695 MachineFunction::iterator &mbbi,
696 unsigned RegA, unsigned RegB,
697 unsigned Dist) {
698 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
699 if (NewMI) {
700 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
701 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
702 bool Sunk = false;
703
704 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
705 // FIXME: Temporary workaround. If the new instruction doesn't
706 // uses RegB, convertToThreeAddress must have created more
707 // then one instruction.
708 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
709
710 mbbi->erase(mi); // Nuke the old inst.
711
712 if (!Sunk) {
713 DistanceMap.insert(std::make_pair(NewMI, Dist));
714 mi = NewMI;
715 nmi = llvm::next(mi);
716 }
717
718 // Update source and destination register maps.
719 SrcRegMap.erase(RegA);
720 DstRegMap.erase(RegB);
721 return true;
722 }
723
724 return false;
725 }
726
727 /// ScanUses - Scan forward recursively for only uses, update maps if the use
728 /// is a copy or a two-address instruction.
729 void
ScanUses(unsigned DstReg,MachineBasicBlock * MBB,SmallPtrSet<MachineInstr *,8> & Processed)730 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
731 SmallPtrSet<MachineInstr*, 8> &Processed) {
732 SmallVector<unsigned, 4> VirtRegPairs;
733 bool IsDstPhys;
734 bool IsCopy = false;
735 unsigned NewReg = 0;
736 unsigned Reg = DstReg;
737 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
738 NewReg, IsDstPhys)) {
739 if (IsCopy && !Processed.insert(UseMI))
740 break;
741
742 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
743 if (DI != DistanceMap.end())
744 // Earlier in the same MBB.Reached via a back edge.
745 break;
746
747 if (IsDstPhys) {
748 VirtRegPairs.push_back(NewReg);
749 break;
750 }
751 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
752 if (!isNew)
753 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
754 VirtRegPairs.push_back(NewReg);
755 Reg = NewReg;
756 }
757
758 if (!VirtRegPairs.empty()) {
759 unsigned ToReg = VirtRegPairs.back();
760 VirtRegPairs.pop_back();
761 while (!VirtRegPairs.empty()) {
762 unsigned FromReg = VirtRegPairs.back();
763 VirtRegPairs.pop_back();
764 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
765 if (!isNew)
766 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
767 ToReg = FromReg;
768 }
769 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
770 if (!isNew)
771 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
772 }
773 }
774
775 /// ProcessCopy - If the specified instruction is not yet processed, process it
776 /// if it's a copy. For a copy instruction, we find the physical registers the
777 /// source and destination registers might be mapped to. These are kept in
778 /// point-to maps used to determine future optimizations. e.g.
779 /// v1024 = mov r0
780 /// v1025 = mov r1
781 /// v1026 = add v1024, v1025
782 /// r1 = mov r1026
783 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
784 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
785 /// potentially joined with r1 on the output side. It's worthwhile to commute
786 /// 'add' to eliminate a copy.
ProcessCopy(MachineInstr * MI,MachineBasicBlock * MBB,SmallPtrSet<MachineInstr *,8> & Processed)787 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
788 MachineBasicBlock *MBB,
789 SmallPtrSet<MachineInstr*, 8> &Processed) {
790 if (Processed.count(MI))
791 return;
792
793 bool IsSrcPhys, IsDstPhys;
794 unsigned SrcReg, DstReg;
795 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
796 return;
797
798 if (IsDstPhys && !IsSrcPhys)
799 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
800 else if (!IsDstPhys && IsSrcPhys) {
801 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
802 if (!isNew)
803 assert(SrcRegMap[DstReg] == SrcReg &&
804 "Can't map to two src physical registers!");
805
806 ScanUses(DstReg, MBB, Processed);
807 }
808
809 Processed.insert(MI);
810 return;
811 }
812
813 /// isSafeToDelete - If the specified instruction does not produce any side
814 /// effects and all of its defs are dead, then it's safe to delete.
isSafeToDelete(MachineInstr * MI,const TargetInstrInfo * TII,SmallVector<unsigned,4> & Kills)815 static bool isSafeToDelete(MachineInstr *MI,
816 const TargetInstrInfo *TII,
817 SmallVector<unsigned, 4> &Kills) {
818 if (MI->mayStore() || MI->isCall())
819 return false;
820 if (MI->isTerminator() || MI->hasUnmodeledSideEffects())
821 return false;
822
823 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
824 MachineOperand &MO = MI->getOperand(i);
825 if (!MO.isReg())
826 continue;
827 if (MO.isDef() && !MO.isDead())
828 return false;
829 if (MO.isUse() && MO.isKill())
830 Kills.push_back(MO.getReg());
831 }
832 return true;
833 }
834
835 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
836 /// killed by instructions in MBB preceding the current instruction at
837 /// position Dist. If so, return true and record information about the
838 /// preceding kills in NewKills.
839 bool TwoAddressInstructionPass::
canUpdateDeletedKills(SmallVector<unsigned,4> & Kills,SmallVector<NewKill,4> & NewKills,MachineBasicBlock * MBB,unsigned Dist)840 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
841 SmallVector<NewKill, 4> &NewKills,
842 MachineBasicBlock *MBB, unsigned Dist) {
843 while (!Kills.empty()) {
844 unsigned Kill = Kills.back();
845 Kills.pop_back();
846 if (TargetRegisterInfo::isPhysicalRegister(Kill))
847 return false;
848
849 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
850 if (!LastKill)
851 return false;
852
853 bool isModRef = LastKill->definesRegister(Kill);
854 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
855 LastKill));
856 }
857 return true;
858 }
859
860 /// DeleteUnusedInstr - If an instruction with a tied register operand can
861 /// be safely deleted, just delete it.
862 bool
DeleteUnusedInstr(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,MachineFunction::iterator & mbbi,unsigned Dist)863 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
864 MachineBasicBlock::iterator &nmi,
865 MachineFunction::iterator &mbbi,
866 unsigned Dist) {
867 // Check if the instruction has no side effects and if all its defs are dead.
868 SmallVector<unsigned, 4> Kills;
869 if (!isSafeToDelete(mi, TII, Kills))
870 return false;
871
872 // If this instruction kills some virtual registers, we need to
873 // update the kill information. If it's not possible to do so,
874 // then bail out.
875 SmallVector<NewKill, 4> NewKills;
876 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
877 return false;
878
879 if (LV) {
880 while (!NewKills.empty()) {
881 MachineInstr *NewKill = NewKills.back().second;
882 unsigned Kill = NewKills.back().first.first;
883 bool isDead = NewKills.back().first.second;
884 NewKills.pop_back();
885 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
886 if (isDead)
887 LV->addVirtualRegisterDead(Kill, NewKill);
888 else
889 LV->addVirtualRegisterKilled(Kill, NewKill);
890 }
891 }
892 }
893
894 mbbi->erase(mi); // Nuke the old inst.
895 mi = nmi;
896 return true;
897 }
898
899 /// RescheduleMIBelowKill - If there is one more local instruction that reads
900 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
901 /// instruction in order to eliminate the need for the copy.
902 bool
RescheduleMIBelowKill(MachineBasicBlock * MBB,MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned Reg)903 TwoAddressInstructionPass::RescheduleMIBelowKill(MachineBasicBlock *MBB,
904 MachineBasicBlock::iterator &mi,
905 MachineBasicBlock::iterator &nmi,
906 unsigned Reg) {
907 MachineInstr *MI = &*mi;
908 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
909 if (DI == DistanceMap.end())
910 // Must be created from unfolded load. Don't waste time trying this.
911 return false;
912
913 MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
914 if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
915 // Don't mess with copies, they may be coalesced later.
916 return false;
917
918 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
919 KillMI->isBranch() || KillMI->isTerminator())
920 // Don't move pass calls, etc.
921 return false;
922
923 unsigned DstReg;
924 if (isTwoAddrUse(*KillMI, Reg, DstReg))
925 return false;
926
927 bool SeenStore = true;
928 if (!MI->isSafeToMove(TII, AA, SeenStore))
929 return false;
930
931 if (TII->getInstrLatency(InstrItins, MI) > 1)
932 // FIXME: Needs more sophisticated heuristics.
933 return false;
934
935 SmallSet<unsigned, 2> Uses;
936 SmallSet<unsigned, 2> Kills;
937 SmallSet<unsigned, 2> Defs;
938 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
939 const MachineOperand &MO = MI->getOperand(i);
940 if (!MO.isReg())
941 continue;
942 unsigned MOReg = MO.getReg();
943 if (!MOReg)
944 continue;
945 if (MO.isDef())
946 Defs.insert(MOReg);
947 else {
948 Uses.insert(MOReg);
949 if (MO.isKill() && MOReg != Reg)
950 Kills.insert(MOReg);
951 }
952 }
953
954 // Move the copies connected to MI down as well.
955 MachineBasicBlock::iterator From = MI;
956 MachineBasicBlock::iterator To = llvm::next(From);
957 while (To->isCopy() && Defs.count(To->getOperand(1).getReg())) {
958 Defs.insert(To->getOperand(0).getReg());
959 ++To;
960 }
961
962 // Check if the reschedule will not break depedencies.
963 unsigned NumVisited = 0;
964 MachineBasicBlock::iterator KillPos = KillMI;
965 ++KillPos;
966 for (MachineBasicBlock::iterator I = To; I != KillPos; ++I) {
967 MachineInstr *OtherMI = I;
968 // DBG_VALUE cannot be counted against the limit.
969 if (OtherMI->isDebugValue())
970 continue;
971 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
972 return false;
973 ++NumVisited;
974 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
975 OtherMI->isBranch() || OtherMI->isTerminator())
976 // Don't move pass calls, etc.
977 return false;
978 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
979 const MachineOperand &MO = OtherMI->getOperand(i);
980 if (!MO.isReg())
981 continue;
982 unsigned MOReg = MO.getReg();
983 if (!MOReg)
984 continue;
985 if (MO.isDef()) {
986 if (Uses.count(MOReg))
987 // Physical register use would be clobbered.
988 return false;
989 if (!MO.isDead() && Defs.count(MOReg))
990 // May clobber a physical register def.
991 // FIXME: This may be too conservative. It's ok if the instruction
992 // is sunken completely below the use.
993 return false;
994 } else {
995 if (Defs.count(MOReg))
996 return false;
997 if (MOReg != Reg &&
998 ((MO.isKill() && Uses.count(MOReg)) || Kills.count(MOReg)))
999 // Don't want to extend other live ranges and update kills.
1000 return false;
1001 }
1002 }
1003 }
1004
1005 // Move debug info as well.
1006 while (From != MBB->begin() && llvm::prior(From)->isDebugValue())
1007 --From;
1008
1009 // Copies following MI may have been moved as well.
1010 nmi = To;
1011 MBB->splice(KillPos, MBB, From, To);
1012 DistanceMap.erase(DI);
1013
1014 if (LV) {
1015 // Update live variables
1016 LV->removeVirtualRegisterKilled(Reg, KillMI);
1017 LV->addVirtualRegisterKilled(Reg, MI);
1018 } else {
1019 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1020 MachineOperand &MO = KillMI->getOperand(i);
1021 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1022 continue;
1023 MO.setIsKill(false);
1024 }
1025 MI->addRegisterKilled(Reg, 0);
1026 }
1027
1028 return true;
1029 }
1030
1031 /// isDefTooClose - Return true if the re-scheduling will put the given
1032 /// instruction too close to the defs of its register dependencies.
isDefTooClose(unsigned Reg,unsigned Dist,MachineInstr * MI,MachineBasicBlock * MBB)1033 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
1034 MachineInstr *MI,
1035 MachineBasicBlock *MBB) {
1036 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
1037 DE = MRI->def_end(); DI != DE; ++DI) {
1038 MachineInstr *DefMI = &*DI;
1039 if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
1040 continue;
1041 if (DefMI == MI)
1042 return true; // MI is defining something KillMI uses
1043 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
1044 if (DDI == DistanceMap.end())
1045 return true; // Below MI
1046 unsigned DefDist = DDI->second;
1047 assert(Dist > DefDist && "Visited def already?");
1048 if (TII->getInstrLatency(InstrItins, DefMI) > (int)(Dist - DefDist))
1049 return true;
1050 }
1051 return false;
1052 }
1053
1054 /// RescheduleKillAboveMI - If there is one more local instruction that reads
1055 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1056 /// current two-address instruction in order to eliminate the need for the
1057 /// copy.
1058 bool
RescheduleKillAboveMI(MachineBasicBlock * MBB,MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned Reg)1059 TwoAddressInstructionPass::RescheduleKillAboveMI(MachineBasicBlock *MBB,
1060 MachineBasicBlock::iterator &mi,
1061 MachineBasicBlock::iterator &nmi,
1062 unsigned Reg) {
1063 MachineInstr *MI = &*mi;
1064 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1065 if (DI == DistanceMap.end())
1066 // Must be created from unfolded load. Don't waste time trying this.
1067 return false;
1068
1069 MachineInstr *KillMI = findLocalKill(Reg, MBB, mi, MRI, DistanceMap);
1070 if (!KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1071 // Don't mess with copies, they may be coalesced later.
1072 return false;
1073
1074 unsigned DstReg;
1075 if (isTwoAddrUse(*KillMI, Reg, DstReg))
1076 return false;
1077
1078 bool SeenStore = true;
1079 if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1080 return false;
1081
1082 SmallSet<unsigned, 2> Uses;
1083 SmallSet<unsigned, 2> Kills;
1084 SmallSet<unsigned, 2> Defs;
1085 SmallSet<unsigned, 2> LiveDefs;
1086 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1087 const MachineOperand &MO = KillMI->getOperand(i);
1088 if (!MO.isReg())
1089 continue;
1090 unsigned MOReg = MO.getReg();
1091 if (MO.isUse()) {
1092 if (!MOReg)
1093 continue;
1094 if (isDefTooClose(MOReg, DI->second, MI, MBB))
1095 return false;
1096 Uses.insert(MOReg);
1097 if (MO.isKill() && MOReg != Reg)
1098 Kills.insert(MOReg);
1099 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1100 Defs.insert(MOReg);
1101 if (!MO.isDead())
1102 LiveDefs.insert(MOReg);
1103 }
1104 }
1105
1106 // Check if the reschedule will not break depedencies.
1107 unsigned NumVisited = 0;
1108 MachineBasicBlock::iterator KillPos = KillMI;
1109 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1110 MachineInstr *OtherMI = I;
1111 // DBG_VALUE cannot be counted against the limit.
1112 if (OtherMI->isDebugValue())
1113 continue;
1114 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1115 return false;
1116 ++NumVisited;
1117 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1118 OtherMI->isBranch() || OtherMI->isTerminator())
1119 // Don't move pass calls, etc.
1120 return false;
1121 SmallVector<unsigned, 2> OtherDefs;
1122 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1123 const MachineOperand &MO = OtherMI->getOperand(i);
1124 if (!MO.isReg())
1125 continue;
1126 unsigned MOReg = MO.getReg();
1127 if (!MOReg)
1128 continue;
1129 if (MO.isUse()) {
1130 if (Defs.count(MOReg))
1131 // Moving KillMI can clobber the physical register if the def has
1132 // not been seen.
1133 return false;
1134 if (Kills.count(MOReg))
1135 // Don't want to extend other live ranges and update kills.
1136 return false;
1137 } else {
1138 OtherDefs.push_back(MOReg);
1139 }
1140 }
1141
1142 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1143 unsigned MOReg = OtherDefs[i];
1144 if (Uses.count(MOReg))
1145 return false;
1146 if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1147 LiveDefs.count(MOReg))
1148 return false;
1149 // Physical register def is seen.
1150 Defs.erase(MOReg);
1151 }
1152 }
1153
1154 // Move the old kill above MI, don't forget to move debug info as well.
1155 MachineBasicBlock::iterator InsertPos = mi;
1156 while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
1157 --InsertPos;
1158 MachineBasicBlock::iterator From = KillMI;
1159 MachineBasicBlock::iterator To = llvm::next(From);
1160 while (llvm::prior(From)->isDebugValue())
1161 --From;
1162 MBB->splice(InsertPos, MBB, From, To);
1163
1164 nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
1165 DistanceMap.erase(DI);
1166
1167 if (LV) {
1168 // Update live variables
1169 LV->removeVirtualRegisterKilled(Reg, KillMI);
1170 LV->addVirtualRegisterKilled(Reg, MI);
1171 } else {
1172 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1173 MachineOperand &MO = KillMI->getOperand(i);
1174 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
1175 continue;
1176 MO.setIsKill(false);
1177 }
1178 MI->addRegisterKilled(Reg, 0);
1179 }
1180 return true;
1181 }
1182
1183 /// TryInstructionTransform - For the case where an instruction has a single
1184 /// pair of tied register operands, attempt some transformations that may
1185 /// either eliminate the tied operands or improve the opportunities for
1186 /// coalescing away the register copy. Returns true if no copy needs to be
1187 /// inserted to untie mi's operands (either because they were untied, or
1188 /// because mi was rescheduled, and will be visited again later).
1189 bool TwoAddressInstructionPass::
TryInstructionTransform(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,MachineFunction::iterator & mbbi,unsigned SrcIdx,unsigned DstIdx,unsigned Dist,SmallPtrSet<MachineInstr *,8> & Processed)1190 TryInstructionTransform(MachineBasicBlock::iterator &mi,
1191 MachineBasicBlock::iterator &nmi,
1192 MachineFunction::iterator &mbbi,
1193 unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
1194 SmallPtrSet<MachineInstr*, 8> &Processed) {
1195 if (OptLevel == CodeGenOpt::None)
1196 return false;
1197
1198 MachineInstr &MI = *mi;
1199 unsigned regA = MI.getOperand(DstIdx).getReg();
1200 unsigned regB = MI.getOperand(SrcIdx).getReg();
1201
1202 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1203 "cannot make instruction into two-address form");
1204
1205 // If regA is dead and the instruction can be deleted, just delete
1206 // it so it doesn't clobber regB.
1207 bool regBKilled = isKilled(MI, regB, MRI, TII);
1208 if (!regBKilled && MI.getOperand(DstIdx).isDead() &&
1209 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
1210 ++NumDeletes;
1211 return true; // Done with this instruction.
1212 }
1213
1214 // Check if it is profitable to commute the operands.
1215 unsigned SrcOp1, SrcOp2;
1216 unsigned regC = 0;
1217 unsigned regCIdx = ~0U;
1218 bool TryCommute = false;
1219 bool AggressiveCommute = false;
1220 if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1221 TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1222 if (SrcIdx == SrcOp1)
1223 regCIdx = SrcOp2;
1224 else if (SrcIdx == SrcOp2)
1225 regCIdx = SrcOp1;
1226
1227 if (regCIdx != ~0U) {
1228 regC = MI.getOperand(regCIdx).getReg();
1229 if (!regBKilled && isKilled(MI, regC, MRI, TII))
1230 // If C dies but B does not, swap the B and C operands.
1231 // This makes the live ranges of A and C joinable.
1232 TryCommute = true;
1233 else if (isProfitableToCommute(regB, regC, &MI, mbbi, Dist)) {
1234 TryCommute = true;
1235 AggressiveCommute = true;
1236 }
1237 }
1238 }
1239
1240 // If it's profitable to commute, try to do so.
1241 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
1242 ++NumCommuted;
1243 if (AggressiveCommute)
1244 ++NumAggrCommuted;
1245 return false;
1246 }
1247
1248 // If there is one more use of regB later in the same MBB, consider
1249 // re-schedule this MI below it.
1250 if (RescheduleMIBelowKill(mbbi, mi, nmi, regB)) {
1251 ++NumReSchedDowns;
1252 return true;
1253 }
1254
1255 if (TargetRegisterInfo::isVirtualRegister(regA))
1256 ScanUses(regA, &*mbbi, Processed);
1257
1258 if (MI.isConvertibleTo3Addr()) {
1259 // This instruction is potentially convertible to a true
1260 // three-address instruction. Check if it is profitable.
1261 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1262 // Try to convert it.
1263 if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
1264 ++NumConvertedTo3Addr;
1265 return true; // Done with this instruction.
1266 }
1267 }
1268 }
1269
1270 // If there is one more use of regB later in the same MBB, consider
1271 // re-schedule it before this MI if it's legal.
1272 if (RescheduleKillAboveMI(mbbi, mi, nmi, regB)) {
1273 ++NumReSchedUps;
1274 return true;
1275 }
1276
1277 // If this is an instruction with a load folded into it, try unfolding
1278 // the load, e.g. avoid this:
1279 // movq %rdx, %rcx
1280 // addq (%rax), %rcx
1281 // in favor of this:
1282 // movq (%rax), %rcx
1283 // addq %rdx, %rcx
1284 // because it's preferable to schedule a load than a register copy.
1285 if (MI.mayLoad() && !regBKilled) {
1286 // Determine if a load can be unfolded.
1287 unsigned LoadRegIndex;
1288 unsigned NewOpc =
1289 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1290 /*UnfoldLoad=*/true,
1291 /*UnfoldStore=*/false,
1292 &LoadRegIndex);
1293 if (NewOpc != 0) {
1294 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1295 if (UnfoldMCID.getNumDefs() == 1) {
1296 MachineFunction &MF = *mbbi->getParent();
1297
1298 // Unfold the load.
1299 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1300 const TargetRegisterClass *RC =
1301 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
1302 unsigned Reg = MRI->createVirtualRegister(RC);
1303 SmallVector<MachineInstr *, 2> NewMIs;
1304 if (!TII->unfoldMemoryOperand(MF, &MI, Reg,
1305 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1306 NewMIs)) {
1307 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1308 return false;
1309 }
1310 assert(NewMIs.size() == 2 &&
1311 "Unfolded a load into multiple instructions!");
1312 // The load was previously folded, so this is the only use.
1313 NewMIs[1]->addRegisterKilled(Reg, TRI);
1314
1315 // Tentatively insert the instructions into the block so that they
1316 // look "normal" to the transformation logic.
1317 mbbi->insert(mi, NewMIs[0]);
1318 mbbi->insert(mi, NewMIs[1]);
1319
1320 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1321 << "2addr: NEW INST: " << *NewMIs[1]);
1322
1323 // Transform the instruction, now that it no longer has a load.
1324 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1325 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1326 MachineBasicBlock::iterator NewMI = NewMIs[1];
1327 bool TransformSuccess =
1328 TryInstructionTransform(NewMI, mi, mbbi,
1329 NewSrcIdx, NewDstIdx, Dist, Processed);
1330 if (TransformSuccess ||
1331 NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1332 // Success, or at least we made an improvement. Keep the unfolded
1333 // instructions and discard the original.
1334 if (LV) {
1335 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1336 MachineOperand &MO = MI.getOperand(i);
1337 if (MO.isReg() &&
1338 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1339 if (MO.isUse()) {
1340 if (MO.isKill()) {
1341 if (NewMIs[0]->killsRegister(MO.getReg()))
1342 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1343 else {
1344 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1345 "Kill missing after load unfold!");
1346 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1347 }
1348 }
1349 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1350 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1351 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1352 else {
1353 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1354 "Dead flag missing after load unfold!");
1355 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1356 }
1357 }
1358 }
1359 }
1360 LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1361 }
1362 MI.eraseFromParent();
1363 mi = NewMIs[1];
1364 if (TransformSuccess)
1365 return true;
1366 } else {
1367 // Transforming didn't eliminate the tie and didn't lead to an
1368 // improvement. Clean up the unfolded instructions and keep the
1369 // original.
1370 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1371 NewMIs[0]->eraseFromParent();
1372 NewMIs[1]->eraseFromParent();
1373 }
1374 }
1375 }
1376 }
1377
1378 return false;
1379 }
1380
1381 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1382 ///
runOnMachineFunction(MachineFunction & MF)1383 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1384 const TargetMachine &TM = MF.getTarget();
1385 MRI = &MF.getRegInfo();
1386 TII = TM.getInstrInfo();
1387 TRI = TM.getRegisterInfo();
1388 InstrItins = TM.getInstrItineraryData();
1389 LV = getAnalysisIfAvailable<LiveVariables>();
1390 AA = &getAnalysis<AliasAnalysis>();
1391 OptLevel = TM.getOptLevel();
1392
1393 bool MadeChange = false;
1394
1395 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1396 DEBUG(dbgs() << "********** Function: "
1397 << MF.getFunction()->getName() << '\n');
1398
1399 // This pass takes the function out of SSA form.
1400 MRI->leaveSSA();
1401
1402 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1403 BitVector ReMatRegs(MRI->getNumVirtRegs());
1404
1405 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1406 TiedOperandMap;
1407 TiedOperandMap TiedOperands(4);
1408
1409 SmallPtrSet<MachineInstr*, 8> Processed;
1410 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1411 mbbi != mbbe; ++mbbi) {
1412 unsigned Dist = 0;
1413 DistanceMap.clear();
1414 SrcRegMap.clear();
1415 DstRegMap.clear();
1416 Processed.clear();
1417 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1418 mi != me; ) {
1419 MachineBasicBlock::iterator nmi = llvm::next(mi);
1420 if (mi->isDebugValue()) {
1421 mi = nmi;
1422 continue;
1423 }
1424
1425 // Remember REG_SEQUENCE instructions, we'll deal with them later.
1426 if (mi->isRegSequence())
1427 RegSequences.push_back(&*mi);
1428
1429 const MCInstrDesc &MCID = mi->getDesc();
1430 bool FirstTied = true;
1431
1432 DistanceMap.insert(std::make_pair(mi, ++Dist));
1433
1434 ProcessCopy(&*mi, &*mbbi, Processed);
1435
1436 // First scan through all the tied register uses in this instruction
1437 // and record a list of pairs of tied operands for each register.
1438 unsigned NumOps = mi->isInlineAsm()
1439 ? mi->getNumOperands() : MCID.getNumOperands();
1440 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1441 unsigned DstIdx = 0;
1442 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1443 continue;
1444
1445 if (FirstTied) {
1446 FirstTied = false;
1447 ++NumTwoAddressInstrs;
1448 DEBUG(dbgs() << '\t' << *mi);
1449 }
1450
1451 assert(mi->getOperand(SrcIdx).isReg() &&
1452 mi->getOperand(SrcIdx).getReg() &&
1453 mi->getOperand(SrcIdx).isUse() &&
1454 "two address instruction invalid");
1455
1456 unsigned regB = mi->getOperand(SrcIdx).getReg();
1457 TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1458 }
1459
1460 // Now iterate over the information collected above.
1461 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1462 OE = TiedOperands.end(); OI != OE; ++OI) {
1463 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1464
1465 // If the instruction has a single pair of tied operands, try some
1466 // transformations that may either eliminate the tied operands or
1467 // improve the opportunities for coalescing away the register copy.
1468 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1469 unsigned SrcIdx = TiedPairs[0].first;
1470 unsigned DstIdx = TiedPairs[0].second;
1471
1472 // If the registers are already equal, nothing needs to be done.
1473 if (mi->getOperand(SrcIdx).getReg() ==
1474 mi->getOperand(DstIdx).getReg())
1475 break; // Done with this instruction.
1476
1477 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1478 Processed))
1479 break; // The tied operands have been eliminated.
1480 }
1481
1482 bool IsEarlyClobber = false;
1483 bool RemovedKillFlag = false;
1484 bool AllUsesCopied = true;
1485 unsigned LastCopiedReg = 0;
1486 unsigned regB = OI->first;
1487 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1488 unsigned SrcIdx = TiedPairs[tpi].first;
1489 unsigned DstIdx = TiedPairs[tpi].second;
1490
1491 const MachineOperand &DstMO = mi->getOperand(DstIdx);
1492 unsigned regA = DstMO.getReg();
1493 IsEarlyClobber |= DstMO.isEarlyClobber();
1494
1495 // Grab regB from the instruction because it may have changed if the
1496 // instruction was commuted.
1497 regB = mi->getOperand(SrcIdx).getReg();
1498
1499 if (regA == regB) {
1500 // The register is tied to multiple destinations (or else we would
1501 // not have continued this far), but this use of the register
1502 // already matches the tied destination. Leave it.
1503 AllUsesCopied = false;
1504 continue;
1505 }
1506 LastCopiedReg = regA;
1507
1508 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1509 "cannot make instruction into two-address form");
1510
1511 #ifndef NDEBUG
1512 // First, verify that we don't have a use of "a" in the instruction
1513 // (a = b + a for example) because our transformation will not
1514 // work. This should never occur because we are in SSA form.
1515 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1516 assert(i == DstIdx ||
1517 !mi->getOperand(i).isReg() ||
1518 mi->getOperand(i).getReg() != regA);
1519 #endif
1520
1521 // Emit a copy or rematerialize the definition.
1522 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1523 MachineInstr *DefMI = MRI->getVRegDef(regB);
1524 // If it's safe and profitable, remat the definition instead of
1525 // copying it.
1526 if (DefMI &&
1527 DefMI->isAsCheapAsAMove() &&
1528 DefMI->isSafeToReMat(TII, AA, regB) &&
1529 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1530 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1531 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1532 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1533 ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1534 ++NumReMats;
1535 } else {
1536 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1537 regA).addReg(regB);
1538 }
1539
1540 MachineBasicBlock::iterator prevMI = prior(mi);
1541 // Update DistanceMap.
1542 DistanceMap.insert(std::make_pair(prevMI, Dist));
1543 DistanceMap[mi] = ++Dist;
1544
1545 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1546
1547 MachineOperand &MO = mi->getOperand(SrcIdx);
1548 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1549 "inconsistent operand info for 2-reg pass");
1550 if (MO.isKill()) {
1551 MO.setIsKill(false);
1552 RemovedKillFlag = true;
1553 }
1554 MO.setReg(regA);
1555 }
1556
1557 if (AllUsesCopied) {
1558 if (!IsEarlyClobber) {
1559 // Replace other (un-tied) uses of regB with LastCopiedReg.
1560 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1561 MachineOperand &MO = mi->getOperand(i);
1562 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1563 if (MO.isKill()) {
1564 MO.setIsKill(false);
1565 RemovedKillFlag = true;
1566 }
1567 MO.setReg(LastCopiedReg);
1568 }
1569 }
1570 }
1571
1572 // Update live variables for regB.
1573 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1574 LV->addVirtualRegisterKilled(regB, prior(mi));
1575
1576 } else if (RemovedKillFlag) {
1577 // Some tied uses of regB matched their destination registers, so
1578 // regB is still used in this instruction, but a kill flag was
1579 // removed from a different tied use of regB, so now we need to add
1580 // a kill flag to one of the remaining uses of regB.
1581 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1582 MachineOperand &MO = mi->getOperand(i);
1583 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1584 MO.setIsKill(true);
1585 break;
1586 }
1587 }
1588 }
1589
1590 // Schedule the source copy / remat inserted to form two-address
1591 // instruction. FIXME: Does it matter the distance map may not be
1592 // accurate after it's scheduled?
1593 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1594
1595 MadeChange = true;
1596
1597 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1598
1599 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1600 if (mi->isInsertSubreg()) {
1601 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1602 // To %reg:subidx = COPY %subreg
1603 unsigned SubIdx = mi->getOperand(3).getImm();
1604 mi->RemoveOperand(3);
1605 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1606 mi->getOperand(0).setSubReg(SubIdx);
1607 mi->RemoveOperand(1);
1608 mi->setDesc(TII->get(TargetOpcode::COPY));
1609 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1610 }
1611 }
1612
1613 // Clear TiedOperands here instead of at the top of the loop
1614 // since most instructions do not have tied operands.
1615 TiedOperands.clear();
1616 mi = nmi;
1617 }
1618 }
1619
1620 // Some remat'ed instructions are dead.
1621 for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1622 unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1623 if (MRI->use_nodbg_empty(VReg)) {
1624 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1625 DefMI->eraseFromParent();
1626 }
1627 }
1628
1629 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1630 // SSA form. It's now safe to de-SSA.
1631 MadeChange |= EliminateRegSequences();
1632
1633 return MadeChange;
1634 }
1635
UpdateRegSequenceSrcs(unsigned SrcReg,unsigned DstReg,unsigned SubIdx,MachineRegisterInfo * MRI,const TargetRegisterInfo & TRI)1636 static void UpdateRegSequenceSrcs(unsigned SrcReg,
1637 unsigned DstReg, unsigned SubIdx,
1638 MachineRegisterInfo *MRI,
1639 const TargetRegisterInfo &TRI) {
1640 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1641 RE = MRI->reg_end(); RI != RE; ) {
1642 MachineOperand &MO = RI.getOperand();
1643 ++RI;
1644 MO.substVirtReg(DstReg, SubIdx, TRI);
1645 }
1646 }
1647
1648 // Find the first def of Reg, assuming they are all in the same basic block.
findFirstDef(unsigned Reg,MachineRegisterInfo * MRI)1649 static MachineInstr *findFirstDef(unsigned Reg, MachineRegisterInfo *MRI) {
1650 SmallPtrSet<MachineInstr*, 8> Defs;
1651 MachineInstr *First = 0;
1652 for (MachineRegisterInfo::def_iterator RI = MRI->def_begin(Reg);
1653 MachineInstr *MI = RI.skipInstruction(); Defs.insert(MI))
1654 First = MI;
1655 if (!First)
1656 return 0;
1657
1658 MachineBasicBlock *MBB = First->getParent();
1659 MachineBasicBlock::iterator A = First, B = First;
1660 bool Moving;
1661 do {
1662 Moving = false;
1663 if (A != MBB->begin()) {
1664 Moving = true;
1665 --A;
1666 if (Defs.erase(A)) First = A;
1667 }
1668 if (B != MBB->end()) {
1669 Defs.erase(B);
1670 ++B;
1671 Moving = true;
1672 }
1673 } while (Moving && !Defs.empty());
1674 assert(Defs.empty() && "Instructions outside basic block!");
1675 return First;
1676 }
1677
1678 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1679 /// EXTRACT_SUBREG from the same register and to the same virtual register
1680 /// with different sub-register indices, attempt to combine the
1681 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1682 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1683 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1684 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1685 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1686 /// reg1026 to reg1029.
1687 void
CoalesceExtSubRegs(SmallVector<unsigned,4> & Srcs,unsigned DstReg)1688 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1689 unsigned DstReg) {
1690 SmallSet<unsigned, 4> Seen;
1691 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1692 unsigned SrcReg = Srcs[i];
1693 if (!Seen.insert(SrcReg))
1694 continue;
1695
1696 // Check that the instructions are all in the same basic block.
1697 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1698 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1699 if (SrcDefMI->getParent() != DstDefMI->getParent())
1700 continue;
1701
1702 // If there are no other uses than copies which feed into
1703 // the reg_sequence, then we might be able to coalesce them.
1704 bool CanCoalesce = true;
1705 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1706 for (MachineRegisterInfo::use_nodbg_iterator
1707 UI = MRI->use_nodbg_begin(SrcReg),
1708 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1709 MachineInstr *UseMI = &*UI;
1710 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1711 CanCoalesce = false;
1712 break;
1713 }
1714 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1715 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1716 }
1717
1718 if (!CanCoalesce || SrcSubIndices.size() < 2)
1719 continue;
1720
1721 // Check that the source subregisters can be combined.
1722 std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1723 unsigned NewSrcSubIdx = 0;
1724 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1725 NewSrcSubIdx))
1726 continue;
1727
1728 // Check that the destination subregisters can also be combined.
1729 std::sort(DstSubIndices.begin(), DstSubIndices.end());
1730 unsigned NewDstSubIdx = 0;
1731 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1732 NewDstSubIdx))
1733 continue;
1734
1735 // If neither source nor destination can be combined to the full register,
1736 // just give up. This could be improved if it ever matters.
1737 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1738 continue;
1739
1740 // Now that we know that all the uses are extract_subregs and that those
1741 // subregs can somehow be combined, scan all the extract_subregs again to
1742 // make sure the subregs are in the right order and can be composed.
1743 MachineInstr *SomeMI = 0;
1744 CanCoalesce = true;
1745 for (MachineRegisterInfo::use_nodbg_iterator
1746 UI = MRI->use_nodbg_begin(SrcReg),
1747 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1748 MachineInstr *UseMI = &*UI;
1749 assert(UseMI->isCopy());
1750 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1751 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1752 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1753 if ((NewDstSubIdx == 0 &&
1754 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1755 (NewSrcSubIdx == 0 &&
1756 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1757 CanCoalesce = false;
1758 break;
1759 }
1760 // Keep track of one of the uses. Preferably the first one which has a
1761 // <def,undef> flag.
1762 if (!SomeMI || UseMI->getOperand(0).isUndef())
1763 SomeMI = UseMI;
1764 }
1765 if (!CanCoalesce)
1766 continue;
1767
1768 // Insert a copy to replace the original.
1769 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1770 SomeMI->getDebugLoc(),
1771 TII->get(TargetOpcode::COPY))
1772 .addReg(DstReg, RegState::Define |
1773 getUndefRegState(SomeMI->getOperand(0).isUndef()),
1774 NewDstSubIdx)
1775 .addReg(SrcReg, 0, NewSrcSubIdx);
1776
1777 // Remove all the old extract instructions.
1778 for (MachineRegisterInfo::use_nodbg_iterator
1779 UI = MRI->use_nodbg_begin(SrcReg),
1780 UE = MRI->use_nodbg_end(); UI != UE; ) {
1781 MachineInstr *UseMI = &*UI;
1782 ++UI;
1783 if (UseMI == CopyMI)
1784 continue;
1785 assert(UseMI->isCopy());
1786 // Move any kills to the new copy or extract instruction.
1787 if (UseMI->getOperand(1).isKill()) {
1788 CopyMI->getOperand(1).setIsKill();
1789 if (LV)
1790 // Update live variables
1791 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1792 }
1793 UseMI->eraseFromParent();
1794 }
1795 }
1796 }
1797
HasOtherRegSequenceUses(unsigned Reg,MachineInstr * RegSeq,MachineRegisterInfo * MRI)1798 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1799 MachineRegisterInfo *MRI) {
1800 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1801 UE = MRI->use_end(); UI != UE; ++UI) {
1802 MachineInstr *UseMI = &*UI;
1803 if (UseMI != RegSeq && UseMI->isRegSequence())
1804 return true;
1805 }
1806 return false;
1807 }
1808
1809 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1810 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1811 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1812 ///
1813 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1814 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1815 /// =>
1816 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
EliminateRegSequences()1817 bool TwoAddressInstructionPass::EliminateRegSequences() {
1818 if (RegSequences.empty())
1819 return false;
1820
1821 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1822 MachineInstr *MI = RegSequences[i];
1823 unsigned DstReg = MI->getOperand(0).getReg();
1824 if (MI->getOperand(0).getSubReg() ||
1825 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1826 !(MI->getNumOperands() & 1)) {
1827 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1828 llvm_unreachable(0);
1829 }
1830
1831 bool IsImpDef = true;
1832 SmallVector<unsigned, 4> RealSrcs;
1833 SmallSet<unsigned, 4> Seen;
1834 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1835 unsigned SrcReg = MI->getOperand(i).getReg();
1836 unsigned SrcSubIdx = MI->getOperand(i).getSubReg();
1837 unsigned SubIdx = MI->getOperand(i+1).getImm();
1838 // DefMI of NULL means the value does not have a vreg in this block
1839 // i.e., its a physical register or a subreg.
1840 // In either case we force a copy to be generated.
1841 MachineInstr *DefMI = NULL;
1842 if (!MI->getOperand(i).getSubReg() &&
1843 !TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1844 DefMI = MRI->getVRegDef(SrcReg);
1845 }
1846
1847 if (DefMI && DefMI->isImplicitDef()) {
1848 DefMI->eraseFromParent();
1849 continue;
1850 }
1851 IsImpDef = false;
1852
1853 // Remember COPY sources. These might be candidate for coalescing.
1854 if (DefMI && DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1855 RealSrcs.push_back(DefMI->getOperand(1).getReg());
1856
1857 bool isKill = MI->getOperand(i).isKill();
1858 if (!DefMI || !Seen.insert(SrcReg) ||
1859 MI->getParent() != DefMI->getParent() ||
1860 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1861 !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1862 MRI->getRegClass(SrcReg), SubIdx)) {
1863 // REG_SEQUENCE cannot have duplicated operands, add a copy.
1864 // Also add an copy if the source is live-in the block. We don't want
1865 // to end up with a partial-redef of a livein, e.g.
1866 // BB0:
1867 // reg1051:10<def> =
1868 // ...
1869 // BB1:
1870 // ... = reg1051:10
1871 // BB2:
1872 // reg1051:9<def> =
1873 // LiveIntervalAnalysis won't like it.
1874 //
1875 // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1876 // correctly up to date becomes very difficult. Insert a copy.
1877
1878 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1879 // might insert a COPY that uses SrcReg after is was killed.
1880 if (isKill)
1881 for (unsigned j = i + 2; j < e; j += 2)
1882 if (MI->getOperand(j).getReg() == SrcReg) {
1883 MI->getOperand(j).setIsKill();
1884 isKill = false;
1885 break;
1886 }
1887
1888 MachineBasicBlock::iterator InsertLoc = MI;
1889 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1890 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1891 .addReg(DstReg, RegState::Define, SubIdx)
1892 .addReg(SrcReg, getKillRegState(isKill), SrcSubIdx);
1893 MI->getOperand(i).setReg(0);
1894 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1895 LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1896 DEBUG(dbgs() << "Inserted: " << *CopyMI);
1897 }
1898 }
1899
1900 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1901 unsigned SrcReg = MI->getOperand(i).getReg();
1902 if (!SrcReg) continue;
1903 unsigned SubIdx = MI->getOperand(i+1).getImm();
1904 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1905 }
1906
1907 // Set <def,undef> flags on the first DstReg def in the basic block.
1908 // It marks the beginning of the live range. All the other defs are
1909 // read-modify-write.
1910 if (MachineInstr *Def = findFirstDef(DstReg, MRI)) {
1911 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
1912 MachineOperand &MO = Def->getOperand(i);
1913 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1914 MO.setIsUndef();
1915 }
1916 // Make sure there is a full non-subreg imp-def operand on the
1917 // instruction. This shouldn't be necessary, but it seems that at least
1918 // RAFast requires it.
1919 Def->addRegisterDefined(DstReg, TRI);
1920 DEBUG(dbgs() << "First def: " << *Def);
1921 }
1922
1923 if (IsImpDef) {
1924 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1925 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1926 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1927 MI->RemoveOperand(j);
1928 } else {
1929 DEBUG(dbgs() << "Eliminated: " << *MI);
1930 MI->eraseFromParent();
1931 }
1932
1933 // Try coalescing some EXTRACT_SUBREG instructions. This can create
1934 // INSERT_SUBREG instructions that must have <undef> flags added by
1935 // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1936 if (LV)
1937 CoalesceExtSubRegs(RealSrcs, DstReg);
1938 }
1939
1940 RegSequences.clear();
1941 return true;
1942 }
1943