• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11//  Declarations that describe the ARM register file
12//===----------------------------------------------------------------------===//
13
14// Registers are identified with 4-bit ID numbers.
15class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
16  field bits<4> Num;
17  let Namespace = "ARM";
18  let SubRegs = subregs;
19  // All bits of ARM registers with sub-registers are covered by sub-registers.
20  let CoveredBySubRegs = 1;
21}
22
23class ARMFReg<bits<6> num, string n> : Register<n> {
24  field bits<6> Num;
25  let Namespace = "ARM";
26}
27
28// Subregister indices.
29let Namespace = "ARM" in {
30def qqsub_0 : SubRegIndex;
31def qqsub_1 : SubRegIndex;
32
33// Note: Code depends on these having consecutive numbers.
34def qsub_0 : SubRegIndex;
35def qsub_1 : SubRegIndex;
36def qsub_2 : SubRegIndex<[qqsub_1, qsub_0]>;
37def qsub_3 : SubRegIndex<[qqsub_1, qsub_1]>;
38
39def dsub_0 : SubRegIndex;
40def dsub_1 : SubRegIndex;
41def dsub_2 : SubRegIndex<[qsub_1, dsub_0]>;
42def dsub_3 : SubRegIndex<[qsub_1, dsub_1]>;
43def dsub_4 : SubRegIndex<[qsub_2, dsub_0]>;
44def dsub_5 : SubRegIndex<[qsub_2, dsub_1]>;
45def dsub_6 : SubRegIndex<[qsub_3, dsub_0]>;
46def dsub_7 : SubRegIndex<[qsub_3, dsub_1]>;
47
48def ssub_0  : SubRegIndex;
49def ssub_1  : SubRegIndex;
50def ssub_2  : SubRegIndex<[dsub_1, ssub_0]>;
51def ssub_3  : SubRegIndex<[dsub_1, ssub_1]>;
52// Let TableGen synthesize the remaining 12 ssub_* indices.
53// We don't need to name them.
54}
55
56// Integer registers
57def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
58def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
59def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
60def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
61def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
62def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
63def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
64def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
65// These require 32-bit instructions.
66let CostPerUse = 1 in {
67def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
68def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
69def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
70def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
71def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
72def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
73def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
74def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
75}
76
77// Float registers
78def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
79def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
80def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
81def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
82def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
83def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
84def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
85def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
86def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
87def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
88def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
89def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
90def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
91def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
92def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
93def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
94
95// Aliases of the F* registers used to hold 64-bit fp values (doubles)
96let SubRegIndices = [ssub_0, ssub_1] in {
97def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
98def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
99def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
100def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
101def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
102def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
103def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
104def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
105def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
106def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
107def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
108def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
109def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
110def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
111def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
112def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
113}
114
115// VFP3 defines 16 additional double registers
116def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
117def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
118def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
119def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
120def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
121def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
122def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
123def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
124def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
125def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
126def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
127def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
128def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
129def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
130def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
131def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
132
133// Advanced SIMD (NEON) defines 16 quad-word aliases
134let SubRegIndices = [dsub_0, dsub_1] in {
135def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
136def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
137def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
138def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
139def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
140def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
141def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
142def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
143}
144let SubRegIndices = [dsub_0, dsub_1] in {
145def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
146def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
147def Q10 : ARMReg<10, "q10", [D20, D21]>;
148def Q11 : ARMReg<11, "q11", [D22, D23]>;
149def Q12 : ARMReg<12, "q12", [D24, D25]>;
150def Q13 : ARMReg<13, "q13", [D26, D27]>;
151def Q14 : ARMReg<14, "q14", [D28, D29]>;
152def Q15 : ARMReg<15, "q15", [D30, D31]>;
153}
154
155// Current Program Status Register.
156// We model fpscr with two registers: FPSCR models the control bits and will be
157// reserved. FPSCR_NZCV models the flag bits and will be unreserved.
158def CPSR       : ARMReg<0, "cpsr">;
159def APSR       : ARMReg<1, "apsr">;
160def SPSR       : ARMReg<2, "spsr">;
161def FPSCR      : ARMReg<3, "fpscr">;
162def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> {
163  let Aliases = [FPSCR];
164}
165def ITSTATE    : ARMReg<4, "itstate">;
166
167// Special Registers - only available in privileged mode.
168def FPSID   : ARMReg<0, "fpsid">;
169def MVFR1   : ARMReg<6, "mvfr1">;
170def MVFR0   : ARMReg<7, "mvfr0">;
171def FPEXC   : ARMReg<8, "fpexc">;
172
173// Register classes.
174//
175// pc  == Program Counter
176// lr  == Link Register
177// sp  == Stack Pointer
178// r12 == ip (scratch)
179// r7  == Frame Pointer (thumb-style backtraces)
180// r9  == May be reserved as Thread Register
181// r11 == Frame Pointer (arm-style backtraces)
182// r10 == Stack Limit
183//
184def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
185                                               SP, LR, PC)> {
186  // Allocate LR as the first CSR since it is always saved anyway.
187  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
188  // know how to spill them. If we make our prologue/epilogue code smarter at
189  // some point, we can go back to using the above allocation orders for the
190  // Thumb1 instructions that know how to use hi regs.
191  let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
192  let AltOrderSelect = [{
193      return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
194  }];
195}
196
197// GPRs without the PC.  Some ARM instructions do not allow the PC in
198// certain operand slots, particularly as the destination.  Primarily
199// useful for disassembly.
200def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
201  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
202  let AltOrderSelect = [{
203      return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
204  }];
205}
206
207// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
208// implied SP argument list.
209// FIXME: It would be better to not use this at all and refactor the
210// instructions to not have SP an an explicit argument. That makes
211// frame index resolution a bit trickier, though.
212def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>;
213
214// restricted GPR register class. Many Thumb2 instructions allow the full
215// register range for operands, but have undefined behaviours when PC
216// or SP (R13 or R15) are used. The ARM ISA refers to these operands
217// via the BadReg() pseudo-code description.
218def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
219  let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
220  let AltOrderSelect = [{
221      return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
222  }];
223}
224
225// Thumb registers are R0-R7 normally. Some instructions can still use
226// the general GPR register class above (MOV, e.g.)
227def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>;
228
229// The high registers in thumb mode, R8-R15.
230def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>;
231
232// For tail calls, we can't use callee-saved registers, as they are restored
233// to the saved value before the tail call, which would clobber a call address.
234// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
235// this class and the preceding one(!)  This is what we want.
236def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R9, R12)> {
237  let AltOrders = [(and tcGPR, tGPR)];
238  let AltOrderSelect = [{
239      return MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
240  }];
241}
242
243// Condition code registers.
244def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
245  let CopyCost = -1;  // Don't allow copying of status registers.
246  let isAllocatable = 0;
247}
248
249// Scalar single precision floating point register class..
250def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)>;
251
252// Subset of SPR which can be used as a source of NEON scalars for 16-bit
253// operations
254def SPR_8 : RegisterClass<"ARM", [f32], 32, (trunc SPR, 16)>;
255
256// Scalar double precision floating point / generic 64-bit vector register
257// class.
258// ARM requires only word alignment for double. It's more performant if it
259// is double-word alignment though.
260def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
261                        (sequence "D%u", 0, 31)> {
262  // Allocate non-VFP2 registers D16-D31 first.
263  let AltOrders = [(rotl DPR, 16)];
264  let AltOrderSelect = [{ return 1; }];
265}
266
267// Subset of DPR that are accessible with VFP2 (and so that also have
268// 32-bit SPR subregs).
269def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
270                             (trunc DPR, 16)> {
271  let SubRegClasses = [(SPR ssub_0, ssub_1)];
272}
273
274// Subset of DPR which can be used as a source of NEON scalars for 16-bit
275// operations
276def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
277                          (trunc DPR, 8)> {
278  let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
279}
280
281// Generic 128-bit vector register class.
282def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
283                        (sequence "Q%u", 0, 15)> {
284  let SubRegClasses = [(DPR dsub_0, dsub_1)];
285  // Allocate non-VFP2 aliases Q8-Q15 first.
286  let AltOrders = [(rotl QPR, 8)];
287  let AltOrderSelect = [{ return 1; }];
288}
289
290// Subset of QPR that have 32-bit SPR subregs.
291def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
292                             128, (trunc QPR, 8)> {
293  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
294                       (DPR_VFP2 dsub_0, dsub_1)];
295}
296
297// Subset of QPR that have DPR_8 and SPR_8 subregs.
298def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
299                           128, (trunc QPR, 4)> {
300  let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
301                       (DPR_8 dsub_0, dsub_1)];
302}
303
304// Pseudo-registers representing odd-even pairs of D registers. The even-odd
305// pairs are already represented by the Q registers.
306// These are needed by NEON instructions requiring two consecutive D registers.
307// There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
308def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
309                                [(decimate (shl DPR, 1), 2),
310                                 (decimate (shl DPR, 2), 2)]>;
311
312// Register class representing a pair of consecutive D registers.
313// Use the Q registers for the even-odd pairs.
314def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
315                          128, (interleave QPR, TuplesOE2D)> {
316  // Allocate starting at non-VFP2 registers D16-D31 first.
317  // Prefer even-odd pairs as they are easier to copy.
318  let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))];
319  let AltOrderSelect = [{ return 1; }];
320}
321
322// Pseudo-registers representing 3 consecutive D registers.
323def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
324                              [(shl DPR, 0),
325                               (shl DPR, 1),
326                               (shl DPR, 2)]>;
327
328// 3 consecutive D registers.
329def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
330  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
331}
332
333// Pseudo 256-bit registers to represent pairs of Q registers. These should
334// never be present in the emitted code.
335// These are used for NEON load / store instructions, e.g., vld4, vst3.
336def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
337
338// Pseudo 256-bit vector register class to model pairs of Q registers
339// (4 consecutive D registers).
340def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
341  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
342                       (QPR qsub_0, qsub_1)];
343  // Allocate non-VFP2 aliases first.
344  let AltOrders = [(rotl QQPR, 8)];
345  let AltOrderSelect = [{ return 1; }];
346}
347
348// Tuples of 4 D regs that isn't also a pair of Q regs.
349def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
350                                [(decimate (shl DPR, 1), 2),
351                                 (decimate (shl DPR, 2), 2),
352                                 (decimate (shl DPR, 3), 2),
353                                 (decimate (shl DPR, 4), 2)]>;
354
355// 4 consecutive D registers.
356def DQuad : RegisterClass<"ARM", [v4i64], 256,
357                          (interleave Tuples2Q, TuplesOE4D)>;
358
359// Pseudo 512-bit registers to represent four consecutive Q registers.
360def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
361                               [(shl QQPR, 0), (shl QQPR, 2)]>;
362
363// Pseudo 512-bit vector register class to model 4 consecutive Q registers
364// (8 consecutive D registers).
365def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
366  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
367                            dsub_4, dsub_5, dsub_6, dsub_7),
368                       (QPR qsub_0, qsub_1, qsub_2, qsub_3)];
369  // Allocate non-VFP2 aliases first.
370  let AltOrders = [(rotl QQQQPR, 8)];
371  let AltOrderSelect = [{ return 1; }];
372}
373
374
375// Pseudo-registers representing 2-spaced consecutive D registers.
376def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
377                                 [(shl DPR, 0),
378                                  (shl DPR, 2)]>;
379
380// Spaced pairs of D registers.
381def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
382
383def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
384                                 [(shl DPR, 0),
385                                  (shl DPR, 2),
386                                  (shl DPR, 4)]>;
387
388// Spaced triples of D registers.
389def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
390  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
391}
392
393def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
394                                 [(shl DPR, 0),
395                                  (shl DPR, 2),
396                                  (shl DPR, 4),
397                                  (shl DPR, 6)]>;
398
399// Spaced quads of D registers.
400def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
401