1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "arm-isel"
16 #include "ARMISelLowering.h"
17 #include "ARM.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMSubtarget.h"
23 #include "ARMTargetMachine.h"
24 #include "ARMTargetObjectFile.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Function.h"
29 #include "llvm/GlobalValue.h"
30 #include "llvm/Instruction.h"
31 #include "llvm/Instructions.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Type.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/IntrinsicLowering.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/MC/MCSectionMachO.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 using namespace llvm;
52
53 STATISTIC(NumTailCalls, "Number of tail calls");
54 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55
56 // This option should go away when tail calls fully work.
57 static cl::opt<bool>
58 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59 cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60 cl::init(false));
61
62 cl::opt<bool>
63 EnableARMLongCalls("arm-long-calls", cl::Hidden,
64 cl::desc("Generate calls via indirect call instructions"),
65 cl::init(false));
66
67 static cl::opt<bool>
68 ARMInterworking("arm-interworking", cl::Hidden,
69 cl::desc("Enable / disable ARM interworking (for debugging only)"),
70 cl::init(true));
71
72 namespace {
73 class ARMCCState : public CCState {
74 public:
ARMCCState(CallingConv::ID CC,bool isVarArg,MachineFunction & MF,const TargetMachine & TM,SmallVector<CCValAssign,16> & locs,LLVMContext & C,ParmContext PC)75 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
76 const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
77 LLVMContext &C, ParmContext PC)
78 : CCState(CC, isVarArg, MF, TM, locs, C) {
79 assert(((PC == Call) || (PC == Prologue)) &&
80 "ARMCCState users must specify whether their context is call"
81 "or prologue generation.");
82 CallOrPrologue = PC;
83 }
84 };
85 }
86
87 // The APCS parameter registers.
88 static const uint16_t GPRArgRegs[] = {
89 ARM::R0, ARM::R1, ARM::R2, ARM::R3
90 };
91
addTypeForNEON(EVT VT,EVT PromotedLdStVT,EVT PromotedBitwiseVT)92 void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
93 EVT PromotedBitwiseVT) {
94 if (VT != PromotedLdStVT) {
95 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
96 AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
97 PromotedLdStVT.getSimpleVT());
98
99 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
100 AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
101 PromotedLdStVT.getSimpleVT());
102 }
103
104 EVT ElemTy = VT.getVectorElementType();
105 if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
106 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
107 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
108 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
109 if (ElemTy == MVT::i32) {
110 setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
111 setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
112 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
113 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
114 } else {
115 setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
116 setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
117 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
118 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
119 }
120 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
121 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
122 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
123 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
124 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
125 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
126 setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
127 if (VT.isInteger()) {
128 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
129 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
130 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
131 }
132
133 // Promote all bit-wise operations.
134 if (VT.isInteger() && VT != PromotedBitwiseVT) {
135 setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
136 AddPromotedToType (ISD::AND, VT.getSimpleVT(),
137 PromotedBitwiseVT.getSimpleVT());
138 setOperationAction(ISD::OR, VT.getSimpleVT(), Promote);
139 AddPromotedToType (ISD::OR, VT.getSimpleVT(),
140 PromotedBitwiseVT.getSimpleVT());
141 setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
142 AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
143 PromotedBitwiseVT.getSimpleVT());
144 }
145
146 // Neon does not support vector divide/remainder operations.
147 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
148 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
149 setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
150 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
151 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
152 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
153 }
154
addDRTypeForNEON(EVT VT)155 void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
156 addRegisterClass(VT, ARM::DPRRegisterClass);
157 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
158 }
159
addQRTypeForNEON(EVT VT)160 void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
161 addRegisterClass(VT, ARM::QPRRegisterClass);
162 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
163 }
164
createTLOF(TargetMachine & TM)165 static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
166 if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
167 return new TargetLoweringObjectFileMachO();
168
169 return new ARMElfTargetObjectFile();
170 }
171
ARMTargetLowering(TargetMachine & TM)172 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
173 : TargetLowering(TM, createTLOF(TM)) {
174 Subtarget = &TM.getSubtarget<ARMSubtarget>();
175 RegInfo = TM.getRegisterInfo();
176 Itins = TM.getInstrItineraryData();
177
178 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
179
180 if (Subtarget->isTargetDarwin()) {
181 // Uses VFP for Thumb libfuncs if available.
182 if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
183 // Single-precision floating-point arithmetic.
184 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
185 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
186 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
187 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
188
189 // Double-precision floating-point arithmetic.
190 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
191 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
192 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
193 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
194
195 // Single-precision comparisons.
196 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
197 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
198 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
199 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
200 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
201 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
202 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
203 setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
204
205 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
206 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
207 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
208 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
209 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
210 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
211 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
212 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
213
214 // Double-precision comparisons.
215 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
216 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
217 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
218 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
219 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
220 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
221 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
222 setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
223
224 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
225 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
226 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
227 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
228 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
229 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
230 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
231 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
232
233 // Floating-point to integer conversions.
234 // i64 conversions are done via library routines even when generating VFP
235 // instructions, so use the same ones.
236 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
237 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
238 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
239 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
240
241 // Conversions between floating types.
242 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
243 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
244
245 // Integer to floating-point conversions.
246 // i64 conversions are done via library routines even when generating VFP
247 // instructions, so use the same ones.
248 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
249 // e.g., __floatunsidf vs. __floatunssidfvfp.
250 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
251 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
252 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
253 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
254 }
255 }
256
257 // These libcalls are not available in 32-bit.
258 setLibcallName(RTLIB::SHL_I128, 0);
259 setLibcallName(RTLIB::SRL_I128, 0);
260 setLibcallName(RTLIB::SRA_I128, 0);
261
262 if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
263 // Double-precision floating-point arithmetic helper functions
264 // RTABI chapter 4.1.2, Table 2
265 setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
266 setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
267 setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
268 setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
269 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
270 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
271 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
272 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
273
274 // Double-precision floating-point comparison helper functions
275 // RTABI chapter 4.1.2, Table 3
276 setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
277 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
278 setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
279 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
280 setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
281 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
282 setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
283 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
284 setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
285 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
286 setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
287 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
288 setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
289 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
290 setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
291 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
292 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
293 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
294 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
295 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
296 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
297 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
298 setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
299 setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
300
301 // Single-precision floating-point arithmetic helper functions
302 // RTABI chapter 4.1.2, Table 4
303 setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
304 setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
305 setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
306 setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
307 setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
308 setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
309 setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
310 setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
311
312 // Single-precision floating-point comparison helper functions
313 // RTABI chapter 4.1.2, Table 5
314 setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
315 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
316 setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
317 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
318 setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
319 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
320 setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
321 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
322 setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
323 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
324 setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
325 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
326 setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
327 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
328 setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
329 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
330 setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
331 setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
332 setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
333 setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
334 setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
335 setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
336 setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
337 setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
338
339 // Floating-point to integer conversions.
340 // RTABI chapter 4.1.2, Table 6
341 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
342 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
343 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
344 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
345 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
346 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
347 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
348 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
349 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
350 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
351 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
352 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
353 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
354 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
355 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
356 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
357
358 // Conversions between floating types.
359 // RTABI chapter 4.1.2, Table 7
360 setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
361 setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
362 setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
363 setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
364
365 // Integer to floating-point conversions.
366 // RTABI chapter 4.1.2, Table 8
367 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
368 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
369 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
370 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
371 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
372 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
373 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
374 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
375 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
376 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
377 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
378 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
379 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
380 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
381 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
382 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
383
384 // Long long helper functions
385 // RTABI chapter 4.2, Table 9
386 setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
387 setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
388 setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
389 setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
390 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
391 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
392 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
393 setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
394 setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
395 setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
396
397 // Integer division functions
398 // RTABI chapter 4.3.1
399 setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
400 setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
401 setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
402 setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
403 setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
404 setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
405 setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
406 setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
407 setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
408 setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
409 setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
410 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
411 setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
412 setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
413 setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
414 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
415
416 // Memory operations
417 // RTABI chapter 4.3.4
418 setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy");
419 setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
420 setLibcallName(RTLIB::MEMSET, "__aeabi_memset");
421 setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
422 setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
423 setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
424 }
425
426 // Use divmod compiler-rt calls for iOS 5.0 and later.
427 if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
428 !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
429 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
430 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
431 }
432
433 if (Subtarget->isThumb1Only())
434 addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
435 else
436 addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
437 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
438 !Subtarget->isThumb1Only()) {
439 addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
440 if (!Subtarget->isFPOnlySP())
441 addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
442
443 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
444 }
445
446 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
447 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
448 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
449 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
450 setTruncStoreAction((MVT::SimpleValueType)VT,
451 (MVT::SimpleValueType)InnerVT, Expand);
452 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
453 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
454 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
455 }
456
457 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
458
459 if (Subtarget->hasNEON()) {
460 addDRTypeForNEON(MVT::v2f32);
461 addDRTypeForNEON(MVT::v8i8);
462 addDRTypeForNEON(MVT::v4i16);
463 addDRTypeForNEON(MVT::v2i32);
464 addDRTypeForNEON(MVT::v1i64);
465
466 addQRTypeForNEON(MVT::v4f32);
467 addQRTypeForNEON(MVT::v2f64);
468 addQRTypeForNEON(MVT::v16i8);
469 addQRTypeForNEON(MVT::v8i16);
470 addQRTypeForNEON(MVT::v4i32);
471 addQRTypeForNEON(MVT::v2i64);
472
473 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
474 // neither Neon nor VFP support any arithmetic operations on it.
475 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
476 // supported for v4f32.
477 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
478 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
479 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
480 // FIXME: Code duplication: FDIV and FREM are expanded always, see
481 // ARMTargetLowering::addTypeForNEON method for details.
482 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
483 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
484 // FIXME: Create unittest.
485 // In another words, find a way when "copysign" appears in DAG with vector
486 // operands.
487 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
488 // FIXME: Code duplication: SETCC has custom operation action, see
489 // ARMTargetLowering::addTypeForNEON method for details.
490 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
491 // FIXME: Create unittest for FNEG and for FABS.
492 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
493 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
494 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
495 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
496 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
497 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
498 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
499 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
500 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
501 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
502 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
503 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
504 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
505 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
506 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
507 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
510
511 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
512 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
513 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
514 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
515 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
516 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
517 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
518 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
519 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
520 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
521
522 // Neon does not support some operations on v1i64 and v2i64 types.
523 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
524 // Custom handling for some quad-vector types to detect VMULL.
525 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
526 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
527 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
528 // Custom handling for some vector types to avoid expensive expansions
529 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
530 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
531 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
532 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
533 setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
534 setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
535 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
536 // a destination type that is wider than the source, and nor does
537 // it have a FP_TO_[SU]INT instruction with a narrower destination than
538 // source.
539 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
540 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
541 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
542 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
543
544 setTargetDAGCombine(ISD::INTRINSIC_VOID);
545 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
546 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
547 setTargetDAGCombine(ISD::SHL);
548 setTargetDAGCombine(ISD::SRL);
549 setTargetDAGCombine(ISD::SRA);
550 setTargetDAGCombine(ISD::SIGN_EXTEND);
551 setTargetDAGCombine(ISD::ZERO_EXTEND);
552 setTargetDAGCombine(ISD::ANY_EXTEND);
553 setTargetDAGCombine(ISD::SELECT_CC);
554 setTargetDAGCombine(ISD::BUILD_VECTOR);
555 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
556 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
557 setTargetDAGCombine(ISD::STORE);
558 setTargetDAGCombine(ISD::FP_TO_SINT);
559 setTargetDAGCombine(ISD::FP_TO_UINT);
560 setTargetDAGCombine(ISD::FDIV);
561
562 // It is legal to extload from v4i8 to v4i16 or v4i32.
563 MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
564 MVT::v4i16, MVT::v2i16,
565 MVT::v2i32};
566 for (unsigned i = 0; i < 6; ++i) {
567 setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
568 setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
569 setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
570 }
571 }
572
573 computeRegisterProperties();
574
575 // ARM does not have f32 extending load.
576 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
577
578 // ARM does not have i1 sign extending load.
579 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
580
581 // ARM supports all 4 flavors of integer indexed load / store.
582 if (!Subtarget->isThumb1Only()) {
583 for (unsigned im = (unsigned)ISD::PRE_INC;
584 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
585 setIndexedLoadAction(im, MVT::i1, Legal);
586 setIndexedLoadAction(im, MVT::i8, Legal);
587 setIndexedLoadAction(im, MVT::i16, Legal);
588 setIndexedLoadAction(im, MVT::i32, Legal);
589 setIndexedStoreAction(im, MVT::i1, Legal);
590 setIndexedStoreAction(im, MVT::i8, Legal);
591 setIndexedStoreAction(im, MVT::i16, Legal);
592 setIndexedStoreAction(im, MVT::i32, Legal);
593 }
594 }
595
596 // i64 operation support.
597 setOperationAction(ISD::MUL, MVT::i64, Expand);
598 setOperationAction(ISD::MULHU, MVT::i32, Expand);
599 if (Subtarget->isThumb1Only()) {
600 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
601 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
602 }
603 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
604 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
605 setOperationAction(ISD::MULHS, MVT::i32, Expand);
606
607 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
608 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
609 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
610 setOperationAction(ISD::SRL, MVT::i64, Custom);
611 setOperationAction(ISD::SRA, MVT::i64, Custom);
612
613 if (!Subtarget->isThumb1Only()) {
614 // FIXME: We should do this for Thumb1 as well.
615 setOperationAction(ISD::ADDC, MVT::i32, Custom);
616 setOperationAction(ISD::ADDE, MVT::i32, Custom);
617 setOperationAction(ISD::SUBC, MVT::i32, Custom);
618 setOperationAction(ISD::SUBE, MVT::i32, Custom);
619 }
620
621 // ARM does not have ROTL.
622 setOperationAction(ISD::ROTL, MVT::i32, Expand);
623 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
624 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
625 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
626 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
627
628 // These just redirect to CTTZ and CTLZ on ARM.
629 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
630 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
631
632 // Only ARMv6 has BSWAP.
633 if (!Subtarget->hasV6Ops())
634 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
635
636 // These are expanded into libcalls.
637 if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
638 // v7M has a hardware divider
639 setOperationAction(ISD::SDIV, MVT::i32, Expand);
640 setOperationAction(ISD::UDIV, MVT::i32, Expand);
641 }
642 setOperationAction(ISD::SREM, MVT::i32, Expand);
643 setOperationAction(ISD::UREM, MVT::i32, Expand);
644 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
645 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
646
647 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
648 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
649 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
650 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
651 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
652
653 setOperationAction(ISD::TRAP, MVT::Other, Legal);
654
655 // Use the default implementation.
656 setOperationAction(ISD::VASTART, MVT::Other, Custom);
657 setOperationAction(ISD::VAARG, MVT::Other, Expand);
658 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
659 setOperationAction(ISD::VAEND, MVT::Other, Expand);
660 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
661 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
662
663 if (!Subtarget->isTargetDarwin()) {
664 // Non-Darwin platforms may return values in these registers via the
665 // personality function.
666 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
667 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
668 setExceptionPointerRegister(ARM::R0);
669 setExceptionSelectorRegister(ARM::R1);
670 }
671
672 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
673 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
674 // the default expansion.
675 // FIXME: This should be checking for v6k, not just v6.
676 if (Subtarget->hasDataBarrier() ||
677 (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
678 // membarrier needs custom lowering; the rest are legal and handled
679 // normally.
680 setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
681 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
682 // Custom lowering for 64-bit ops
683 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
684 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
685 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
686 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
687 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
688 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
689 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
690 // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
691 setInsertFencesForAtomic(true);
692 } else {
693 // Set them all for expansion, which will force libcalls.
694 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
695 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
696 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
697 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
698 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
699 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
700 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
701 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
702 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
703 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
704 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
705 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
706 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
707 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
708 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
709 // Unordered/Monotonic case.
710 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
711 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
712 // Since the libcalls include locking, fold in the fences
713 setShouldFoldAtomicFences(true);
714 }
715
716 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
717
718 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
719 if (!Subtarget->hasV6Ops()) {
720 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
721 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
722 }
723 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
724
725 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
726 !Subtarget->isThumb1Only()) {
727 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
728 // iff target supports vfp2.
729 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
730 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
731 }
732
733 // We want to custom lower some of our intrinsics.
734 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
735 if (Subtarget->isTargetDarwin()) {
736 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
737 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
738 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
739 }
740
741 setOperationAction(ISD::SETCC, MVT::i32, Expand);
742 setOperationAction(ISD::SETCC, MVT::f32, Expand);
743 setOperationAction(ISD::SETCC, MVT::f64, Expand);
744 setOperationAction(ISD::SELECT, MVT::i32, Custom);
745 setOperationAction(ISD::SELECT, MVT::f32, Custom);
746 setOperationAction(ISD::SELECT, MVT::f64, Custom);
747 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
748 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
749 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
750
751 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
752 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
753 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
754 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
755 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
756
757 // We don't support sin/cos/fmod/copysign/pow
758 setOperationAction(ISD::FSIN, MVT::f64, Expand);
759 setOperationAction(ISD::FSIN, MVT::f32, Expand);
760 setOperationAction(ISD::FCOS, MVT::f32, Expand);
761 setOperationAction(ISD::FCOS, MVT::f64, Expand);
762 setOperationAction(ISD::FREM, MVT::f64, Expand);
763 setOperationAction(ISD::FREM, MVT::f32, Expand);
764 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
765 !Subtarget->isThumb1Only()) {
766 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
767 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
768 }
769 setOperationAction(ISD::FPOW, MVT::f64, Expand);
770 setOperationAction(ISD::FPOW, MVT::f32, Expand);
771
772 if (!Subtarget->hasVFP4()) {
773 setOperationAction(ISD::FMA, MVT::f64, Expand);
774 setOperationAction(ISD::FMA, MVT::f32, Expand);
775 }
776
777 // Various VFP goodness
778 if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
779 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
780 if (Subtarget->hasVFP2()) {
781 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
782 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
783 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
784 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
785 }
786 // Special handling for half-precision FP.
787 if (!Subtarget->hasFP16()) {
788 setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
789 setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
790 }
791 }
792
793 // We have target-specific dag combine patterns for the following nodes:
794 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
795 setTargetDAGCombine(ISD::ADD);
796 setTargetDAGCombine(ISD::SUB);
797 setTargetDAGCombine(ISD::MUL);
798
799 if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON()) {
800 setTargetDAGCombine(ISD::AND);
801 setTargetDAGCombine(ISD::OR);
802 setTargetDAGCombine(ISD::XOR);
803 }
804
805 if (Subtarget->hasV6Ops())
806 setTargetDAGCombine(ISD::SRL);
807
808 setStackPointerRegisterToSaveRestore(ARM::SP);
809
810 if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
811 !Subtarget->hasVFP2())
812 setSchedulingPreference(Sched::RegPressure);
813 else
814 setSchedulingPreference(Sched::Hybrid);
815
816 //// temporary - rewrite interface to use type
817 maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
818 maxStoresPerMemset = 16;
819 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
820
821 // On ARM arguments smaller than 4 bytes are extended, so all arguments
822 // are at least 4 bytes aligned.
823 setMinStackArgumentAlignment(4);
824
825 benefitFromCodePlacementOpt = true;
826
827 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
828 }
829
830 // FIXME: It might make sense to define the representative register class as the
831 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
832 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
833 // SPR's representative would be DPR_VFP2. This should work well if register
834 // pressure tracking were modified such that a register use would increment the
835 // pressure of the register class's representative and all of it's super
836 // classes' representatives transitively. We have not implemented this because
837 // of the difficulty prior to coalescing of modeling operand register classes
838 // due to the common occurrence of cross class copies and subregister insertions
839 // and extractions.
840 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const841 ARMTargetLowering::findRepresentativeClass(EVT VT) const{
842 const TargetRegisterClass *RRC = 0;
843 uint8_t Cost = 1;
844 switch (VT.getSimpleVT().SimpleTy) {
845 default:
846 return TargetLowering::findRepresentativeClass(VT);
847 // Use DPR as representative register class for all floating point
848 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
849 // the cost is 1 for both f32 and f64.
850 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
851 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
852 RRC = ARM::DPRRegisterClass;
853 // When NEON is used for SP, only half of the register file is available
854 // because operations that define both SP and DP results will be constrained
855 // to the VFP2 class (D0-D15). We currently model this constraint prior to
856 // coalescing by double-counting the SP regs. See the FIXME above.
857 if (Subtarget->useNEONForSinglePrecisionFP())
858 Cost = 2;
859 break;
860 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
861 case MVT::v4f32: case MVT::v2f64:
862 RRC = ARM::DPRRegisterClass;
863 Cost = 2;
864 break;
865 case MVT::v4i64:
866 RRC = ARM::DPRRegisterClass;
867 Cost = 4;
868 break;
869 case MVT::v8i64:
870 RRC = ARM::DPRRegisterClass;
871 Cost = 8;
872 break;
873 }
874 return std::make_pair(RRC, Cost);
875 }
876
getTargetNodeName(unsigned Opcode) const877 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
878 switch (Opcode) {
879 default: return 0;
880 case ARMISD::Wrapper: return "ARMISD::Wrapper";
881 case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
882 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
883 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
884 case ARMISD::CALL: return "ARMISD::CALL";
885 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
886 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
887 case ARMISD::tCALL: return "ARMISD::tCALL";
888 case ARMISD::BRCOND: return "ARMISD::BRCOND";
889 case ARMISD::BR_JT: return "ARMISD::BR_JT";
890 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
891 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
892 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
893 case ARMISD::CMP: return "ARMISD::CMP";
894 case ARMISD::CMPZ: return "ARMISD::CMPZ";
895 case ARMISD::CMPFP: return "ARMISD::CMPFP";
896 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
897 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
898 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
899
900 case ARMISD::CMOV: return "ARMISD::CMOV";
901 case ARMISD::CAND: return "ARMISD::CAND";
902 case ARMISD::COR: return "ARMISD::COR";
903 case ARMISD::CXOR: return "ARMISD::CXOR";
904
905 case ARMISD::RBIT: return "ARMISD::RBIT";
906
907 case ARMISD::FTOSI: return "ARMISD::FTOSI";
908 case ARMISD::FTOUI: return "ARMISD::FTOUI";
909 case ARMISD::SITOF: return "ARMISD::SITOF";
910 case ARMISD::UITOF: return "ARMISD::UITOF";
911
912 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
913 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
914 case ARMISD::RRX: return "ARMISD::RRX";
915
916 case ARMISD::ADDC: return "ARMISD::ADDC";
917 case ARMISD::ADDE: return "ARMISD::ADDE";
918 case ARMISD::SUBC: return "ARMISD::SUBC";
919 case ARMISD::SUBE: return "ARMISD::SUBE";
920
921 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
922 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
923
924 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
925 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
926
927 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
928
929 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
930
931 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
932
933 case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
934 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
935
936 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
937
938 case ARMISD::VCEQ: return "ARMISD::VCEQ";
939 case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
940 case ARMISD::VCGE: return "ARMISD::VCGE";
941 case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
942 case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
943 case ARMISD::VCGEU: return "ARMISD::VCGEU";
944 case ARMISD::VCGT: return "ARMISD::VCGT";
945 case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
946 case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
947 case ARMISD::VCGTU: return "ARMISD::VCGTU";
948 case ARMISD::VTST: return "ARMISD::VTST";
949
950 case ARMISD::VSHL: return "ARMISD::VSHL";
951 case ARMISD::VSHRs: return "ARMISD::VSHRs";
952 case ARMISD::VSHRu: return "ARMISD::VSHRu";
953 case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
954 case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
955 case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
956 case ARMISD::VSHRN: return "ARMISD::VSHRN";
957 case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
958 case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
959 case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
960 case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
961 case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
962 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
963 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
964 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
965 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
966 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
967 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
968 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
969 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
970 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
971 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
972 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
973 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
974 case ARMISD::VDUP: return "ARMISD::VDUP";
975 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
976 case ARMISD::VEXT: return "ARMISD::VEXT";
977 case ARMISD::VREV64: return "ARMISD::VREV64";
978 case ARMISD::VREV32: return "ARMISD::VREV32";
979 case ARMISD::VREV16: return "ARMISD::VREV16";
980 case ARMISD::VZIP: return "ARMISD::VZIP";
981 case ARMISD::VUZP: return "ARMISD::VUZP";
982 case ARMISD::VTRN: return "ARMISD::VTRN";
983 case ARMISD::VTBL1: return "ARMISD::VTBL1";
984 case ARMISD::VTBL2: return "ARMISD::VTBL2";
985 case ARMISD::VMULLs: return "ARMISD::VMULLs";
986 case ARMISD::VMULLu: return "ARMISD::VMULLu";
987 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
988 case ARMISD::FMAX: return "ARMISD::FMAX";
989 case ARMISD::FMIN: return "ARMISD::FMIN";
990 case ARMISD::BFI: return "ARMISD::BFI";
991 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
992 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
993 case ARMISD::VBSL: return "ARMISD::VBSL";
994 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
995 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
996 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
997 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
998 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
999 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1000 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1001 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1002 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1003 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1004 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1005 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1006 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1007 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1008 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1009 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1010 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1011 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1012 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1013 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1014 }
1015 }
1016
getSetCCResultType(EVT VT) const1017 EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1018 if (!VT.isVector()) return getPointerTy();
1019 return VT.changeVectorElementTypeToInteger();
1020 }
1021
1022 /// getRegClassFor - Return the register class that should be used for the
1023 /// specified value type.
getRegClassFor(EVT VT) const1024 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1025 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1026 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1027 // load / store 4 to 8 consecutive D registers.
1028 if (Subtarget->hasNEON()) {
1029 if (VT == MVT::v4i64)
1030 return ARM::QQPRRegisterClass;
1031 else if (VT == MVT::v8i64)
1032 return ARM::QQQQPRRegisterClass;
1033 }
1034 return TargetLowering::getRegClassFor(VT);
1035 }
1036
1037 // Create a fast isel object.
1038 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo) const1039 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1040 return ARM::createFastISel(funcInfo);
1041 }
1042
1043 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
1044 /// be used for loads / stores from the global.
getMaximalGlobalOffset() const1045 unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1046 return (Subtarget->isThumb1Only() ? 127 : 4095);
1047 }
1048
getSchedulingPreference(SDNode * N) const1049 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1050 unsigned NumVals = N->getNumValues();
1051 if (!NumVals)
1052 return Sched::RegPressure;
1053
1054 for (unsigned i = 0; i != NumVals; ++i) {
1055 EVT VT = N->getValueType(i);
1056 if (VT == MVT::Glue || VT == MVT::Other)
1057 continue;
1058 if (VT.isFloatingPoint() || VT.isVector())
1059 return Sched::ILP;
1060 }
1061
1062 if (!N->isMachineOpcode())
1063 return Sched::RegPressure;
1064
1065 // Load are scheduled for latency even if there instruction itinerary
1066 // is not available.
1067 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1068 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1069
1070 if (MCID.getNumDefs() == 0)
1071 return Sched::RegPressure;
1072 if (!Itins->isEmpty() &&
1073 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1074 return Sched::ILP;
1075
1076 return Sched::RegPressure;
1077 }
1078
1079 //===----------------------------------------------------------------------===//
1080 // Lowering Code
1081 //===----------------------------------------------------------------------===//
1082
1083 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1084 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1085 switch (CC) {
1086 default: llvm_unreachable("Unknown condition code!");
1087 case ISD::SETNE: return ARMCC::NE;
1088 case ISD::SETEQ: return ARMCC::EQ;
1089 case ISD::SETGT: return ARMCC::GT;
1090 case ISD::SETGE: return ARMCC::GE;
1091 case ISD::SETLT: return ARMCC::LT;
1092 case ISD::SETLE: return ARMCC::LE;
1093 case ISD::SETUGT: return ARMCC::HI;
1094 case ISD::SETUGE: return ARMCC::HS;
1095 case ISD::SETULT: return ARMCC::LO;
1096 case ISD::SETULE: return ARMCC::LS;
1097 }
1098 }
1099
1100 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1101 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1102 ARMCC::CondCodes &CondCode2) {
1103 CondCode2 = ARMCC::AL;
1104 switch (CC) {
1105 default: llvm_unreachable("Unknown FP condition!");
1106 case ISD::SETEQ:
1107 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1108 case ISD::SETGT:
1109 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1110 case ISD::SETGE:
1111 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1112 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1113 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1114 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1115 case ISD::SETO: CondCode = ARMCC::VC; break;
1116 case ISD::SETUO: CondCode = ARMCC::VS; break;
1117 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1118 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1119 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1120 case ISD::SETLT:
1121 case ISD::SETULT: CondCode = ARMCC::LT; break;
1122 case ISD::SETLE:
1123 case ISD::SETULE: CondCode = ARMCC::LE; break;
1124 case ISD::SETNE:
1125 case ISD::SETUNE: CondCode = ARMCC::NE; break;
1126 }
1127 }
1128
1129 //===----------------------------------------------------------------------===//
1130 // Calling Convention Implementation
1131 //===----------------------------------------------------------------------===//
1132
1133 #include "ARMGenCallingConv.inc"
1134
1135 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1136 /// given CallingConvention value.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1137 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1138 bool Return,
1139 bool isVarArg) const {
1140 switch (CC) {
1141 default:
1142 llvm_unreachable("Unsupported calling convention");
1143 case CallingConv::Fast:
1144 if (Subtarget->hasVFP2() && !isVarArg) {
1145 if (!Subtarget->isAAPCS_ABI())
1146 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1147 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1148 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1149 }
1150 // Fallthrough
1151 case CallingConv::C: {
1152 // Use target triple & subtarget features to do actual dispatch.
1153 if (!Subtarget->isAAPCS_ABI())
1154 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1155 else if (Subtarget->hasVFP2() &&
1156 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1157 !isVarArg)
1158 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1159 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1160 }
1161 case CallingConv::ARM_AAPCS_VFP:
1162 if (!isVarArg)
1163 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1164 // Fallthrough
1165 case CallingConv::ARM_AAPCS:
1166 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1167 case CallingConv::ARM_APCS:
1168 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1169 }
1170 }
1171
1172 /// LowerCallResult - Lower the result values of a call into the
1173 /// appropriate copies out of appropriate physical registers.
1174 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1175 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1176 CallingConv::ID CallConv, bool isVarArg,
1177 const SmallVectorImpl<ISD::InputArg> &Ins,
1178 DebugLoc dl, SelectionDAG &DAG,
1179 SmallVectorImpl<SDValue> &InVals) const {
1180
1181 // Assign locations to each value returned by this call.
1182 SmallVector<CCValAssign, 16> RVLocs;
1183 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1184 getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1185 CCInfo.AnalyzeCallResult(Ins,
1186 CCAssignFnForNode(CallConv, /* Return*/ true,
1187 isVarArg));
1188
1189 // Copy all of the result registers out of their specified physreg.
1190 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1191 CCValAssign VA = RVLocs[i];
1192
1193 SDValue Val;
1194 if (VA.needsCustom()) {
1195 // Handle f64 or half of a v2f64.
1196 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1197 InFlag);
1198 Chain = Lo.getValue(1);
1199 InFlag = Lo.getValue(2);
1200 VA = RVLocs[++i]; // skip ahead to next loc
1201 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1202 InFlag);
1203 Chain = Hi.getValue(1);
1204 InFlag = Hi.getValue(2);
1205 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1206
1207 if (VA.getLocVT() == MVT::v2f64) {
1208 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1209 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1210 DAG.getConstant(0, MVT::i32));
1211
1212 VA = RVLocs[++i]; // skip ahead to next loc
1213 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1214 Chain = Lo.getValue(1);
1215 InFlag = Lo.getValue(2);
1216 VA = RVLocs[++i]; // skip ahead to next loc
1217 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1218 Chain = Hi.getValue(1);
1219 InFlag = Hi.getValue(2);
1220 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1221 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1222 DAG.getConstant(1, MVT::i32));
1223 }
1224 } else {
1225 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1226 InFlag);
1227 Chain = Val.getValue(1);
1228 InFlag = Val.getValue(2);
1229 }
1230
1231 switch (VA.getLocInfo()) {
1232 default: llvm_unreachable("Unknown loc info!");
1233 case CCValAssign::Full: break;
1234 case CCValAssign::BCvt:
1235 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1236 break;
1237 }
1238
1239 InVals.push_back(Val);
1240 }
1241
1242 return Chain;
1243 }
1244
1245 /// LowerMemOpCallTo - Store the argument to the stack.
1246 SDValue
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1247 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1248 SDValue StackPtr, SDValue Arg,
1249 DebugLoc dl, SelectionDAG &DAG,
1250 const CCValAssign &VA,
1251 ISD::ArgFlagsTy Flags) const {
1252 unsigned LocMemOffset = VA.getLocMemOffset();
1253 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1254 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1255 return DAG.getStore(Chain, dl, Arg, PtrOff,
1256 MachinePointerInfo::getStack(LocMemOffset),
1257 false, false, 0);
1258 }
1259
PassF64ArgInRegs(DebugLoc dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVector<SDValue,8> & MemOpChains,ISD::ArgFlagsTy Flags) const1260 void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1261 SDValue Chain, SDValue &Arg,
1262 RegsToPassVector &RegsToPass,
1263 CCValAssign &VA, CCValAssign &NextVA,
1264 SDValue &StackPtr,
1265 SmallVector<SDValue, 8> &MemOpChains,
1266 ISD::ArgFlagsTy Flags) const {
1267
1268 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1269 DAG.getVTList(MVT::i32, MVT::i32), Arg);
1270 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1271
1272 if (NextVA.isRegLoc())
1273 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1274 else {
1275 assert(NextVA.isMemLoc());
1276 if (StackPtr.getNode() == 0)
1277 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1278
1279 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1280 dl, DAG, NextVA,
1281 Flags));
1282 }
1283 }
1284
1285 /// LowerCall - Lowering a call into a callseq_start <-
1286 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1287 /// nodes.
1288 SDValue
LowerCall(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool doesNotRet,bool & isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1289 ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1290 CallingConv::ID CallConv, bool isVarArg,
1291 bool doesNotRet, bool &isTailCall,
1292 const SmallVectorImpl<ISD::OutputArg> &Outs,
1293 const SmallVectorImpl<SDValue> &OutVals,
1294 const SmallVectorImpl<ISD::InputArg> &Ins,
1295 DebugLoc dl, SelectionDAG &DAG,
1296 SmallVectorImpl<SDValue> &InVals) const {
1297 MachineFunction &MF = DAG.getMachineFunction();
1298 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1299 bool IsSibCall = false;
1300 // Disable tail calls if they're not supported.
1301 if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1302 isTailCall = false;
1303 if (isTailCall) {
1304 // Check if it's really possible to do a tail call.
1305 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1306 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1307 Outs, OutVals, Ins, DAG);
1308 // We don't support GuaranteedTailCallOpt for ARM, only automatically
1309 // detected sibcalls.
1310 if (isTailCall) {
1311 ++NumTailCalls;
1312 IsSibCall = true;
1313 }
1314 }
1315
1316 // Analyze operands of the call, assigning locations to each operand.
1317 SmallVector<CCValAssign, 16> ArgLocs;
1318 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1319 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1320 CCInfo.AnalyzeCallOperands(Outs,
1321 CCAssignFnForNode(CallConv, /* Return*/ false,
1322 isVarArg));
1323
1324 // Get a count of how many bytes are to be pushed on the stack.
1325 unsigned NumBytes = CCInfo.getNextStackOffset();
1326
1327 // For tail calls, memory operands are available in our caller's stack.
1328 if (IsSibCall)
1329 NumBytes = 0;
1330
1331 // Adjust the stack pointer for the new arguments...
1332 // These operations are automatically eliminated by the prolog/epilog pass
1333 if (!IsSibCall)
1334 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1335
1336 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1337
1338 RegsToPassVector RegsToPass;
1339 SmallVector<SDValue, 8> MemOpChains;
1340
1341 // Walk the register/memloc assignments, inserting copies/loads. In the case
1342 // of tail call optimization, arguments are handled later.
1343 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1344 i != e;
1345 ++i, ++realArgIdx) {
1346 CCValAssign &VA = ArgLocs[i];
1347 SDValue Arg = OutVals[realArgIdx];
1348 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1349 bool isByVal = Flags.isByVal();
1350
1351 // Promote the value if needed.
1352 switch (VA.getLocInfo()) {
1353 default: llvm_unreachable("Unknown loc info!");
1354 case CCValAssign::Full: break;
1355 case CCValAssign::SExt:
1356 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1357 break;
1358 case CCValAssign::ZExt:
1359 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1360 break;
1361 case CCValAssign::AExt:
1362 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1363 break;
1364 case CCValAssign::BCvt:
1365 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1366 break;
1367 }
1368
1369 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1370 if (VA.needsCustom()) {
1371 if (VA.getLocVT() == MVT::v2f64) {
1372 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1373 DAG.getConstant(0, MVT::i32));
1374 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1375 DAG.getConstant(1, MVT::i32));
1376
1377 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1378 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1379
1380 VA = ArgLocs[++i]; // skip ahead to next loc
1381 if (VA.isRegLoc()) {
1382 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1383 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1384 } else {
1385 assert(VA.isMemLoc());
1386
1387 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1388 dl, DAG, VA, Flags));
1389 }
1390 } else {
1391 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1392 StackPtr, MemOpChains, Flags);
1393 }
1394 } else if (VA.isRegLoc()) {
1395 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1396 } else if (isByVal) {
1397 assert(VA.isMemLoc());
1398 unsigned offset = 0;
1399
1400 // True if this byval aggregate will be split between registers
1401 // and memory.
1402 if (CCInfo.isFirstByValRegValid()) {
1403 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1404 unsigned int i, j;
1405 for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1406 SDValue Const = DAG.getConstant(4*i, MVT::i32);
1407 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1408 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1409 MachinePointerInfo(),
1410 false, false, false, 0);
1411 MemOpChains.push_back(Load.getValue(1));
1412 RegsToPass.push_back(std::make_pair(j, Load));
1413 }
1414 offset = ARM::R4 - CCInfo.getFirstByValReg();
1415 CCInfo.clearFirstByValReg();
1416 }
1417
1418 unsigned LocMemOffset = VA.getLocMemOffset();
1419 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1420 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1421 StkPtrOff);
1422 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1423 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1424 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1425 MVT::i32);
1426 MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1427 Flags.getByValAlign(),
1428 /*isVolatile=*/false,
1429 /*AlwaysInline=*/false,
1430 MachinePointerInfo(0),
1431 MachinePointerInfo(0)));
1432
1433 } else if (!IsSibCall) {
1434 assert(VA.isMemLoc());
1435
1436 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1437 dl, DAG, VA, Flags));
1438 }
1439 }
1440
1441 if (!MemOpChains.empty())
1442 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1443 &MemOpChains[0], MemOpChains.size());
1444
1445 // Build a sequence of copy-to-reg nodes chained together with token chain
1446 // and flag operands which copy the outgoing args into the appropriate regs.
1447 SDValue InFlag;
1448 // Tail call byval lowering might overwrite argument registers so in case of
1449 // tail call optimization the copies to registers are lowered later.
1450 if (!isTailCall)
1451 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1452 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1453 RegsToPass[i].second, InFlag);
1454 InFlag = Chain.getValue(1);
1455 }
1456
1457 // For tail calls lower the arguments to the 'real' stack slot.
1458 if (isTailCall) {
1459 // Force all the incoming stack arguments to be loaded from the stack
1460 // before any new outgoing arguments are stored to the stack, because the
1461 // outgoing stack slots may alias the incoming argument stack slots, and
1462 // the alias isn't otherwise explicit. This is slightly more conservative
1463 // than necessary, because it means that each store effectively depends
1464 // on every argument instead of just those arguments it would clobber.
1465
1466 // Do not flag preceding copytoreg stuff together with the following stuff.
1467 InFlag = SDValue();
1468 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1469 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1470 RegsToPass[i].second, InFlag);
1471 InFlag = Chain.getValue(1);
1472 }
1473 InFlag =SDValue();
1474 }
1475
1476 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1477 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1478 // node so that legalize doesn't hack it.
1479 bool isDirect = false;
1480 bool isARMFunc = false;
1481 bool isLocalARMFunc = false;
1482 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1483
1484 if (EnableARMLongCalls) {
1485 assert (getTargetMachine().getRelocationModel() == Reloc::Static
1486 && "long-calls with non-static relocation model!");
1487 // Handle a global address or an external symbol. If it's not one of
1488 // those, the target's already in a register, so we don't need to do
1489 // anything extra.
1490 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1491 const GlobalValue *GV = G->getGlobal();
1492 // Create a constant pool entry for the callee address
1493 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1494 ARMConstantPoolValue *CPV =
1495 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1496
1497 // Get the address of the callee into a register
1498 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1499 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1500 Callee = DAG.getLoad(getPointerTy(), dl,
1501 DAG.getEntryNode(), CPAddr,
1502 MachinePointerInfo::getConstantPool(),
1503 false, false, false, 0);
1504 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1505 const char *Sym = S->getSymbol();
1506
1507 // Create a constant pool entry for the callee address
1508 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1509 ARMConstantPoolValue *CPV =
1510 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1511 ARMPCLabelIndex, 0);
1512 // Get the address of the callee into a register
1513 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1514 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1515 Callee = DAG.getLoad(getPointerTy(), dl,
1516 DAG.getEntryNode(), CPAddr,
1517 MachinePointerInfo::getConstantPool(),
1518 false, false, false, 0);
1519 }
1520 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1521 const GlobalValue *GV = G->getGlobal();
1522 isDirect = true;
1523 bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1524 bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1525 getTargetMachine().getRelocationModel() != Reloc::Static;
1526 isARMFunc = !Subtarget->isThumb() || isStub;
1527 // ARM call to a local ARM function is predicable.
1528 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1529 // tBX takes a register source operand.
1530 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1531 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1532 ARMConstantPoolValue *CPV =
1533 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1534 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1535 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1536 Callee = DAG.getLoad(getPointerTy(), dl,
1537 DAG.getEntryNode(), CPAddr,
1538 MachinePointerInfo::getConstantPool(),
1539 false, false, false, 0);
1540 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1541 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1542 getPointerTy(), Callee, PICLabel);
1543 } else {
1544 // On ELF targets for PIC code, direct calls should go through the PLT
1545 unsigned OpFlags = 0;
1546 if (Subtarget->isTargetELF() &&
1547 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1548 OpFlags = ARMII::MO_PLT;
1549 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1550 }
1551 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1552 isDirect = true;
1553 bool isStub = Subtarget->isTargetDarwin() &&
1554 getTargetMachine().getRelocationModel() != Reloc::Static;
1555 isARMFunc = !Subtarget->isThumb() || isStub;
1556 // tBX takes a register source operand.
1557 const char *Sym = S->getSymbol();
1558 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1559 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1560 ARMConstantPoolValue *CPV =
1561 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1562 ARMPCLabelIndex, 4);
1563 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1564 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1565 Callee = DAG.getLoad(getPointerTy(), dl,
1566 DAG.getEntryNode(), CPAddr,
1567 MachinePointerInfo::getConstantPool(),
1568 false, false, false, 0);
1569 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1570 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1571 getPointerTy(), Callee, PICLabel);
1572 } else {
1573 unsigned OpFlags = 0;
1574 // On ELF targets for PIC code, direct calls should go through the PLT
1575 if (Subtarget->isTargetELF() &&
1576 getTargetMachine().getRelocationModel() == Reloc::PIC_)
1577 OpFlags = ARMII::MO_PLT;
1578 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1579 }
1580 }
1581
1582 // FIXME: handle tail calls differently.
1583 unsigned CallOpc;
1584 if (Subtarget->isThumb()) {
1585 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1586 CallOpc = ARMISD::CALL_NOLINK;
1587 else if (doesNotRet && isDirect && !isARMFunc &&
1588 Subtarget->hasRAS() && !Subtarget->isThumb1Only())
1589 // "mov lr, pc; b _foo" to avoid confusing the RSP
1590 CallOpc = ARMISD::CALL_NOLINK;
1591 else
1592 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1593 } else {
1594 if (!isDirect && !Subtarget->hasV5TOps()) {
1595 CallOpc = ARMISD::CALL_NOLINK;
1596 } else if (doesNotRet && isDirect && Subtarget->hasRAS())
1597 // "mov lr, pc; b _foo" to avoid confusing the RSP
1598 CallOpc = ARMISD::CALL_NOLINK;
1599 else
1600 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1601 }
1602
1603 std::vector<SDValue> Ops;
1604 Ops.push_back(Chain);
1605 Ops.push_back(Callee);
1606
1607 // Add argument registers to the end of the list so that they are known live
1608 // into the call.
1609 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1610 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1611 RegsToPass[i].second.getValueType()));
1612
1613 // Add a register mask operand representing the call-preserved registers.
1614 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1615 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1616 assert(Mask && "Missing call preserved mask for calling convention");
1617 Ops.push_back(DAG.getRegisterMask(Mask));
1618
1619 if (InFlag.getNode())
1620 Ops.push_back(InFlag);
1621
1622 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1623 if (isTailCall)
1624 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1625
1626 // Returns a chain and a flag for retval copy to use.
1627 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1628 InFlag = Chain.getValue(1);
1629
1630 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1631 DAG.getIntPtrConstant(0, true), InFlag);
1632 if (!Ins.empty())
1633 InFlag = Chain.getValue(1);
1634
1635 // Handle result values, copying them out of physregs into vregs that we
1636 // return.
1637 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1638 dl, DAG, InVals);
1639 }
1640
1641 /// HandleByVal - Every parameter *after* a byval parameter is passed
1642 /// on the stack. Remember the next parameter register to allocate,
1643 /// and then confiscate the rest of the parameter registers to insure
1644 /// this.
1645 void
HandleByVal(CCState * State,unsigned & size) const1646 ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1647 unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1648 assert((State->getCallOrPrologue() == Prologue ||
1649 State->getCallOrPrologue() == Call) &&
1650 "unhandled ParmContext");
1651 if ((!State->isFirstByValRegValid()) &&
1652 (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1653 State->setFirstByValReg(reg);
1654 // At a call site, a byval parameter that is split between
1655 // registers and memory needs its size truncated here. In a
1656 // function prologue, such byval parameters are reassembled in
1657 // memory, and are not truncated.
1658 if (State->getCallOrPrologue() == Call) {
1659 unsigned excess = 4 * (ARM::R4 - reg);
1660 assert(size >= excess && "expected larger existing stack allocation");
1661 size -= excess;
1662 }
1663 }
1664 // Confiscate any remaining parameter registers to preclude their
1665 // assignment to subsequent parameters.
1666 while (State->AllocateReg(GPRArgRegs, 4))
1667 ;
1668 }
1669
1670 /// MatchingStackOffset - Return true if the given stack call argument is
1671 /// already available in the same position (relatively) of the caller's
1672 /// incoming argument stack.
1673 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo * MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)1674 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1675 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1676 const TargetInstrInfo *TII) {
1677 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1678 int FI = INT_MAX;
1679 if (Arg.getOpcode() == ISD::CopyFromReg) {
1680 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1681 if (!TargetRegisterInfo::isVirtualRegister(VR))
1682 return false;
1683 MachineInstr *Def = MRI->getVRegDef(VR);
1684 if (!Def)
1685 return false;
1686 if (!Flags.isByVal()) {
1687 if (!TII->isLoadFromStackSlot(Def, FI))
1688 return false;
1689 } else {
1690 return false;
1691 }
1692 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1693 if (Flags.isByVal())
1694 // ByVal argument is passed in as a pointer but it's now being
1695 // dereferenced. e.g.
1696 // define @foo(%struct.X* %A) {
1697 // tail call @bar(%struct.X* byval %A)
1698 // }
1699 return false;
1700 SDValue Ptr = Ld->getBasePtr();
1701 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1702 if (!FINode)
1703 return false;
1704 FI = FINode->getIndex();
1705 } else
1706 return false;
1707
1708 assert(FI != INT_MAX);
1709 if (!MFI->isFixedObjectIndex(FI))
1710 return false;
1711 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1712 }
1713
1714 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1715 /// for tail call optimization. Targets which want to do tail call
1716 /// optimization should implement this function.
1717 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const1718 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1719 CallingConv::ID CalleeCC,
1720 bool isVarArg,
1721 bool isCalleeStructRet,
1722 bool isCallerStructRet,
1723 const SmallVectorImpl<ISD::OutputArg> &Outs,
1724 const SmallVectorImpl<SDValue> &OutVals,
1725 const SmallVectorImpl<ISD::InputArg> &Ins,
1726 SelectionDAG& DAG) const {
1727 const Function *CallerF = DAG.getMachineFunction().getFunction();
1728 CallingConv::ID CallerCC = CallerF->getCallingConv();
1729 bool CCMatch = CallerCC == CalleeCC;
1730
1731 // Look for obvious safe cases to perform tail call optimization that do not
1732 // require ABI changes. This is what gcc calls sibcall.
1733
1734 // Do not sibcall optimize vararg calls unless the call site is not passing
1735 // any arguments.
1736 if (isVarArg && !Outs.empty())
1737 return false;
1738
1739 // Also avoid sibcall optimization if either caller or callee uses struct
1740 // return semantics.
1741 if (isCalleeStructRet || isCallerStructRet)
1742 return false;
1743
1744 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1745 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1746 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1747 // support in the assembler and linker to be used. This would need to be
1748 // fixed to fully support tail calls in Thumb1.
1749 //
1750 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1751 // LR. This means if we need to reload LR, it takes an extra instructions,
1752 // which outweighs the value of the tail call; but here we don't know yet
1753 // whether LR is going to be used. Probably the right approach is to
1754 // generate the tail call here and turn it back into CALL/RET in
1755 // emitEpilogue if LR is used.
1756
1757 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1758 // but we need to make sure there are enough registers; the only valid
1759 // registers are the 4 used for parameters. We don't currently do this
1760 // case.
1761 if (Subtarget->isThumb1Only())
1762 return false;
1763
1764 // If the calling conventions do not match, then we'd better make sure the
1765 // results are returned in the same way as what the caller expects.
1766 if (!CCMatch) {
1767 SmallVector<CCValAssign, 16> RVLocs1;
1768 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1769 getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1770 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1771
1772 SmallVector<CCValAssign, 16> RVLocs2;
1773 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1774 getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1775 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1776
1777 if (RVLocs1.size() != RVLocs2.size())
1778 return false;
1779 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1780 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1781 return false;
1782 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1783 return false;
1784 if (RVLocs1[i].isRegLoc()) {
1785 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1786 return false;
1787 } else {
1788 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1789 return false;
1790 }
1791 }
1792 }
1793
1794 // If the callee takes no arguments then go on to check the results of the
1795 // call.
1796 if (!Outs.empty()) {
1797 // Check if stack adjustment is needed. For now, do not do this if any
1798 // argument is passed on the stack.
1799 SmallVector<CCValAssign, 16> ArgLocs;
1800 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1801 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1802 CCInfo.AnalyzeCallOperands(Outs,
1803 CCAssignFnForNode(CalleeCC, false, isVarArg));
1804 if (CCInfo.getNextStackOffset()) {
1805 MachineFunction &MF = DAG.getMachineFunction();
1806
1807 // Check if the arguments are already laid out in the right way as
1808 // the caller's fixed stack objects.
1809 MachineFrameInfo *MFI = MF.getFrameInfo();
1810 const MachineRegisterInfo *MRI = &MF.getRegInfo();
1811 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1812 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1813 i != e;
1814 ++i, ++realArgIdx) {
1815 CCValAssign &VA = ArgLocs[i];
1816 EVT RegVT = VA.getLocVT();
1817 SDValue Arg = OutVals[realArgIdx];
1818 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1819 if (VA.getLocInfo() == CCValAssign::Indirect)
1820 return false;
1821 if (VA.needsCustom()) {
1822 // f64 and vector types are split into multiple registers or
1823 // register/stack-slot combinations. The types will not match
1824 // the registers; give up on memory f64 refs until we figure
1825 // out what to do about this.
1826 if (!VA.isRegLoc())
1827 return false;
1828 if (!ArgLocs[++i].isRegLoc())
1829 return false;
1830 if (RegVT == MVT::v2f64) {
1831 if (!ArgLocs[++i].isRegLoc())
1832 return false;
1833 if (!ArgLocs[++i].isRegLoc())
1834 return false;
1835 }
1836 } else if (!VA.isRegLoc()) {
1837 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1838 MFI, MRI, TII))
1839 return false;
1840 }
1841 }
1842 }
1843 }
1844
1845 return true;
1846 }
1847
1848 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1849 ARMTargetLowering::LowerReturn(SDValue Chain,
1850 CallingConv::ID CallConv, bool isVarArg,
1851 const SmallVectorImpl<ISD::OutputArg> &Outs,
1852 const SmallVectorImpl<SDValue> &OutVals,
1853 DebugLoc dl, SelectionDAG &DAG) const {
1854
1855 // CCValAssign - represent the assignment of the return value to a location.
1856 SmallVector<CCValAssign, 16> RVLocs;
1857
1858 // CCState - Info about the registers and stack slots.
1859 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1860 getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1861
1862 // Analyze outgoing return values.
1863 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1864 isVarArg));
1865
1866 // If this is the first return lowered for this function, add
1867 // the regs to the liveout set for the function.
1868 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1869 for (unsigned i = 0; i != RVLocs.size(); ++i)
1870 if (RVLocs[i].isRegLoc())
1871 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1872 }
1873
1874 SDValue Flag;
1875
1876 // Copy the result values into the output registers.
1877 for (unsigned i = 0, realRVLocIdx = 0;
1878 i != RVLocs.size();
1879 ++i, ++realRVLocIdx) {
1880 CCValAssign &VA = RVLocs[i];
1881 assert(VA.isRegLoc() && "Can only return in registers!");
1882
1883 SDValue Arg = OutVals[realRVLocIdx];
1884
1885 switch (VA.getLocInfo()) {
1886 default: llvm_unreachable("Unknown loc info!");
1887 case CCValAssign::Full: break;
1888 case CCValAssign::BCvt:
1889 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1890 break;
1891 }
1892
1893 if (VA.needsCustom()) {
1894 if (VA.getLocVT() == MVT::v2f64) {
1895 // Extract the first half and return it in two registers.
1896 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1897 DAG.getConstant(0, MVT::i32));
1898 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1899 DAG.getVTList(MVT::i32, MVT::i32), Half);
1900
1901 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1902 Flag = Chain.getValue(1);
1903 VA = RVLocs[++i]; // skip ahead to next loc
1904 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1905 HalfGPRs.getValue(1), Flag);
1906 Flag = Chain.getValue(1);
1907 VA = RVLocs[++i]; // skip ahead to next loc
1908
1909 // Extract the 2nd half and fall through to handle it as an f64 value.
1910 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1911 DAG.getConstant(1, MVT::i32));
1912 }
1913 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
1914 // available.
1915 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1916 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1917 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1918 Flag = Chain.getValue(1);
1919 VA = RVLocs[++i]; // skip ahead to next loc
1920 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1921 Flag);
1922 } else
1923 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1924
1925 // Guarantee that all emitted copies are
1926 // stuck together, avoiding something bad.
1927 Flag = Chain.getValue(1);
1928 }
1929
1930 SDValue result;
1931 if (Flag.getNode())
1932 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1933 else // Return Void
1934 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1935
1936 return result;
1937 }
1938
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const1939 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1940 if (N->getNumValues() != 1)
1941 return false;
1942 if (!N->hasNUsesOfValue(1, 0))
1943 return false;
1944
1945 SDValue TCChain = Chain;
1946 SDNode *Copy = *N->use_begin();
1947 if (Copy->getOpcode() == ISD::CopyToReg) {
1948 // If the copy has a glue operand, we conservatively assume it isn't safe to
1949 // perform a tail call.
1950 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1951 return false;
1952 TCChain = Copy->getOperand(0);
1953 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
1954 SDNode *VMov = Copy;
1955 // f64 returned in a pair of GPRs.
1956 SmallPtrSet<SDNode*, 2> Copies;
1957 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1958 UI != UE; ++UI) {
1959 if (UI->getOpcode() != ISD::CopyToReg)
1960 return false;
1961 Copies.insert(*UI);
1962 }
1963 if (Copies.size() > 2)
1964 return false;
1965
1966 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1967 UI != UE; ++UI) {
1968 SDValue UseChain = UI->getOperand(0);
1969 if (Copies.count(UseChain.getNode()))
1970 // Second CopyToReg
1971 Copy = *UI;
1972 else
1973 // First CopyToReg
1974 TCChain = UseChain;
1975 }
1976 } else if (Copy->getOpcode() == ISD::BITCAST) {
1977 // f32 returned in a single GPR.
1978 if (!Copy->hasOneUse())
1979 return false;
1980 Copy = *Copy->use_begin();
1981 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
1982 return false;
1983 Chain = Copy->getOperand(0);
1984 } else {
1985 return false;
1986 }
1987
1988 bool HasRet = false;
1989 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1990 UI != UE; ++UI) {
1991 if (UI->getOpcode() != ARMISD::RET_FLAG)
1992 return false;
1993 HasRet = true;
1994 }
1995
1996 if (!HasRet)
1997 return false;
1998
1999 Chain = TCChain;
2000 return true;
2001 }
2002
mayBeEmittedAsTailCall(CallInst * CI) const2003 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2004 if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2005 return false;
2006
2007 if (!CI->isTailCall())
2008 return false;
2009
2010 return !Subtarget->isThumb1Only();
2011 }
2012
2013 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2014 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2015 // one of the above mentioned nodes. It has to be wrapped because otherwise
2016 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2017 // be used to form addressing mode. These wrapped nodes will be selected
2018 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG)2019 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2020 EVT PtrVT = Op.getValueType();
2021 // FIXME there is no actual debug info here
2022 DebugLoc dl = Op.getDebugLoc();
2023 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2024 SDValue Res;
2025 if (CP->isMachineConstantPoolEntry())
2026 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2027 CP->getAlignment());
2028 else
2029 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2030 CP->getAlignment());
2031 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2032 }
2033
getJumpTableEncoding() const2034 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2035 return MachineJumpTableInfo::EK_Inline;
2036 }
2037
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2038 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2039 SelectionDAG &DAG) const {
2040 MachineFunction &MF = DAG.getMachineFunction();
2041 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2042 unsigned ARMPCLabelIndex = 0;
2043 DebugLoc DL = Op.getDebugLoc();
2044 EVT PtrVT = getPointerTy();
2045 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2046 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2047 SDValue CPAddr;
2048 if (RelocM == Reloc::Static) {
2049 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2050 } else {
2051 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2052 ARMPCLabelIndex = AFI->createPICLabelUId();
2053 ARMConstantPoolValue *CPV =
2054 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2055 ARMCP::CPBlockAddress, PCAdj);
2056 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2057 }
2058 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2059 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2060 MachinePointerInfo::getConstantPool(),
2061 false, false, false, 0);
2062 if (RelocM == Reloc::Static)
2063 return Result;
2064 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2065 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2066 }
2067
2068 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2069 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2070 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2071 SelectionDAG &DAG) const {
2072 DebugLoc dl = GA->getDebugLoc();
2073 EVT PtrVT = getPointerTy();
2074 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2075 MachineFunction &MF = DAG.getMachineFunction();
2076 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2077 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2078 ARMConstantPoolValue *CPV =
2079 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2080 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2081 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2082 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2083 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2084 MachinePointerInfo::getConstantPool(),
2085 false, false, false, 0);
2086 SDValue Chain = Argument.getValue(1);
2087
2088 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2089 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2090
2091 // call __tls_get_addr.
2092 ArgListTy Args;
2093 ArgListEntry Entry;
2094 Entry.Node = Argument;
2095 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2096 Args.push_back(Entry);
2097 // FIXME: is there useful debug info available here?
2098 std::pair<SDValue, SDValue> CallResult =
2099 LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2100 false, false, false, false,
2101 0, CallingConv::C, /*isTailCall=*/false,
2102 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2103 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2104 return CallResult.first;
2105 }
2106
2107 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2108 // "local exec" model.
2109 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2110 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2111 SelectionDAG &DAG) const {
2112 const GlobalValue *GV = GA->getGlobal();
2113 DebugLoc dl = GA->getDebugLoc();
2114 SDValue Offset;
2115 SDValue Chain = DAG.getEntryNode();
2116 EVT PtrVT = getPointerTy();
2117 // Get the Thread Pointer
2118 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2119
2120 if (GV->isDeclaration()) {
2121 MachineFunction &MF = DAG.getMachineFunction();
2122 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2123 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2124 // Initial exec model.
2125 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2126 ARMConstantPoolValue *CPV =
2127 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2128 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2129 true);
2130 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2131 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2132 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2133 MachinePointerInfo::getConstantPool(),
2134 false, false, false, 0);
2135 Chain = Offset.getValue(1);
2136
2137 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2138 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2139
2140 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2141 MachinePointerInfo::getConstantPool(),
2142 false, false, false, 0);
2143 } else {
2144 // local exec model
2145 ARMConstantPoolValue *CPV =
2146 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2147 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2148 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2149 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2150 MachinePointerInfo::getConstantPool(),
2151 false, false, false, 0);
2152 }
2153
2154 // The address of the thread local variable is the add of the thread
2155 // pointer with the offset of the variable.
2156 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2157 }
2158
2159 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2160 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2161 // TODO: implement the "local dynamic" model
2162 assert(Subtarget->isTargetELF() &&
2163 "TLS not implemented for non-ELF targets");
2164 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2165 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2166 // otherwise use the "Local Exec" TLS Model
2167 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2168 return LowerToTLSGeneralDynamicModel(GA, DAG);
2169 else
2170 return LowerToTLSExecModels(GA, DAG);
2171 }
2172
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const2173 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2174 SelectionDAG &DAG) const {
2175 EVT PtrVT = getPointerTy();
2176 DebugLoc dl = Op.getDebugLoc();
2177 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2178 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2179 if (RelocM == Reloc::PIC_) {
2180 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2181 ARMConstantPoolValue *CPV =
2182 ARMConstantPoolConstant::Create(GV,
2183 UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2184 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2185 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2186 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2187 CPAddr,
2188 MachinePointerInfo::getConstantPool(),
2189 false, false, false, 0);
2190 SDValue Chain = Result.getValue(1);
2191 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2192 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2193 if (!UseGOTOFF)
2194 Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2195 MachinePointerInfo::getGOT(),
2196 false, false, false, 0);
2197 return Result;
2198 }
2199
2200 // If we have T2 ops, we can materialize the address directly via movt/movw
2201 // pair. This is always cheaper.
2202 if (Subtarget->useMovt()) {
2203 ++NumMovwMovt;
2204 // FIXME: Once remat is capable of dealing with instructions with register
2205 // operands, expand this into two nodes.
2206 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2207 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2208 } else {
2209 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2210 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2211 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2212 MachinePointerInfo::getConstantPool(),
2213 false, false, false, 0);
2214 }
2215 }
2216
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const2217 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2218 SelectionDAG &DAG) const {
2219 EVT PtrVT = getPointerTy();
2220 DebugLoc dl = Op.getDebugLoc();
2221 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2222 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2223 MachineFunction &MF = DAG.getMachineFunction();
2224 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2225
2226 // FIXME: Enable this for static codegen when tool issues are fixed. Also
2227 // update ARMFastISel::ARMMaterializeGV.
2228 if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2229 ++NumMovwMovt;
2230 // FIXME: Once remat is capable of dealing with instructions with register
2231 // operands, expand this into two nodes.
2232 if (RelocM == Reloc::Static)
2233 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2234 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2235
2236 unsigned Wrapper = (RelocM == Reloc::PIC_)
2237 ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2238 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2239 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2240 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2241 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2242 MachinePointerInfo::getGOT(),
2243 false, false, false, 0);
2244 return Result;
2245 }
2246
2247 unsigned ARMPCLabelIndex = 0;
2248 SDValue CPAddr;
2249 if (RelocM == Reloc::Static) {
2250 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2251 } else {
2252 ARMPCLabelIndex = AFI->createPICLabelUId();
2253 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2254 ARMConstantPoolValue *CPV =
2255 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2256 PCAdj);
2257 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2258 }
2259 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2260
2261 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2262 MachinePointerInfo::getConstantPool(),
2263 false, false, false, 0);
2264 SDValue Chain = Result.getValue(1);
2265
2266 if (RelocM == Reloc::PIC_) {
2267 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2268 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2269 }
2270
2271 if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2272 Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2273 false, false, false, 0);
2274
2275 return Result;
2276 }
2277
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const2278 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2279 SelectionDAG &DAG) const {
2280 assert(Subtarget->isTargetELF() &&
2281 "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2282 MachineFunction &MF = DAG.getMachineFunction();
2283 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2284 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2285 EVT PtrVT = getPointerTy();
2286 DebugLoc dl = Op.getDebugLoc();
2287 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2288 ARMConstantPoolValue *CPV =
2289 ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2290 ARMPCLabelIndex, PCAdj);
2291 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2292 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2293 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2294 MachinePointerInfo::getConstantPool(),
2295 false, false, false, 0);
2296 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2297 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2298 }
2299
2300 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const2301 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2302 DebugLoc dl = Op.getDebugLoc();
2303 SDValue Val = DAG.getConstant(0, MVT::i32);
2304 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2305 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2306 Op.getOperand(1), Val);
2307 }
2308
2309 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const2310 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2311 DebugLoc dl = Op.getDebugLoc();
2312 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2313 Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2314 }
2315
2316 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const2317 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2318 const ARMSubtarget *Subtarget) const {
2319 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2320 DebugLoc dl = Op.getDebugLoc();
2321 switch (IntNo) {
2322 default: return SDValue(); // Don't custom lower most intrinsics.
2323 case Intrinsic::arm_thread_pointer: {
2324 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2325 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2326 }
2327 case Intrinsic::eh_sjlj_lsda: {
2328 MachineFunction &MF = DAG.getMachineFunction();
2329 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2330 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2331 EVT PtrVT = getPointerTy();
2332 DebugLoc dl = Op.getDebugLoc();
2333 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2334 SDValue CPAddr;
2335 unsigned PCAdj = (RelocM != Reloc::PIC_)
2336 ? 0 : (Subtarget->isThumb() ? 4 : 8);
2337 ARMConstantPoolValue *CPV =
2338 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2339 ARMCP::CPLSDA, PCAdj);
2340 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2341 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2342 SDValue Result =
2343 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2344 MachinePointerInfo::getConstantPool(),
2345 false, false, false, 0);
2346
2347 if (RelocM == Reloc::PIC_) {
2348 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2349 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2350 }
2351 return Result;
2352 }
2353 case Intrinsic::arm_neon_vmulls:
2354 case Intrinsic::arm_neon_vmullu: {
2355 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2356 ? ARMISD::VMULLs : ARMISD::VMULLu;
2357 return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2358 Op.getOperand(1), Op.getOperand(2));
2359 }
2360 }
2361 }
2362
LowerMEMBARRIER(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2363 static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2364 const ARMSubtarget *Subtarget) {
2365 DebugLoc dl = Op.getDebugLoc();
2366 if (!Subtarget->hasDataBarrier()) {
2367 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2368 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2369 // here.
2370 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2371 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2372 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2373 DAG.getConstant(0, MVT::i32));
2374 }
2375
2376 SDValue Op5 = Op.getOperand(5);
2377 bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2378 unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2379 unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2380 bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2381
2382 ARM_MB::MemBOpt DMBOpt;
2383 if (isDeviceBarrier)
2384 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2385 else
2386 DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2387 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2388 DAG.getConstant(DMBOpt, MVT::i32));
2389 }
2390
2391
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2392 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2393 const ARMSubtarget *Subtarget) {
2394 // FIXME: handle "fence singlethread" more efficiently.
2395 DebugLoc dl = Op.getDebugLoc();
2396 if (!Subtarget->hasDataBarrier()) {
2397 // Some ARMv6 cpus can support data barriers with an mcr instruction.
2398 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2399 // here.
2400 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2401 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2402 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2403 DAG.getConstant(0, MVT::i32));
2404 }
2405
2406 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2407 DAG.getConstant(ARM_MB::ISH, MVT::i32));
2408 }
2409
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2410 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2411 const ARMSubtarget *Subtarget) {
2412 // ARM pre v5TE and Thumb1 does not have preload instructions.
2413 if (!(Subtarget->isThumb2() ||
2414 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2415 // Just preserve the chain.
2416 return Op.getOperand(0);
2417
2418 DebugLoc dl = Op.getDebugLoc();
2419 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2420 if (!isRead &&
2421 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2422 // ARMv7 with MP extension has PLDW.
2423 return Op.getOperand(0);
2424
2425 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2426 if (Subtarget->isThumb()) {
2427 // Invert the bits.
2428 isRead = ~isRead & 1;
2429 isData = ~isData & 1;
2430 }
2431
2432 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2433 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2434 DAG.getConstant(isData, MVT::i32));
2435 }
2436
LowerVASTART(SDValue Op,SelectionDAG & DAG)2437 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2438 MachineFunction &MF = DAG.getMachineFunction();
2439 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2440
2441 // vastart just stores the address of the VarArgsFrameIndex slot into the
2442 // memory location argument.
2443 DebugLoc dl = Op.getDebugLoc();
2444 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2445 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2446 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2447 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2448 MachinePointerInfo(SV), false, false, 0);
2449 }
2450
2451 SDValue
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,DebugLoc dl) const2452 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2453 SDValue &Root, SelectionDAG &DAG,
2454 DebugLoc dl) const {
2455 MachineFunction &MF = DAG.getMachineFunction();
2456 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2457
2458 const TargetRegisterClass *RC;
2459 if (AFI->isThumb1OnlyFunction())
2460 RC = ARM::tGPRRegisterClass;
2461 else
2462 RC = ARM::GPRRegisterClass;
2463
2464 // Transform the arguments stored in physical registers into virtual ones.
2465 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2466 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2467
2468 SDValue ArgValue2;
2469 if (NextVA.isMemLoc()) {
2470 MachineFrameInfo *MFI = MF.getFrameInfo();
2471 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2472
2473 // Create load node to retrieve arguments from the stack.
2474 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2475 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2476 MachinePointerInfo::getFixedStack(FI),
2477 false, false, false, 0);
2478 } else {
2479 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2480 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2481 }
2482
2483 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2484 }
2485
2486 void
computeRegArea(CCState & CCInfo,MachineFunction & MF,unsigned & VARegSize,unsigned & VARegSaveSize) const2487 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2488 unsigned &VARegSize, unsigned &VARegSaveSize)
2489 const {
2490 unsigned NumGPRs;
2491 if (CCInfo.isFirstByValRegValid())
2492 NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2493 else {
2494 unsigned int firstUnalloced;
2495 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2496 sizeof(GPRArgRegs) /
2497 sizeof(GPRArgRegs[0]));
2498 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2499 }
2500
2501 unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2502 VARegSize = NumGPRs * 4;
2503 VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2504 }
2505
2506 // The remaining GPRs hold either the beginning of variable-argument
2507 // data, or the beginning of an aggregate passed by value (usuall
2508 // byval). Either way, we allocate stack slots adjacent to the data
2509 // provided by our caller, and store the unallocated registers there.
2510 // If this is a variadic function, the va_list pointer will begin with
2511 // these values; otherwise, this reassembles a (byval) structure that
2512 // was split between registers and memory.
2513 void
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,DebugLoc dl,SDValue & Chain,unsigned ArgOffset) const2514 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2515 DebugLoc dl, SDValue &Chain,
2516 unsigned ArgOffset) const {
2517 MachineFunction &MF = DAG.getMachineFunction();
2518 MachineFrameInfo *MFI = MF.getFrameInfo();
2519 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2520 unsigned firstRegToSaveIndex;
2521 if (CCInfo.isFirstByValRegValid())
2522 firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2523 else {
2524 firstRegToSaveIndex = CCInfo.getFirstUnallocated
2525 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2526 }
2527
2528 unsigned VARegSize, VARegSaveSize;
2529 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2530 if (VARegSaveSize) {
2531 // If this function is vararg, store any remaining integer argument regs
2532 // to their spots on the stack so that they may be loaded by deferencing
2533 // the result of va_next.
2534 AFI->setVarArgsRegSaveSize(VARegSaveSize);
2535 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2536 ArgOffset + VARegSaveSize
2537 - VARegSize,
2538 false));
2539 SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2540 getPointerTy());
2541
2542 SmallVector<SDValue, 4> MemOps;
2543 for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2544 const TargetRegisterClass *RC;
2545 if (AFI->isThumb1OnlyFunction())
2546 RC = ARM::tGPRRegisterClass;
2547 else
2548 RC = ARM::GPRRegisterClass;
2549
2550 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2551 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2552 SDValue Store =
2553 DAG.getStore(Val.getValue(1), dl, Val, FIN,
2554 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2555 false, false, 0);
2556 MemOps.push_back(Store);
2557 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2558 DAG.getConstant(4, getPointerTy()));
2559 }
2560 if (!MemOps.empty())
2561 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2562 &MemOps[0], MemOps.size());
2563 } else
2564 // This will point to the next argument passed via stack.
2565 AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2566 }
2567
2568 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2569 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2570 CallingConv::ID CallConv, bool isVarArg,
2571 const SmallVectorImpl<ISD::InputArg>
2572 &Ins,
2573 DebugLoc dl, SelectionDAG &DAG,
2574 SmallVectorImpl<SDValue> &InVals)
2575 const {
2576 MachineFunction &MF = DAG.getMachineFunction();
2577 MachineFrameInfo *MFI = MF.getFrameInfo();
2578
2579 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2580
2581 // Assign locations to all of the incoming arguments.
2582 SmallVector<CCValAssign, 16> ArgLocs;
2583 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2584 getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2585 CCInfo.AnalyzeFormalArguments(Ins,
2586 CCAssignFnForNode(CallConv, /* Return*/ false,
2587 isVarArg));
2588
2589 SmallVector<SDValue, 16> ArgValues;
2590 int lastInsIndex = -1;
2591
2592 SDValue ArgValue;
2593 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2594 CCValAssign &VA = ArgLocs[i];
2595
2596 // Arguments stored in registers.
2597 if (VA.isRegLoc()) {
2598 EVT RegVT = VA.getLocVT();
2599
2600 if (VA.needsCustom()) {
2601 // f64 and vector types are split up into multiple registers or
2602 // combinations of registers and stack slots.
2603 if (VA.getLocVT() == MVT::v2f64) {
2604 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2605 Chain, DAG, dl);
2606 VA = ArgLocs[++i]; // skip ahead to next loc
2607 SDValue ArgValue2;
2608 if (VA.isMemLoc()) {
2609 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2610 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2611 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2612 MachinePointerInfo::getFixedStack(FI),
2613 false, false, false, 0);
2614 } else {
2615 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2616 Chain, DAG, dl);
2617 }
2618 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2619 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2620 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2621 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2622 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2623 } else
2624 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2625
2626 } else {
2627 const TargetRegisterClass *RC;
2628
2629 if (RegVT == MVT::f32)
2630 RC = ARM::SPRRegisterClass;
2631 else if (RegVT == MVT::f64)
2632 RC = ARM::DPRRegisterClass;
2633 else if (RegVT == MVT::v2f64)
2634 RC = ARM::QPRRegisterClass;
2635 else if (RegVT == MVT::i32)
2636 RC = (AFI->isThumb1OnlyFunction() ?
2637 ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2638 else
2639 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2640
2641 // Transform the arguments in physical registers into virtual ones.
2642 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2643 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2644 }
2645
2646 // If this is an 8 or 16-bit value, it is really passed promoted
2647 // to 32 bits. Insert an assert[sz]ext to capture this, then
2648 // truncate to the right size.
2649 switch (VA.getLocInfo()) {
2650 default: llvm_unreachable("Unknown loc info!");
2651 case CCValAssign::Full: break;
2652 case CCValAssign::BCvt:
2653 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2654 break;
2655 case CCValAssign::SExt:
2656 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2657 DAG.getValueType(VA.getValVT()));
2658 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2659 break;
2660 case CCValAssign::ZExt:
2661 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2662 DAG.getValueType(VA.getValVT()));
2663 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2664 break;
2665 }
2666
2667 InVals.push_back(ArgValue);
2668
2669 } else { // VA.isRegLoc()
2670
2671 // sanity check
2672 assert(VA.isMemLoc());
2673 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2674
2675 int index = ArgLocs[i].getValNo();
2676
2677 // Some Ins[] entries become multiple ArgLoc[] entries.
2678 // Process them only once.
2679 if (index != lastInsIndex)
2680 {
2681 ISD::ArgFlagsTy Flags = Ins[index].Flags;
2682 // FIXME: For now, all byval parameter objects are marked mutable.
2683 // This can be changed with more analysis.
2684 // In case of tail call optimization mark all arguments mutable.
2685 // Since they could be overwritten by lowering of arguments in case of
2686 // a tail call.
2687 if (Flags.isByVal()) {
2688 unsigned VARegSize, VARegSaveSize;
2689 computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2690 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2691 unsigned Bytes = Flags.getByValSize() - VARegSize;
2692 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2693 int FI = MFI->CreateFixedObject(Bytes,
2694 VA.getLocMemOffset(), false);
2695 InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2696 } else {
2697 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2698 VA.getLocMemOffset(), true);
2699
2700 // Create load nodes to retrieve arguments from the stack.
2701 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2702 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2703 MachinePointerInfo::getFixedStack(FI),
2704 false, false, false, 0));
2705 }
2706 lastInsIndex = index;
2707 }
2708 }
2709 }
2710
2711 // varargs
2712 if (isVarArg)
2713 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2714
2715 return Chain;
2716 }
2717
2718 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)2719 static bool isFloatingPointZero(SDValue Op) {
2720 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2721 return CFP->getValueAPF().isPosZero();
2722 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2723 // Maybe this has already been legalized into the constant pool?
2724 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2725 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2726 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2727 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2728 return CFP->getValueAPF().isPosZero();
2729 }
2730 }
2731 return false;
2732 }
2733
2734 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2735 /// the given operands.
2736 SDValue
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,DebugLoc dl) const2737 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2738 SDValue &ARMcc, SelectionDAG &DAG,
2739 DebugLoc dl) const {
2740 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2741 unsigned C = RHSC->getZExtValue();
2742 if (!isLegalICmpImmediate(C)) {
2743 // Constant does not fit, try adjusting it by one?
2744 switch (CC) {
2745 default: break;
2746 case ISD::SETLT:
2747 case ISD::SETGE:
2748 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2749 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2750 RHS = DAG.getConstant(C-1, MVT::i32);
2751 }
2752 break;
2753 case ISD::SETULT:
2754 case ISD::SETUGE:
2755 if (C != 0 && isLegalICmpImmediate(C-1)) {
2756 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2757 RHS = DAG.getConstant(C-1, MVT::i32);
2758 }
2759 break;
2760 case ISD::SETLE:
2761 case ISD::SETGT:
2762 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2763 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2764 RHS = DAG.getConstant(C+1, MVT::i32);
2765 }
2766 break;
2767 case ISD::SETULE:
2768 case ISD::SETUGT:
2769 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2770 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2771 RHS = DAG.getConstant(C+1, MVT::i32);
2772 }
2773 break;
2774 }
2775 }
2776 }
2777
2778 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2779 ARMISD::NodeType CompareType;
2780 switch (CondCode) {
2781 default:
2782 CompareType = ARMISD::CMP;
2783 break;
2784 case ARMCC::EQ:
2785 case ARMCC::NE:
2786 // Uses only Z Flag
2787 CompareType = ARMISD::CMPZ;
2788 break;
2789 }
2790 ARMcc = DAG.getConstant(CondCode, MVT::i32);
2791 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2792 }
2793
2794 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2795 SDValue
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,DebugLoc dl) const2796 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2797 DebugLoc dl) const {
2798 SDValue Cmp;
2799 if (!isFloatingPointZero(RHS))
2800 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2801 else
2802 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2803 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2804 }
2805
2806 /// duplicateCmp - Glue values can have only one use, so this function
2807 /// duplicates a comparison node.
2808 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const2809 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2810 unsigned Opc = Cmp.getOpcode();
2811 DebugLoc DL = Cmp.getDebugLoc();
2812 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2813 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2814
2815 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2816 Cmp = Cmp.getOperand(0);
2817 Opc = Cmp.getOpcode();
2818 if (Opc == ARMISD::CMPFP)
2819 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2820 else {
2821 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2822 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2823 }
2824 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2825 }
2826
LowerSELECT(SDValue Op,SelectionDAG & DAG) const2827 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2828 SDValue Cond = Op.getOperand(0);
2829 SDValue SelectTrue = Op.getOperand(1);
2830 SDValue SelectFalse = Op.getOperand(2);
2831 DebugLoc dl = Op.getDebugLoc();
2832
2833 // Convert:
2834 //
2835 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2836 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2837 //
2838 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2839 const ConstantSDNode *CMOVTrue =
2840 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2841 const ConstantSDNode *CMOVFalse =
2842 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2843
2844 if (CMOVTrue && CMOVFalse) {
2845 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2846 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2847
2848 SDValue True;
2849 SDValue False;
2850 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2851 True = SelectTrue;
2852 False = SelectFalse;
2853 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2854 True = SelectFalse;
2855 False = SelectTrue;
2856 }
2857
2858 if (True.getNode() && False.getNode()) {
2859 EVT VT = Op.getValueType();
2860 SDValue ARMcc = Cond.getOperand(2);
2861 SDValue CCR = Cond.getOperand(3);
2862 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2863 assert(True.getValueType() == VT);
2864 return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2865 }
2866 }
2867 }
2868
2869 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2870 // undefined bits before doing a full-word comparison with zero.
2871 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2872 DAG.getConstant(1, Cond.getValueType()));
2873
2874 return DAG.getSelectCC(dl, Cond,
2875 DAG.getConstant(0, Cond.getValueType()),
2876 SelectTrue, SelectFalse, ISD::SETNE);
2877 }
2878
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const2879 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2880 EVT VT = Op.getValueType();
2881 SDValue LHS = Op.getOperand(0);
2882 SDValue RHS = Op.getOperand(1);
2883 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2884 SDValue TrueVal = Op.getOperand(2);
2885 SDValue FalseVal = Op.getOperand(3);
2886 DebugLoc dl = Op.getDebugLoc();
2887
2888 if (LHS.getValueType() == MVT::i32) {
2889 SDValue ARMcc;
2890 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2891 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2892 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2893 }
2894
2895 ARMCC::CondCodes CondCode, CondCode2;
2896 FPCCToARMCC(CC, CondCode, CondCode2);
2897
2898 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2899 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2900 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2901 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2902 ARMcc, CCR, Cmp);
2903 if (CondCode2 != ARMCC::AL) {
2904 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2905 // FIXME: Needs another CMP because flag can have but one use.
2906 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2907 Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2908 Result, TrueVal, ARMcc2, CCR, Cmp2);
2909 }
2910 return Result;
2911 }
2912
2913 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
2914 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)2915 static bool canChangeToInt(SDValue Op, bool &SeenZero,
2916 const ARMSubtarget *Subtarget) {
2917 SDNode *N = Op.getNode();
2918 if (!N->hasOneUse())
2919 // Otherwise it requires moving the value from fp to integer registers.
2920 return false;
2921 if (!N->getNumValues())
2922 return false;
2923 EVT VT = Op.getValueType();
2924 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2925 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2926 // vmrs are very slow, e.g. cortex-a8.
2927 return false;
2928
2929 if (isFloatingPointZero(Op)) {
2930 SeenZero = true;
2931 return true;
2932 }
2933 return ISD::isNormalLoad(N);
2934 }
2935
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)2936 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2937 if (isFloatingPointZero(Op))
2938 return DAG.getConstant(0, MVT::i32);
2939
2940 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2941 return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2942 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2943 Ld->isVolatile(), Ld->isNonTemporal(),
2944 Ld->isInvariant(), Ld->getAlignment());
2945
2946 llvm_unreachable("Unknown VFP cmp argument!");
2947 }
2948
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)2949 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2950 SDValue &RetVal1, SDValue &RetVal2) {
2951 if (isFloatingPointZero(Op)) {
2952 RetVal1 = DAG.getConstant(0, MVT::i32);
2953 RetVal2 = DAG.getConstant(0, MVT::i32);
2954 return;
2955 }
2956
2957 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2958 SDValue Ptr = Ld->getBasePtr();
2959 RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2960 Ld->getChain(), Ptr,
2961 Ld->getPointerInfo(),
2962 Ld->isVolatile(), Ld->isNonTemporal(),
2963 Ld->isInvariant(), Ld->getAlignment());
2964
2965 EVT PtrType = Ptr.getValueType();
2966 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2967 SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2968 PtrType, Ptr, DAG.getConstant(4, PtrType));
2969 RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2970 Ld->getChain(), NewPtr,
2971 Ld->getPointerInfo().getWithOffset(4),
2972 Ld->isVolatile(), Ld->isNonTemporal(),
2973 Ld->isInvariant(), NewAlign);
2974 return;
2975 }
2976
2977 llvm_unreachable("Unknown VFP cmp argument!");
2978 }
2979
2980 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2981 /// f32 and even f64 comparisons to integer ones.
2982 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const2983 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2984 SDValue Chain = Op.getOperand(0);
2985 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2986 SDValue LHS = Op.getOperand(2);
2987 SDValue RHS = Op.getOperand(3);
2988 SDValue Dest = Op.getOperand(4);
2989 DebugLoc dl = Op.getDebugLoc();
2990
2991 bool LHSSeenZero = false;
2992 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
2993 bool RHSSeenZero = false;
2994 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
2995 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
2996 // If unsafe fp math optimization is enabled and there are no other uses of
2997 // the CMP operands, and the condition code is EQ or NE, we can optimize it
2998 // to an integer comparison.
2999 if (CC == ISD::SETOEQ)
3000 CC = ISD::SETEQ;
3001 else if (CC == ISD::SETUNE)
3002 CC = ISD::SETNE;
3003
3004 SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3005 SDValue ARMcc;
3006 if (LHS.getValueType() == MVT::f32) {
3007 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3008 bitcastf32Toi32(LHS, DAG), Mask);
3009 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3010 bitcastf32Toi32(RHS, DAG), Mask);
3011 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3012 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3013 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3014 Chain, Dest, ARMcc, CCR, Cmp);
3015 }
3016
3017 SDValue LHS1, LHS2;
3018 SDValue RHS1, RHS2;
3019 expandf64Toi32(LHS, DAG, LHS1, LHS2);
3020 expandf64Toi32(RHS, DAG, RHS1, RHS2);
3021 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3022 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3023 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3024 ARMcc = DAG.getConstant(CondCode, MVT::i32);
3025 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3026 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3027 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3028 }
3029
3030 return SDValue();
3031 }
3032
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const3033 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3034 SDValue Chain = Op.getOperand(0);
3035 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3036 SDValue LHS = Op.getOperand(2);
3037 SDValue RHS = Op.getOperand(3);
3038 SDValue Dest = Op.getOperand(4);
3039 DebugLoc dl = Op.getDebugLoc();
3040
3041 if (LHS.getValueType() == MVT::i32) {
3042 SDValue ARMcc;
3043 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3044 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3045 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3046 Chain, Dest, ARMcc, CCR, Cmp);
3047 }
3048
3049 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3050
3051 if (getTargetMachine().Options.UnsafeFPMath &&
3052 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3053 CC == ISD::SETNE || CC == ISD::SETUNE)) {
3054 SDValue Result = OptimizeVFPBrcond(Op, DAG);
3055 if (Result.getNode())
3056 return Result;
3057 }
3058
3059 ARMCC::CondCodes CondCode, CondCode2;
3060 FPCCToARMCC(CC, CondCode, CondCode2);
3061
3062 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3063 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3064 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3065 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3066 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3067 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3068 if (CondCode2 != ARMCC::AL) {
3069 ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3070 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3071 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3072 }
3073 return Res;
3074 }
3075
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const3076 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3077 SDValue Chain = Op.getOperand(0);
3078 SDValue Table = Op.getOperand(1);
3079 SDValue Index = Op.getOperand(2);
3080 DebugLoc dl = Op.getDebugLoc();
3081
3082 EVT PTy = getPointerTy();
3083 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3084 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3085 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3086 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3087 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3088 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3089 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3090 if (Subtarget->isThumb2()) {
3091 // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3092 // which does another jump to the destination. This also makes it easier
3093 // to translate it to TBB / TBH later.
3094 // FIXME: This might not work if the function is extremely large.
3095 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3096 Addr, Op.getOperand(2), JTI, UId);
3097 }
3098 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3099 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3100 MachinePointerInfo::getJumpTable(),
3101 false, false, false, 0);
3102 Chain = Addr.getValue(1);
3103 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3104 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3105 } else {
3106 Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3107 MachinePointerInfo::getJumpTable(),
3108 false, false, false, 0);
3109 Chain = Addr.getValue(1);
3110 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3111 }
3112 }
3113
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)3114 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3115 EVT VT = Op.getValueType();
3116 DebugLoc dl = Op.getDebugLoc();
3117
3118 if (Op.getValueType().getVectorElementType() == MVT::i32) {
3119 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3120 return Op;
3121 return DAG.UnrollVectorOp(Op.getNode());
3122 }
3123
3124 assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3125 "Invalid type for custom lowering!");
3126 if (VT != MVT::v4i16)
3127 return DAG.UnrollVectorOp(Op.getNode());
3128
3129 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3130 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3131 }
3132
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG)3133 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3134 EVT VT = Op.getValueType();
3135 if (VT.isVector())
3136 return LowerVectorFP_TO_INT(Op, DAG);
3137
3138 DebugLoc dl = Op.getDebugLoc();
3139 unsigned Opc;
3140
3141 switch (Op.getOpcode()) {
3142 default: llvm_unreachable("Invalid opcode!");
3143 case ISD::FP_TO_SINT:
3144 Opc = ARMISD::FTOSI;
3145 break;
3146 case ISD::FP_TO_UINT:
3147 Opc = ARMISD::FTOUI;
3148 break;
3149 }
3150 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3151 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3152 }
3153
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)3154 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3155 EVT VT = Op.getValueType();
3156 DebugLoc dl = Op.getDebugLoc();
3157
3158 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3159 if (VT.getVectorElementType() == MVT::f32)
3160 return Op;
3161 return DAG.UnrollVectorOp(Op.getNode());
3162 }
3163
3164 assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3165 "Invalid type for custom lowering!");
3166 if (VT != MVT::v4f32)
3167 return DAG.UnrollVectorOp(Op.getNode());
3168
3169 unsigned CastOpc;
3170 unsigned Opc;
3171 switch (Op.getOpcode()) {
3172 default: llvm_unreachable("Invalid opcode!");
3173 case ISD::SINT_TO_FP:
3174 CastOpc = ISD::SIGN_EXTEND;
3175 Opc = ISD::SINT_TO_FP;
3176 break;
3177 case ISD::UINT_TO_FP:
3178 CastOpc = ISD::ZERO_EXTEND;
3179 Opc = ISD::UINT_TO_FP;
3180 break;
3181 }
3182
3183 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3184 return DAG.getNode(Opc, dl, VT, Op);
3185 }
3186
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG)3187 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3188 EVT VT = Op.getValueType();
3189 if (VT.isVector())
3190 return LowerVectorINT_TO_FP(Op, DAG);
3191
3192 DebugLoc dl = Op.getDebugLoc();
3193 unsigned Opc;
3194
3195 switch (Op.getOpcode()) {
3196 default: llvm_unreachable("Invalid opcode!");
3197 case ISD::SINT_TO_FP:
3198 Opc = ARMISD::SITOF;
3199 break;
3200 case ISD::UINT_TO_FP:
3201 Opc = ARMISD::UITOF;
3202 break;
3203 }
3204
3205 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3206 return DAG.getNode(Opc, dl, VT, Op);
3207 }
3208
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const3209 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3210 // Implement fcopysign with a fabs and a conditional fneg.
3211 SDValue Tmp0 = Op.getOperand(0);
3212 SDValue Tmp1 = Op.getOperand(1);
3213 DebugLoc dl = Op.getDebugLoc();
3214 EVT VT = Op.getValueType();
3215 EVT SrcVT = Tmp1.getValueType();
3216 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3217 Tmp0.getOpcode() == ARMISD::VMOVDRR;
3218 bool UseNEON = !InGPR && Subtarget->hasNEON();
3219
3220 if (UseNEON) {
3221 // Use VBSL to copy the sign bit.
3222 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3223 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3224 DAG.getTargetConstant(EncodedVal, MVT::i32));
3225 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3226 if (VT == MVT::f64)
3227 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3228 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3229 DAG.getConstant(32, MVT::i32));
3230 else /*if (VT == MVT::f32)*/
3231 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3232 if (SrcVT == MVT::f32) {
3233 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3234 if (VT == MVT::f64)
3235 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3236 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3237 DAG.getConstant(32, MVT::i32));
3238 } else if (VT == MVT::f32)
3239 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3240 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3241 DAG.getConstant(32, MVT::i32));
3242 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3243 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3244
3245 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3246 MVT::i32);
3247 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3248 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3249 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3250
3251 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3252 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3253 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3254 if (VT == MVT::f32) {
3255 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3256 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3257 DAG.getConstant(0, MVT::i32));
3258 } else {
3259 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3260 }
3261
3262 return Res;
3263 }
3264
3265 // Bitcast operand 1 to i32.
3266 if (SrcVT == MVT::f64)
3267 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3268 &Tmp1, 1).getValue(1);
3269 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3270
3271 // Or in the signbit with integer operations.
3272 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3273 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3274 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3275 if (VT == MVT::f32) {
3276 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3277 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3278 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3279 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3280 }
3281
3282 // f64: Or the high part with signbit and then combine two parts.
3283 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3284 &Tmp0, 1);
3285 SDValue Lo = Tmp0.getValue(0);
3286 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3287 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3288 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3289 }
3290
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3291 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3292 MachineFunction &MF = DAG.getMachineFunction();
3293 MachineFrameInfo *MFI = MF.getFrameInfo();
3294 MFI->setReturnAddressIsTaken(true);
3295
3296 EVT VT = Op.getValueType();
3297 DebugLoc dl = Op.getDebugLoc();
3298 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3299 if (Depth) {
3300 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3301 SDValue Offset = DAG.getConstant(4, MVT::i32);
3302 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3303 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3304 MachinePointerInfo(), false, false, false, 0);
3305 }
3306
3307 // Return LR, which contains the return address. Mark it an implicit live-in.
3308 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3309 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3310 }
3311
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3312 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3313 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3314 MFI->setFrameAddressIsTaken(true);
3315
3316 EVT VT = Op.getValueType();
3317 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
3318 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3319 unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3320 ? ARM::R7 : ARM::R11;
3321 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3322 while (Depth--)
3323 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3324 MachinePointerInfo(),
3325 false, false, false, 0);
3326 return FrameAddr;
3327 }
3328
3329 /// ExpandBITCAST - If the target supports VFP, this function is called to
3330 /// expand a bit convert where either the source or destination type is i64 to
3331 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
3332 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
3333 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG)3334 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3335 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3336 DebugLoc dl = N->getDebugLoc();
3337 SDValue Op = N->getOperand(0);
3338
3339 // This function is only supposed to be called for i64 types, either as the
3340 // source or destination of the bit convert.
3341 EVT SrcVT = Op.getValueType();
3342 EVT DstVT = N->getValueType(0);
3343 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3344 "ExpandBITCAST called for non-i64 type");
3345
3346 // Turn i64->f64 into VMOVDRR.
3347 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3348 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3349 DAG.getConstant(0, MVT::i32));
3350 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3351 DAG.getConstant(1, MVT::i32));
3352 return DAG.getNode(ISD::BITCAST, dl, DstVT,
3353 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3354 }
3355
3356 // Turn f64->i64 into VMOVRRD.
3357 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3358 SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3359 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3360 // Merge the pieces into a single i64 value.
3361 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3362 }
3363
3364 return SDValue();
3365 }
3366
3367 /// getZeroVector - Returns a vector of specified type with all zero elements.
3368 /// Zero vectors are used to represent vector negation and in those cases
3369 /// will be implemented with the NEON VNEG instruction. However, VNEG does
3370 /// not support i64 elements, so sometimes the zero vectors will need to be
3371 /// explicitly constructed. Regardless, use a canonical VMOV to create the
3372 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,DebugLoc dl)3373 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3374 assert(VT.isVector() && "Expected a vector type");
3375 // The canonical modified immediate encoding of a zero vector is....0!
3376 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3377 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3378 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3379 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3380 }
3381
3382 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3383 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const3384 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3385 SelectionDAG &DAG) const {
3386 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3387 EVT VT = Op.getValueType();
3388 unsigned VTBits = VT.getSizeInBits();
3389 DebugLoc dl = Op.getDebugLoc();
3390 SDValue ShOpLo = Op.getOperand(0);
3391 SDValue ShOpHi = Op.getOperand(1);
3392 SDValue ShAmt = Op.getOperand(2);
3393 SDValue ARMcc;
3394 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3395
3396 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3397
3398 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3399 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3400 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3401 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3402 DAG.getConstant(VTBits, MVT::i32));
3403 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3404 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3405 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3406
3407 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3408 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3409 ARMcc, DAG, dl);
3410 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3411 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3412 CCR, Cmp);
3413
3414 SDValue Ops[2] = { Lo, Hi };
3415 return DAG.getMergeValues(Ops, 2, dl);
3416 }
3417
3418 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3419 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const3420 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3421 SelectionDAG &DAG) const {
3422 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3423 EVT VT = Op.getValueType();
3424 unsigned VTBits = VT.getSizeInBits();
3425 DebugLoc dl = Op.getDebugLoc();
3426 SDValue ShOpLo = Op.getOperand(0);
3427 SDValue ShOpHi = Op.getOperand(1);
3428 SDValue ShAmt = Op.getOperand(2);
3429 SDValue ARMcc;
3430
3431 assert(Op.getOpcode() == ISD::SHL_PARTS);
3432 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3433 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3434 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3435 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3436 DAG.getConstant(VTBits, MVT::i32));
3437 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3438 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3439
3440 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3441 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3442 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3443 ARMcc, DAG, dl);
3444 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3445 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3446 CCR, Cmp);
3447
3448 SDValue Ops[2] = { Lo, Hi };
3449 return DAG.getMergeValues(Ops, 2, dl);
3450 }
3451
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const3452 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3453 SelectionDAG &DAG) const {
3454 // The rounding mode is in bits 23:22 of the FPSCR.
3455 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3456 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3457 // so that the shift + and get folded into a bitfield extract.
3458 DebugLoc dl = Op.getDebugLoc();
3459 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3460 DAG.getConstant(Intrinsic::arm_get_fpscr,
3461 MVT::i32));
3462 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3463 DAG.getConstant(1U << 22, MVT::i32));
3464 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3465 DAG.getConstant(22, MVT::i32));
3466 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3467 DAG.getConstant(3, MVT::i32));
3468 }
3469
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3470 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3471 const ARMSubtarget *ST) {
3472 EVT VT = N->getValueType(0);
3473 DebugLoc dl = N->getDebugLoc();
3474
3475 if (!ST->hasV6T2Ops())
3476 return SDValue();
3477
3478 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3479 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3480 }
3481
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3482 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3483 const ARMSubtarget *ST) {
3484 EVT VT = N->getValueType(0);
3485 DebugLoc dl = N->getDebugLoc();
3486
3487 if (!VT.isVector())
3488 return SDValue();
3489
3490 // Lower vector shifts on NEON to use VSHL.
3491 assert(ST->hasNEON() && "unexpected vector shift");
3492
3493 // Left shifts translate directly to the vshiftu intrinsic.
3494 if (N->getOpcode() == ISD::SHL)
3495 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3496 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3497 N->getOperand(0), N->getOperand(1));
3498
3499 assert((N->getOpcode() == ISD::SRA ||
3500 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3501
3502 // NEON uses the same intrinsics for both left and right shifts. For
3503 // right shifts, the shift amounts are negative, so negate the vector of
3504 // shift amounts.
3505 EVT ShiftVT = N->getOperand(1).getValueType();
3506 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3507 getZeroVector(ShiftVT, DAG, dl),
3508 N->getOperand(1));
3509 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3510 Intrinsic::arm_neon_vshifts :
3511 Intrinsic::arm_neon_vshiftu);
3512 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3513 DAG.getConstant(vshiftInt, MVT::i32),
3514 N->getOperand(0), NegatedCount);
3515 }
3516
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)3517 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3518 const ARMSubtarget *ST) {
3519 EVT VT = N->getValueType(0);
3520 DebugLoc dl = N->getDebugLoc();
3521
3522 // We can get here for a node like i32 = ISD::SHL i32, i64
3523 if (VT != MVT::i64)
3524 return SDValue();
3525
3526 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3527 "Unknown shift to lower!");
3528
3529 // We only lower SRA, SRL of 1 here, all others use generic lowering.
3530 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3531 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3532 return SDValue();
3533
3534 // If we are in thumb mode, we don't have RRX.
3535 if (ST->isThumb1Only()) return SDValue();
3536
3537 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
3538 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3539 DAG.getConstant(0, MVT::i32));
3540 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3541 DAG.getConstant(1, MVT::i32));
3542
3543 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3544 // captures the result into a carry flag.
3545 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3546 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3547
3548 // The low part is an ARMISD::RRX operand, which shifts the carry in.
3549 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3550
3551 // Merge the pieces into a single i64 value.
3552 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3553 }
3554
LowerVSETCC(SDValue Op,SelectionDAG & DAG)3555 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3556 SDValue TmpOp0, TmpOp1;
3557 bool Invert = false;
3558 bool Swap = false;
3559 unsigned Opc = 0;
3560
3561 SDValue Op0 = Op.getOperand(0);
3562 SDValue Op1 = Op.getOperand(1);
3563 SDValue CC = Op.getOperand(2);
3564 EVT VT = Op.getValueType();
3565 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3566 DebugLoc dl = Op.getDebugLoc();
3567
3568 if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3569 switch (SetCCOpcode) {
3570 default: llvm_unreachable("Illegal FP comparison");
3571 case ISD::SETUNE:
3572 case ISD::SETNE: Invert = true; // Fallthrough
3573 case ISD::SETOEQ:
3574 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
3575 case ISD::SETOLT:
3576 case ISD::SETLT: Swap = true; // Fallthrough
3577 case ISD::SETOGT:
3578 case ISD::SETGT: Opc = ARMISD::VCGT; break;
3579 case ISD::SETOLE:
3580 case ISD::SETLE: Swap = true; // Fallthrough
3581 case ISD::SETOGE:
3582 case ISD::SETGE: Opc = ARMISD::VCGE; break;
3583 case ISD::SETUGE: Swap = true; // Fallthrough
3584 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3585 case ISD::SETUGT: Swap = true; // Fallthrough
3586 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3587 case ISD::SETUEQ: Invert = true; // Fallthrough
3588 case ISD::SETONE:
3589 // Expand this to (OLT | OGT).
3590 TmpOp0 = Op0;
3591 TmpOp1 = Op1;
3592 Opc = ISD::OR;
3593 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3594 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3595 break;
3596 case ISD::SETUO: Invert = true; // Fallthrough
3597 case ISD::SETO:
3598 // Expand this to (OLT | OGE).
3599 TmpOp0 = Op0;
3600 TmpOp1 = Op1;
3601 Opc = ISD::OR;
3602 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3603 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3604 break;
3605 }
3606 } else {
3607 // Integer comparisons.
3608 switch (SetCCOpcode) {
3609 default: llvm_unreachable("Illegal integer comparison");
3610 case ISD::SETNE: Invert = true;
3611 case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
3612 case ISD::SETLT: Swap = true;
3613 case ISD::SETGT: Opc = ARMISD::VCGT; break;
3614 case ISD::SETLE: Swap = true;
3615 case ISD::SETGE: Opc = ARMISD::VCGE; break;
3616 case ISD::SETULT: Swap = true;
3617 case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3618 case ISD::SETULE: Swap = true;
3619 case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3620 }
3621
3622 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3623 if (Opc == ARMISD::VCEQ) {
3624
3625 SDValue AndOp;
3626 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3627 AndOp = Op0;
3628 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3629 AndOp = Op1;
3630
3631 // Ignore bitconvert.
3632 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3633 AndOp = AndOp.getOperand(0);
3634
3635 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3636 Opc = ARMISD::VTST;
3637 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3638 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3639 Invert = !Invert;
3640 }
3641 }
3642 }
3643
3644 if (Swap)
3645 std::swap(Op0, Op1);
3646
3647 // If one of the operands is a constant vector zero, attempt to fold the
3648 // comparison to a specialized compare-against-zero form.
3649 SDValue SingleOp;
3650 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3651 SingleOp = Op0;
3652 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3653 if (Opc == ARMISD::VCGE)
3654 Opc = ARMISD::VCLEZ;
3655 else if (Opc == ARMISD::VCGT)
3656 Opc = ARMISD::VCLTZ;
3657 SingleOp = Op1;
3658 }
3659
3660 SDValue Result;
3661 if (SingleOp.getNode()) {
3662 switch (Opc) {
3663 case ARMISD::VCEQ:
3664 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3665 case ARMISD::VCGE:
3666 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3667 case ARMISD::VCLEZ:
3668 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3669 case ARMISD::VCGT:
3670 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3671 case ARMISD::VCLTZ:
3672 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3673 default:
3674 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3675 }
3676 } else {
3677 Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3678 }
3679
3680 if (Invert)
3681 Result = DAG.getNOT(dl, Result, VT);
3682
3683 return Result;
3684 }
3685
3686 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
3687 /// valid vector constant for a NEON instruction with a "modified immediate"
3688 /// operand (e.g., VMOV). If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,EVT & VT,bool is128Bits,NEONModImmType type)3689 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3690 unsigned SplatBitSize, SelectionDAG &DAG,
3691 EVT &VT, bool is128Bits, NEONModImmType type) {
3692 unsigned OpCmode, Imm;
3693
3694 // SplatBitSize is set to the smallest size that splats the vector, so a
3695 // zero vector will always have SplatBitSize == 8. However, NEON modified
3696 // immediate instructions others than VMOV do not support the 8-bit encoding
3697 // of a zero vector, and the default encoding of zero is supposed to be the
3698 // 32-bit version.
3699 if (SplatBits == 0)
3700 SplatBitSize = 32;
3701
3702 switch (SplatBitSize) {
3703 case 8:
3704 if (type != VMOVModImm)
3705 return SDValue();
3706 // Any 1-byte value is OK. Op=0, Cmode=1110.
3707 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3708 OpCmode = 0xe;
3709 Imm = SplatBits;
3710 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3711 break;
3712
3713 case 16:
3714 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3715 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3716 if ((SplatBits & ~0xff) == 0) {
3717 // Value = 0x00nn: Op=x, Cmode=100x.
3718 OpCmode = 0x8;
3719 Imm = SplatBits;
3720 break;
3721 }
3722 if ((SplatBits & ~0xff00) == 0) {
3723 // Value = 0xnn00: Op=x, Cmode=101x.
3724 OpCmode = 0xa;
3725 Imm = SplatBits >> 8;
3726 break;
3727 }
3728 return SDValue();
3729
3730 case 32:
3731 // NEON's 32-bit VMOV supports splat values where:
3732 // * only one byte is nonzero, or
3733 // * the least significant byte is 0xff and the second byte is nonzero, or
3734 // * the least significant 2 bytes are 0xff and the third is nonzero.
3735 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3736 if ((SplatBits & ~0xff) == 0) {
3737 // Value = 0x000000nn: Op=x, Cmode=000x.
3738 OpCmode = 0;
3739 Imm = SplatBits;
3740 break;
3741 }
3742 if ((SplatBits & ~0xff00) == 0) {
3743 // Value = 0x0000nn00: Op=x, Cmode=001x.
3744 OpCmode = 0x2;
3745 Imm = SplatBits >> 8;
3746 break;
3747 }
3748 if ((SplatBits & ~0xff0000) == 0) {
3749 // Value = 0x00nn0000: Op=x, Cmode=010x.
3750 OpCmode = 0x4;
3751 Imm = SplatBits >> 16;
3752 break;
3753 }
3754 if ((SplatBits & ~0xff000000) == 0) {
3755 // Value = 0xnn000000: Op=x, Cmode=011x.
3756 OpCmode = 0x6;
3757 Imm = SplatBits >> 24;
3758 break;
3759 }
3760
3761 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3762 if (type == OtherModImm) return SDValue();
3763
3764 if ((SplatBits & ~0xffff) == 0 &&
3765 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3766 // Value = 0x0000nnff: Op=x, Cmode=1100.
3767 OpCmode = 0xc;
3768 Imm = SplatBits >> 8;
3769 SplatBits |= 0xff;
3770 break;
3771 }
3772
3773 if ((SplatBits & ~0xffffff) == 0 &&
3774 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3775 // Value = 0x00nnffff: Op=x, Cmode=1101.
3776 OpCmode = 0xd;
3777 Imm = SplatBits >> 16;
3778 SplatBits |= 0xffff;
3779 break;
3780 }
3781
3782 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3783 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3784 // VMOV.I32. A (very) minor optimization would be to replicate the value
3785 // and fall through here to test for a valid 64-bit splat. But, then the
3786 // caller would also need to check and handle the change in size.
3787 return SDValue();
3788
3789 case 64: {
3790 if (type != VMOVModImm)
3791 return SDValue();
3792 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3793 uint64_t BitMask = 0xff;
3794 uint64_t Val = 0;
3795 unsigned ImmMask = 1;
3796 Imm = 0;
3797 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3798 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3799 Val |= BitMask;
3800 Imm |= ImmMask;
3801 } else if ((SplatBits & BitMask) != 0) {
3802 return SDValue();
3803 }
3804 BitMask <<= 8;
3805 ImmMask <<= 1;
3806 }
3807 // Op=1, Cmode=1110.
3808 OpCmode = 0x1e;
3809 SplatBits = Val;
3810 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3811 break;
3812 }
3813
3814 default:
3815 llvm_unreachable("unexpected size for isNEONModifiedImm");
3816 }
3817
3818 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3819 return DAG.getTargetConstant(EncodedVal, MVT::i32);
3820 }
3821
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const3822 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3823 const ARMSubtarget *ST) const {
3824 if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3825 return SDValue();
3826
3827 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3828 assert(Op.getValueType() == MVT::f32 &&
3829 "ConstantFP custom lowering should only occur for f32.");
3830
3831 // Try splatting with a VMOV.f32...
3832 APFloat FPVal = CFP->getValueAPF();
3833 int ImmVal = ARM_AM::getFP32Imm(FPVal);
3834 if (ImmVal != -1) {
3835 DebugLoc DL = Op.getDebugLoc();
3836 SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3837 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3838 NewVal);
3839 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3840 DAG.getConstant(0, MVT::i32));
3841 }
3842
3843 // If that fails, try a VMOV.i32
3844 EVT VMovVT;
3845 unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3846 SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3847 VMOVModImm);
3848 if (NewVal != SDValue()) {
3849 DebugLoc DL = Op.getDebugLoc();
3850 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3851 NewVal);
3852 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3853 VecConstant);
3854 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3855 DAG.getConstant(0, MVT::i32));
3856 }
3857
3858 // Finally, try a VMVN.i32
3859 NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3860 VMVNModImm);
3861 if (NewVal != SDValue()) {
3862 DebugLoc DL = Op.getDebugLoc();
3863 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3864 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3865 VecConstant);
3866 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3867 DAG.getConstant(0, MVT::i32));
3868 }
3869
3870 return SDValue();
3871 }
3872
3873
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)3874 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3875 bool &ReverseVEXT, unsigned &Imm) {
3876 unsigned NumElts = VT.getVectorNumElements();
3877 ReverseVEXT = false;
3878
3879 // Assume that the first shuffle index is not UNDEF. Fail if it is.
3880 if (M[0] < 0)
3881 return false;
3882
3883 Imm = M[0];
3884
3885 // If this is a VEXT shuffle, the immediate value is the index of the first
3886 // element. The other shuffle indices must be the successive elements after
3887 // the first one.
3888 unsigned ExpectedElt = Imm;
3889 for (unsigned i = 1; i < NumElts; ++i) {
3890 // Increment the expected index. If it wraps around, it may still be
3891 // a VEXT but the source vectors must be swapped.
3892 ExpectedElt += 1;
3893 if (ExpectedElt == NumElts * 2) {
3894 ExpectedElt = 0;
3895 ReverseVEXT = true;
3896 }
3897
3898 if (M[i] < 0) continue; // ignore UNDEF indices
3899 if (ExpectedElt != static_cast<unsigned>(M[i]))
3900 return false;
3901 }
3902
3903 // Adjust the index value if the source operands will be swapped.
3904 if (ReverseVEXT)
3905 Imm -= NumElts;
3906
3907 return true;
3908 }
3909
3910 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
3911 /// instruction with the specified blocksize. (The order of the elements
3912 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)3913 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3914 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3915 "Only possible block sizes for VREV are: 16, 32, 64");
3916
3917 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3918 if (EltSz == 64)
3919 return false;
3920
3921 unsigned NumElts = VT.getVectorNumElements();
3922 unsigned BlockElts = M[0] + 1;
3923 // If the first shuffle index is UNDEF, be optimistic.
3924 if (M[0] < 0)
3925 BlockElts = BlockSize / EltSz;
3926
3927 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3928 return false;
3929
3930 for (unsigned i = 0; i < NumElts; ++i) {
3931 if (M[i] < 0) continue; // ignore UNDEF indices
3932 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3933 return false;
3934 }
3935
3936 return true;
3937 }
3938
isVTBLMask(ArrayRef<int> M,EVT VT)3939 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3940 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3941 // range, then 0 is placed into the resulting vector. So pretty much any mask
3942 // of 8 elements can work here.
3943 return VT == MVT::v8i8 && M.size() == 8;
3944 }
3945
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)3946 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3947 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3948 if (EltSz == 64)
3949 return false;
3950
3951 unsigned NumElts = VT.getVectorNumElements();
3952 WhichResult = (M[0] == 0 ? 0 : 1);
3953 for (unsigned i = 0; i < NumElts; i += 2) {
3954 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3955 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3956 return false;
3957 }
3958 return true;
3959 }
3960
3961 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3962 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3963 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)3964 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3965 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3966 if (EltSz == 64)
3967 return false;
3968
3969 unsigned NumElts = VT.getVectorNumElements();
3970 WhichResult = (M[0] == 0 ? 0 : 1);
3971 for (unsigned i = 0; i < NumElts; i += 2) {
3972 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3973 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3974 return false;
3975 }
3976 return true;
3977 }
3978
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)3979 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3980 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3981 if (EltSz == 64)
3982 return false;
3983
3984 unsigned NumElts = VT.getVectorNumElements();
3985 WhichResult = (M[0] == 0 ? 0 : 1);
3986 for (unsigned i = 0; i != NumElts; ++i) {
3987 if (M[i] < 0) continue; // ignore UNDEF indices
3988 if ((unsigned) M[i] != 2 * i + WhichResult)
3989 return false;
3990 }
3991
3992 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3993 if (VT.is64BitVector() && EltSz == 32)
3994 return false;
3995
3996 return true;
3997 }
3998
3999 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4000 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4001 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4002 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4003 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4004 if (EltSz == 64)
4005 return false;
4006
4007 unsigned Half = VT.getVectorNumElements() / 2;
4008 WhichResult = (M[0] == 0 ? 0 : 1);
4009 for (unsigned j = 0; j != 2; ++j) {
4010 unsigned Idx = WhichResult;
4011 for (unsigned i = 0; i != Half; ++i) {
4012 int MIdx = M[i + j * Half];
4013 if (MIdx >= 0 && (unsigned) MIdx != Idx)
4014 return false;
4015 Idx += 2;
4016 }
4017 }
4018
4019 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4020 if (VT.is64BitVector() && EltSz == 32)
4021 return false;
4022
4023 return true;
4024 }
4025
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4026 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4027 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4028 if (EltSz == 64)
4029 return false;
4030
4031 unsigned NumElts = VT.getVectorNumElements();
4032 WhichResult = (M[0] == 0 ? 0 : 1);
4033 unsigned Idx = WhichResult * NumElts / 2;
4034 for (unsigned i = 0; i != NumElts; i += 2) {
4035 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4036 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4037 return false;
4038 Idx += 1;
4039 }
4040
4041 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4042 if (VT.is64BitVector() && EltSz == 32)
4043 return false;
4044
4045 return true;
4046 }
4047
4048 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4049 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4050 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)4051 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4052 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4053 if (EltSz == 64)
4054 return false;
4055
4056 unsigned NumElts = VT.getVectorNumElements();
4057 WhichResult = (M[0] == 0 ? 0 : 1);
4058 unsigned Idx = WhichResult * NumElts / 2;
4059 for (unsigned i = 0; i != NumElts; i += 2) {
4060 if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4061 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4062 return false;
4063 Idx += 1;
4064 }
4065
4066 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4067 if (VT.is64BitVector() && EltSz == 32)
4068 return false;
4069
4070 return true;
4071 }
4072
4073 // If N is an integer constant that can be moved into a register in one
4074 // instruction, return an SDValue of such a constant (will become a MOV
4075 // instruction). Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,DebugLoc dl)4076 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4077 const ARMSubtarget *ST, DebugLoc dl) {
4078 uint64_t Val;
4079 if (!isa<ConstantSDNode>(N))
4080 return SDValue();
4081 Val = cast<ConstantSDNode>(N)->getZExtValue();
4082
4083 if (ST->isThumb1Only()) {
4084 if (Val <= 255 || ~Val <= 255)
4085 return DAG.getConstant(Val, MVT::i32);
4086 } else {
4087 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4088 return DAG.getConstant(Val, MVT::i32);
4089 }
4090 return SDValue();
4091 }
4092
4093 // If this is a case we can't handle, return null and let the default
4094 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const4095 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4096 const ARMSubtarget *ST) const {
4097 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4098 DebugLoc dl = Op.getDebugLoc();
4099 EVT VT = Op.getValueType();
4100
4101 APInt SplatBits, SplatUndef;
4102 unsigned SplatBitSize;
4103 bool HasAnyUndefs;
4104 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4105 if (SplatBitSize <= 64) {
4106 // Check if an immediate VMOV works.
4107 EVT VmovVT;
4108 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4109 SplatUndef.getZExtValue(), SplatBitSize,
4110 DAG, VmovVT, VT.is128BitVector(),
4111 VMOVModImm);
4112 if (Val.getNode()) {
4113 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4114 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4115 }
4116
4117 // Try an immediate VMVN.
4118 uint64_t NegatedImm = (~SplatBits).getZExtValue();
4119 Val = isNEONModifiedImm(NegatedImm,
4120 SplatUndef.getZExtValue(), SplatBitSize,
4121 DAG, VmovVT, VT.is128BitVector(),
4122 VMVNModImm);
4123 if (Val.getNode()) {
4124 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4125 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4126 }
4127
4128 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4129 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4130 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4131 if (ImmVal != -1) {
4132 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4133 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4134 }
4135 }
4136 }
4137 }
4138
4139 // Scan through the operands to see if only one value is used.
4140 unsigned NumElts = VT.getVectorNumElements();
4141 bool isOnlyLowElement = true;
4142 bool usesOnlyOneValue = true;
4143 bool isConstant = true;
4144 SDValue Value;
4145 for (unsigned i = 0; i < NumElts; ++i) {
4146 SDValue V = Op.getOperand(i);
4147 if (V.getOpcode() == ISD::UNDEF)
4148 continue;
4149 if (i > 0)
4150 isOnlyLowElement = false;
4151 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4152 isConstant = false;
4153
4154 if (!Value.getNode())
4155 Value = V;
4156 else if (V != Value)
4157 usesOnlyOneValue = false;
4158 }
4159
4160 if (!Value.getNode())
4161 return DAG.getUNDEF(VT);
4162
4163 if (isOnlyLowElement)
4164 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4165
4166 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4167
4168 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
4169 // i32 and try again.
4170 if (usesOnlyOneValue && EltSize <= 32) {
4171 if (!isConstant)
4172 return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4173 if (VT.getVectorElementType().isFloatingPoint()) {
4174 SmallVector<SDValue, 8> Ops;
4175 for (unsigned i = 0; i < NumElts; ++i)
4176 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4177 Op.getOperand(i)));
4178 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4179 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4180 Val = LowerBUILD_VECTOR(Val, DAG, ST);
4181 if (Val.getNode())
4182 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4183 }
4184 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4185 if (Val.getNode())
4186 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4187 }
4188
4189 // If all elements are constants and the case above didn't get hit, fall back
4190 // to the default expansion, which will generate a load from the constant
4191 // pool.
4192 if (isConstant)
4193 return SDValue();
4194
4195 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4196 if (NumElts >= 4) {
4197 SDValue shuffle = ReconstructShuffle(Op, DAG);
4198 if (shuffle != SDValue())
4199 return shuffle;
4200 }
4201
4202 // Vectors with 32- or 64-bit elements can be built by directly assigning
4203 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
4204 // will be legalized.
4205 if (EltSize >= 32) {
4206 // Do the expansion with floating-point types, since that is what the VFP
4207 // registers are defined to use, and since i64 is not legal.
4208 EVT EltVT = EVT::getFloatingPointVT(EltSize);
4209 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4210 SmallVector<SDValue, 8> Ops;
4211 for (unsigned i = 0; i < NumElts; ++i)
4212 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4213 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4214 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4215 }
4216
4217 return SDValue();
4218 }
4219
4220 // Gather data to see if the operation can be modelled as a
4221 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const4222 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4223 SelectionDAG &DAG) const {
4224 DebugLoc dl = Op.getDebugLoc();
4225 EVT VT = Op.getValueType();
4226 unsigned NumElts = VT.getVectorNumElements();
4227
4228 SmallVector<SDValue, 2> SourceVecs;
4229 SmallVector<unsigned, 2> MinElts;
4230 SmallVector<unsigned, 2> MaxElts;
4231
4232 for (unsigned i = 0; i < NumElts; ++i) {
4233 SDValue V = Op.getOperand(i);
4234 if (V.getOpcode() == ISD::UNDEF)
4235 continue;
4236 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4237 // A shuffle can only come from building a vector from various
4238 // elements of other vectors.
4239 return SDValue();
4240 } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4241 VT.getVectorElementType()) {
4242 // This code doesn't know how to handle shuffles where the vector
4243 // element types do not match (this happens because type legalization
4244 // promotes the return type of EXTRACT_VECTOR_ELT).
4245 // FIXME: It might be appropriate to extend this code to handle
4246 // mismatched types.
4247 return SDValue();
4248 }
4249
4250 // Record this extraction against the appropriate vector if possible...
4251 SDValue SourceVec = V.getOperand(0);
4252 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4253 bool FoundSource = false;
4254 for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4255 if (SourceVecs[j] == SourceVec) {
4256 if (MinElts[j] > EltNo)
4257 MinElts[j] = EltNo;
4258 if (MaxElts[j] < EltNo)
4259 MaxElts[j] = EltNo;
4260 FoundSource = true;
4261 break;
4262 }
4263 }
4264
4265 // Or record a new source if not...
4266 if (!FoundSource) {
4267 SourceVecs.push_back(SourceVec);
4268 MinElts.push_back(EltNo);
4269 MaxElts.push_back(EltNo);
4270 }
4271 }
4272
4273 // Currently only do something sane when at most two source vectors
4274 // involved.
4275 if (SourceVecs.size() > 2)
4276 return SDValue();
4277
4278 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4279 int VEXTOffsets[2] = {0, 0};
4280
4281 // This loop extracts the usage patterns of the source vectors
4282 // and prepares appropriate SDValues for a shuffle if possible.
4283 for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4284 if (SourceVecs[i].getValueType() == VT) {
4285 // No VEXT necessary
4286 ShuffleSrcs[i] = SourceVecs[i];
4287 VEXTOffsets[i] = 0;
4288 continue;
4289 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4290 // It probably isn't worth padding out a smaller vector just to
4291 // break it down again in a shuffle.
4292 return SDValue();
4293 }
4294
4295 // Since only 64-bit and 128-bit vectors are legal on ARM and
4296 // we've eliminated the other cases...
4297 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4298 "unexpected vector sizes in ReconstructShuffle");
4299
4300 if (MaxElts[i] - MinElts[i] >= NumElts) {
4301 // Span too large for a VEXT to cope
4302 return SDValue();
4303 }
4304
4305 if (MinElts[i] >= NumElts) {
4306 // The extraction can just take the second half
4307 VEXTOffsets[i] = NumElts;
4308 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4309 SourceVecs[i],
4310 DAG.getIntPtrConstant(NumElts));
4311 } else if (MaxElts[i] < NumElts) {
4312 // The extraction can just take the first half
4313 VEXTOffsets[i] = 0;
4314 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4315 SourceVecs[i],
4316 DAG.getIntPtrConstant(0));
4317 } else {
4318 // An actual VEXT is needed
4319 VEXTOffsets[i] = MinElts[i];
4320 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4321 SourceVecs[i],
4322 DAG.getIntPtrConstant(0));
4323 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4324 SourceVecs[i],
4325 DAG.getIntPtrConstant(NumElts));
4326 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4327 DAG.getConstant(VEXTOffsets[i], MVT::i32));
4328 }
4329 }
4330
4331 SmallVector<int, 8> Mask;
4332
4333 for (unsigned i = 0; i < NumElts; ++i) {
4334 SDValue Entry = Op.getOperand(i);
4335 if (Entry.getOpcode() == ISD::UNDEF) {
4336 Mask.push_back(-1);
4337 continue;
4338 }
4339
4340 SDValue ExtractVec = Entry.getOperand(0);
4341 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4342 .getOperand(1))->getSExtValue();
4343 if (ExtractVec == SourceVecs[0]) {
4344 Mask.push_back(ExtractElt - VEXTOffsets[0]);
4345 } else {
4346 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4347 }
4348 }
4349
4350 // Final check before we try to produce nonsense...
4351 if (isShuffleMaskLegal(Mask, VT))
4352 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4353 &Mask[0]);
4354
4355 return SDValue();
4356 }
4357
4358 /// isShuffleMaskLegal - Targets can use this to indicate that they only
4359 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4360 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4361 /// are assumed to be legal.
4362 bool
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const4363 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4364 EVT VT) const {
4365 if (VT.getVectorNumElements() == 4 &&
4366 (VT.is128BitVector() || VT.is64BitVector())) {
4367 unsigned PFIndexes[4];
4368 for (unsigned i = 0; i != 4; ++i) {
4369 if (M[i] < 0)
4370 PFIndexes[i] = 8;
4371 else
4372 PFIndexes[i] = M[i];
4373 }
4374
4375 // Compute the index in the perfect shuffle table.
4376 unsigned PFTableIndex =
4377 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4378 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4379 unsigned Cost = (PFEntry >> 30);
4380
4381 if (Cost <= 4)
4382 return true;
4383 }
4384
4385 bool ReverseVEXT;
4386 unsigned Imm, WhichResult;
4387
4388 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4389 return (EltSize >= 32 ||
4390 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4391 isVREVMask(M, VT, 64) ||
4392 isVREVMask(M, VT, 32) ||
4393 isVREVMask(M, VT, 16) ||
4394 isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4395 isVTBLMask(M, VT) ||
4396 isVTRNMask(M, VT, WhichResult) ||
4397 isVUZPMask(M, VT, WhichResult) ||
4398 isVZIPMask(M, VT, WhichResult) ||
4399 isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4400 isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4401 isVZIP_v_undef_Mask(M, VT, WhichResult));
4402 }
4403
4404 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4405 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,DebugLoc dl)4406 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4407 SDValue RHS, SelectionDAG &DAG,
4408 DebugLoc dl) {
4409 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4410 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4411 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
4412
4413 enum {
4414 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4415 OP_VREV,
4416 OP_VDUP0,
4417 OP_VDUP1,
4418 OP_VDUP2,
4419 OP_VDUP3,
4420 OP_VEXT1,
4421 OP_VEXT2,
4422 OP_VEXT3,
4423 OP_VUZPL, // VUZP, left result
4424 OP_VUZPR, // VUZP, right result
4425 OP_VZIPL, // VZIP, left result
4426 OP_VZIPR, // VZIP, right result
4427 OP_VTRNL, // VTRN, left result
4428 OP_VTRNR // VTRN, right result
4429 };
4430
4431 if (OpNum == OP_COPY) {
4432 if (LHSID == (1*9+2)*9+3) return LHS;
4433 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4434 return RHS;
4435 }
4436
4437 SDValue OpLHS, OpRHS;
4438 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4439 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4440 EVT VT = OpLHS.getValueType();
4441
4442 switch (OpNum) {
4443 default: llvm_unreachable("Unknown shuffle opcode!");
4444 case OP_VREV:
4445 // VREV divides the vector in half and swaps within the half.
4446 if (VT.getVectorElementType() == MVT::i32 ||
4447 VT.getVectorElementType() == MVT::f32)
4448 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4449 // vrev <4 x i16> -> VREV32
4450 if (VT.getVectorElementType() == MVT::i16)
4451 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4452 // vrev <4 x i8> -> VREV16
4453 assert(VT.getVectorElementType() == MVT::i8);
4454 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4455 case OP_VDUP0:
4456 case OP_VDUP1:
4457 case OP_VDUP2:
4458 case OP_VDUP3:
4459 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4460 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4461 case OP_VEXT1:
4462 case OP_VEXT2:
4463 case OP_VEXT3:
4464 return DAG.getNode(ARMISD::VEXT, dl, VT,
4465 OpLHS, OpRHS,
4466 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4467 case OP_VUZPL:
4468 case OP_VUZPR:
4469 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4470 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4471 case OP_VZIPL:
4472 case OP_VZIPR:
4473 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4474 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4475 case OP_VTRNL:
4476 case OP_VTRNR:
4477 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4478 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4479 }
4480 }
4481
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)4482 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4483 ArrayRef<int> ShuffleMask,
4484 SelectionDAG &DAG) {
4485 // Check to see if we can use the VTBL instruction.
4486 SDValue V1 = Op.getOperand(0);
4487 SDValue V2 = Op.getOperand(1);
4488 DebugLoc DL = Op.getDebugLoc();
4489
4490 SmallVector<SDValue, 8> VTBLMask;
4491 for (ArrayRef<int>::iterator
4492 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4493 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4494
4495 if (V2.getNode()->getOpcode() == ISD::UNDEF)
4496 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4497 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4498 &VTBLMask[0], 8));
4499
4500 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4501 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4502 &VTBLMask[0], 8));
4503 }
4504
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)4505 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4506 SDValue V1 = Op.getOperand(0);
4507 SDValue V2 = Op.getOperand(1);
4508 DebugLoc dl = Op.getDebugLoc();
4509 EVT VT = Op.getValueType();
4510 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4511
4512 // Convert shuffles that are directly supported on NEON to target-specific
4513 // DAG nodes, instead of keeping them as shuffles and matching them again
4514 // during code selection. This is more efficient and avoids the possibility
4515 // of inconsistencies between legalization and selection.
4516 // FIXME: floating-point vectors should be canonicalized to integer vectors
4517 // of the same time so that they get CSEd properly.
4518 ArrayRef<int> ShuffleMask = SVN->getMask();
4519
4520 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4521 if (EltSize <= 32) {
4522 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4523 int Lane = SVN->getSplatIndex();
4524 // If this is undef splat, generate it via "just" vdup, if possible.
4525 if (Lane == -1) Lane = 0;
4526
4527 // Test if V1 is a SCALAR_TO_VECTOR.
4528 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4529 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4530 }
4531 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4532 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4533 // reaches it).
4534 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4535 !isa<ConstantSDNode>(V1.getOperand(0))) {
4536 bool IsScalarToVector = true;
4537 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4538 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4539 IsScalarToVector = false;
4540 break;
4541 }
4542 if (IsScalarToVector)
4543 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4544 }
4545 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4546 DAG.getConstant(Lane, MVT::i32));
4547 }
4548
4549 bool ReverseVEXT;
4550 unsigned Imm;
4551 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4552 if (ReverseVEXT)
4553 std::swap(V1, V2);
4554 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4555 DAG.getConstant(Imm, MVT::i32));
4556 }
4557
4558 if (isVREVMask(ShuffleMask, VT, 64))
4559 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4560 if (isVREVMask(ShuffleMask, VT, 32))
4561 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4562 if (isVREVMask(ShuffleMask, VT, 16))
4563 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4564
4565 // Check for Neon shuffles that modify both input vectors in place.
4566 // If both results are used, i.e., if there are two shuffles with the same
4567 // source operands and with masks corresponding to both results of one of
4568 // these operations, DAG memoization will ensure that a single node is
4569 // used for both shuffles.
4570 unsigned WhichResult;
4571 if (isVTRNMask(ShuffleMask, VT, WhichResult))
4572 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4573 V1, V2).getValue(WhichResult);
4574 if (isVUZPMask(ShuffleMask, VT, WhichResult))
4575 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4576 V1, V2).getValue(WhichResult);
4577 if (isVZIPMask(ShuffleMask, VT, WhichResult))
4578 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4579 V1, V2).getValue(WhichResult);
4580
4581 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4582 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4583 V1, V1).getValue(WhichResult);
4584 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4585 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4586 V1, V1).getValue(WhichResult);
4587 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4588 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4589 V1, V1).getValue(WhichResult);
4590 }
4591
4592 // If the shuffle is not directly supported and it has 4 elements, use
4593 // the PerfectShuffle-generated table to synthesize it from other shuffles.
4594 unsigned NumElts = VT.getVectorNumElements();
4595 if (NumElts == 4) {
4596 unsigned PFIndexes[4];
4597 for (unsigned i = 0; i != 4; ++i) {
4598 if (ShuffleMask[i] < 0)
4599 PFIndexes[i] = 8;
4600 else
4601 PFIndexes[i] = ShuffleMask[i];
4602 }
4603
4604 // Compute the index in the perfect shuffle table.
4605 unsigned PFTableIndex =
4606 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4607 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4608 unsigned Cost = (PFEntry >> 30);
4609
4610 if (Cost <= 4)
4611 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4612 }
4613
4614 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4615 if (EltSize >= 32) {
4616 // Do the expansion with floating-point types, since that is what the VFP
4617 // registers are defined to use, and since i64 is not legal.
4618 EVT EltVT = EVT::getFloatingPointVT(EltSize);
4619 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4620 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4621 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4622 SmallVector<SDValue, 8> Ops;
4623 for (unsigned i = 0; i < NumElts; ++i) {
4624 if (ShuffleMask[i] < 0)
4625 Ops.push_back(DAG.getUNDEF(EltVT));
4626 else
4627 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4628 ShuffleMask[i] < (int)NumElts ? V1 : V2,
4629 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4630 MVT::i32)));
4631 }
4632 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4633 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4634 }
4635
4636 if (VT == MVT::v8i8) {
4637 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4638 if (NewOp.getNode())
4639 return NewOp;
4640 }
4641
4642 return SDValue();
4643 }
4644
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)4645 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4646 // INSERT_VECTOR_ELT is legal only for immediate indexes.
4647 SDValue Lane = Op.getOperand(2);
4648 if (!isa<ConstantSDNode>(Lane))
4649 return SDValue();
4650
4651 return Op;
4652 }
4653
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)4654 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4655 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4656 SDValue Lane = Op.getOperand(1);
4657 if (!isa<ConstantSDNode>(Lane))
4658 return SDValue();
4659
4660 SDValue Vec = Op.getOperand(0);
4661 if (Op.getValueType() == MVT::i32 &&
4662 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4663 DebugLoc dl = Op.getDebugLoc();
4664 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4665 }
4666
4667 return Op;
4668 }
4669
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)4670 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4671 // The only time a CONCAT_VECTORS operation can have legal types is when
4672 // two 64-bit vectors are concatenated to a 128-bit vector.
4673 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4674 "unexpected CONCAT_VECTORS");
4675 DebugLoc dl = Op.getDebugLoc();
4676 SDValue Val = DAG.getUNDEF(MVT::v2f64);
4677 SDValue Op0 = Op.getOperand(0);
4678 SDValue Op1 = Op.getOperand(1);
4679 if (Op0.getOpcode() != ISD::UNDEF)
4680 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4681 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4682 DAG.getIntPtrConstant(0));
4683 if (Op1.getOpcode() != ISD::UNDEF)
4684 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4685 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4686 DAG.getIntPtrConstant(1));
4687 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4688 }
4689
4690 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4691 /// element has been zero/sign-extended, depending on the isSigned parameter,
4692 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)4693 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4694 bool isSigned) {
4695 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4696 EVT VT = N->getValueType(0);
4697 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4698 SDNode *BVN = N->getOperand(0).getNode();
4699 if (BVN->getValueType(0) != MVT::v4i32 ||
4700 BVN->getOpcode() != ISD::BUILD_VECTOR)
4701 return false;
4702 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4703 unsigned HiElt = 1 - LoElt;
4704 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4705 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4706 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4707 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4708 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4709 return false;
4710 if (isSigned) {
4711 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4712 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4713 return true;
4714 } else {
4715 if (Hi0->isNullValue() && Hi1->isNullValue())
4716 return true;
4717 }
4718 return false;
4719 }
4720
4721 if (N->getOpcode() != ISD::BUILD_VECTOR)
4722 return false;
4723
4724 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4725 SDNode *Elt = N->getOperand(i).getNode();
4726 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4727 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4728 unsigned HalfSize = EltSize / 2;
4729 if (isSigned) {
4730 if (!isIntN(HalfSize, C->getSExtValue()))
4731 return false;
4732 } else {
4733 if (!isUIntN(HalfSize, C->getZExtValue()))
4734 return false;
4735 }
4736 continue;
4737 }
4738 return false;
4739 }
4740
4741 return true;
4742 }
4743
4744 /// isSignExtended - Check if a node is a vector value that is sign-extended
4745 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)4746 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4747 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4748 return true;
4749 if (isExtendedBUILD_VECTOR(N, DAG, true))
4750 return true;
4751 return false;
4752 }
4753
4754 /// isZeroExtended - Check if a node is a vector value that is zero-extended
4755 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)4756 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4757 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4758 return true;
4759 if (isExtendedBUILD_VECTOR(N, DAG, false))
4760 return true;
4761 return false;
4762 }
4763
4764 /// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4765 /// load, or BUILD_VECTOR with extended elements, return the unextended value.
SkipExtension(SDNode * N,SelectionDAG & DAG)4766 static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4767 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4768 return N->getOperand(0);
4769 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4770 return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4771 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4772 LD->isNonTemporal(), LD->isInvariant(),
4773 LD->getAlignment());
4774 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
4775 // have been legalized as a BITCAST from v4i32.
4776 if (N->getOpcode() == ISD::BITCAST) {
4777 SDNode *BVN = N->getOperand(0).getNode();
4778 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4779 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4780 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4781 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4782 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4783 }
4784 // Construct a new BUILD_VECTOR with elements truncated to half the size.
4785 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4786 EVT VT = N->getValueType(0);
4787 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4788 unsigned NumElts = VT.getVectorNumElements();
4789 MVT TruncVT = MVT::getIntegerVT(EltSize);
4790 SmallVector<SDValue, 8> Ops;
4791 for (unsigned i = 0; i != NumElts; ++i) {
4792 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4793 const APInt &CInt = C->getAPIntValue();
4794 Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4795 }
4796 return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4797 MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4798 }
4799
isAddSubSExt(SDNode * N,SelectionDAG & DAG)4800 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4801 unsigned Opcode = N->getOpcode();
4802 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4803 SDNode *N0 = N->getOperand(0).getNode();
4804 SDNode *N1 = N->getOperand(1).getNode();
4805 return N0->hasOneUse() && N1->hasOneUse() &&
4806 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4807 }
4808 return false;
4809 }
4810
isAddSubZExt(SDNode * N,SelectionDAG & DAG)4811 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4812 unsigned Opcode = N->getOpcode();
4813 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4814 SDNode *N0 = N->getOperand(0).getNode();
4815 SDNode *N1 = N->getOperand(1).getNode();
4816 return N0->hasOneUse() && N1->hasOneUse() &&
4817 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4818 }
4819 return false;
4820 }
4821
LowerMUL(SDValue Op,SelectionDAG & DAG)4822 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4823 // Multiplications are only custom-lowered for 128-bit vectors so that
4824 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
4825 EVT VT = Op.getValueType();
4826 assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4827 SDNode *N0 = Op.getOperand(0).getNode();
4828 SDNode *N1 = Op.getOperand(1).getNode();
4829 unsigned NewOpc = 0;
4830 bool isMLA = false;
4831 bool isN0SExt = isSignExtended(N0, DAG);
4832 bool isN1SExt = isSignExtended(N1, DAG);
4833 if (isN0SExt && isN1SExt)
4834 NewOpc = ARMISD::VMULLs;
4835 else {
4836 bool isN0ZExt = isZeroExtended(N0, DAG);
4837 bool isN1ZExt = isZeroExtended(N1, DAG);
4838 if (isN0ZExt && isN1ZExt)
4839 NewOpc = ARMISD::VMULLu;
4840 else if (isN1SExt || isN1ZExt) {
4841 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4842 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4843 if (isN1SExt && isAddSubSExt(N0, DAG)) {
4844 NewOpc = ARMISD::VMULLs;
4845 isMLA = true;
4846 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4847 NewOpc = ARMISD::VMULLu;
4848 isMLA = true;
4849 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4850 std::swap(N0, N1);
4851 NewOpc = ARMISD::VMULLu;
4852 isMLA = true;
4853 }
4854 }
4855
4856 if (!NewOpc) {
4857 if (VT == MVT::v2i64)
4858 // Fall through to expand this. It is not legal.
4859 return SDValue();
4860 else
4861 // Other vector multiplications are legal.
4862 return Op;
4863 }
4864 }
4865
4866 // Legalize to a VMULL instruction.
4867 DebugLoc DL = Op.getDebugLoc();
4868 SDValue Op0;
4869 SDValue Op1 = SkipExtension(N1, DAG);
4870 if (!isMLA) {
4871 Op0 = SkipExtension(N0, DAG);
4872 assert(Op0.getValueType().is64BitVector() &&
4873 Op1.getValueType().is64BitVector() &&
4874 "unexpected types for extended operands to VMULL");
4875 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4876 }
4877
4878 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4879 // isel lowering to take advantage of no-stall back to back vmul + vmla.
4880 // vmull q0, d4, d6
4881 // vmlal q0, d5, d6
4882 // is faster than
4883 // vaddl q0, d4, d5
4884 // vmovl q1, d6
4885 // vmul q0, q0, q1
4886 SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4887 SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4888 EVT Op1VT = Op1.getValueType();
4889 return DAG.getNode(N0->getOpcode(), DL, VT,
4890 DAG.getNode(NewOpc, DL, VT,
4891 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4892 DAG.getNode(NewOpc, DL, VT,
4893 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4894 }
4895
4896 static SDValue
LowerSDIV_v4i8(SDValue X,SDValue Y,DebugLoc dl,SelectionDAG & DAG)4897 LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4898 // Convert to float
4899 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4900 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4901 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4902 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4903 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4904 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4905 // Get reciprocal estimate.
4906 // float4 recip = vrecpeq_f32(yf);
4907 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4908 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4909 // Because char has a smaller range than uchar, we can actually get away
4910 // without any newton steps. This requires that we use a weird bias
4911 // of 0xb000, however (again, this has been exhaustively tested).
4912 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4913 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4914 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4915 Y = DAG.getConstant(0xb000, MVT::i32);
4916 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4917 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4918 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4919 // Convert back to short.
4920 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4921 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4922 return X;
4923 }
4924
4925 static SDValue
LowerSDIV_v4i16(SDValue N0,SDValue N1,DebugLoc dl,SelectionDAG & DAG)4926 LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4927 SDValue N2;
4928 // Convert to float.
4929 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4930 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4931 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4932 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4933 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4934 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4935
4936 // Use reciprocal estimate and one refinement step.
4937 // float4 recip = vrecpeq_f32(yf);
4938 // recip *= vrecpsq_f32(yf, recip);
4939 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4940 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4941 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4942 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4943 N1, N2);
4944 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4945 // Because short has a smaller range than ushort, we can actually get away
4946 // with only a single newton step. This requires that we use a weird bias
4947 // of 89, however (again, this has been exhaustively tested).
4948 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4949 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4950 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4951 N1 = DAG.getConstant(0x89, MVT::i32);
4952 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4953 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4954 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4955 // Convert back to integer and return.
4956 // return vmovn_s32(vcvt_s32_f32(result));
4957 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4958 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4959 return N0;
4960 }
4961
LowerSDIV(SDValue Op,SelectionDAG & DAG)4962 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4963 EVT VT = Op.getValueType();
4964 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4965 "unexpected type for custom-lowering ISD::SDIV");
4966
4967 DebugLoc dl = Op.getDebugLoc();
4968 SDValue N0 = Op.getOperand(0);
4969 SDValue N1 = Op.getOperand(1);
4970 SDValue N2, N3;
4971
4972 if (VT == MVT::v8i8) {
4973 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4974 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4975
4976 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4977 DAG.getIntPtrConstant(4));
4978 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4979 DAG.getIntPtrConstant(4));
4980 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4981 DAG.getIntPtrConstant(0));
4982 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4983 DAG.getIntPtrConstant(0));
4984
4985 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4986 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4987
4988 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4989 N0 = LowerCONCAT_VECTORS(N0, DAG);
4990
4991 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4992 return N0;
4993 }
4994 return LowerSDIV_v4i16(N0, N1, dl, DAG);
4995 }
4996
LowerUDIV(SDValue Op,SelectionDAG & DAG)4997 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4998 EVT VT = Op.getValueType();
4999 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5000 "unexpected type for custom-lowering ISD::UDIV");
5001
5002 DebugLoc dl = Op.getDebugLoc();
5003 SDValue N0 = Op.getOperand(0);
5004 SDValue N1 = Op.getOperand(1);
5005 SDValue N2, N3;
5006
5007 if (VT == MVT::v8i8) {
5008 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5009 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5010
5011 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5012 DAG.getIntPtrConstant(4));
5013 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5014 DAG.getIntPtrConstant(4));
5015 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5016 DAG.getIntPtrConstant(0));
5017 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5018 DAG.getIntPtrConstant(0));
5019
5020 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5021 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5022
5023 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5024 N0 = LowerCONCAT_VECTORS(N0, DAG);
5025
5026 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5027 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5028 N0);
5029 return N0;
5030 }
5031
5032 // v4i16 sdiv ... Convert to float.
5033 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5034 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5035 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5036 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5037 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5038 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5039
5040 // Use reciprocal estimate and two refinement steps.
5041 // float4 recip = vrecpeq_f32(yf);
5042 // recip *= vrecpsq_f32(yf, recip);
5043 // recip *= vrecpsq_f32(yf, recip);
5044 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5045 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5046 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5047 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5048 BN1, N2);
5049 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5050 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5051 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5052 BN1, N2);
5053 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5054 // Simply multiplying by the reciprocal estimate can leave us a few ulps
5055 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5056 // and that it will never cause us to return an answer too large).
5057 // float4 result = as_float4(as_int4(xf*recip) + 2);
5058 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5059 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5060 N1 = DAG.getConstant(2, MVT::i32);
5061 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5062 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5063 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5064 // Convert back to integer and return.
5065 // return vmovn_u32(vcvt_s32_f32(result));
5066 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5067 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5068 return N0;
5069 }
5070
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)5071 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5072 EVT VT = Op.getNode()->getValueType(0);
5073 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5074
5075 unsigned Opc;
5076 bool ExtraOp = false;
5077 switch (Op.getOpcode()) {
5078 default: llvm_unreachable("Invalid code");
5079 case ISD::ADDC: Opc = ARMISD::ADDC; break;
5080 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5081 case ISD::SUBC: Opc = ARMISD::SUBC; break;
5082 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5083 }
5084
5085 if (!ExtraOp)
5086 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5087 Op.getOperand(1));
5088 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5089 Op.getOperand(1), Op.getOperand(2));
5090 }
5091
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)5092 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5093 // Monotonic load/store is legal for all targets
5094 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5095 return Op;
5096
5097 // Aquire/Release load/store is not legal for targets without a
5098 // dmb or equivalent available.
5099 return SDValue();
5100 }
5101
5102
5103 static void
ReplaceATOMIC_OP_64(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned NewOp)5104 ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5105 SelectionDAG &DAG, unsigned NewOp) {
5106 DebugLoc dl = Node->getDebugLoc();
5107 assert (Node->getValueType(0) == MVT::i64 &&
5108 "Only know how to expand i64 atomics");
5109
5110 SmallVector<SDValue, 6> Ops;
5111 Ops.push_back(Node->getOperand(0)); // Chain
5112 Ops.push_back(Node->getOperand(1)); // Ptr
5113 // Low part of Val1
5114 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5115 Node->getOperand(2), DAG.getIntPtrConstant(0)));
5116 // High part of Val1
5117 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5118 Node->getOperand(2), DAG.getIntPtrConstant(1)));
5119 if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5120 // High part of Val1
5121 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5122 Node->getOperand(3), DAG.getIntPtrConstant(0)));
5123 // High part of Val2
5124 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5125 Node->getOperand(3), DAG.getIntPtrConstant(1)));
5126 }
5127 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5128 SDValue Result =
5129 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5130 cast<MemSDNode>(Node)->getMemOperand());
5131 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5132 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5133 Results.push_back(Result.getValue(2));
5134 }
5135
LowerOperation(SDValue Op,SelectionDAG & DAG) const5136 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5137 switch (Op.getOpcode()) {
5138 default: llvm_unreachable("Don't know how to custom lower this!");
5139 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5140 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
5141 case ISD::GlobalAddress:
5142 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5143 LowerGlobalAddressELF(Op, DAG);
5144 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5145 case ISD::SELECT: return LowerSELECT(Op, DAG);
5146 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
5147 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
5148 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
5149 case ISD::VASTART: return LowerVASTART(Op, DAG);
5150 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
5151 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5152 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
5153 case ISD::SINT_TO_FP:
5154 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
5155 case ISD::FP_TO_SINT:
5156 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
5157 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
5158 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5159 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5160 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5161 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5162 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5163 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5164 Subtarget);
5165 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
5166 case ISD::SHL:
5167 case ISD::SRL:
5168 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
5169 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
5170 case ISD::SRL_PARTS:
5171 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
5172 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5173 case ISD::SETCC: return LowerVSETCC(Op, DAG);
5174 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
5175 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5176 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5177 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5178 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5179 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5180 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
5181 case ISD::MUL: return LowerMUL(Op, DAG);
5182 case ISD::SDIV: return LowerSDIV(Op, DAG);
5183 case ISD::UDIV: return LowerUDIV(Op, DAG);
5184 case ISD::ADDC:
5185 case ISD::ADDE:
5186 case ISD::SUBC:
5187 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5188 case ISD::ATOMIC_LOAD:
5189 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
5190 }
5191 }
5192
5193 /// ReplaceNodeResults - Replace the results of node with an illegal result
5194 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5195 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5196 SmallVectorImpl<SDValue>&Results,
5197 SelectionDAG &DAG) const {
5198 SDValue Res;
5199 switch (N->getOpcode()) {
5200 default:
5201 llvm_unreachable("Don't know how to custom expand this!");
5202 case ISD::BITCAST:
5203 Res = ExpandBITCAST(N, DAG);
5204 break;
5205 case ISD::SRL:
5206 case ISD::SRA:
5207 Res = Expand64BitShift(N, DAG, Subtarget);
5208 break;
5209 case ISD::ATOMIC_LOAD_ADD:
5210 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5211 return;
5212 case ISD::ATOMIC_LOAD_AND:
5213 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5214 return;
5215 case ISD::ATOMIC_LOAD_NAND:
5216 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5217 return;
5218 case ISD::ATOMIC_LOAD_OR:
5219 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5220 return;
5221 case ISD::ATOMIC_LOAD_SUB:
5222 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5223 return;
5224 case ISD::ATOMIC_LOAD_XOR:
5225 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5226 return;
5227 case ISD::ATOMIC_SWAP:
5228 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5229 return;
5230 case ISD::ATOMIC_CMP_SWAP:
5231 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5232 return;
5233 }
5234 if (Res.getNode())
5235 Results.push_back(Res);
5236 }
5237
5238 //===----------------------------------------------------------------------===//
5239 // ARM Scheduler Hooks
5240 //===----------------------------------------------------------------------===//
5241
5242 MachineBasicBlock *
EmitAtomicCmpSwap(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size) const5243 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5244 MachineBasicBlock *BB,
5245 unsigned Size) const {
5246 unsigned dest = MI->getOperand(0).getReg();
5247 unsigned ptr = MI->getOperand(1).getReg();
5248 unsigned oldval = MI->getOperand(2).getReg();
5249 unsigned newval = MI->getOperand(3).getReg();
5250 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5251 DebugLoc dl = MI->getDebugLoc();
5252 bool isThumb2 = Subtarget->isThumb2();
5253
5254 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5255 unsigned scratch =
5256 MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5257 : ARM::GPRRegisterClass);
5258
5259 if (isThumb2) {
5260 MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5261 MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5262 MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5263 }
5264
5265 unsigned ldrOpc, strOpc;
5266 switch (Size) {
5267 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5268 case 1:
5269 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5270 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5271 break;
5272 case 2:
5273 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5274 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5275 break;
5276 case 4:
5277 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5278 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5279 break;
5280 }
5281
5282 MachineFunction *MF = BB->getParent();
5283 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5284 MachineFunction::iterator It = BB;
5285 ++It; // insert the new blocks after the current block
5286
5287 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5288 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5289 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5290 MF->insert(It, loop1MBB);
5291 MF->insert(It, loop2MBB);
5292 MF->insert(It, exitMBB);
5293
5294 // Transfer the remainder of BB and its successor edges to exitMBB.
5295 exitMBB->splice(exitMBB->begin(), BB,
5296 llvm::next(MachineBasicBlock::iterator(MI)),
5297 BB->end());
5298 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5299
5300 // thisMBB:
5301 // ...
5302 // fallthrough --> loop1MBB
5303 BB->addSuccessor(loop1MBB);
5304
5305 // loop1MBB:
5306 // ldrex dest, [ptr]
5307 // cmp dest, oldval
5308 // bne exitMBB
5309 BB = loop1MBB;
5310 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5311 if (ldrOpc == ARM::t2LDREX)
5312 MIB.addImm(0);
5313 AddDefaultPred(MIB);
5314 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5315 .addReg(dest).addReg(oldval));
5316 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5317 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5318 BB->addSuccessor(loop2MBB);
5319 BB->addSuccessor(exitMBB);
5320
5321 // loop2MBB:
5322 // strex scratch, newval, [ptr]
5323 // cmp scratch, #0
5324 // bne loop1MBB
5325 BB = loop2MBB;
5326 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5327 if (strOpc == ARM::t2STREX)
5328 MIB.addImm(0);
5329 AddDefaultPred(MIB);
5330 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5331 .addReg(scratch).addImm(0));
5332 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5333 .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5334 BB->addSuccessor(loop1MBB);
5335 BB->addSuccessor(exitMBB);
5336
5337 // exitMBB:
5338 // ...
5339 BB = exitMBB;
5340
5341 MI->eraseFromParent(); // The instruction is gone now.
5342
5343 return BB;
5344 }
5345
5346 MachineBasicBlock *
EmitAtomicBinary(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size,unsigned BinOpcode) const5347 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5348 unsigned Size, unsigned BinOpcode) const {
5349 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5350 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5351
5352 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5353 MachineFunction *MF = BB->getParent();
5354 MachineFunction::iterator It = BB;
5355 ++It;
5356
5357 unsigned dest = MI->getOperand(0).getReg();
5358 unsigned ptr = MI->getOperand(1).getReg();
5359 unsigned incr = MI->getOperand(2).getReg();
5360 DebugLoc dl = MI->getDebugLoc();
5361 bool isThumb2 = Subtarget->isThumb2();
5362
5363 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5364 if (isThumb2) {
5365 MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5366 MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5367 }
5368
5369 unsigned ldrOpc, strOpc;
5370 switch (Size) {
5371 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5372 case 1:
5373 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5374 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5375 break;
5376 case 2:
5377 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5378 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5379 break;
5380 case 4:
5381 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5382 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5383 break;
5384 }
5385
5386 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5387 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5388 MF->insert(It, loopMBB);
5389 MF->insert(It, exitMBB);
5390
5391 // Transfer the remainder of BB and its successor edges to exitMBB.
5392 exitMBB->splice(exitMBB->begin(), BB,
5393 llvm::next(MachineBasicBlock::iterator(MI)),
5394 BB->end());
5395 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5396
5397 const TargetRegisterClass *TRC =
5398 isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5399 unsigned scratch = MRI.createVirtualRegister(TRC);
5400 unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5401
5402 // thisMBB:
5403 // ...
5404 // fallthrough --> loopMBB
5405 BB->addSuccessor(loopMBB);
5406
5407 // loopMBB:
5408 // ldrex dest, ptr
5409 // <binop> scratch2, dest, incr
5410 // strex scratch, scratch2, ptr
5411 // cmp scratch, #0
5412 // bne- loopMBB
5413 // fallthrough --> exitMBB
5414 BB = loopMBB;
5415 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5416 if (ldrOpc == ARM::t2LDREX)
5417 MIB.addImm(0);
5418 AddDefaultPred(MIB);
5419 if (BinOpcode) {
5420 // operand order needs to go the other way for NAND
5421 if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5422 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5423 addReg(incr).addReg(dest)).addReg(0);
5424 else
5425 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5426 addReg(dest).addReg(incr)).addReg(0);
5427 }
5428
5429 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5430 if (strOpc == ARM::t2STREX)
5431 MIB.addImm(0);
5432 AddDefaultPred(MIB);
5433 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5434 .addReg(scratch).addImm(0));
5435 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5436 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5437
5438 BB->addSuccessor(loopMBB);
5439 BB->addSuccessor(exitMBB);
5440
5441 // exitMBB:
5442 // ...
5443 BB = exitMBB;
5444
5445 MI->eraseFromParent(); // The instruction is gone now.
5446
5447 return BB;
5448 }
5449
5450 MachineBasicBlock *
EmitAtomicBinaryMinMax(MachineInstr * MI,MachineBasicBlock * BB,unsigned Size,bool signExtend,ARMCC::CondCodes Cond) const5451 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5452 MachineBasicBlock *BB,
5453 unsigned Size,
5454 bool signExtend,
5455 ARMCC::CondCodes Cond) const {
5456 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5457
5458 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5459 MachineFunction *MF = BB->getParent();
5460 MachineFunction::iterator It = BB;
5461 ++It;
5462
5463 unsigned dest = MI->getOperand(0).getReg();
5464 unsigned ptr = MI->getOperand(1).getReg();
5465 unsigned incr = MI->getOperand(2).getReg();
5466 unsigned oldval = dest;
5467 DebugLoc dl = MI->getDebugLoc();
5468 bool isThumb2 = Subtarget->isThumb2();
5469
5470 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5471 if (isThumb2) {
5472 MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5473 MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5474 }
5475
5476 unsigned ldrOpc, strOpc, extendOpc;
5477 switch (Size) {
5478 default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5479 case 1:
5480 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5481 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5482 extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5483 break;
5484 case 2:
5485 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5486 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5487 extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5488 break;
5489 case 4:
5490 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5491 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5492 extendOpc = 0;
5493 break;
5494 }
5495
5496 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5497 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5498 MF->insert(It, loopMBB);
5499 MF->insert(It, exitMBB);
5500
5501 // Transfer the remainder of BB and its successor edges to exitMBB.
5502 exitMBB->splice(exitMBB->begin(), BB,
5503 llvm::next(MachineBasicBlock::iterator(MI)),
5504 BB->end());
5505 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5506
5507 const TargetRegisterClass *TRC =
5508 isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5509 unsigned scratch = MRI.createVirtualRegister(TRC);
5510 unsigned scratch2 = MRI.createVirtualRegister(TRC);
5511
5512 // thisMBB:
5513 // ...
5514 // fallthrough --> loopMBB
5515 BB->addSuccessor(loopMBB);
5516
5517 // loopMBB:
5518 // ldrex dest, ptr
5519 // (sign extend dest, if required)
5520 // cmp dest, incr
5521 // cmov.cond scratch2, dest, incr
5522 // strex scratch, scratch2, ptr
5523 // cmp scratch, #0
5524 // bne- loopMBB
5525 // fallthrough --> exitMBB
5526 BB = loopMBB;
5527 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5528 if (ldrOpc == ARM::t2LDREX)
5529 MIB.addImm(0);
5530 AddDefaultPred(MIB);
5531
5532 // Sign extend the value, if necessary.
5533 if (signExtend && extendOpc) {
5534 oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5535 AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5536 .addReg(dest)
5537 .addImm(0));
5538 }
5539
5540 // Build compare and cmov instructions.
5541 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5542 .addReg(oldval).addReg(incr));
5543 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5544 .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5545
5546 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5547 if (strOpc == ARM::t2STREX)
5548 MIB.addImm(0);
5549 AddDefaultPred(MIB);
5550 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5551 .addReg(scratch).addImm(0));
5552 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5553 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5554
5555 BB->addSuccessor(loopMBB);
5556 BB->addSuccessor(exitMBB);
5557
5558 // exitMBB:
5559 // ...
5560 BB = exitMBB;
5561
5562 MI->eraseFromParent(); // The instruction is gone now.
5563
5564 return BB;
5565 }
5566
5567 MachineBasicBlock *
EmitAtomicBinary64(MachineInstr * MI,MachineBasicBlock * BB,unsigned Op1,unsigned Op2,bool NeedsCarry,bool IsCmpxchg) const5568 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5569 unsigned Op1, unsigned Op2,
5570 bool NeedsCarry, bool IsCmpxchg) const {
5571 // This also handles ATOMIC_SWAP, indicated by Op1==0.
5572 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5573
5574 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5575 MachineFunction *MF = BB->getParent();
5576 MachineFunction::iterator It = BB;
5577 ++It;
5578
5579 unsigned destlo = MI->getOperand(0).getReg();
5580 unsigned desthi = MI->getOperand(1).getReg();
5581 unsigned ptr = MI->getOperand(2).getReg();
5582 unsigned vallo = MI->getOperand(3).getReg();
5583 unsigned valhi = MI->getOperand(4).getReg();
5584 DebugLoc dl = MI->getDebugLoc();
5585 bool isThumb2 = Subtarget->isThumb2();
5586
5587 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5588 if (isThumb2) {
5589 MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5590 MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5591 MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5592 }
5593
5594 unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5595 unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5596
5597 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5598 MachineBasicBlock *contBB = 0, *cont2BB = 0;
5599 if (IsCmpxchg) {
5600 contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5601 cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5602 }
5603 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5604 MF->insert(It, loopMBB);
5605 if (IsCmpxchg) {
5606 MF->insert(It, contBB);
5607 MF->insert(It, cont2BB);
5608 }
5609 MF->insert(It, exitMBB);
5610
5611 // Transfer the remainder of BB and its successor edges to exitMBB.
5612 exitMBB->splice(exitMBB->begin(), BB,
5613 llvm::next(MachineBasicBlock::iterator(MI)),
5614 BB->end());
5615 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5616
5617 const TargetRegisterClass *TRC =
5618 isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5619 unsigned storesuccess = MRI.createVirtualRegister(TRC);
5620
5621 // thisMBB:
5622 // ...
5623 // fallthrough --> loopMBB
5624 BB->addSuccessor(loopMBB);
5625
5626 // loopMBB:
5627 // ldrexd r2, r3, ptr
5628 // <binopa> r0, r2, incr
5629 // <binopb> r1, r3, incr
5630 // strexd storesuccess, r0, r1, ptr
5631 // cmp storesuccess, #0
5632 // bne- loopMBB
5633 // fallthrough --> exitMBB
5634 //
5635 // Note that the registers are explicitly specified because there is not any
5636 // way to force the register allocator to allocate a register pair.
5637 //
5638 // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5639 // need to properly enforce the restriction that the two output registers
5640 // for ldrexd must be different.
5641 BB = loopMBB;
5642 // Load
5643 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5644 .addReg(ARM::R2, RegState::Define)
5645 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5646 // Copy r2/r3 into dest. (This copy will normally be coalesced.)
5647 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5648 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5649
5650 if (IsCmpxchg) {
5651 // Add early exit
5652 for (unsigned i = 0; i < 2; i++) {
5653 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5654 ARM::CMPrr))
5655 .addReg(i == 0 ? destlo : desthi)
5656 .addReg(i == 0 ? vallo : valhi));
5657 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5658 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5659 BB->addSuccessor(exitMBB);
5660 BB->addSuccessor(i == 0 ? contBB : cont2BB);
5661 BB = (i == 0 ? contBB : cont2BB);
5662 }
5663
5664 // Copy to physregs for strexd
5665 unsigned setlo = MI->getOperand(5).getReg();
5666 unsigned sethi = MI->getOperand(6).getReg();
5667 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5668 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5669 } else if (Op1) {
5670 // Perform binary operation
5671 AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5672 .addReg(destlo).addReg(vallo))
5673 .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5674 AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5675 .addReg(desthi).addReg(valhi)).addReg(0);
5676 } else {
5677 // Copy to physregs for strexd
5678 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5679 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5680 }
5681
5682 // Store
5683 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5684 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5685 // Cmp+jump
5686 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5687 .addReg(storesuccess).addImm(0));
5688 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5689 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5690
5691 BB->addSuccessor(loopMBB);
5692 BB->addSuccessor(exitMBB);
5693
5694 // exitMBB:
5695 // ...
5696 BB = exitMBB;
5697
5698 MI->eraseFromParent(); // The instruction is gone now.
5699
5700 return BB;
5701 }
5702
5703 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5704 /// registers the function context.
5705 void ARMTargetLowering::
SetupEntryBlockForSjLj(MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const5706 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5707 MachineBasicBlock *DispatchBB, int FI) const {
5708 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5709 DebugLoc dl = MI->getDebugLoc();
5710 MachineFunction *MF = MBB->getParent();
5711 MachineRegisterInfo *MRI = &MF->getRegInfo();
5712 MachineConstantPool *MCP = MF->getConstantPool();
5713 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5714 const Function *F = MF->getFunction();
5715
5716 bool isThumb = Subtarget->isThumb();
5717 bool isThumb2 = Subtarget->isThumb2();
5718
5719 unsigned PCLabelId = AFI->createPICLabelUId();
5720 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5721 ARMConstantPoolValue *CPV =
5722 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5723 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5724
5725 const TargetRegisterClass *TRC =
5726 isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5727
5728 // Grab constant pool and fixed stack memory operands.
5729 MachineMemOperand *CPMMO =
5730 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5731 MachineMemOperand::MOLoad, 4, 4);
5732
5733 MachineMemOperand *FIMMOSt =
5734 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5735 MachineMemOperand::MOStore, 4, 4);
5736
5737 // Load the address of the dispatch MBB into the jump buffer.
5738 if (isThumb2) {
5739 // Incoming value: jbuf
5740 // ldr.n r5, LCPI1_1
5741 // orr r5, r5, #1
5742 // add r5, pc
5743 // str r5, [$jbuf, #+4] ; &jbuf[1]
5744 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5745 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5746 .addConstantPoolIndex(CPI)
5747 .addMemOperand(CPMMO));
5748 // Set the low bit because of thumb mode.
5749 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5750 AddDefaultCC(
5751 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5752 .addReg(NewVReg1, RegState::Kill)
5753 .addImm(0x01)));
5754 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5755 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5756 .addReg(NewVReg2, RegState::Kill)
5757 .addImm(PCLabelId);
5758 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5759 .addReg(NewVReg3, RegState::Kill)
5760 .addFrameIndex(FI)
5761 .addImm(36) // &jbuf[1] :: pc
5762 .addMemOperand(FIMMOSt));
5763 } else if (isThumb) {
5764 // Incoming value: jbuf
5765 // ldr.n r1, LCPI1_4
5766 // add r1, pc
5767 // mov r2, #1
5768 // orrs r1, r2
5769 // add r2, $jbuf, #+4 ; &jbuf[1]
5770 // str r1, [r2]
5771 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5772 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5773 .addConstantPoolIndex(CPI)
5774 .addMemOperand(CPMMO));
5775 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5776 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5777 .addReg(NewVReg1, RegState::Kill)
5778 .addImm(PCLabelId);
5779 // Set the low bit because of thumb mode.
5780 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5781 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5782 .addReg(ARM::CPSR, RegState::Define)
5783 .addImm(1));
5784 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5785 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5786 .addReg(ARM::CPSR, RegState::Define)
5787 .addReg(NewVReg2, RegState::Kill)
5788 .addReg(NewVReg3, RegState::Kill));
5789 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5790 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5791 .addFrameIndex(FI)
5792 .addImm(36)); // &jbuf[1] :: pc
5793 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5794 .addReg(NewVReg4, RegState::Kill)
5795 .addReg(NewVReg5, RegState::Kill)
5796 .addImm(0)
5797 .addMemOperand(FIMMOSt));
5798 } else {
5799 // Incoming value: jbuf
5800 // ldr r1, LCPI1_1
5801 // add r1, pc, r1
5802 // str r1, [$jbuf, #+4] ; &jbuf[1]
5803 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5804 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
5805 .addConstantPoolIndex(CPI)
5806 .addImm(0)
5807 .addMemOperand(CPMMO));
5808 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5809 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5810 .addReg(NewVReg1, RegState::Kill)
5811 .addImm(PCLabelId));
5812 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5813 .addReg(NewVReg2, RegState::Kill)
5814 .addFrameIndex(FI)
5815 .addImm(36) // &jbuf[1] :: pc
5816 .addMemOperand(FIMMOSt));
5817 }
5818 }
5819
5820 MachineBasicBlock *ARMTargetLowering::
EmitSjLjDispatchBlock(MachineInstr * MI,MachineBasicBlock * MBB) const5821 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5822 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5823 DebugLoc dl = MI->getDebugLoc();
5824 MachineFunction *MF = MBB->getParent();
5825 MachineRegisterInfo *MRI = &MF->getRegInfo();
5826 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5827 MachineFrameInfo *MFI = MF->getFrameInfo();
5828 int FI = MFI->getFunctionContextIndex();
5829
5830 const TargetRegisterClass *TRC =
5831 Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5832
5833 // Get a mapping of the call site numbers to all of the landing pads they're
5834 // associated with.
5835 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5836 unsigned MaxCSNum = 0;
5837 MachineModuleInfo &MMI = MF->getMMI();
5838 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
5839 ++BB) {
5840 if (!BB->isLandingPad()) continue;
5841
5842 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5843 // pad.
5844 for (MachineBasicBlock::iterator
5845 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5846 if (!II->isEHLabel()) continue;
5847
5848 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5849 if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5850
5851 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5852 for (SmallVectorImpl<unsigned>::iterator
5853 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5854 CSI != CSE; ++CSI) {
5855 CallSiteNumToLPad[*CSI].push_back(BB);
5856 MaxCSNum = std::max(MaxCSNum, *CSI);
5857 }
5858 break;
5859 }
5860 }
5861
5862 // Get an ordered list of the machine basic blocks for the jump table.
5863 std::vector<MachineBasicBlock*> LPadList;
5864 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5865 LPadList.reserve(CallSiteNumToLPad.size());
5866 for (unsigned I = 1; I <= MaxCSNum; ++I) {
5867 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5868 for (SmallVectorImpl<MachineBasicBlock*>::iterator
5869 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5870 LPadList.push_back(*II);
5871 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5872 }
5873 }
5874
5875 assert(!LPadList.empty() &&
5876 "No landing pad destinations for the dispatch jump table!");
5877
5878 // Create the jump table and associated information.
5879 MachineJumpTableInfo *JTI =
5880 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5881 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5882 unsigned UId = AFI->createJumpTableUId();
5883
5884 // Create the MBBs for the dispatch code.
5885
5886 // Shove the dispatch's address into the return slot in the function context.
5887 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5888 DispatchBB->setIsLandingPad();
5889
5890 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5891 BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5892 DispatchBB->addSuccessor(TrapBB);
5893
5894 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5895 DispatchBB->addSuccessor(DispContBB);
5896
5897 // Insert and MBBs.
5898 MF->insert(MF->end(), DispatchBB);
5899 MF->insert(MF->end(), DispContBB);
5900 MF->insert(MF->end(), TrapBB);
5901
5902 // Insert code into the entry block that creates and registers the function
5903 // context.
5904 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5905
5906 MachineMemOperand *FIMMOLd =
5907 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5908 MachineMemOperand::MOLoad |
5909 MachineMemOperand::MOVolatile, 4, 4);
5910
5911 if (AFI->isThumb1OnlyFunction())
5912 BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5913 else if (!Subtarget->hasVFP2())
5914 BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5915 else
5916 BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5917
5918 unsigned NumLPads = LPadList.size();
5919 if (Subtarget->isThumb2()) {
5920 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5921 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5922 .addFrameIndex(FI)
5923 .addImm(4)
5924 .addMemOperand(FIMMOLd));
5925
5926 if (NumLPads < 256) {
5927 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5928 .addReg(NewVReg1)
5929 .addImm(LPadList.size()));
5930 } else {
5931 unsigned VReg1 = MRI->createVirtualRegister(TRC);
5932 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5933 .addImm(NumLPads & 0xFFFF));
5934
5935 unsigned VReg2 = VReg1;
5936 if ((NumLPads & 0xFFFF0000) != 0) {
5937 VReg2 = MRI->createVirtualRegister(TRC);
5938 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5939 .addReg(VReg1)
5940 .addImm(NumLPads >> 16));
5941 }
5942
5943 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5944 .addReg(NewVReg1)
5945 .addReg(VReg2));
5946 }
5947
5948 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5949 .addMBB(TrapBB)
5950 .addImm(ARMCC::HI)
5951 .addReg(ARM::CPSR);
5952
5953 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5954 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5955 .addJumpTableIndex(MJTI)
5956 .addImm(UId));
5957
5958 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5959 AddDefaultCC(
5960 AddDefaultPred(
5961 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5962 .addReg(NewVReg3, RegState::Kill)
5963 .addReg(NewVReg1)
5964 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5965
5966 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5967 .addReg(NewVReg4, RegState::Kill)
5968 .addReg(NewVReg1)
5969 .addJumpTableIndex(MJTI)
5970 .addImm(UId);
5971 } else if (Subtarget->isThumb()) {
5972 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5973 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5974 .addFrameIndex(FI)
5975 .addImm(1)
5976 .addMemOperand(FIMMOLd));
5977
5978 if (NumLPads < 256) {
5979 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5980 .addReg(NewVReg1)
5981 .addImm(NumLPads));
5982 } else {
5983 MachineConstantPool *ConstantPool = MF->getConstantPool();
5984 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5985 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5986
5987 // MachineConstantPool wants an explicit alignment.
5988 unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5989 if (Align == 0)
5990 Align = getTargetData()->getTypeAllocSize(C->getType());
5991 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5992
5993 unsigned VReg1 = MRI->createVirtualRegister(TRC);
5994 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5995 .addReg(VReg1, RegState::Define)
5996 .addConstantPoolIndex(Idx));
5997 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5998 .addReg(NewVReg1)
5999 .addReg(VReg1));
6000 }
6001
6002 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6003 .addMBB(TrapBB)
6004 .addImm(ARMCC::HI)
6005 .addReg(ARM::CPSR);
6006
6007 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6008 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6009 .addReg(ARM::CPSR, RegState::Define)
6010 .addReg(NewVReg1)
6011 .addImm(2));
6012
6013 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6014 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6015 .addJumpTableIndex(MJTI)
6016 .addImm(UId));
6017
6018 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6019 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6020 .addReg(ARM::CPSR, RegState::Define)
6021 .addReg(NewVReg2, RegState::Kill)
6022 .addReg(NewVReg3));
6023
6024 MachineMemOperand *JTMMOLd =
6025 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6026 MachineMemOperand::MOLoad, 4, 4);
6027
6028 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6029 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6030 .addReg(NewVReg4, RegState::Kill)
6031 .addImm(0)
6032 .addMemOperand(JTMMOLd));
6033
6034 unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6035 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6036 .addReg(ARM::CPSR, RegState::Define)
6037 .addReg(NewVReg5, RegState::Kill)
6038 .addReg(NewVReg3));
6039
6040 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6041 .addReg(NewVReg6, RegState::Kill)
6042 .addJumpTableIndex(MJTI)
6043 .addImm(UId);
6044 } else {
6045 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6046 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6047 .addFrameIndex(FI)
6048 .addImm(4)
6049 .addMemOperand(FIMMOLd));
6050
6051 if (NumLPads < 256) {
6052 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6053 .addReg(NewVReg1)
6054 .addImm(NumLPads));
6055 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6056 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6057 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6058 .addImm(NumLPads & 0xFFFF));
6059
6060 unsigned VReg2 = VReg1;
6061 if ((NumLPads & 0xFFFF0000) != 0) {
6062 VReg2 = MRI->createVirtualRegister(TRC);
6063 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6064 .addReg(VReg1)
6065 .addImm(NumLPads >> 16));
6066 }
6067
6068 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6069 .addReg(NewVReg1)
6070 .addReg(VReg2));
6071 } else {
6072 MachineConstantPool *ConstantPool = MF->getConstantPool();
6073 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6074 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6075
6076 // MachineConstantPool wants an explicit alignment.
6077 unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6078 if (Align == 0)
6079 Align = getTargetData()->getTypeAllocSize(C->getType());
6080 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6081
6082 unsigned VReg1 = MRI->createVirtualRegister(TRC);
6083 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6084 .addReg(VReg1, RegState::Define)
6085 .addConstantPoolIndex(Idx)
6086 .addImm(0));
6087 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6088 .addReg(NewVReg1)
6089 .addReg(VReg1, RegState::Kill));
6090 }
6091
6092 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6093 .addMBB(TrapBB)
6094 .addImm(ARMCC::HI)
6095 .addReg(ARM::CPSR);
6096
6097 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6098 AddDefaultCC(
6099 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6100 .addReg(NewVReg1)
6101 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6102 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6103 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6104 .addJumpTableIndex(MJTI)
6105 .addImm(UId));
6106
6107 MachineMemOperand *JTMMOLd =
6108 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6109 MachineMemOperand::MOLoad, 4, 4);
6110 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6111 AddDefaultPred(
6112 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6113 .addReg(NewVReg3, RegState::Kill)
6114 .addReg(NewVReg4)
6115 .addImm(0)
6116 .addMemOperand(JTMMOLd));
6117
6118 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6119 .addReg(NewVReg5, RegState::Kill)
6120 .addReg(NewVReg4)
6121 .addJumpTableIndex(MJTI)
6122 .addImm(UId);
6123 }
6124
6125 // Add the jump table entries as successors to the MBB.
6126 MachineBasicBlock *PrevMBB = 0;
6127 for (std::vector<MachineBasicBlock*>::iterator
6128 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6129 MachineBasicBlock *CurMBB = *I;
6130 if (PrevMBB != CurMBB)
6131 DispContBB->addSuccessor(CurMBB);
6132 PrevMBB = CurMBB;
6133 }
6134
6135 // N.B. the order the invoke BBs are processed in doesn't matter here.
6136 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6137 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6138 const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6139 SmallVector<MachineBasicBlock*, 64> MBBLPads;
6140 for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6141 I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6142 MachineBasicBlock *BB = *I;
6143
6144 // Remove the landing pad successor from the invoke block and replace it
6145 // with the new dispatch block.
6146 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6147 BB->succ_end());
6148 while (!Successors.empty()) {
6149 MachineBasicBlock *SMBB = Successors.pop_back_val();
6150 if (SMBB->isLandingPad()) {
6151 BB->removeSuccessor(SMBB);
6152 MBBLPads.push_back(SMBB);
6153 }
6154 }
6155
6156 BB->addSuccessor(DispatchBB);
6157
6158 // Find the invoke call and mark all of the callee-saved registers as
6159 // 'implicit defined' so that they're spilled. This prevents code from
6160 // moving instructions to before the EH block, where they will never be
6161 // executed.
6162 for (MachineBasicBlock::reverse_iterator
6163 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6164 if (!II->isCall()) continue;
6165
6166 DenseMap<unsigned, bool> DefRegs;
6167 for (MachineInstr::mop_iterator
6168 OI = II->operands_begin(), OE = II->operands_end();
6169 OI != OE; ++OI) {
6170 if (!OI->isReg()) continue;
6171 DefRegs[OI->getReg()] = true;
6172 }
6173
6174 MachineInstrBuilder MIB(&*II);
6175
6176 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6177 unsigned Reg = SavedRegs[i];
6178 if (Subtarget->isThumb2() &&
6179 !ARM::tGPRRegisterClass->contains(Reg) &&
6180 !ARM::hGPRRegisterClass->contains(Reg))
6181 continue;
6182 else if (Subtarget->isThumb1Only() &&
6183 !ARM::tGPRRegisterClass->contains(Reg))
6184 continue;
6185 else if (!Subtarget->isThumb() &&
6186 !ARM::GPRRegisterClass->contains(Reg))
6187 continue;
6188 if (!DefRegs[Reg])
6189 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6190 }
6191
6192 break;
6193 }
6194 }
6195
6196 // Mark all former landing pads as non-landing pads. The dispatch is the only
6197 // landing pad now.
6198 for (SmallVectorImpl<MachineBasicBlock*>::iterator
6199 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6200 (*I)->setIsLandingPad(false);
6201
6202 // The instruction is gone now.
6203 MI->eraseFromParent();
6204
6205 return MBB;
6206 }
6207
6208 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)6209 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6210 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6211 E = MBB->succ_end(); I != E; ++I)
6212 if (*I != Succ)
6213 return *I;
6214 llvm_unreachable("Expecting a BB with two successors!");
6215 }
6216
6217 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const6218 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6219 MachineBasicBlock *BB) const {
6220 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6221 DebugLoc dl = MI->getDebugLoc();
6222 bool isThumb2 = Subtarget->isThumb2();
6223 switch (MI->getOpcode()) {
6224 default: {
6225 MI->dump();
6226 llvm_unreachable("Unexpected instr type to insert");
6227 }
6228 // The Thumb2 pre-indexed stores have the same MI operands, they just
6229 // define them differently in the .td files from the isel patterns, so
6230 // they need pseudos.
6231 case ARM::t2STR_preidx:
6232 MI->setDesc(TII->get(ARM::t2STR_PRE));
6233 return BB;
6234 case ARM::t2STRB_preidx:
6235 MI->setDesc(TII->get(ARM::t2STRB_PRE));
6236 return BB;
6237 case ARM::t2STRH_preidx:
6238 MI->setDesc(TII->get(ARM::t2STRH_PRE));
6239 return BB;
6240
6241 case ARM::STRi_preidx:
6242 case ARM::STRBi_preidx: {
6243 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6244 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6245 // Decode the offset.
6246 unsigned Offset = MI->getOperand(4).getImm();
6247 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6248 Offset = ARM_AM::getAM2Offset(Offset);
6249 if (isSub)
6250 Offset = -Offset;
6251
6252 MachineMemOperand *MMO = *MI->memoperands_begin();
6253 BuildMI(*BB, MI, dl, TII->get(NewOpc))
6254 .addOperand(MI->getOperand(0)) // Rn_wb
6255 .addOperand(MI->getOperand(1)) // Rt
6256 .addOperand(MI->getOperand(2)) // Rn
6257 .addImm(Offset) // offset (skip GPR==zero_reg)
6258 .addOperand(MI->getOperand(5)) // pred
6259 .addOperand(MI->getOperand(6))
6260 .addMemOperand(MMO);
6261 MI->eraseFromParent();
6262 return BB;
6263 }
6264 case ARM::STRr_preidx:
6265 case ARM::STRBr_preidx:
6266 case ARM::STRH_preidx: {
6267 unsigned NewOpc;
6268 switch (MI->getOpcode()) {
6269 default: llvm_unreachable("unexpected opcode!");
6270 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6271 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6272 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6273 }
6274 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6275 for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6276 MIB.addOperand(MI->getOperand(i));
6277 MI->eraseFromParent();
6278 return BB;
6279 }
6280 case ARM::ATOMIC_LOAD_ADD_I8:
6281 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6282 case ARM::ATOMIC_LOAD_ADD_I16:
6283 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6284 case ARM::ATOMIC_LOAD_ADD_I32:
6285 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6286
6287 case ARM::ATOMIC_LOAD_AND_I8:
6288 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6289 case ARM::ATOMIC_LOAD_AND_I16:
6290 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6291 case ARM::ATOMIC_LOAD_AND_I32:
6292 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6293
6294 case ARM::ATOMIC_LOAD_OR_I8:
6295 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6296 case ARM::ATOMIC_LOAD_OR_I16:
6297 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6298 case ARM::ATOMIC_LOAD_OR_I32:
6299 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6300
6301 case ARM::ATOMIC_LOAD_XOR_I8:
6302 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6303 case ARM::ATOMIC_LOAD_XOR_I16:
6304 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6305 case ARM::ATOMIC_LOAD_XOR_I32:
6306 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6307
6308 case ARM::ATOMIC_LOAD_NAND_I8:
6309 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6310 case ARM::ATOMIC_LOAD_NAND_I16:
6311 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6312 case ARM::ATOMIC_LOAD_NAND_I32:
6313 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6314
6315 case ARM::ATOMIC_LOAD_SUB_I8:
6316 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6317 case ARM::ATOMIC_LOAD_SUB_I16:
6318 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6319 case ARM::ATOMIC_LOAD_SUB_I32:
6320 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6321
6322 case ARM::ATOMIC_LOAD_MIN_I8:
6323 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6324 case ARM::ATOMIC_LOAD_MIN_I16:
6325 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6326 case ARM::ATOMIC_LOAD_MIN_I32:
6327 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6328
6329 case ARM::ATOMIC_LOAD_MAX_I8:
6330 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6331 case ARM::ATOMIC_LOAD_MAX_I16:
6332 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6333 case ARM::ATOMIC_LOAD_MAX_I32:
6334 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6335
6336 case ARM::ATOMIC_LOAD_UMIN_I8:
6337 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6338 case ARM::ATOMIC_LOAD_UMIN_I16:
6339 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6340 case ARM::ATOMIC_LOAD_UMIN_I32:
6341 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6342
6343 case ARM::ATOMIC_LOAD_UMAX_I8:
6344 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6345 case ARM::ATOMIC_LOAD_UMAX_I16:
6346 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6347 case ARM::ATOMIC_LOAD_UMAX_I32:
6348 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6349
6350 case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
6351 case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6352 case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6353
6354 case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
6355 case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6356 case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6357
6358
6359 case ARM::ATOMADD6432:
6360 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6361 isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6362 /*NeedsCarry*/ true);
6363 case ARM::ATOMSUB6432:
6364 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6365 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6366 /*NeedsCarry*/ true);
6367 case ARM::ATOMOR6432:
6368 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6369 isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6370 case ARM::ATOMXOR6432:
6371 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6372 isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6373 case ARM::ATOMAND6432:
6374 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6375 isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6376 case ARM::ATOMSWAP6432:
6377 return EmitAtomicBinary64(MI, BB, 0, 0, false);
6378 case ARM::ATOMCMPXCHG6432:
6379 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6380 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6381 /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6382
6383 case ARM::tMOVCCr_pseudo: {
6384 // To "insert" a SELECT_CC instruction, we actually have to insert the
6385 // diamond control-flow pattern. The incoming instruction knows the
6386 // destination vreg to set, the condition code register to branch on, the
6387 // true/false values to select between, and a branch opcode to use.
6388 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6389 MachineFunction::iterator It = BB;
6390 ++It;
6391
6392 // thisMBB:
6393 // ...
6394 // TrueVal = ...
6395 // cmpTY ccX, r1, r2
6396 // bCC copy1MBB
6397 // fallthrough --> copy0MBB
6398 MachineBasicBlock *thisMBB = BB;
6399 MachineFunction *F = BB->getParent();
6400 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6401 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6402 F->insert(It, copy0MBB);
6403 F->insert(It, sinkMBB);
6404
6405 // Transfer the remainder of BB and its successor edges to sinkMBB.
6406 sinkMBB->splice(sinkMBB->begin(), BB,
6407 llvm::next(MachineBasicBlock::iterator(MI)),
6408 BB->end());
6409 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6410
6411 BB->addSuccessor(copy0MBB);
6412 BB->addSuccessor(sinkMBB);
6413
6414 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6415 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6416
6417 // copy0MBB:
6418 // %FalseValue = ...
6419 // # fallthrough to sinkMBB
6420 BB = copy0MBB;
6421
6422 // Update machine-CFG edges
6423 BB->addSuccessor(sinkMBB);
6424
6425 // sinkMBB:
6426 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6427 // ...
6428 BB = sinkMBB;
6429 BuildMI(*BB, BB->begin(), dl,
6430 TII->get(ARM::PHI), MI->getOperand(0).getReg())
6431 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6432 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6433
6434 MI->eraseFromParent(); // The pseudo instruction is gone now.
6435 return BB;
6436 }
6437
6438 case ARM::BCCi64:
6439 case ARM::BCCZi64: {
6440 // If there is an unconditional branch to the other successor, remove it.
6441 BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6442
6443 // Compare both parts that make up the double comparison separately for
6444 // equality.
6445 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6446
6447 unsigned LHS1 = MI->getOperand(1).getReg();
6448 unsigned LHS2 = MI->getOperand(2).getReg();
6449 if (RHSisZero) {
6450 AddDefaultPred(BuildMI(BB, dl,
6451 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6452 .addReg(LHS1).addImm(0));
6453 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6454 .addReg(LHS2).addImm(0)
6455 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6456 } else {
6457 unsigned RHS1 = MI->getOperand(3).getReg();
6458 unsigned RHS2 = MI->getOperand(4).getReg();
6459 AddDefaultPred(BuildMI(BB, dl,
6460 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6461 .addReg(LHS1).addReg(RHS1));
6462 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6463 .addReg(LHS2).addReg(RHS2)
6464 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6465 }
6466
6467 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6468 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6469 if (MI->getOperand(0).getImm() == ARMCC::NE)
6470 std::swap(destMBB, exitMBB);
6471
6472 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6473 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6474 if (isThumb2)
6475 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6476 else
6477 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6478
6479 MI->eraseFromParent(); // The pseudo instruction is gone now.
6480 return BB;
6481 }
6482
6483 case ARM::Int_eh_sjlj_setjmp:
6484 case ARM::Int_eh_sjlj_setjmp_nofp:
6485 case ARM::tInt_eh_sjlj_setjmp:
6486 case ARM::t2Int_eh_sjlj_setjmp:
6487 case ARM::t2Int_eh_sjlj_setjmp_nofp:
6488 EmitSjLjDispatchBlock(MI, BB);
6489 return BB;
6490
6491 case ARM::ABS:
6492 case ARM::t2ABS: {
6493 // To insert an ABS instruction, we have to insert the
6494 // diamond control-flow pattern. The incoming instruction knows the
6495 // source vreg to test against 0, the destination vreg to set,
6496 // the condition code register to branch on, the
6497 // true/false values to select between, and a branch opcode to use.
6498 // It transforms
6499 // V1 = ABS V0
6500 // into
6501 // V2 = MOVS V0
6502 // BCC (branch to SinkBB if V0 >= 0)
6503 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
6504 // SinkBB: V1 = PHI(V2, V3)
6505 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6506 MachineFunction::iterator BBI = BB;
6507 ++BBI;
6508 MachineFunction *Fn = BB->getParent();
6509 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6510 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6511 Fn->insert(BBI, RSBBB);
6512 Fn->insert(BBI, SinkBB);
6513
6514 unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6515 unsigned int ABSDstReg = MI->getOperand(0).getReg();
6516 bool isThumb2 = Subtarget->isThumb2();
6517 MachineRegisterInfo &MRI = Fn->getRegInfo();
6518 // In Thumb mode S must not be specified if source register is the SP or
6519 // PC and if destination register is the SP, so restrict register class
6520 unsigned NewMovDstReg = MRI.createVirtualRegister(
6521 isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6522 unsigned NewRsbDstReg = MRI.createVirtualRegister(
6523 isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6524
6525 // Transfer the remainder of BB and its successor edges to sinkMBB.
6526 SinkBB->splice(SinkBB->begin(), BB,
6527 llvm::next(MachineBasicBlock::iterator(MI)),
6528 BB->end());
6529 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6530
6531 BB->addSuccessor(RSBBB);
6532 BB->addSuccessor(SinkBB);
6533
6534 // fall through to SinkMBB
6535 RSBBB->addSuccessor(SinkBB);
6536
6537 // insert a movs at the end of BB
6538 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6539 NewMovDstReg)
6540 .addReg(ABSSrcReg, RegState::Kill)
6541 .addImm((unsigned)ARMCC::AL).addReg(0)
6542 .addReg(ARM::CPSR, RegState::Define);
6543
6544 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6545 BuildMI(BB, dl,
6546 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6547 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6548
6549 // insert rsbri in RSBBB
6550 // Note: BCC and rsbri will be converted into predicated rsbmi
6551 // by if-conversion pass
6552 BuildMI(*RSBBB, RSBBB->begin(), dl,
6553 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6554 .addReg(NewMovDstReg, RegState::Kill)
6555 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6556
6557 // insert PHI in SinkBB,
6558 // reuse ABSDstReg to not change uses of ABS instruction
6559 BuildMI(*SinkBB, SinkBB->begin(), dl,
6560 TII->get(ARM::PHI), ABSDstReg)
6561 .addReg(NewRsbDstReg).addMBB(RSBBB)
6562 .addReg(NewMovDstReg).addMBB(BB);
6563
6564 // remove ABS instruction
6565 MI->eraseFromParent();
6566
6567 // return last added BB
6568 return SinkBB;
6569 }
6570 }
6571 }
6572
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const6573 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6574 SDNode *Node) const {
6575 if (!MI->hasPostISelHook()) {
6576 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6577 "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6578 return;
6579 }
6580
6581 const MCInstrDesc *MCID = &MI->getDesc();
6582 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6583 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6584 // operand is still set to noreg. If needed, set the optional operand's
6585 // register to CPSR, and remove the redundant implicit def.
6586 //
6587 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6588
6589 // Rename pseudo opcodes.
6590 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6591 if (NewOpc) {
6592 const ARMBaseInstrInfo *TII =
6593 static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6594 MCID = &TII->get(NewOpc);
6595
6596 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6597 "converted opcode should be the same except for cc_out");
6598
6599 MI->setDesc(*MCID);
6600
6601 // Add the optional cc_out operand
6602 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6603 }
6604 unsigned ccOutIdx = MCID->getNumOperands() - 1;
6605
6606 // Any ARM instruction that sets the 's' bit should specify an optional
6607 // "cc_out" operand in the last operand position.
6608 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6609 assert(!NewOpc && "Optional cc_out operand required");
6610 return;
6611 }
6612 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6613 // since we already have an optional CPSR def.
6614 bool definesCPSR = false;
6615 bool deadCPSR = false;
6616 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6617 i != e; ++i) {
6618 const MachineOperand &MO = MI->getOperand(i);
6619 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6620 definesCPSR = true;
6621 if (MO.isDead())
6622 deadCPSR = true;
6623 MI->RemoveOperand(i);
6624 break;
6625 }
6626 }
6627 if (!definesCPSR) {
6628 assert(!NewOpc && "Optional cc_out operand required");
6629 return;
6630 }
6631 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6632 if (deadCPSR) {
6633 assert(!MI->getOperand(ccOutIdx).getReg() &&
6634 "expect uninitialized optional cc_out operand");
6635 return;
6636 }
6637
6638 // If this instruction was defined with an optional CPSR def and its dag node
6639 // had a live implicit CPSR def, then activate the optional CPSR def.
6640 MachineOperand &MO = MI->getOperand(ccOutIdx);
6641 MO.setReg(ARM::CPSR);
6642 MO.setIsDef(true);
6643 }
6644
6645 //===----------------------------------------------------------------------===//
6646 // ARM Optimization Hooks
6647 //===----------------------------------------------------------------------===//
6648
6649 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI)6650 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6651 TargetLowering::DAGCombinerInfo &DCI) {
6652 SelectionDAG &DAG = DCI.DAG;
6653 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6654 EVT VT = N->getValueType(0);
6655 unsigned Opc = N->getOpcode();
6656 bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6657 SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6658 SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6659 ISD::CondCode CC = ISD::SETCC_INVALID;
6660
6661 if (isSlctCC) {
6662 CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6663 } else {
6664 SDValue CCOp = Slct.getOperand(0);
6665 if (CCOp.getOpcode() == ISD::SETCC)
6666 CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6667 }
6668
6669 bool DoXform = false;
6670 bool InvCC = false;
6671 assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6672 "Bad input!");
6673
6674 if (LHS.getOpcode() == ISD::Constant &&
6675 cast<ConstantSDNode>(LHS)->isNullValue()) {
6676 DoXform = true;
6677 } else if (CC != ISD::SETCC_INVALID &&
6678 RHS.getOpcode() == ISD::Constant &&
6679 cast<ConstantSDNode>(RHS)->isNullValue()) {
6680 std::swap(LHS, RHS);
6681 SDValue Op0 = Slct.getOperand(0);
6682 EVT OpVT = isSlctCC ? Op0.getValueType() :
6683 Op0.getOperand(0).getValueType();
6684 bool isInt = OpVT.isInteger();
6685 CC = ISD::getSetCCInverse(CC, isInt);
6686
6687 if (!TLI.isCondCodeLegal(CC, OpVT))
6688 return SDValue(); // Inverse operator isn't legal.
6689
6690 DoXform = true;
6691 InvCC = true;
6692 }
6693
6694 if (DoXform) {
6695 SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6696 if (isSlctCC)
6697 return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6698 Slct.getOperand(0), Slct.getOperand(1), CC);
6699 SDValue CCOp = Slct.getOperand(0);
6700 if (InvCC)
6701 CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6702 CCOp.getOperand(0), CCOp.getOperand(1), CC);
6703 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6704 CCOp, OtherOp, Result);
6705 }
6706 return SDValue();
6707 }
6708
6709 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6710 // (only after legalization).
AddCombineToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)6711 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6712 TargetLowering::DAGCombinerInfo &DCI,
6713 const ARMSubtarget *Subtarget) {
6714
6715 // Only perform optimization if after legalize, and if NEON is available. We
6716 // also expected both operands to be BUILD_VECTORs.
6717 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6718 || N0.getOpcode() != ISD::BUILD_VECTOR
6719 || N1.getOpcode() != ISD::BUILD_VECTOR)
6720 return SDValue();
6721
6722 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6723 EVT VT = N->getValueType(0);
6724 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6725 return SDValue();
6726
6727 // Check that the vector operands are of the right form.
6728 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6729 // operands, where N is the size of the formed vector.
6730 // Each EXTRACT_VECTOR should have the same input vector and odd or even
6731 // index such that we have a pair wise add pattern.
6732
6733 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6734 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6735 return SDValue();
6736 SDValue Vec = N0->getOperand(0)->getOperand(0);
6737 SDNode *V = Vec.getNode();
6738 unsigned nextIndex = 0;
6739
6740 // For each operands to the ADD which are BUILD_VECTORs,
6741 // check to see if each of their operands are an EXTRACT_VECTOR with
6742 // the same vector and appropriate index.
6743 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6744 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6745 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6746
6747 SDValue ExtVec0 = N0->getOperand(i);
6748 SDValue ExtVec1 = N1->getOperand(i);
6749
6750 // First operand is the vector, verify its the same.
6751 if (V != ExtVec0->getOperand(0).getNode() ||
6752 V != ExtVec1->getOperand(0).getNode())
6753 return SDValue();
6754
6755 // Second is the constant, verify its correct.
6756 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6757 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6758
6759 // For the constant, we want to see all the even or all the odd.
6760 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6761 || C1->getZExtValue() != nextIndex+1)
6762 return SDValue();
6763
6764 // Increment index.
6765 nextIndex+=2;
6766 } else
6767 return SDValue();
6768 }
6769
6770 // Create VPADDL node.
6771 SelectionDAG &DAG = DCI.DAG;
6772 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6773
6774 // Build operand list.
6775 SmallVector<SDValue, 8> Ops;
6776 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6777 TLI.getPointerTy()));
6778
6779 // Input is the vector.
6780 Ops.push_back(Vec);
6781
6782 // Get widened type and narrowed type.
6783 MVT widenType;
6784 unsigned numElem = VT.getVectorNumElements();
6785 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6786 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6787 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6788 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6789 default:
6790 llvm_unreachable("Invalid vector element type for padd optimization.");
6791 }
6792
6793 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6794 widenType, &Ops[0], Ops.size());
6795 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6796 }
6797
6798 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6799 /// operands N0 and N1. This is a helper for PerformADDCombine that is
6800 /// called with the default operands, and if that fails, with commuted
6801 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)6802 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6803 TargetLowering::DAGCombinerInfo &DCI,
6804 const ARMSubtarget *Subtarget){
6805
6806 // Attempt to create vpaddl for this add.
6807 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6808 if (Result.getNode())
6809 return Result;
6810
6811 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6812 if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6813 SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6814 if (Result.getNode()) return Result;
6815 }
6816 return SDValue();
6817 }
6818
6819 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6820 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)6821 static SDValue PerformADDCombine(SDNode *N,
6822 TargetLowering::DAGCombinerInfo &DCI,
6823 const ARMSubtarget *Subtarget) {
6824 SDValue N0 = N->getOperand(0);
6825 SDValue N1 = N->getOperand(1);
6826
6827 // First try with the default operand order.
6828 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6829 if (Result.getNode())
6830 return Result;
6831
6832 // If that didn't work, try again with the operands commuted.
6833 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6834 }
6835
6836 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6837 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)6838 static SDValue PerformSUBCombine(SDNode *N,
6839 TargetLowering::DAGCombinerInfo &DCI) {
6840 SDValue N0 = N->getOperand(0);
6841 SDValue N1 = N->getOperand(1);
6842
6843 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6844 if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6845 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6846 if (Result.getNode()) return Result;
6847 }
6848
6849 return SDValue();
6850 }
6851
6852 /// PerformVMULCombine
6853 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6854 /// special multiplier accumulator forwarding.
6855 /// vmul d3, d0, d2
6856 /// vmla d3, d1, d2
6857 /// is faster than
6858 /// vadd d3, d0, d1
6859 /// vmul d3, d3, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)6860 static SDValue PerformVMULCombine(SDNode *N,
6861 TargetLowering::DAGCombinerInfo &DCI,
6862 const ARMSubtarget *Subtarget) {
6863 if (!Subtarget->hasVMLxForwarding())
6864 return SDValue();
6865
6866 SelectionDAG &DAG = DCI.DAG;
6867 SDValue N0 = N->getOperand(0);
6868 SDValue N1 = N->getOperand(1);
6869 unsigned Opcode = N0.getOpcode();
6870 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6871 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6872 Opcode = N1.getOpcode();
6873 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6874 Opcode != ISD::FADD && Opcode != ISD::FSUB)
6875 return SDValue();
6876 std::swap(N0, N1);
6877 }
6878
6879 EVT VT = N->getValueType(0);
6880 DebugLoc DL = N->getDebugLoc();
6881 SDValue N00 = N0->getOperand(0);
6882 SDValue N01 = N0->getOperand(1);
6883 return DAG.getNode(Opcode, DL, VT,
6884 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6885 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6886 }
6887
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)6888 static SDValue PerformMULCombine(SDNode *N,
6889 TargetLowering::DAGCombinerInfo &DCI,
6890 const ARMSubtarget *Subtarget) {
6891 SelectionDAG &DAG = DCI.DAG;
6892
6893 if (Subtarget->isThumb1Only())
6894 return SDValue();
6895
6896 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6897 return SDValue();
6898
6899 EVT VT = N->getValueType(0);
6900 if (VT.is64BitVector() || VT.is128BitVector())
6901 return PerformVMULCombine(N, DCI, Subtarget);
6902 if (VT != MVT::i32)
6903 return SDValue();
6904
6905 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6906 if (!C)
6907 return SDValue();
6908
6909 int64_t MulAmt = C->getSExtValue();
6910 unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6911
6912 ShiftAmt = ShiftAmt & (32 - 1);
6913 SDValue V = N->getOperand(0);
6914 DebugLoc DL = N->getDebugLoc();
6915
6916 SDValue Res;
6917 MulAmt >>= ShiftAmt;
6918
6919 if (MulAmt >= 0) {
6920 if (isPowerOf2_32(MulAmt - 1)) {
6921 // (mul x, 2^N + 1) => (add (shl x, N), x)
6922 Res = DAG.getNode(ISD::ADD, DL, VT,
6923 V,
6924 DAG.getNode(ISD::SHL, DL, VT,
6925 V,
6926 DAG.getConstant(Log2_32(MulAmt - 1),
6927 MVT::i32)));
6928 } else if (isPowerOf2_32(MulAmt + 1)) {
6929 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6930 Res = DAG.getNode(ISD::SUB, DL, VT,
6931 DAG.getNode(ISD::SHL, DL, VT,
6932 V,
6933 DAG.getConstant(Log2_32(MulAmt + 1),
6934 MVT::i32)),
6935 V);
6936 } else
6937 return SDValue();
6938 } else {
6939 uint64_t MulAmtAbs = -MulAmt;
6940 if (isPowerOf2_32(MulAmtAbs + 1)) {
6941 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6942 Res = DAG.getNode(ISD::SUB, DL, VT,
6943 V,
6944 DAG.getNode(ISD::SHL, DL, VT,
6945 V,
6946 DAG.getConstant(Log2_32(MulAmtAbs + 1),
6947 MVT::i32)));
6948 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
6949 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6950 Res = DAG.getNode(ISD::ADD, DL, VT,
6951 V,
6952 DAG.getNode(ISD::SHL, DL, VT,
6953 V,
6954 DAG.getConstant(Log2_32(MulAmtAbs-1),
6955 MVT::i32)));
6956 Res = DAG.getNode(ISD::SUB, DL, VT,
6957 DAG.getConstant(0, MVT::i32),Res);
6958
6959 } else
6960 return SDValue();
6961 }
6962
6963 if (ShiftAmt != 0)
6964 Res = DAG.getNode(ISD::SHL, DL, VT,
6965 Res, DAG.getConstant(ShiftAmt, MVT::i32));
6966
6967 // Do not add new nodes to DAG combiner worklist.
6968 DCI.CombineTo(N, Res, false);
6969 return SDValue();
6970 }
6971
isCMOVWithZeroOrAllOnesLHS(SDValue N,bool AllOnes)6972 static bool isCMOVWithZeroOrAllOnesLHS(SDValue N, bool AllOnes) {
6973 if (N.getOpcode() != ARMISD::CMOV || !N.getNode()->hasOneUse())
6974 return false;
6975
6976 SDValue FalseVal = N.getOperand(0);
6977 ConstantSDNode *C = dyn_cast<ConstantSDNode>(FalseVal);
6978 if (!C)
6979 return false;
6980 if (AllOnes)
6981 return C->isAllOnesValue();
6982 return C->isNullValue();
6983 }
6984
6985 /// formConditionalOp - Combine an operation with a conditional move operand
6986 /// to form a conditional op. e.g. (or x, (cmov 0, y, cond)) => (or.cond x, y)
6987 /// (and x, (cmov -1, y, cond)) => (and.cond, x, y)
formConditionalOp(SDNode * N,SelectionDAG & DAG,bool Commutable)6988 static SDValue formConditionalOp(SDNode *N, SelectionDAG &DAG,
6989 bool Commutable) {
6990 SDValue N0 = N->getOperand(0);
6991 SDValue N1 = N->getOperand(1);
6992
6993 bool isAND = N->getOpcode() == ISD::AND;
6994 bool isCand = isCMOVWithZeroOrAllOnesLHS(N1, isAND);
6995 if (!isCand && Commutable) {
6996 isCand = isCMOVWithZeroOrAllOnesLHS(N0, isAND);
6997 if (isCand)
6998 std::swap(N0, N1);
6999 }
7000 if (!isCand)
7001 return SDValue();
7002
7003 unsigned Opc = 0;
7004 switch (N->getOpcode()) {
7005 default: llvm_unreachable("Unexpected node");
7006 case ISD::AND: Opc = ARMISD::CAND; break;
7007 case ISD::OR: Opc = ARMISD::COR; break;
7008 case ISD::XOR: Opc = ARMISD::CXOR; break;
7009 }
7010 return DAG.getNode(Opc, N->getDebugLoc(), N->getValueType(0), N0,
7011 N1.getOperand(1), N1.getOperand(2), N1.getOperand(3),
7012 N1.getOperand(4));
7013 }
7014
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7015 static SDValue PerformANDCombine(SDNode *N,
7016 TargetLowering::DAGCombinerInfo &DCI,
7017 const ARMSubtarget *Subtarget) {
7018
7019 // Attempt to use immediate-form VBIC
7020 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7021 DebugLoc dl = N->getDebugLoc();
7022 EVT VT = N->getValueType(0);
7023 SelectionDAG &DAG = DCI.DAG;
7024
7025 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7026 return SDValue();
7027
7028 APInt SplatBits, SplatUndef;
7029 unsigned SplatBitSize;
7030 bool HasAnyUndefs;
7031 if (BVN &&
7032 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7033 if (SplatBitSize <= 64) {
7034 EVT VbicVT;
7035 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7036 SplatUndef.getZExtValue(), SplatBitSize,
7037 DAG, VbicVT, VT.is128BitVector(),
7038 OtherModImm);
7039 if (Val.getNode()) {
7040 SDValue Input =
7041 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7042 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7043 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7044 }
7045 }
7046 }
7047
7048 if (!Subtarget->isThumb1Only()) {
7049 // (and x, (cmov -1, y, cond)) => (and.cond x, y)
7050 SDValue CAND = formConditionalOp(N, DAG, true);
7051 if (CAND.getNode())
7052 return CAND;
7053 }
7054
7055 return SDValue();
7056 }
7057
7058 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7059 static SDValue PerformORCombine(SDNode *N,
7060 TargetLowering::DAGCombinerInfo &DCI,
7061 const ARMSubtarget *Subtarget) {
7062 // Attempt to use immediate-form VORR
7063 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7064 DebugLoc dl = N->getDebugLoc();
7065 EVT VT = N->getValueType(0);
7066 SelectionDAG &DAG = DCI.DAG;
7067
7068 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7069 return SDValue();
7070
7071 APInt SplatBits, SplatUndef;
7072 unsigned SplatBitSize;
7073 bool HasAnyUndefs;
7074 if (BVN && Subtarget->hasNEON() &&
7075 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7076 if (SplatBitSize <= 64) {
7077 EVT VorrVT;
7078 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7079 SplatUndef.getZExtValue(), SplatBitSize,
7080 DAG, VorrVT, VT.is128BitVector(),
7081 OtherModImm);
7082 if (Val.getNode()) {
7083 SDValue Input =
7084 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7085 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7086 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7087 }
7088 }
7089 }
7090
7091 if (!Subtarget->isThumb1Only()) {
7092 // (or x, (cmov 0, y, cond)) => (or.cond x, y)
7093 SDValue COR = formConditionalOp(N, DAG, true);
7094 if (COR.getNode())
7095 return COR;
7096 }
7097
7098 SDValue N0 = N->getOperand(0);
7099 if (N0.getOpcode() != ISD::AND)
7100 return SDValue();
7101 SDValue N1 = N->getOperand(1);
7102
7103 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7104 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7105 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7106 APInt SplatUndef;
7107 unsigned SplatBitSize;
7108 bool HasAnyUndefs;
7109
7110 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7111 APInt SplatBits0;
7112 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7113 HasAnyUndefs) && !HasAnyUndefs) {
7114 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7115 APInt SplatBits1;
7116 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7117 HasAnyUndefs) && !HasAnyUndefs &&
7118 SplatBits0 == ~SplatBits1) {
7119 // Canonicalize the vector type to make instruction selection simpler.
7120 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7121 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7122 N0->getOperand(1), N0->getOperand(0),
7123 N1->getOperand(0));
7124 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7125 }
7126 }
7127 }
7128
7129 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7130 // reasonable.
7131
7132 // BFI is only available on V6T2+
7133 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7134 return SDValue();
7135
7136 DebugLoc DL = N->getDebugLoc();
7137 // 1) or (and A, mask), val => ARMbfi A, val, mask
7138 // iff (val & mask) == val
7139 //
7140 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7141 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7142 // && mask == ~mask2
7143 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7144 // && ~mask == mask2
7145 // (i.e., copy a bitfield value into another bitfield of the same width)
7146
7147 if (VT != MVT::i32)
7148 return SDValue();
7149
7150 SDValue N00 = N0.getOperand(0);
7151
7152 // The value and the mask need to be constants so we can verify this is
7153 // actually a bitfield set. If the mask is 0xffff, we can do better
7154 // via a movt instruction, so don't use BFI in that case.
7155 SDValue MaskOp = N0.getOperand(1);
7156 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7157 if (!MaskC)
7158 return SDValue();
7159 unsigned Mask = MaskC->getZExtValue();
7160 if (Mask == 0xffff)
7161 return SDValue();
7162 SDValue Res;
7163 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7164 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7165 if (N1C) {
7166 unsigned Val = N1C->getZExtValue();
7167 if ((Val & ~Mask) != Val)
7168 return SDValue();
7169
7170 if (ARM::isBitFieldInvertedMask(Mask)) {
7171 Val >>= CountTrailingZeros_32(~Mask);
7172
7173 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7174 DAG.getConstant(Val, MVT::i32),
7175 DAG.getConstant(Mask, MVT::i32));
7176
7177 // Do not add new nodes to DAG combiner worklist.
7178 DCI.CombineTo(N, Res, false);
7179 return SDValue();
7180 }
7181 } else if (N1.getOpcode() == ISD::AND) {
7182 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7183 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7184 if (!N11C)
7185 return SDValue();
7186 unsigned Mask2 = N11C->getZExtValue();
7187
7188 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7189 // as is to match.
7190 if (ARM::isBitFieldInvertedMask(Mask) &&
7191 (Mask == ~Mask2)) {
7192 // The pack halfword instruction works better for masks that fit it,
7193 // so use that when it's available.
7194 if (Subtarget->hasT2ExtractPack() &&
7195 (Mask == 0xffff || Mask == 0xffff0000))
7196 return SDValue();
7197 // 2a
7198 unsigned amt = CountTrailingZeros_32(Mask2);
7199 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7200 DAG.getConstant(amt, MVT::i32));
7201 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7202 DAG.getConstant(Mask, MVT::i32));
7203 // Do not add new nodes to DAG combiner worklist.
7204 DCI.CombineTo(N, Res, false);
7205 return SDValue();
7206 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7207 (~Mask == Mask2)) {
7208 // The pack halfword instruction works better for masks that fit it,
7209 // so use that when it's available.
7210 if (Subtarget->hasT2ExtractPack() &&
7211 (Mask2 == 0xffff || Mask2 == 0xffff0000))
7212 return SDValue();
7213 // 2b
7214 unsigned lsb = CountTrailingZeros_32(Mask);
7215 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7216 DAG.getConstant(lsb, MVT::i32));
7217 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7218 DAG.getConstant(Mask2, MVT::i32));
7219 // Do not add new nodes to DAG combiner worklist.
7220 DCI.CombineTo(N, Res, false);
7221 return SDValue();
7222 }
7223 }
7224
7225 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7226 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7227 ARM::isBitFieldInvertedMask(~Mask)) {
7228 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7229 // where lsb(mask) == #shamt and masked bits of B are known zero.
7230 SDValue ShAmt = N00.getOperand(1);
7231 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7232 unsigned LSB = CountTrailingZeros_32(Mask);
7233 if (ShAmtC != LSB)
7234 return SDValue();
7235
7236 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7237 DAG.getConstant(~Mask, MVT::i32));
7238
7239 // Do not add new nodes to DAG combiner worklist.
7240 DCI.CombineTo(N, Res, false);
7241 }
7242
7243 return SDValue();
7244 }
7245
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7246 static SDValue PerformXORCombine(SDNode *N,
7247 TargetLowering::DAGCombinerInfo &DCI,
7248 const ARMSubtarget *Subtarget) {
7249 EVT VT = N->getValueType(0);
7250 SelectionDAG &DAG = DCI.DAG;
7251
7252 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7253 return SDValue();
7254
7255 if (!Subtarget->isThumb1Only()) {
7256 // (xor x, (cmov 0, y, cond)) => (xor.cond x, y)
7257 SDValue CXOR = formConditionalOp(N, DAG, true);
7258 if (CXOR.getNode())
7259 return CXOR;
7260 }
7261
7262 return SDValue();
7263 }
7264
7265 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7266 /// the bits being cleared by the AND are not demanded by the BFI.
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7267 static SDValue PerformBFICombine(SDNode *N,
7268 TargetLowering::DAGCombinerInfo &DCI) {
7269 SDValue N1 = N->getOperand(1);
7270 if (N1.getOpcode() == ISD::AND) {
7271 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7272 if (!N11C)
7273 return SDValue();
7274 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7275 unsigned LSB = CountTrailingZeros_32(~InvMask);
7276 unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7277 unsigned Mask = (1 << Width)-1;
7278 unsigned Mask2 = N11C->getZExtValue();
7279 if ((Mask & (~Mask2)) == 0)
7280 return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7281 N->getOperand(0), N1.getOperand(0),
7282 N->getOperand(2));
7283 }
7284 return SDValue();
7285 }
7286
7287 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7288 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7289 static SDValue PerformVMOVRRDCombine(SDNode *N,
7290 TargetLowering::DAGCombinerInfo &DCI) {
7291 // vmovrrd(vmovdrr x, y) -> x,y
7292 SDValue InDouble = N->getOperand(0);
7293 if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7294 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7295
7296 // vmovrrd(load f64) -> (load i32), (load i32)
7297 SDNode *InNode = InDouble.getNode();
7298 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7299 InNode->getValueType(0) == MVT::f64 &&
7300 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7301 !cast<LoadSDNode>(InNode)->isVolatile()) {
7302 // TODO: Should this be done for non-FrameIndex operands?
7303 LoadSDNode *LD = cast<LoadSDNode>(InNode);
7304
7305 SelectionDAG &DAG = DCI.DAG;
7306 DebugLoc DL = LD->getDebugLoc();
7307 SDValue BasePtr = LD->getBasePtr();
7308 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7309 LD->getPointerInfo(), LD->isVolatile(),
7310 LD->isNonTemporal(), LD->isInvariant(),
7311 LD->getAlignment());
7312
7313 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7314 DAG.getConstant(4, MVT::i32));
7315 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7316 LD->getPointerInfo(), LD->isVolatile(),
7317 LD->isNonTemporal(), LD->isInvariant(),
7318 std::min(4U, LD->getAlignment() / 2));
7319
7320 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7321 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7322 DCI.RemoveFromWorklist(LD);
7323 DAG.DeleteNode(LD);
7324 return Result;
7325 }
7326
7327 return SDValue();
7328 }
7329
7330 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7331 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)7332 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7333 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7334 SDValue Op0 = N->getOperand(0);
7335 SDValue Op1 = N->getOperand(1);
7336 if (Op0.getOpcode() == ISD::BITCAST)
7337 Op0 = Op0.getOperand(0);
7338 if (Op1.getOpcode() == ISD::BITCAST)
7339 Op1 = Op1.getOperand(0);
7340 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7341 Op0.getNode() == Op1.getNode() &&
7342 Op0.getResNo() == 0 && Op1.getResNo() == 1)
7343 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7344 N->getValueType(0), Op0.getOperand(0));
7345 return SDValue();
7346 }
7347
7348 /// PerformSTORECombine - Target-specific dag combine xforms for
7349 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7350 static SDValue PerformSTORECombine(SDNode *N,
7351 TargetLowering::DAGCombinerInfo &DCI) {
7352 StoreSDNode *St = cast<StoreSDNode>(N);
7353 if (St->isVolatile())
7354 return SDValue();
7355
7356 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
7357 // pack all of the elements in one place. Next, store to memory in fewer
7358 // chunks.
7359 SDValue StVal = St->getValue();
7360 EVT VT = StVal.getValueType();
7361 if (St->isTruncatingStore() && VT.isVector()) {
7362 SelectionDAG &DAG = DCI.DAG;
7363 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7364 EVT StVT = St->getMemoryVT();
7365 unsigned NumElems = VT.getVectorNumElements();
7366 assert(StVT != VT && "Cannot truncate to the same type");
7367 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
7368 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
7369
7370 // From, To sizes and ElemCount must be pow of two
7371 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
7372
7373 // We are going to use the original vector elt for storing.
7374 // Accumulated smaller vector elements must be a multiple of the store size.
7375 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
7376
7377 unsigned SizeRatio = FromEltSz / ToEltSz;
7378 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
7379
7380 // Create a type on which we perform the shuffle.
7381 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
7382 NumElems*SizeRatio);
7383 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
7384
7385 DebugLoc DL = St->getDebugLoc();
7386 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
7387 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
7388 for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
7389
7390 // Can't shuffle using an illegal type.
7391 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
7392
7393 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
7394 DAG.getUNDEF(WideVec.getValueType()),
7395 ShuffleVec.data());
7396 // At this point all of the data is stored at the bottom of the
7397 // register. We now need to save it to mem.
7398
7399 // Find the largest store unit
7400 MVT StoreType = MVT::i8;
7401 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
7402 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
7403 MVT Tp = (MVT::SimpleValueType)tp;
7404 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
7405 StoreType = Tp;
7406 }
7407 // Didn't find a legal store type.
7408 if (!TLI.isTypeLegal(StoreType))
7409 return SDValue();
7410
7411 // Bitcast the original vector into a vector of store-size units
7412 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
7413 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
7414 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
7415 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
7416 SmallVector<SDValue, 8> Chains;
7417 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
7418 TLI.getPointerTy());
7419 SDValue BasePtr = St->getBasePtr();
7420
7421 // Perform one or more big stores into memory.
7422 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
7423 for (unsigned I = 0; I < E; I++) {
7424 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
7425 StoreType, ShuffWide,
7426 DAG.getIntPtrConstant(I));
7427 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
7428 St->getPointerInfo(), St->isVolatile(),
7429 St->isNonTemporal(), St->getAlignment());
7430 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
7431 Increment);
7432 Chains.push_back(Ch);
7433 }
7434 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
7435 Chains.size());
7436 }
7437
7438 if (!ISD::isNormalStore(St))
7439 return SDValue();
7440
7441 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
7442 // ARM stores of arguments in the same cache line.
7443 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7444 StVal.getNode()->hasOneUse()) {
7445 SelectionDAG &DAG = DCI.DAG;
7446 DebugLoc DL = St->getDebugLoc();
7447 SDValue BasePtr = St->getBasePtr();
7448 SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7449 StVal.getNode()->getOperand(0), BasePtr,
7450 St->getPointerInfo(), St->isVolatile(),
7451 St->isNonTemporal(), St->getAlignment());
7452
7453 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7454 DAG.getConstant(4, MVT::i32));
7455 return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7456 OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7457 St->isNonTemporal(),
7458 std::min(4U, St->getAlignment() / 2));
7459 }
7460
7461 if (StVal.getValueType() != MVT::i64 ||
7462 StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7463 return SDValue();
7464
7465 // Bitcast an i64 store extracted from a vector to f64.
7466 // Otherwise, the i64 value will be legalized to a pair of i32 values.
7467 SelectionDAG &DAG = DCI.DAG;
7468 DebugLoc dl = StVal.getDebugLoc();
7469 SDValue IntVec = StVal.getOperand(0);
7470 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7471 IntVec.getValueType().getVectorNumElements());
7472 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7473 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7474 Vec, StVal.getOperand(1));
7475 dl = N->getDebugLoc();
7476 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7477 // Make the DAGCombiner fold the bitcasts.
7478 DCI.AddToWorklist(Vec.getNode());
7479 DCI.AddToWorklist(ExtElt.getNode());
7480 DCI.AddToWorklist(V.getNode());
7481 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7482 St->getPointerInfo(), St->isVolatile(),
7483 St->isNonTemporal(), St->getAlignment(),
7484 St->getTBAAInfo());
7485 }
7486
7487 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7488 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
7489 /// i64 vector to have f64 elements, since the value can then be loaded
7490 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)7491 static bool hasNormalLoadOperand(SDNode *N) {
7492 unsigned NumElts = N->getValueType(0).getVectorNumElements();
7493 for (unsigned i = 0; i < NumElts; ++i) {
7494 SDNode *Elt = N->getOperand(i).getNode();
7495 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7496 return true;
7497 }
7498 return false;
7499 }
7500
7501 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7502 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7503 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7504 TargetLowering::DAGCombinerInfo &DCI){
7505 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7506 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
7507 // into a pair of GPRs, which is fine when the value is used as a scalar,
7508 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7509 SelectionDAG &DAG = DCI.DAG;
7510 if (N->getNumOperands() == 2) {
7511 SDValue RV = PerformVMOVDRRCombine(N, DAG);
7512 if (RV.getNode())
7513 return RV;
7514 }
7515
7516 // Load i64 elements as f64 values so that type legalization does not split
7517 // them up into i32 values.
7518 EVT VT = N->getValueType(0);
7519 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7520 return SDValue();
7521 DebugLoc dl = N->getDebugLoc();
7522 SmallVector<SDValue, 8> Ops;
7523 unsigned NumElts = VT.getVectorNumElements();
7524 for (unsigned i = 0; i < NumElts; ++i) {
7525 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7526 Ops.push_back(V);
7527 // Make the DAGCombiner fold the bitcast.
7528 DCI.AddToWorklist(V.getNode());
7529 }
7530 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7531 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7532 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7533 }
7534
7535 /// PerformInsertEltCombine - Target-specific dag combine xforms for
7536 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7537 static SDValue PerformInsertEltCombine(SDNode *N,
7538 TargetLowering::DAGCombinerInfo &DCI) {
7539 // Bitcast an i64 load inserted into a vector to f64.
7540 // Otherwise, the i64 value will be legalized to a pair of i32 values.
7541 EVT VT = N->getValueType(0);
7542 SDNode *Elt = N->getOperand(1).getNode();
7543 if (VT.getVectorElementType() != MVT::i64 ||
7544 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7545 return SDValue();
7546
7547 SelectionDAG &DAG = DCI.DAG;
7548 DebugLoc dl = N->getDebugLoc();
7549 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7550 VT.getVectorNumElements());
7551 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7552 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7553 // Make the DAGCombiner fold the bitcasts.
7554 DCI.AddToWorklist(Vec.getNode());
7555 DCI.AddToWorklist(V.getNode());
7556 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7557 Vec, V, N->getOperand(2));
7558 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7559 }
7560
7561 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7562 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)7563 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7564 // The LLVM shufflevector instruction does not require the shuffle mask
7565 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7566 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
7567 // operands do not match the mask length, they are extended by concatenating
7568 // them with undef vectors. That is probably the right thing for other
7569 // targets, but for NEON it is better to concatenate two double-register
7570 // size vector operands into a single quad-register size vector. Do that
7571 // transformation here:
7572 // shuffle(concat(v1, undef), concat(v2, undef)) ->
7573 // shuffle(concat(v1, v2), undef)
7574 SDValue Op0 = N->getOperand(0);
7575 SDValue Op1 = N->getOperand(1);
7576 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7577 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7578 Op0.getNumOperands() != 2 ||
7579 Op1.getNumOperands() != 2)
7580 return SDValue();
7581 SDValue Concat0Op1 = Op0.getOperand(1);
7582 SDValue Concat1Op1 = Op1.getOperand(1);
7583 if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7584 Concat1Op1.getOpcode() != ISD::UNDEF)
7585 return SDValue();
7586 // Skip the transformation if any of the types are illegal.
7587 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7588 EVT VT = N->getValueType(0);
7589 if (!TLI.isTypeLegal(VT) ||
7590 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7591 !TLI.isTypeLegal(Concat1Op1.getValueType()))
7592 return SDValue();
7593
7594 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7595 Op0.getOperand(0), Op1.getOperand(0));
7596 // Translate the shuffle mask.
7597 SmallVector<int, 16> NewMask;
7598 unsigned NumElts = VT.getVectorNumElements();
7599 unsigned HalfElts = NumElts/2;
7600 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7601 for (unsigned n = 0; n < NumElts; ++n) {
7602 int MaskElt = SVN->getMaskElt(n);
7603 int NewElt = -1;
7604 if (MaskElt < (int)HalfElts)
7605 NewElt = MaskElt;
7606 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7607 NewElt = HalfElts + MaskElt - NumElts;
7608 NewMask.push_back(NewElt);
7609 }
7610 return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7611 DAG.getUNDEF(VT), NewMask.data());
7612 }
7613
7614 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7615 /// NEON load/store intrinsics to merge base address updates.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7616 static SDValue CombineBaseUpdate(SDNode *N,
7617 TargetLowering::DAGCombinerInfo &DCI) {
7618 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7619 return SDValue();
7620
7621 SelectionDAG &DAG = DCI.DAG;
7622 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7623 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7624 unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7625 SDValue Addr = N->getOperand(AddrOpIdx);
7626
7627 // Search for a use of the address operand that is an increment.
7628 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7629 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7630 SDNode *User = *UI;
7631 if (User->getOpcode() != ISD::ADD ||
7632 UI.getUse().getResNo() != Addr.getResNo())
7633 continue;
7634
7635 // Check that the add is independent of the load/store. Otherwise, folding
7636 // it would create a cycle.
7637 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7638 continue;
7639
7640 // Find the new opcode for the updating load/store.
7641 bool isLoad = true;
7642 bool isLaneOp = false;
7643 unsigned NewOpc = 0;
7644 unsigned NumVecs = 0;
7645 if (isIntrinsic) {
7646 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7647 switch (IntNo) {
7648 default: llvm_unreachable("unexpected intrinsic for Neon base update");
7649 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
7650 NumVecs = 1; break;
7651 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
7652 NumVecs = 2; break;
7653 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
7654 NumVecs = 3; break;
7655 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
7656 NumVecs = 4; break;
7657 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7658 NumVecs = 2; isLaneOp = true; break;
7659 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7660 NumVecs = 3; isLaneOp = true; break;
7661 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7662 NumVecs = 4; isLaneOp = true; break;
7663 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
7664 NumVecs = 1; isLoad = false; break;
7665 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
7666 NumVecs = 2; isLoad = false; break;
7667 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
7668 NumVecs = 3; isLoad = false; break;
7669 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
7670 NumVecs = 4; isLoad = false; break;
7671 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7672 NumVecs = 2; isLoad = false; isLaneOp = true; break;
7673 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7674 NumVecs = 3; isLoad = false; isLaneOp = true; break;
7675 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7676 NumVecs = 4; isLoad = false; isLaneOp = true; break;
7677 }
7678 } else {
7679 isLaneOp = true;
7680 switch (N->getOpcode()) {
7681 default: llvm_unreachable("unexpected opcode for Neon base update");
7682 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7683 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7684 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7685 }
7686 }
7687
7688 // Find the size of memory referenced by the load/store.
7689 EVT VecTy;
7690 if (isLoad)
7691 VecTy = N->getValueType(0);
7692 else
7693 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7694 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7695 if (isLaneOp)
7696 NumBytes /= VecTy.getVectorNumElements();
7697
7698 // If the increment is a constant, it must match the memory ref size.
7699 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7700 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7701 uint64_t IncVal = CInc->getZExtValue();
7702 if (IncVal != NumBytes)
7703 continue;
7704 } else if (NumBytes >= 3 * 16) {
7705 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7706 // separate instructions that make it harder to use a non-constant update.
7707 continue;
7708 }
7709
7710 // Create the new updating load/store node.
7711 EVT Tys[6];
7712 unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7713 unsigned n;
7714 for (n = 0; n < NumResultVecs; ++n)
7715 Tys[n] = VecTy;
7716 Tys[n++] = MVT::i32;
7717 Tys[n] = MVT::Other;
7718 SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7719 SmallVector<SDValue, 8> Ops;
7720 Ops.push_back(N->getOperand(0)); // incoming chain
7721 Ops.push_back(N->getOperand(AddrOpIdx));
7722 Ops.push_back(Inc);
7723 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7724 Ops.push_back(N->getOperand(i));
7725 }
7726 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7727 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7728 Ops.data(), Ops.size(),
7729 MemInt->getMemoryVT(),
7730 MemInt->getMemOperand());
7731
7732 // Update the uses.
7733 std::vector<SDValue> NewResults;
7734 for (unsigned i = 0; i < NumResultVecs; ++i) {
7735 NewResults.push_back(SDValue(UpdN.getNode(), i));
7736 }
7737 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7738 DCI.CombineTo(N, NewResults);
7739 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7740
7741 break;
7742 }
7743 return SDValue();
7744 }
7745
7746 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7747 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7748 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
7749 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7750 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7751 SelectionDAG &DAG = DCI.DAG;
7752 EVT VT = N->getValueType(0);
7753 // vldN-dup instructions only support 64-bit vectors for N > 1.
7754 if (!VT.is64BitVector())
7755 return false;
7756
7757 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7758 SDNode *VLD = N->getOperand(0).getNode();
7759 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7760 return false;
7761 unsigned NumVecs = 0;
7762 unsigned NewOpc = 0;
7763 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7764 if (IntNo == Intrinsic::arm_neon_vld2lane) {
7765 NumVecs = 2;
7766 NewOpc = ARMISD::VLD2DUP;
7767 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7768 NumVecs = 3;
7769 NewOpc = ARMISD::VLD3DUP;
7770 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7771 NumVecs = 4;
7772 NewOpc = ARMISD::VLD4DUP;
7773 } else {
7774 return false;
7775 }
7776
7777 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7778 // numbers match the load.
7779 unsigned VLDLaneNo =
7780 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7781 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7782 UI != UE; ++UI) {
7783 // Ignore uses of the chain result.
7784 if (UI.getUse().getResNo() == NumVecs)
7785 continue;
7786 SDNode *User = *UI;
7787 if (User->getOpcode() != ARMISD::VDUPLANE ||
7788 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7789 return false;
7790 }
7791
7792 // Create the vldN-dup node.
7793 EVT Tys[5];
7794 unsigned n;
7795 for (n = 0; n < NumVecs; ++n)
7796 Tys[n] = VT;
7797 Tys[n] = MVT::Other;
7798 SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7799 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7800 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7801 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7802 Ops, 2, VLDMemInt->getMemoryVT(),
7803 VLDMemInt->getMemOperand());
7804
7805 // Update the uses.
7806 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7807 UI != UE; ++UI) {
7808 unsigned ResNo = UI.getUse().getResNo();
7809 // Ignore uses of the chain result.
7810 if (ResNo == NumVecs)
7811 continue;
7812 SDNode *User = *UI;
7813 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7814 }
7815
7816 // Now the vldN-lane intrinsic is dead except for its chain result.
7817 // Update uses of the chain.
7818 std::vector<SDValue> VLDDupResults;
7819 for (unsigned n = 0; n < NumVecs; ++n)
7820 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7821 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7822 DCI.CombineTo(VLD, VLDDupResults);
7823
7824 return true;
7825 }
7826
7827 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
7828 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7829 static SDValue PerformVDUPLANECombine(SDNode *N,
7830 TargetLowering::DAGCombinerInfo &DCI) {
7831 SDValue Op = N->getOperand(0);
7832
7833 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7834 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7835 if (CombineVLDDUP(N, DCI))
7836 return SDValue(N, 0);
7837
7838 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7839 // redundant. Ignore bit_converts for now; element sizes are checked below.
7840 while (Op.getOpcode() == ISD::BITCAST)
7841 Op = Op.getOperand(0);
7842 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7843 return SDValue();
7844
7845 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7846 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7847 // The canonical VMOV for a zero vector uses a 32-bit element size.
7848 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7849 unsigned EltBits;
7850 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7851 EltSize = 8;
7852 EVT VT = N->getValueType(0);
7853 if (EltSize > VT.getVectorElementType().getSizeInBits())
7854 return SDValue();
7855
7856 return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7857 }
7858
7859 // isConstVecPow2 - Return true if each vector element is a power of 2, all
7860 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
isConstVecPow2(SDValue ConstVec,bool isSigned,uint64_t & C)7861 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7862 {
7863 integerPart cN;
7864 integerPart c0 = 0;
7865 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7866 I != E; I++) {
7867 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7868 if (!C)
7869 return false;
7870
7871 bool isExact;
7872 APFloat APF = C->getValueAPF();
7873 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7874 != APFloat::opOK || !isExact)
7875 return false;
7876
7877 c0 = (I == 0) ? cN : c0;
7878 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7879 return false;
7880 }
7881 C = c0;
7882 return true;
7883 }
7884
7885 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7886 /// can replace combinations of VMUL and VCVT (floating-point to integer)
7887 /// when the VMUL has a constant operand that is a power of 2.
7888 ///
7889 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7890 /// vmul.f32 d16, d17, d16
7891 /// vcvt.s32.f32 d16, d16
7892 /// becomes:
7893 /// vcvt.s32.f32 d16, d16, #3
PerformVCVTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7894 static SDValue PerformVCVTCombine(SDNode *N,
7895 TargetLowering::DAGCombinerInfo &DCI,
7896 const ARMSubtarget *Subtarget) {
7897 SelectionDAG &DAG = DCI.DAG;
7898 SDValue Op = N->getOperand(0);
7899
7900 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7901 Op.getOpcode() != ISD::FMUL)
7902 return SDValue();
7903
7904 uint64_t C;
7905 SDValue N0 = Op->getOperand(0);
7906 SDValue ConstVec = Op->getOperand(1);
7907 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7908
7909 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7910 !isConstVecPow2(ConstVec, isSigned, C))
7911 return SDValue();
7912
7913 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7914 Intrinsic::arm_neon_vcvtfp2fxu;
7915 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7916 N->getValueType(0),
7917 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7918 DAG.getConstant(Log2_64(C), MVT::i32));
7919 }
7920
7921 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7922 /// can replace combinations of VCVT (integer to floating-point) and VDIV
7923 /// when the VDIV has a constant operand that is a power of 2.
7924 ///
7925 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7926 /// vcvt.f32.s32 d16, d16
7927 /// vdiv.f32 d16, d17, d16
7928 /// becomes:
7929 /// vcvt.f32.s32 d16, d16, #3
PerformVDIVCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)7930 static SDValue PerformVDIVCombine(SDNode *N,
7931 TargetLowering::DAGCombinerInfo &DCI,
7932 const ARMSubtarget *Subtarget) {
7933 SelectionDAG &DAG = DCI.DAG;
7934 SDValue Op = N->getOperand(0);
7935 unsigned OpOpcode = Op.getNode()->getOpcode();
7936
7937 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7938 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7939 return SDValue();
7940
7941 uint64_t C;
7942 SDValue ConstVec = N->getOperand(1);
7943 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7944
7945 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7946 !isConstVecPow2(ConstVec, isSigned, C))
7947 return SDValue();
7948
7949 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7950 Intrinsic::arm_neon_vcvtfxu2fp;
7951 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7952 Op.getValueType(),
7953 DAG.getConstant(IntrinsicOpcode, MVT::i32),
7954 Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7955 }
7956
7957 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
7958 /// operand of a vector shift operation, where all the elements of the
7959 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)7960 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7961 // Ignore bit_converts.
7962 while (Op.getOpcode() == ISD::BITCAST)
7963 Op = Op.getOperand(0);
7964 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7965 APInt SplatBits, SplatUndef;
7966 unsigned SplatBitSize;
7967 bool HasAnyUndefs;
7968 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7969 HasAnyUndefs, ElementBits) ||
7970 SplatBitSize > ElementBits)
7971 return false;
7972 Cnt = SplatBits.getSExtValue();
7973 return true;
7974 }
7975
7976 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7977 /// operand of a vector shift left operation. That value must be in the range:
7978 /// 0 <= Value < ElementBits for a left shift; or
7979 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)7980 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7981 assert(VT.isVector() && "vector shift count is not a vector type");
7982 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7983 if (! getVShiftImm(Op, ElementBits, Cnt))
7984 return false;
7985 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7986 }
7987
7988 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7989 /// operand of a vector shift right operation. For a shift opcode, the value
7990 /// is positive, but for an intrinsic the value count must be negative. The
7991 /// absolute value must be in the range:
7992 /// 1 <= |Value| <= ElementBits for a right shift; or
7993 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)7994 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7995 int64_t &Cnt) {
7996 assert(VT.isVector() && "vector shift count is not a vector type");
7997 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7998 if (! getVShiftImm(Op, ElementBits, Cnt))
7999 return false;
8000 if (isIntrinsic)
8001 Cnt = -Cnt;
8002 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8003 }
8004
8005 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)8006 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8007 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8008 switch (IntNo) {
8009 default:
8010 // Don't do anything for most intrinsics.
8011 break;
8012
8013 // Vector shifts: check for immediate versions and lower them.
8014 // Note: This is done during DAG combining instead of DAG legalizing because
8015 // the build_vectors for 64-bit vector element shift counts are generally
8016 // not legal, and it is hard to see their values after they get legalized to
8017 // loads from a constant pool.
8018 case Intrinsic::arm_neon_vshifts:
8019 case Intrinsic::arm_neon_vshiftu:
8020 case Intrinsic::arm_neon_vshiftls:
8021 case Intrinsic::arm_neon_vshiftlu:
8022 case Intrinsic::arm_neon_vshiftn:
8023 case Intrinsic::arm_neon_vrshifts:
8024 case Intrinsic::arm_neon_vrshiftu:
8025 case Intrinsic::arm_neon_vrshiftn:
8026 case Intrinsic::arm_neon_vqshifts:
8027 case Intrinsic::arm_neon_vqshiftu:
8028 case Intrinsic::arm_neon_vqshiftsu:
8029 case Intrinsic::arm_neon_vqshiftns:
8030 case Intrinsic::arm_neon_vqshiftnu:
8031 case Intrinsic::arm_neon_vqshiftnsu:
8032 case Intrinsic::arm_neon_vqrshiftns:
8033 case Intrinsic::arm_neon_vqrshiftnu:
8034 case Intrinsic::arm_neon_vqrshiftnsu: {
8035 EVT VT = N->getOperand(1).getValueType();
8036 int64_t Cnt;
8037 unsigned VShiftOpc = 0;
8038
8039 switch (IntNo) {
8040 case Intrinsic::arm_neon_vshifts:
8041 case Intrinsic::arm_neon_vshiftu:
8042 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8043 VShiftOpc = ARMISD::VSHL;
8044 break;
8045 }
8046 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8047 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8048 ARMISD::VSHRs : ARMISD::VSHRu);
8049 break;
8050 }
8051 return SDValue();
8052
8053 case Intrinsic::arm_neon_vshiftls:
8054 case Intrinsic::arm_neon_vshiftlu:
8055 if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8056 break;
8057 llvm_unreachable("invalid shift count for vshll intrinsic");
8058
8059 case Intrinsic::arm_neon_vrshifts:
8060 case Intrinsic::arm_neon_vrshiftu:
8061 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8062 break;
8063 return SDValue();
8064
8065 case Intrinsic::arm_neon_vqshifts:
8066 case Intrinsic::arm_neon_vqshiftu:
8067 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8068 break;
8069 return SDValue();
8070
8071 case Intrinsic::arm_neon_vqshiftsu:
8072 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8073 break;
8074 llvm_unreachable("invalid shift count for vqshlu intrinsic");
8075
8076 case Intrinsic::arm_neon_vshiftn:
8077 case Intrinsic::arm_neon_vrshiftn:
8078 case Intrinsic::arm_neon_vqshiftns:
8079 case Intrinsic::arm_neon_vqshiftnu:
8080 case Intrinsic::arm_neon_vqshiftnsu:
8081 case Intrinsic::arm_neon_vqrshiftns:
8082 case Intrinsic::arm_neon_vqrshiftnu:
8083 case Intrinsic::arm_neon_vqrshiftnsu:
8084 // Narrowing shifts require an immediate right shift.
8085 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8086 break;
8087 llvm_unreachable("invalid shift count for narrowing vector shift "
8088 "intrinsic");
8089
8090 default:
8091 llvm_unreachable("unhandled vector shift");
8092 }
8093
8094 switch (IntNo) {
8095 case Intrinsic::arm_neon_vshifts:
8096 case Intrinsic::arm_neon_vshiftu:
8097 // Opcode already set above.
8098 break;
8099 case Intrinsic::arm_neon_vshiftls:
8100 case Intrinsic::arm_neon_vshiftlu:
8101 if (Cnt == VT.getVectorElementType().getSizeInBits())
8102 VShiftOpc = ARMISD::VSHLLi;
8103 else
8104 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8105 ARMISD::VSHLLs : ARMISD::VSHLLu);
8106 break;
8107 case Intrinsic::arm_neon_vshiftn:
8108 VShiftOpc = ARMISD::VSHRN; break;
8109 case Intrinsic::arm_neon_vrshifts:
8110 VShiftOpc = ARMISD::VRSHRs; break;
8111 case Intrinsic::arm_neon_vrshiftu:
8112 VShiftOpc = ARMISD::VRSHRu; break;
8113 case Intrinsic::arm_neon_vrshiftn:
8114 VShiftOpc = ARMISD::VRSHRN; break;
8115 case Intrinsic::arm_neon_vqshifts:
8116 VShiftOpc = ARMISD::VQSHLs; break;
8117 case Intrinsic::arm_neon_vqshiftu:
8118 VShiftOpc = ARMISD::VQSHLu; break;
8119 case Intrinsic::arm_neon_vqshiftsu:
8120 VShiftOpc = ARMISD::VQSHLsu; break;
8121 case Intrinsic::arm_neon_vqshiftns:
8122 VShiftOpc = ARMISD::VQSHRNs; break;
8123 case Intrinsic::arm_neon_vqshiftnu:
8124 VShiftOpc = ARMISD::VQSHRNu; break;
8125 case Intrinsic::arm_neon_vqshiftnsu:
8126 VShiftOpc = ARMISD::VQSHRNsu; break;
8127 case Intrinsic::arm_neon_vqrshiftns:
8128 VShiftOpc = ARMISD::VQRSHRNs; break;
8129 case Intrinsic::arm_neon_vqrshiftnu:
8130 VShiftOpc = ARMISD::VQRSHRNu; break;
8131 case Intrinsic::arm_neon_vqrshiftnsu:
8132 VShiftOpc = ARMISD::VQRSHRNsu; break;
8133 }
8134
8135 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8136 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8137 }
8138
8139 case Intrinsic::arm_neon_vshiftins: {
8140 EVT VT = N->getOperand(1).getValueType();
8141 int64_t Cnt;
8142 unsigned VShiftOpc = 0;
8143
8144 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8145 VShiftOpc = ARMISD::VSLI;
8146 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8147 VShiftOpc = ARMISD::VSRI;
8148 else {
8149 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8150 }
8151
8152 return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8153 N->getOperand(1), N->getOperand(2),
8154 DAG.getConstant(Cnt, MVT::i32));
8155 }
8156
8157 case Intrinsic::arm_neon_vqrshifts:
8158 case Intrinsic::arm_neon_vqrshiftu:
8159 // No immediate versions of these to check for.
8160 break;
8161 }
8162
8163 return SDValue();
8164 }
8165
8166 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
8167 /// lowers them. As with the vector shift intrinsics, this is done during DAG
8168 /// combining instead of DAG legalizing because the build_vectors for 64-bit
8169 /// vector element shift counts are generally not legal, and it is hard to see
8170 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)8171 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8172 const ARMSubtarget *ST) {
8173 EVT VT = N->getValueType(0);
8174 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8175 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8176 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8177 SDValue N1 = N->getOperand(1);
8178 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8179 SDValue N0 = N->getOperand(0);
8180 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8181 DAG.MaskedValueIsZero(N0.getOperand(0),
8182 APInt::getHighBitsSet(32, 16)))
8183 return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8184 }
8185 }
8186
8187 // Nothing to be done for scalar shifts.
8188 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8189 if (!VT.isVector() || !TLI.isTypeLegal(VT))
8190 return SDValue();
8191
8192 assert(ST->hasNEON() && "unexpected vector shift");
8193 int64_t Cnt;
8194
8195 switch (N->getOpcode()) {
8196 default: llvm_unreachable("unexpected shift opcode");
8197
8198 case ISD::SHL:
8199 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8200 return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8201 DAG.getConstant(Cnt, MVT::i32));
8202 break;
8203
8204 case ISD::SRA:
8205 case ISD::SRL:
8206 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8207 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8208 ARMISD::VSHRs : ARMISD::VSHRu);
8209 return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8210 DAG.getConstant(Cnt, MVT::i32));
8211 }
8212 }
8213 return SDValue();
8214 }
8215
8216 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8217 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)8218 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8219 const ARMSubtarget *ST) {
8220 SDValue N0 = N->getOperand(0);
8221
8222 // Check for sign- and zero-extensions of vector extract operations of 8-
8223 // and 16-bit vector elements. NEON supports these directly. They are
8224 // handled during DAG combining because type legalization will promote them
8225 // to 32-bit types and it is messy to recognize the operations after that.
8226 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8227 SDValue Vec = N0.getOperand(0);
8228 SDValue Lane = N0.getOperand(1);
8229 EVT VT = N->getValueType(0);
8230 EVT EltVT = N0.getValueType();
8231 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8232
8233 if (VT == MVT::i32 &&
8234 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8235 TLI.isTypeLegal(Vec.getValueType()) &&
8236 isa<ConstantSDNode>(Lane)) {
8237
8238 unsigned Opc = 0;
8239 switch (N->getOpcode()) {
8240 default: llvm_unreachable("unexpected opcode");
8241 case ISD::SIGN_EXTEND:
8242 Opc = ARMISD::VGETLANEs;
8243 break;
8244 case ISD::ZERO_EXTEND:
8245 case ISD::ANY_EXTEND:
8246 Opc = ARMISD::VGETLANEu;
8247 break;
8248 }
8249 return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8250 }
8251 }
8252
8253 return SDValue();
8254 }
8255
8256 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8257 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
PerformSELECT_CCCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)8258 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8259 const ARMSubtarget *ST) {
8260 // If the target supports NEON, try to use vmax/vmin instructions for f32
8261 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
8262 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
8263 // a NaN; only do the transformation when it matches that behavior.
8264
8265 // For now only do this when using NEON for FP operations; if using VFP, it
8266 // is not obvious that the benefit outweighs the cost of switching to the
8267 // NEON pipeline.
8268 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8269 N->getValueType(0) != MVT::f32)
8270 return SDValue();
8271
8272 SDValue CondLHS = N->getOperand(0);
8273 SDValue CondRHS = N->getOperand(1);
8274 SDValue LHS = N->getOperand(2);
8275 SDValue RHS = N->getOperand(3);
8276 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8277
8278 unsigned Opcode = 0;
8279 bool IsReversed;
8280 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8281 IsReversed = false; // x CC y ? x : y
8282 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8283 IsReversed = true ; // x CC y ? y : x
8284 } else {
8285 return SDValue();
8286 }
8287
8288 bool IsUnordered;
8289 switch (CC) {
8290 default: break;
8291 case ISD::SETOLT:
8292 case ISD::SETOLE:
8293 case ISD::SETLT:
8294 case ISD::SETLE:
8295 case ISD::SETULT:
8296 case ISD::SETULE:
8297 // If LHS is NaN, an ordered comparison will be false and the result will
8298 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
8299 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
8300 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8301 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8302 break;
8303 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8304 // will return -0, so vmin can only be used for unsafe math or if one of
8305 // the operands is known to be nonzero.
8306 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8307 !DAG.getTarget().Options.UnsafeFPMath &&
8308 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8309 break;
8310 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8311 break;
8312
8313 case ISD::SETOGT:
8314 case ISD::SETOGE:
8315 case ISD::SETGT:
8316 case ISD::SETGE:
8317 case ISD::SETUGT:
8318 case ISD::SETUGE:
8319 // If LHS is NaN, an ordered comparison will be false and the result will
8320 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
8321 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
8322 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8323 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8324 break;
8325 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8326 // will return +0, so vmax can only be used for unsafe math or if one of
8327 // the operands is known to be nonzero.
8328 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8329 !DAG.getTarget().Options.UnsafeFPMath &&
8330 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8331 break;
8332 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8333 break;
8334 }
8335
8336 if (!Opcode)
8337 return SDValue();
8338 return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8339 }
8340
8341 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8342 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const8343 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8344 SDValue Cmp = N->getOperand(4);
8345 if (Cmp.getOpcode() != ARMISD::CMPZ)
8346 // Only looking at EQ and NE cases.
8347 return SDValue();
8348
8349 EVT VT = N->getValueType(0);
8350 DebugLoc dl = N->getDebugLoc();
8351 SDValue LHS = Cmp.getOperand(0);
8352 SDValue RHS = Cmp.getOperand(1);
8353 SDValue FalseVal = N->getOperand(0);
8354 SDValue TrueVal = N->getOperand(1);
8355 SDValue ARMcc = N->getOperand(2);
8356 ARMCC::CondCodes CC =
8357 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8358
8359 // Simplify
8360 // mov r1, r0
8361 // cmp r1, x
8362 // mov r0, y
8363 // moveq r0, x
8364 // to
8365 // cmp r0, x
8366 // movne r0, y
8367 //
8368 // mov r1, r0
8369 // cmp r1, x
8370 // mov r0, x
8371 // movne r0, y
8372 // to
8373 // cmp r0, x
8374 // movne r0, y
8375 /// FIXME: Turn this into a target neutral optimization?
8376 SDValue Res;
8377 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8378 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8379 N->getOperand(3), Cmp);
8380 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8381 SDValue ARMcc;
8382 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8383 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8384 N->getOperand(3), NewCmp);
8385 }
8386
8387 if (Res.getNode()) {
8388 APInt KnownZero, KnownOne;
8389 DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
8390 // Capture demanded bits information that would be otherwise lost.
8391 if (KnownZero == 0xfffffffe)
8392 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8393 DAG.getValueType(MVT::i1));
8394 else if (KnownZero == 0xffffff00)
8395 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8396 DAG.getValueType(MVT::i8));
8397 else if (KnownZero == 0xffff0000)
8398 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8399 DAG.getValueType(MVT::i16));
8400 }
8401
8402 return Res;
8403 }
8404
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const8405 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8406 DAGCombinerInfo &DCI) const {
8407 switch (N->getOpcode()) {
8408 default: break;
8409 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
8410 case ISD::SUB: return PerformSUBCombine(N, DCI);
8411 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
8412 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
8413 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
8414 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
8415 case ARMISD::BFI: return PerformBFICombine(N, DCI);
8416 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8417 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8418 case ISD::STORE: return PerformSTORECombine(N, DCI);
8419 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8420 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8421 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8422 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8423 case ISD::FP_TO_SINT:
8424 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8425 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
8426 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8427 case ISD::SHL:
8428 case ISD::SRA:
8429 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
8430 case ISD::SIGN_EXTEND:
8431 case ISD::ZERO_EXTEND:
8432 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8433 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8434 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8435 case ARMISD::VLD2DUP:
8436 case ARMISD::VLD3DUP:
8437 case ARMISD::VLD4DUP:
8438 return CombineBaseUpdate(N, DCI);
8439 case ISD::INTRINSIC_VOID:
8440 case ISD::INTRINSIC_W_CHAIN:
8441 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8442 case Intrinsic::arm_neon_vld1:
8443 case Intrinsic::arm_neon_vld2:
8444 case Intrinsic::arm_neon_vld3:
8445 case Intrinsic::arm_neon_vld4:
8446 case Intrinsic::arm_neon_vld2lane:
8447 case Intrinsic::arm_neon_vld3lane:
8448 case Intrinsic::arm_neon_vld4lane:
8449 case Intrinsic::arm_neon_vst1:
8450 case Intrinsic::arm_neon_vst2:
8451 case Intrinsic::arm_neon_vst3:
8452 case Intrinsic::arm_neon_vst4:
8453 case Intrinsic::arm_neon_vst2lane:
8454 case Intrinsic::arm_neon_vst3lane:
8455 case Intrinsic::arm_neon_vst4lane:
8456 return CombineBaseUpdate(N, DCI);
8457 default: break;
8458 }
8459 break;
8460 }
8461 return SDValue();
8462 }
8463
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const8464 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8465 EVT VT) const {
8466 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8467 }
8468
allowsUnalignedMemoryAccesses(EVT VT) const8469 bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8470 if (!Subtarget->allowsUnalignedMem())
8471 return false;
8472
8473 switch (VT.getSimpleVT().SimpleTy) {
8474 default:
8475 return false;
8476 case MVT::i8:
8477 case MVT::i16:
8478 case MVT::i32:
8479 return true;
8480 // FIXME: VLD1 etc with standard alignment is legal.
8481 }
8482 }
8483
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)8484 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8485 unsigned AlignCheck) {
8486 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8487 (DstAlign == 0 || DstAlign % AlignCheck == 0));
8488 }
8489
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsZeroVal,bool MemcpyStrSrc,MachineFunction & MF) const8490 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8491 unsigned DstAlign, unsigned SrcAlign,
8492 bool IsZeroVal,
8493 bool MemcpyStrSrc,
8494 MachineFunction &MF) const {
8495 const Function *F = MF.getFunction();
8496
8497 // See if we can use NEON instructions for this...
8498 if (IsZeroVal &&
8499 !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8500 Subtarget->hasNEON()) {
8501 if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8502 return MVT::v4i32;
8503 } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8504 return MVT::v2i32;
8505 }
8506 }
8507
8508 // Lowering to i32/i16 if the size permits.
8509 if (Size >= 4) {
8510 return MVT::i32;
8511 } else if (Size >= 2) {
8512 return MVT::i16;
8513 }
8514
8515 // Let the target-independent logic figure it out.
8516 return MVT::Other;
8517 }
8518
isLegalT1AddressImmediate(int64_t V,EVT VT)8519 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8520 if (V < 0)
8521 return false;
8522
8523 unsigned Scale = 1;
8524 switch (VT.getSimpleVT().SimpleTy) {
8525 default: return false;
8526 case MVT::i1:
8527 case MVT::i8:
8528 // Scale == 1;
8529 break;
8530 case MVT::i16:
8531 // Scale == 2;
8532 Scale = 2;
8533 break;
8534 case MVT::i32:
8535 // Scale == 4;
8536 Scale = 4;
8537 break;
8538 }
8539
8540 if ((V & (Scale - 1)) != 0)
8541 return false;
8542 V /= Scale;
8543 return V == (V & ((1LL << 5) - 1));
8544 }
8545
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)8546 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8547 const ARMSubtarget *Subtarget) {
8548 bool isNeg = false;
8549 if (V < 0) {
8550 isNeg = true;
8551 V = - V;
8552 }
8553
8554 switch (VT.getSimpleVT().SimpleTy) {
8555 default: return false;
8556 case MVT::i1:
8557 case MVT::i8:
8558 case MVT::i16:
8559 case MVT::i32:
8560 // + imm12 or - imm8
8561 if (isNeg)
8562 return V == (V & ((1LL << 8) - 1));
8563 return V == (V & ((1LL << 12) - 1));
8564 case MVT::f32:
8565 case MVT::f64:
8566 // Same as ARM mode. FIXME: NEON?
8567 if (!Subtarget->hasVFP2())
8568 return false;
8569 if ((V & 3) != 0)
8570 return false;
8571 V >>= 2;
8572 return V == (V & ((1LL << 8) - 1));
8573 }
8574 }
8575
8576 /// isLegalAddressImmediate - Return true if the integer value can be used
8577 /// as the offset of the target addressing mode for load / store of the
8578 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)8579 static bool isLegalAddressImmediate(int64_t V, EVT VT,
8580 const ARMSubtarget *Subtarget) {
8581 if (V == 0)
8582 return true;
8583
8584 if (!VT.isSimple())
8585 return false;
8586
8587 if (Subtarget->isThumb1Only())
8588 return isLegalT1AddressImmediate(V, VT);
8589 else if (Subtarget->isThumb2())
8590 return isLegalT2AddressImmediate(V, VT, Subtarget);
8591
8592 // ARM mode.
8593 if (V < 0)
8594 V = - V;
8595 switch (VT.getSimpleVT().SimpleTy) {
8596 default: return false;
8597 case MVT::i1:
8598 case MVT::i8:
8599 case MVT::i32:
8600 // +- imm12
8601 return V == (V & ((1LL << 12) - 1));
8602 case MVT::i16:
8603 // +- imm8
8604 return V == (V & ((1LL << 8) - 1));
8605 case MVT::f32:
8606 case MVT::f64:
8607 if (!Subtarget->hasVFP2()) // FIXME: NEON?
8608 return false;
8609 if ((V & 3) != 0)
8610 return false;
8611 V >>= 2;
8612 return V == (V & ((1LL << 8) - 1));
8613 }
8614 }
8615
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const8616 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8617 EVT VT) const {
8618 int Scale = AM.Scale;
8619 if (Scale < 0)
8620 return false;
8621
8622 switch (VT.getSimpleVT().SimpleTy) {
8623 default: return false;
8624 case MVT::i1:
8625 case MVT::i8:
8626 case MVT::i16:
8627 case MVT::i32:
8628 if (Scale == 1)
8629 return true;
8630 // r + r << imm
8631 Scale = Scale & ~1;
8632 return Scale == 2 || Scale == 4 || Scale == 8;
8633 case MVT::i64:
8634 // r + r
8635 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8636 return true;
8637 return false;
8638 case MVT::isVoid:
8639 // Note, we allow "void" uses (basically, uses that aren't loads or
8640 // stores), because arm allows folding a scale into many arithmetic
8641 // operations. This should be made more precise and revisited later.
8642
8643 // Allow r << imm, but the imm has to be a multiple of two.
8644 if (Scale & 1) return false;
8645 return isPowerOf2_32(Scale);
8646 }
8647 }
8648
8649 /// isLegalAddressingMode - Return true if the addressing mode represented
8650 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const8651 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8652 Type *Ty) const {
8653 EVT VT = getValueType(Ty, true);
8654 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8655 return false;
8656
8657 // Can never fold addr of global into load/store.
8658 if (AM.BaseGV)
8659 return false;
8660
8661 switch (AM.Scale) {
8662 case 0: // no scale reg, must be "r+i" or "r", or "i".
8663 break;
8664 case 1:
8665 if (Subtarget->isThumb1Only())
8666 return false;
8667 // FALL THROUGH.
8668 default:
8669 // ARM doesn't support any R+R*scale+imm addr modes.
8670 if (AM.BaseOffs)
8671 return false;
8672
8673 if (!VT.isSimple())
8674 return false;
8675
8676 if (Subtarget->isThumb2())
8677 return isLegalT2ScaledAddressingMode(AM, VT);
8678
8679 int Scale = AM.Scale;
8680 switch (VT.getSimpleVT().SimpleTy) {
8681 default: return false;
8682 case MVT::i1:
8683 case MVT::i8:
8684 case MVT::i32:
8685 if (Scale < 0) Scale = -Scale;
8686 if (Scale == 1)
8687 return true;
8688 // r + r << imm
8689 return isPowerOf2_32(Scale & ~1);
8690 case MVT::i16:
8691 case MVT::i64:
8692 // r + r
8693 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8694 return true;
8695 return false;
8696
8697 case MVT::isVoid:
8698 // Note, we allow "void" uses (basically, uses that aren't loads or
8699 // stores), because arm allows folding a scale into many arithmetic
8700 // operations. This should be made more precise and revisited later.
8701
8702 // Allow r << imm, but the imm has to be a multiple of two.
8703 if (Scale & 1) return false;
8704 return isPowerOf2_32(Scale);
8705 }
8706 }
8707 return true;
8708 }
8709
8710 /// isLegalICmpImmediate - Return true if the specified immediate is legal
8711 /// icmp immediate, that is the target has icmp instructions which can compare
8712 /// a register against the immediate without having to materialize the
8713 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const8714 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8715 // Thumb2 and ARM modes can use cmn for negative immediates.
8716 if (!Subtarget->isThumb())
8717 return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
8718 if (Subtarget->isThumb2())
8719 return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
8720 // Thumb1 doesn't have cmn, and only 8-bit immediates.
8721 return Imm >= 0 && Imm <= 255;
8722 }
8723
8724 /// isLegalAddImmediate - Return true if the specified immediate is legal
8725 /// add immediate, that is the target has add instructions which can add
8726 /// a register with the immediate without having to materialize the
8727 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const8728 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8729 return ARM_AM::getSOImmVal(Imm) != -1;
8730 }
8731
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)8732 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8733 bool isSEXTLoad, SDValue &Base,
8734 SDValue &Offset, bool &isInc,
8735 SelectionDAG &DAG) {
8736 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8737 return false;
8738
8739 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8740 // AddressingMode 3
8741 Base = Ptr->getOperand(0);
8742 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8743 int RHSC = (int)RHS->getZExtValue();
8744 if (RHSC < 0 && RHSC > -256) {
8745 assert(Ptr->getOpcode() == ISD::ADD);
8746 isInc = false;
8747 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8748 return true;
8749 }
8750 }
8751 isInc = (Ptr->getOpcode() == ISD::ADD);
8752 Offset = Ptr->getOperand(1);
8753 return true;
8754 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8755 // AddressingMode 2
8756 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8757 int RHSC = (int)RHS->getZExtValue();
8758 if (RHSC < 0 && RHSC > -0x1000) {
8759 assert(Ptr->getOpcode() == ISD::ADD);
8760 isInc = false;
8761 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8762 Base = Ptr->getOperand(0);
8763 return true;
8764 }
8765 }
8766
8767 if (Ptr->getOpcode() == ISD::ADD) {
8768 isInc = true;
8769 ARM_AM::ShiftOpc ShOpcVal=
8770 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8771 if (ShOpcVal != ARM_AM::no_shift) {
8772 Base = Ptr->getOperand(1);
8773 Offset = Ptr->getOperand(0);
8774 } else {
8775 Base = Ptr->getOperand(0);
8776 Offset = Ptr->getOperand(1);
8777 }
8778 return true;
8779 }
8780
8781 isInc = (Ptr->getOpcode() == ISD::ADD);
8782 Base = Ptr->getOperand(0);
8783 Offset = Ptr->getOperand(1);
8784 return true;
8785 }
8786
8787 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8788 return false;
8789 }
8790
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)8791 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8792 bool isSEXTLoad, SDValue &Base,
8793 SDValue &Offset, bool &isInc,
8794 SelectionDAG &DAG) {
8795 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8796 return false;
8797
8798 Base = Ptr->getOperand(0);
8799 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8800 int RHSC = (int)RHS->getZExtValue();
8801 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8802 assert(Ptr->getOpcode() == ISD::ADD);
8803 isInc = false;
8804 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8805 return true;
8806 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8807 isInc = Ptr->getOpcode() == ISD::ADD;
8808 Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8809 return true;
8810 }
8811 }
8812
8813 return false;
8814 }
8815
8816 /// getPreIndexedAddressParts - returns true by value, base pointer and
8817 /// offset pointer and addressing mode by reference if the node's address
8818 /// can be legally represented as pre-indexed load / store address.
8819 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const8820 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8821 SDValue &Offset,
8822 ISD::MemIndexedMode &AM,
8823 SelectionDAG &DAG) const {
8824 if (Subtarget->isThumb1Only())
8825 return false;
8826
8827 EVT VT;
8828 SDValue Ptr;
8829 bool isSEXTLoad = false;
8830 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8831 Ptr = LD->getBasePtr();
8832 VT = LD->getMemoryVT();
8833 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8834 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8835 Ptr = ST->getBasePtr();
8836 VT = ST->getMemoryVT();
8837 } else
8838 return false;
8839
8840 bool isInc;
8841 bool isLegal = false;
8842 if (Subtarget->isThumb2())
8843 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8844 Offset, isInc, DAG);
8845 else
8846 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8847 Offset, isInc, DAG);
8848 if (!isLegal)
8849 return false;
8850
8851 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8852 return true;
8853 }
8854
8855 /// getPostIndexedAddressParts - returns true by value, base pointer and
8856 /// offset pointer and addressing mode by reference if this node can be
8857 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const8858 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8859 SDValue &Base,
8860 SDValue &Offset,
8861 ISD::MemIndexedMode &AM,
8862 SelectionDAG &DAG) const {
8863 if (Subtarget->isThumb1Only())
8864 return false;
8865
8866 EVT VT;
8867 SDValue Ptr;
8868 bool isSEXTLoad = false;
8869 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8870 VT = LD->getMemoryVT();
8871 Ptr = LD->getBasePtr();
8872 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8873 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8874 VT = ST->getMemoryVT();
8875 Ptr = ST->getBasePtr();
8876 } else
8877 return false;
8878
8879 bool isInc;
8880 bool isLegal = false;
8881 if (Subtarget->isThumb2())
8882 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8883 isInc, DAG);
8884 else
8885 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8886 isInc, DAG);
8887 if (!isLegal)
8888 return false;
8889
8890 if (Ptr != Base) {
8891 // Swap base ptr and offset to catch more post-index load / store when
8892 // it's legal. In Thumb2 mode, offset must be an immediate.
8893 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8894 !Subtarget->isThumb2())
8895 std::swap(Base, Offset);
8896
8897 // Post-indexed load / store update the base pointer.
8898 if (Ptr != Base)
8899 return false;
8900 }
8901
8902 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8903 return true;
8904 }
8905
computeMaskedBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const8906 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8907 APInt &KnownZero,
8908 APInt &KnownOne,
8909 const SelectionDAG &DAG,
8910 unsigned Depth) const {
8911 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
8912 switch (Op.getOpcode()) {
8913 default: break;
8914 case ARMISD::CMOV: {
8915 // Bits are known zero/one if known on the LHS and RHS.
8916 DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
8917 if (KnownZero == 0 && KnownOne == 0) return;
8918
8919 APInt KnownZeroRHS, KnownOneRHS;
8920 DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
8921 KnownZero &= KnownZeroRHS;
8922 KnownOne &= KnownOneRHS;
8923 return;
8924 }
8925 }
8926 }
8927
8928 //===----------------------------------------------------------------------===//
8929 // ARM Inline Assembly Support
8930 //===----------------------------------------------------------------------===//
8931
ExpandInlineAsm(CallInst * CI) const8932 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8933 // Looking for "rev" which is V6+.
8934 if (!Subtarget->hasV6Ops())
8935 return false;
8936
8937 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8938 std::string AsmStr = IA->getAsmString();
8939 SmallVector<StringRef, 4> AsmPieces;
8940 SplitString(AsmStr, AsmPieces, ";\n");
8941
8942 switch (AsmPieces.size()) {
8943 default: return false;
8944 case 1:
8945 AsmStr = AsmPieces[0];
8946 AsmPieces.clear();
8947 SplitString(AsmStr, AsmPieces, " \t,");
8948
8949 // rev $0, $1
8950 if (AsmPieces.size() == 3 &&
8951 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8952 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8953 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8954 if (Ty && Ty->getBitWidth() == 32)
8955 return IntrinsicLowering::LowerToByteSwap(CI);
8956 }
8957 break;
8958 }
8959
8960 return false;
8961 }
8962
8963 /// getConstraintType - Given a constraint letter, return the type of
8964 /// constraint it is for this target.
8965 ARMTargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const8966 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8967 if (Constraint.size() == 1) {
8968 switch (Constraint[0]) {
8969 default: break;
8970 case 'l': return C_RegisterClass;
8971 case 'w': return C_RegisterClass;
8972 case 'h': return C_RegisterClass;
8973 case 'x': return C_RegisterClass;
8974 case 't': return C_RegisterClass;
8975 case 'j': return C_Other; // Constant for movw.
8976 // An address with a single base register. Due to the way we
8977 // currently handle addresses it is the same as an 'r' memory constraint.
8978 case 'Q': return C_Memory;
8979 }
8980 } else if (Constraint.size() == 2) {
8981 switch (Constraint[0]) {
8982 default: break;
8983 // All 'U+' constraints are addresses.
8984 case 'U': return C_Memory;
8985 }
8986 }
8987 return TargetLowering::getConstraintType(Constraint);
8988 }
8989
8990 /// Examine constraint type and operand type and determine a weight value.
8991 /// This object must already have been set up with the operand type
8992 /// and the current alternative constraint selected.
8993 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const8994 ARMTargetLowering::getSingleConstraintMatchWeight(
8995 AsmOperandInfo &info, const char *constraint) const {
8996 ConstraintWeight weight = CW_Invalid;
8997 Value *CallOperandVal = info.CallOperandVal;
8998 // If we don't have a value, we can't do a match,
8999 // but allow it at the lowest weight.
9000 if (CallOperandVal == NULL)
9001 return CW_Default;
9002 Type *type = CallOperandVal->getType();
9003 // Look at the constraint type.
9004 switch (*constraint) {
9005 default:
9006 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9007 break;
9008 case 'l':
9009 if (type->isIntegerTy()) {
9010 if (Subtarget->isThumb())
9011 weight = CW_SpecificReg;
9012 else
9013 weight = CW_Register;
9014 }
9015 break;
9016 case 'w':
9017 if (type->isFloatingPointTy())
9018 weight = CW_Register;
9019 break;
9020 }
9021 return weight;
9022 }
9023
9024 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9025 RCPair
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const9026 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9027 EVT VT) const {
9028 if (Constraint.size() == 1) {
9029 // GCC ARM Constraint Letters
9030 switch (Constraint[0]) {
9031 case 'l': // Low regs or general regs.
9032 if (Subtarget->isThumb())
9033 return RCPair(0U, ARM::tGPRRegisterClass);
9034 else
9035 return RCPair(0U, ARM::GPRRegisterClass);
9036 case 'h': // High regs or no regs.
9037 if (Subtarget->isThumb())
9038 return RCPair(0U, ARM::hGPRRegisterClass);
9039 break;
9040 case 'r':
9041 return RCPair(0U, ARM::GPRRegisterClass);
9042 case 'w':
9043 if (VT == MVT::f32)
9044 return RCPair(0U, ARM::SPRRegisterClass);
9045 if (VT.getSizeInBits() == 64)
9046 return RCPair(0U, ARM::DPRRegisterClass);
9047 if (VT.getSizeInBits() == 128)
9048 return RCPair(0U, ARM::QPRRegisterClass);
9049 break;
9050 case 'x':
9051 if (VT == MVT::f32)
9052 return RCPair(0U, ARM::SPR_8RegisterClass);
9053 if (VT.getSizeInBits() == 64)
9054 return RCPair(0U, ARM::DPR_8RegisterClass);
9055 if (VT.getSizeInBits() == 128)
9056 return RCPair(0U, ARM::QPR_8RegisterClass);
9057 break;
9058 case 't':
9059 if (VT == MVT::f32)
9060 return RCPair(0U, ARM::SPRRegisterClass);
9061 break;
9062 }
9063 }
9064 if (StringRef("{cc}").equals_lower(Constraint))
9065 return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
9066
9067 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9068 }
9069
9070 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9071 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const9072 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9073 std::string &Constraint,
9074 std::vector<SDValue>&Ops,
9075 SelectionDAG &DAG) const {
9076 SDValue Result(0, 0);
9077
9078 // Currently only support length 1 constraints.
9079 if (Constraint.length() != 1) return;
9080
9081 char ConstraintLetter = Constraint[0];
9082 switch (ConstraintLetter) {
9083 default: break;
9084 case 'j':
9085 case 'I': case 'J': case 'K': case 'L':
9086 case 'M': case 'N': case 'O':
9087 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9088 if (!C)
9089 return;
9090
9091 int64_t CVal64 = C->getSExtValue();
9092 int CVal = (int) CVal64;
9093 // None of these constraints allow values larger than 32 bits. Check
9094 // that the value fits in an int.
9095 if (CVal != CVal64)
9096 return;
9097
9098 switch (ConstraintLetter) {
9099 case 'j':
9100 // Constant suitable for movw, must be between 0 and
9101 // 65535.
9102 if (Subtarget->hasV6T2Ops())
9103 if (CVal >= 0 && CVal <= 65535)
9104 break;
9105 return;
9106 case 'I':
9107 if (Subtarget->isThumb1Only()) {
9108 // This must be a constant between 0 and 255, for ADD
9109 // immediates.
9110 if (CVal >= 0 && CVal <= 255)
9111 break;
9112 } else if (Subtarget->isThumb2()) {
9113 // A constant that can be used as an immediate value in a
9114 // data-processing instruction.
9115 if (ARM_AM::getT2SOImmVal(CVal) != -1)
9116 break;
9117 } else {
9118 // A constant that can be used as an immediate value in a
9119 // data-processing instruction.
9120 if (ARM_AM::getSOImmVal(CVal) != -1)
9121 break;
9122 }
9123 return;
9124
9125 case 'J':
9126 if (Subtarget->isThumb()) { // FIXME thumb2
9127 // This must be a constant between -255 and -1, for negated ADD
9128 // immediates. This can be used in GCC with an "n" modifier that
9129 // prints the negated value, for use with SUB instructions. It is
9130 // not useful otherwise but is implemented for compatibility.
9131 if (CVal >= -255 && CVal <= -1)
9132 break;
9133 } else {
9134 // This must be a constant between -4095 and 4095. It is not clear
9135 // what this constraint is intended for. Implemented for
9136 // compatibility with GCC.
9137 if (CVal >= -4095 && CVal <= 4095)
9138 break;
9139 }
9140 return;
9141
9142 case 'K':
9143 if (Subtarget->isThumb1Only()) {
9144 // A 32-bit value where only one byte has a nonzero value. Exclude
9145 // zero to match GCC. This constraint is used by GCC internally for
9146 // constants that can be loaded with a move/shift combination.
9147 // It is not useful otherwise but is implemented for compatibility.
9148 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9149 break;
9150 } else if (Subtarget->isThumb2()) {
9151 // A constant whose bitwise inverse can be used as an immediate
9152 // value in a data-processing instruction. This can be used in GCC
9153 // with a "B" modifier that prints the inverted value, for use with
9154 // BIC and MVN instructions. It is not useful otherwise but is
9155 // implemented for compatibility.
9156 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9157 break;
9158 } else {
9159 // A constant whose bitwise inverse can be used as an immediate
9160 // value in a data-processing instruction. This can be used in GCC
9161 // with a "B" modifier that prints the inverted value, for use with
9162 // BIC and MVN instructions. It is not useful otherwise but is
9163 // implemented for compatibility.
9164 if (ARM_AM::getSOImmVal(~CVal) != -1)
9165 break;
9166 }
9167 return;
9168
9169 case 'L':
9170 if (Subtarget->isThumb1Only()) {
9171 // This must be a constant between -7 and 7,
9172 // for 3-operand ADD/SUB immediate instructions.
9173 if (CVal >= -7 && CVal < 7)
9174 break;
9175 } else if (Subtarget->isThumb2()) {
9176 // A constant whose negation can be used as an immediate value in a
9177 // data-processing instruction. This can be used in GCC with an "n"
9178 // modifier that prints the negated value, for use with SUB
9179 // instructions. It is not useful otherwise but is implemented for
9180 // compatibility.
9181 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9182 break;
9183 } else {
9184 // A constant whose negation can be used as an immediate value in a
9185 // data-processing instruction. This can be used in GCC with an "n"
9186 // modifier that prints the negated value, for use with SUB
9187 // instructions. It is not useful otherwise but is implemented for
9188 // compatibility.
9189 if (ARM_AM::getSOImmVal(-CVal) != -1)
9190 break;
9191 }
9192 return;
9193
9194 case 'M':
9195 if (Subtarget->isThumb()) { // FIXME thumb2
9196 // This must be a multiple of 4 between 0 and 1020, for
9197 // ADD sp + immediate.
9198 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9199 break;
9200 } else {
9201 // A power of two or a constant between 0 and 32. This is used in
9202 // GCC for the shift amount on shifted register operands, but it is
9203 // useful in general for any shift amounts.
9204 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9205 break;
9206 }
9207 return;
9208
9209 case 'N':
9210 if (Subtarget->isThumb()) { // FIXME thumb2
9211 // This must be a constant between 0 and 31, for shift amounts.
9212 if (CVal >= 0 && CVal <= 31)
9213 break;
9214 }
9215 return;
9216
9217 case 'O':
9218 if (Subtarget->isThumb()) { // FIXME thumb2
9219 // This must be a multiple of 4 between -508 and 508, for
9220 // ADD/SUB sp = sp + immediate.
9221 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9222 break;
9223 }
9224 return;
9225 }
9226 Result = DAG.getTargetConstant(CVal, Op.getValueType());
9227 break;
9228 }
9229
9230 if (Result.getNode()) {
9231 Ops.push_back(Result);
9232 return;
9233 }
9234 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9235 }
9236
9237 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const9238 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9239 // The ARM target isn't yet aware of offsets.
9240 return false;
9241 }
9242
isBitFieldInvertedMask(unsigned v)9243 bool ARM::isBitFieldInvertedMask(unsigned v) {
9244 if (v == 0xffffffff)
9245 return 0;
9246 // there can be 1's on either or both "outsides", all the "inside"
9247 // bits must be 0's
9248 unsigned int lsb = 0, msb = 31;
9249 while (v & (1 << msb)) --msb;
9250 while (v & (1 << lsb)) ++lsb;
9251 for (unsigned int i = lsb; i <= msb; ++i) {
9252 if (v & (1 << i))
9253 return 0;
9254 }
9255 return 1;
9256 }
9257
9258 /// isFPImmLegal - Returns true if the target can instruction select the
9259 /// specified FP immediate natively. If false, the legalizer will
9260 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const9261 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9262 if (!Subtarget->hasVFP3())
9263 return false;
9264 if (VT == MVT::f32)
9265 return ARM_AM::getFP32Imm(Imm) != -1;
9266 if (VT == MVT::f64)
9267 return ARM_AM::getFP64Imm(Imm) != -1;
9268 return false;
9269 }
9270
9271 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9272 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
9273 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const9274 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9275 const CallInst &I,
9276 unsigned Intrinsic) const {
9277 switch (Intrinsic) {
9278 case Intrinsic::arm_neon_vld1:
9279 case Intrinsic::arm_neon_vld2:
9280 case Intrinsic::arm_neon_vld3:
9281 case Intrinsic::arm_neon_vld4:
9282 case Intrinsic::arm_neon_vld2lane:
9283 case Intrinsic::arm_neon_vld3lane:
9284 case Intrinsic::arm_neon_vld4lane: {
9285 Info.opc = ISD::INTRINSIC_W_CHAIN;
9286 // Conservatively set memVT to the entire set of vectors loaded.
9287 uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
9288 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9289 Info.ptrVal = I.getArgOperand(0);
9290 Info.offset = 0;
9291 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9292 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9293 Info.vol = false; // volatile loads with NEON intrinsics not supported
9294 Info.readMem = true;
9295 Info.writeMem = false;
9296 return true;
9297 }
9298 case Intrinsic::arm_neon_vst1:
9299 case Intrinsic::arm_neon_vst2:
9300 case Intrinsic::arm_neon_vst3:
9301 case Intrinsic::arm_neon_vst4:
9302 case Intrinsic::arm_neon_vst2lane:
9303 case Intrinsic::arm_neon_vst3lane:
9304 case Intrinsic::arm_neon_vst4lane: {
9305 Info.opc = ISD::INTRINSIC_VOID;
9306 // Conservatively set memVT to the entire set of vectors stored.
9307 unsigned NumElts = 0;
9308 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9309 Type *ArgTy = I.getArgOperand(ArgI)->getType();
9310 if (!ArgTy->isVectorTy())
9311 break;
9312 NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
9313 }
9314 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9315 Info.ptrVal = I.getArgOperand(0);
9316 Info.offset = 0;
9317 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9318 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9319 Info.vol = false; // volatile stores with NEON intrinsics not supported
9320 Info.readMem = false;
9321 Info.writeMem = true;
9322 return true;
9323 }
9324 case Intrinsic::arm_strexd: {
9325 Info.opc = ISD::INTRINSIC_W_CHAIN;
9326 Info.memVT = MVT::i64;
9327 Info.ptrVal = I.getArgOperand(2);
9328 Info.offset = 0;
9329 Info.align = 8;
9330 Info.vol = true;
9331 Info.readMem = false;
9332 Info.writeMem = true;
9333 return true;
9334 }
9335 case Intrinsic::arm_ldrexd: {
9336 Info.opc = ISD::INTRINSIC_W_CHAIN;
9337 Info.memVT = MVT::i64;
9338 Info.ptrVal = I.getArgOperand(0);
9339 Info.offset = 0;
9340 Info.align = 8;
9341 Info.vol = true;
9342 Info.readMem = true;
9343 Info.writeMem = false;
9344 return true;
9345 }
9346 default:
9347 break;
9348 }
9349
9350 return false;
9351 }
9352